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Geodesics on Riemann Surfaces with Ramification
Points of Order Greater than Two

Mark Sheingorn

Abstract. Most commonly, studies of geodesy on Riemann surfaces proceed
on those surfaces without ramification. While it is true that every surface of
finite type (stemming from a finitely generated Fuchsian group) has a finite-
sheeted cover which is free of ramification, local geometric information is lost
in this process.

We seek to analyze geodesics on ramified surfaces directly. After briefly
reviewing (the by now well-understood) situation of ramification points of
order 2, we turn to higher ramification. Examples are offered on the surface
stemming from the squares of elements of the full modular group Γ2\H of
signature (0; 3, 3,∞) . Already here we can see that a fundamental property
of negatively curved surfaces fails: there are closed curves with apparently
non-trivial homotopy, yet having no geodesic in their homotopy class. Next,
we construct surfaces on which length L and number of self-intersections N of
a closed bounded height geodesic are closely linked: There are constants a and
b depending only the surface and said height such that aL(τ) < bN(τ) < L(τ).
On such surfaces, long simple geodesic arcs cannot exist.

Contents

1. Geodesics near efp2’s 190
2. Geodesics near efp3’s on Γ2\H 190

2.1. Basic facts about Γ2 190
2.2. The unit circle and some of its perturbations 191
2.3. Symmetry of 3-loops 192
2.4. Absence of long low height simple geodesic arcs on Γ2\H 193
2.5. The paths of short Γ2\H simple closed geodesics on Γ3\H 194

3. q > 3 on the Hecke triangle surfaces 196
4. Additional sphere groups 198
References 199

Received December 15, 1999.
Mathematics Subject Classification. 30F10,35,45 11F06.
Key words and phrases. geodesy, ramification, elliptic fixed point.
Research supported by Princeton University and PSC-CUNY.

ISSN 1076-9803/01

189

http://nyjm.albany.edu:8000/j/2001/7-11.html
http://nyjm.albany.edu:8000/j/2001/Vol7.html
http://nyjm.albany.edu:8000/nyjm.html


190 Mark Sheingorn

1. Geodesics near efp2’s

The geometry of geodesics near efp2’s is well understood by reason of its relative
tractability; its study is motivated by its centrality to the hyperbolic geometry
of the Markoff spectrum near 3. (See, for example, [S]). Thus we just give a
brief summary. A geodesic which hits an elliptic fixed point of order two (denoted
hereafter efp2) simply bounces off it, returning along the same route it came in
on, in the opposite direction. A geodesic passing near an efp2 swings around it,
returning in nearly the opposite direction along a path that diverges from the
incoming path. This is illustrated by the action of T : z �→ −1/z on the vertical
geodesic through −ε. This is mapped to the one through 0 and 1/ε, with the portion
below y = 1 on the incoming being mapped to the portion above y = 1 on the
outgoing. In certain situations, notably Γ3\H (see [SS]), this ‘bouncing-without-
local-intersection’ accounts for all simple geodesics on the surface. (Here Γ3 is
generated by the cubes of the full modular group and has signature (0; 2, 2, 2,∞).

(Notable previous work in a related area was undertaken by C. Judge, alone and
with co-author E. Gutkin. In [J], the focus is on irrational rotations and so we leave
the domain of Riemann surfaces. In [GJ], the translation surfaces are flat, apart
from the elliptic points, so again we not on a Riemann surface. The paper of D.
Gabai and W. Kazez ([GK]), deals with ramification no higher than two. Geodesy
of individual curves is not the central concern of these studies, however.)

We now turn to a simple situation with efp3’s on Γ2\H. (Here efpn denotes a
ramification point of order n, while Γ2 denotes the group generated by the squares
in the Modular group Γ(1).) All the characteristics elucidated in this paper are
already present in this simple example

2. Geodesics near efp3’s on Γ2\H
2.1. Basic facts about Γ2. The group Γ2 has signature (0; 3, 3;∞). Γ2 is of
index two in Γ(1) while Γ(2), a normal subgroup, is index three in Γ2. Further,
Γ2 = 〈P1, P2〉, where

P1 =:
(

0 −1
1 1

)
and P2 =:

(
0 1
−1 1

)

