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Fluid Flow in Collapsible Elastic Tubes: A
Three-Dimensional Numerical Model

M. E. Rosar and Charles S. Peskin

Abstract. A three-dimensional computer model has been developed to simu-
late fluid flow through a collapsible tube. The model is based on the immersed
boundary method, which is designed to handle a flexible elastic boundary im-
mersed in fluid. This internal boundary is both affected by and has an effect
on the motion of the fluid. The setup for collapsible tube simulation involves
a fiber-wound elastic tube subjected to an upstream pressure, a downstream
pressure, and an external pressure. Partial collapse is observed when the ex-
ternal pressure exceeds the downstream pressure but is less than the upstream
pressure. The geometry of the transiently collapsing tube is observed. Col-
lapse is generally localized near the downstream end of the tube, however,
under certain conditions, it is also possible for collapse to occur at multiple
discrete locations separated by regions of open tubing.
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1. Introduction

The study of fluid flow through a collapsible elastic tube has multiple applications
within the human body. For example Pedley [27] mentions that vessel collapse is
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most readily seen in the veins, such as in the veins of a hand raised above the
level of the heart or in the jugular vein when a person is standing erect. Collapse
is also observed in the arteries when high external pressures are applied, such as
when an artery is compressed by a sphygmomanometer cuff during blood pressure
measurement. Kamm and Shapiro [15] also mention the regulation of cardiac output
by means of the collapse of the venae cavae as another example of tube collapse
in the cardiac system. The pulmonary system also displays collapse, for example,
the airways of the lungs can show collapse during coughing or sneezing and during
forced or rapid expiration [15, 27]. Self-excited oscillations of collapsible tubes are
observed in the laboratory [6, 16], and in certain instances they are also observed
in vivo, again as when an artery is compressed by a sphygmomanometer cuff [2].
These oscillations may be related to the Korotkoff sounds produced when measuring
blood pressure in this way [7, 26].

Flow through a collapsible tube has been extensively studied in the laboratory.
The typical experimental setup [6, 15] involves a length of flexible, collapsible tub-
ing mounted at either end on a rigid support. Upstream and downstream fluid
reservoirs are provided to drive flow through the tube and to regulate the upstream
and downstream pressures. The flexible tube is immersed in air or water in such a
manner that the external pressure can be monitored and controlled.

Kamm and Shapiro [15] describe the collapse process, in the presence of an
external pressure gradient, as observed in their experiments. They consider the tube
collapse as consisting of three phases which they describe as the initial transient
phase, the quasi-steady phase, and the viscous drainage phase. The initial transient
is identified as a period of flow acceleration giving the initial peak observed in the
output flow. The quasi-steady emptying is the period where the output flow drops
from its initial peak and where there is “the establishment of a quasi-steady throat
in the region of minimum cross-sectional area”. Viscous drainage occurs as the
region of collapse increases and the remaining fluid in the tube is forced out as a
new equilibrium configuration is approached.

Analytical investigations have typically considered either a lumped-parameter or
a one-dimensional model [2, 8, 25, 26]. In a lumped-parameter model the geometry
of the collapsing region is represented by one or perhaps several time dependent
variables, which are related by ordinary differential equations. In a one-dimensional
model, partial differential equations involving only a single spatial coordinate are
used. Two-dimensional (channel) models have also been proposed: one of these
[20] involves a pair of membranes and another [27] considers a rigid channel with a
flexible section in one wall. Analyses have typically derived expressions for the cross
sectional area at the point of collapse [19], the fluid flow velocity, and the down-
stream flow; pressure vs. flow diagrams are studied. The relationship between the
shape of the collapsed region and the transmural pressure has also been described
[9, 14, 15]. The figure given by Jensen and Pedley in [14] shows how the cross-
sectional shape of the tube changes, as the transmural pressure, (pinside −poutside),
is decreased, going from circular for a fully open tube, becoming elliptical and
eventually developing two distinct channels. Such non-axial symmetric collapse
supplies a strong motivation for the development of a fully three dimensional ap-
proach, which does not rely on any symmetries, to determine the fluid flow and
behavior of the tube.
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Here we consider such a three dimensional model to determine the motion of the
fluid and the tube as a function of time. The model is based upon the immersed
boundary method [22, 28, 29, 31, 32, 33]. This method is used to solve the equations
of motion of an elastic boundary immersed in a viscous incompressible fluid. These
equations are coupled, as the boundary is both affected