As to fundamental region, in Figure 1 we offer two. If we let G be the standard
Γ(1) fundamental region. Then two fundamental regions for Γ2 are G ∪ T (G) and
G ∪ S(G), where S : z �→ z + 1 and T (defined above) are the usual pair of Γ(1)
generators fixing ∞ and i respectively. Call these FT and FS , again respectively
(see Figure 1). Note that in either region, the inequivalent efp3’s are −ρ and ρ

where as usual ρ =: 1+i
√

3
2 . Last, the facts that P1 fixes −ρ = ρ − 1, and P2

fixes ρ, whilst P−1
2 P1 : z �→ z + 2, and P−1

2 (−ρ) = ρ + 1 give the side pairings
of the two fundamental regions. The action of T (or equivalently S) constitutes a
conformal isometry of Γ2\H. Also z �→ −z is an anti-conformal isometry of Γ2\H.

(Equivalently,
(
. b
c .

)
∈ Γ2 ⇐⇒

(
. −b
−c .

)
∈ Γ2.) See R. Rankin [R], for

further details.
By virtue of the Jordan curve theorem, there are no simple closed geodesics on

Γ2\H. (Likewise there are none on Γ(2)\H which has signature (0;∞,∞) or on
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Figure 1. T = z+1
−z , S = z + 2, R = z−1

z , T = S−1R, ρ = 1+i
√

3
2 .

Γ(1)\H, for that matter.) This is because such a geodesic would have to bound a
disc containing precisely one of the special points and this is impossible.

2.2. A special geodesic (the unit circle) and some of its perturbations.
Call the unit circle υ and examine it in FT . It is simple to see (since the Pi’s are
rotations through 2π/3) that υ is equivalent (in FT ) to the path that emanates
from ∞, goes down the left side to −ρ, over to ρ (along υ, of course) and then up
to ∞. Clearly the extent of any of the three h-lines involved project onto the same
geodesic on Γ2\H.

Let us perturb the left-hand vertical as follows: consider the action of P 2
1 = P−1

1

on the h-line (f,∞), where f = −1/2 + ε, ε > 0. This maps to (−1, 1 + 4ε) to
the first order in ε, with all remaining terms in the ε expansion having positive
coefficients. (That this is near υ illustrates the rigidity of the situation near the
points ρ and ρ−1). The shaded area in Figure 2 gives a loop about ρ−1 formed by
the perturbed geodesic. This we shall call a 3-loop and its interior (the component
containing the efp3) a 3-disc. As we remarked above, no such structure exists about
an efp2.

Next, the same phenomenon repeats over the point ρ. The action of of P2 maps
the geodesic over υ to (−1/4ε, 1/2), again forming a 3-loop, this time about ρ. This
continues in FT until a ‘high’ intersection with the original perturbation.

Note that if a geodesic passes through an efp3 (as with υ), then it is bounced off
at an angle of π/3. This is a self intersection, (denoted si); it lifts to two different
h-lines through ρ or ρ− 1, and also it is the homotopic limit of 3-loops all of which
have an si at a regular point of FT , near the efp3.

Returning to the perturbation, limiting cases are ε = 0 which gives υ and ε = 1/2
which gives a 3-loop with its node at ∞ that comprises half of Γ2\H (the limit of
region shaded in Figure 3, where here and in what follows π projects H to the
surface). This is the largest 3-loop as beyond this we are coming down the back
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Figure 2

Figure 3

side of Γ2\H. Figure 3 suggests the presence of symmetry and we turn to that
property now.

2.3. Symmetry of 3-loops. Figure 3 shows a 3-loop and its projection to the
surface in which it lies. We aim to show that ∠b = ∠c and thus that all 3-loops are
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Figure 4

symmetric about the line connecting the node to the efp3. Here we write simply
P for P 2

1 of the previous section, it rotates counter-clockwise about ρ− 1 through
π/3 radians. The point x0 is at our disposal in this picture and we can choose it
anywhere between the extremes y0 and P−1(y0), as illustrated in Figure 4. The
triangles are congruent and so ∠b = ∠c. Also, now we may choose x0 so that the
angle there is π/2. The congruence of the two resulting triangles now shows that
the reflection through (y0, ρ−1, x0), which has lifts on a single h-line in H, fixes the
3-disc. Next, note that no use was made of the fact that (y0, P−1(y0)) is vertical,
so this symmetry exists for any 3-loop.

2.4. Absence of long low height simple geodesic arcs on Γ2\H. We work in
FS . The presence of the hypothesis ‘low height’ is due to the fact that vertical and
nearly vertical arcs within FS are obviously simple and may be arbitrarily long.

To begin with, the geometric underpinning of this absence is that to continue
on without closing, low height geodesics are forced to swing about an epf3 after a
length depending only on Γ2\H and the height, but not on the geodesic. But that
turning path creates an si.

Consider the lift of a geodesic in FS that has feet at the ends of the interval
[a, b]. WLOG we may assume that a ∈ [−1/2, 1/2], because z �→ z + 1 is a global
isometry of Γ2\H. Clearly the arc emanating from a hits a side of FS paired by P ,
since a < b. Let us call these sides σi and σi+1, for the efp2’s embedded in them.

Let us begin with the assumption that upon leaving a the arc hits σi at α +
i
√
1− α2, and then σi+1 in the point β + i

√
2β − β2. This forces a < 0. If β ≤ 1,

then it is easy to see that α < β. Applying P to the arc (a, α + i
√
1− α2) gives

us an arc leaving σi+1 between ρ and β + i
√

2β − β2 and ending at 1− 1/a which
is greater than 2. This forces an si with the original arc, and we see the resulting
3-loop in FS . Now this argument works just as well if β ≥ 1 as long as α ≥ 0. But
if −1/2 ≤ α < 0 then the radius of such an arc is at least 5/4, and the diameter
is at least 5/2, greater than 2 by a definite amount. This forces a subsequent si at
height at least 3/4, and so the simple portion of the arc is of bounded length.

The remaining case is that upon leaving a, we hit σi+1 first. This means that
0 < a < 1/2. Consider the action of P−1 on the arc (a, β + i

√
2β − β2). This
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connects a point on σi with a point lying in [1, 2], and that gives us an si after a
bounded length, just as in the previous paragraph. We have established:

Proposition 1. For each height h there is an effective Γ2 constant Ch so that any
geodesic arc on Γ2\H of length at least Ch has a self-intersection.

The following Proposition provides a lower bound:

Proposition 2. There is a constant δ depending only on Γ2and h such that a
Γ2\H geodesic segment including any pair of self-intersections with at least one of
the points of intersection occurring at a point of height less than h, has length at
least δ.

Proof. Begin at an arbitrary point p on the geodesic and proceed until arriving at
the first si, call it s1. We have created a loop on Γ2\H which divides the surface into
two discs, one of which contains exactly one of the special points. Now continue
from s1 to the next intersection, s2. It is the length of the arcs between s1 and s2
that concerns us.

There are two cases: First, assume that the path from s1 to s2 itself contains
another loop about another special point. In this case consider the path from s1
about its loop and then on through s2, about its loop, finally returning to s2. This
has a definite length because the efp3’s are at some remove from each other and
the cusp — for example, the geodesic connecting ρ and ρ + 1 is shorter than the
path between s1 and s2 containing the two aforementioned loops.

The other possibility is that s2 lies on the path from p to s1. In this case, we
have either wrapped around s1’s special point a second time, or formed a bigon
containing another special point. The latter case reduces to the one above, mutatis
mutandis. In the former, if the twice wrapped special point is the cusp, then the
height bound h forces the arc in question to have a definite length. If it is an efp3,
then we are done unless the second loop is short. But then the original loop is even
shorter as it lies wholly surrounded. This then forces the original 3-loop to close
near its efp3. And that means the angle at s2 is near π/3. This forces the first
containing loop to be large. �

The two propositions combine to prove:

Theorem 1. Let L(τ) give the length of a geodesic arc τ and N(τ) the number of
si’s created on τ as we traverse it. (There may be further si’s on τ created ‘later’.)
Then if τ has height less than h, there are constants a and b depending only Γ2\H
and h such that aL(τ) < bN(τ) < L(τ).

2.5. The paths of short Γ2\H simple closed geodesics on Γ3\H. Let scg
denote simple closed geodesic. This section illustrates the point that quite uncom-
plicated geodesic paths on a surface may be very involved on a closely commensurate
surface. In [SS], the author together with T. Schmidt analyzed pairs of scgs and
pssi (proper single self-intersection) geodesics of D. Crisp and W. Moran ([CM]).
As we described above, each scg connects to two efp2’s on Γ3\H. Associated with
each scg, there is a unique closed geodesic connecting the remaining efp2 with itself
and looping around the cusp. The only si is at the efp2, thus a pssi is formed. All
[CM] pssi’s are of this kind.

On Γ3\H (up to isometry), the shortest scg is the h-line connecting i with i+1.
Its pssi connects i+2 with i−1. Figure 5a (based on routine computations), shows
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Figure 5a. (i, i+ 1) on Γ2 and Γ3.

Figure 5b. (i, i+ 3) on Γ2 and Γ3.

the paths of these scgs on Γ3\H, Γ2\H, and their fundamental regions. (Here and
in what follows the numbers over the arcs gives the sequence in which they are
traversed. Also, a double-arrowed arc ‘bounces’ back and forth between its (efp2)
endpoints.)

Figure 5b, the h-line connecting i with i + 3, illustrates the contention of the
abstract that (even) an uncomplicated closed geodesic one one surface may be very
involved on another closely commensurable surface. The former, featuring a 3-loop
heading off into a second 3-loop, the two comprising a figure 8 on Γ2\H, suggested
the following curio1 :

Proposition 3. On Γ2\H there is no geodesic in the homotopy class of a figure 8
with a cusp in one head and an efp3 in the other.

Proof. First of all, it is not difficult to see that such a geodesic must consist of two
arcs in FS , one connecting σi with σρ+1 and the other connecting σi+1 with σρ−1.

1The words “figure 8” in this sentence refer to a geodesic, not a figure (illustration) in this
paper, which has only seven. “Figure” will be capitalized in references to illustrations.
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Figure 5c. (i, i+ 2) on Γ2 and Γ3.

This because winding about either π(ρ) or π(∞) causes multiple si’s. Say we leave
σi at the point x+ i

√
(1− x2) and arrive at 3/2+ iy. We continue to −1/2+ iy and

then to (1−x)+i√(1− x2) on σi+1. Here of course −1/2 ≤ x ≤ 1/2 and y ≥ √
3/2.

Now this figure 8 must be a closed geodesic. Thus (extensions of) the two arcs must
be paired by S2 and also P2. The S2 condition forces y2 = 11/4−3x (and the bound
on y gives the additional condition 5/12 ≥ x, but this plays no role). Taking this
into account and computing the P2 condition forces (using Mathematica until
the end of this proof)

−2905 + 8406x− 9288x2 + 4608x3 − 864x4 = 0

which has no real roots at all. �

Here is another way to think about this. It isn’t difficult to draw a curve in the
homotopy class of the figure 8 containing the cusp in one head and ρ in the other.
For example, consider the h-arc connecting −1/2+50i with 1+i, and then the h-arc
connecting i = P2(1 + i) with 3/2 + 50i = S2(−1/2 + 50i). If this could be pulled

tight to a geodesic, the (hyperbolic!) word for it would be P2S
−2 =

(
0 1
−1 3

)
.

But this is just the product of the Γ(1) elliptics of order two fixing 1 + i and then
2 + i. But we have seen such a product is not a figure 8 on Γ2\H of the above
description.

Figure 5c illustrates the paths of the h-line connecting i with i+2, an intermediate
case.

3. q > 3 on the Hecke triangle surfaces

The Hecke triangle groups Gq, q ≥ 3, are defined as Gq = 〈S, T 〉 where

T =
(

0 −1
1 0

)
and S =

(
1 λq

0 1

)
with λq = 2 cosπ/q.

Each Gq is a Fuchsian group of the first kind of signature (0; 2, q,∞).
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ρ− 2λ − ρ = ρ− λ ρ = λ+i
√

4−λ2

2 .

Figure 6. G2
q = 〈E,S2〉 =

〈(
0 −1
1 0

)
,

(
1 2λ
0 1

)〉
, λ = 2 cosπ/q

The analog of Γ2 is G2
q, generated by S2 and E :=

(
0 −1
1 λq

)
. A simple appli-

cation of Poincaré’s theorem shows this group is Fuchsian of signature (0; q, q,∞).

Note that E−1S2 fixes ρ− 2λq where ρ :=
λq+i

√
4−λ2

q

2 . A fundamental region (call
in Fq) for G2

q is given in Figure 6.
Let us first consider the path in Fq of the vertical line through −λq/2. Note

that E fixes ρ − λq which lies on this h-line. It is not hard to compute that
E[q/2]+1(−λq/2) = ∞ or 1 according as q is even or odd. In particular, if q is odd,
the vertical from ρ−λq to ∞ (when extended below ρ−λq) has an si at ρ−λq (we
saw this when q = 3 previously) but ‘bounces back’ to ∞ (when extended below
ρ− λq) when q is even. In that case this arc is simple.

Now let us perturb the vertical to be based at −λq/2− ε. Obviously E(∞) = 0
and E(−λq/2) = −2/λq. Since E rotates clockwise through ρ − λq, we have that
E(−λq/2 − ε) = −2/(λq − 2ε) < −2/λq as long as ε > 0. Further, −λq − 1 <
−2/(λq − 2ε) provided that ε < (λq+2)(λq−1)

2(λq+1) .
Now if λq = 1 (e.g., q = 3), this is impossible. But if q > 3 and ε is small

enough, it is possible, and we have the E-image of the perturbed base −λq/2 − ε
lying between −λq−1 (the left foot of a fundamental region side) and−2/λq, the left
foot of the unperturbed base image (which contains ρ−λq, of course). Regardless of
the parity of q, this forces a q-loop about ρ−λq. It is not hard to compute that, for
larger q, we may wind about the efpq for some spins before creating our q-loop. I.e.,
the geodesic arcs in Fq contain a non-intersecting consecutive pair each requiring
an application of E to remain in Fq. This is similar to the more familiar ‘barber
pole’ circumstance at cusps. That is, if we consider the h-line between 0 and 2M
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Figure 7. α+ β + γ + δ = 2π
(0; q1, . . . , q4,∞↑

?

).

as it rises past y = 2, we see wrapping while rising in the cusp funnel to �z = M ,
after which we get wrapping while falling, with the production of numerous si’s as
we intersect the rising segment repeatedly.

None of the perturbation geometry used that fact that ∞ was a cusp, or that the
vertical (ρ− λq,∞) lay in a fundamental region. These q-loops are locally present
wherever we encounter higher ramification. We summarize this is follows:

Proposition 4. Let q > 2. A geodesic passing near an efpq makes a q-loop about
it. This q-loop may have some winding about the efpq before closing, if the passage
is near enough. If the geodesic hits the efpq, then it bounces back on itself if q is
even and bounces off at angle π/q if q is odd.

4. Additional sphere groups

The author is indebted to B. Maskit for suggestions concerning the construction
of these Fuchsian groups. Consider the fundamental region (due to Poincaré’s the-
orem) pictured in Figure 7. There are two cases according as the cycle is accidental
(i.e., comprised of ordinary points) or a cusp cycle (all vertices are real or ∞). If the
cycle is cusp, then there is no condition on the angles (which are all zero anyway!)
and the group’s signature is (0; q1, . . . , qn;∞). If the cycle is accidental, then we
must have the cycle angle sum is 2π and the signature is (0; q1, . . . , qn). The genus
is zero in each case, accounting for the appellation.

Here are some facts about these curious surfaces. The proofs mimic those of the
previous sections; there are no new issues involved.

• If so many as two of the q’s are even, then an scg exists — the one that bounces
between them. This h-line is a hyperbolic axis projecting to an scg consisting
of a single arc within this fundamental region. The word for the associated
hyperbolic is the product of the two elliptics that fix these endpoints.
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• If all but at most one of the q’s is odd, then scgs do not exists as using the
efpq’s to turn forces si’s. (We did this computation explicitly above when
Γ = G2

q. As we remarked there, no use was made of the fact that ∞ was a
cusp, etc. Thus in this case it is easy to draw simple homotopy classes that
cannot be ‘pulled tight’.)

• Γ3 is a sphere group with 8 edges and 7 vertices (3 efp2’s, 1 cusp, 3 in ac-
cidental cycle) but Γ2 is of a different sort as we haven’t the interleaving of
cusp//efp3’s with vertices in the accidental cycle. At this writing we cannot
attribute any significance to this circumstance.
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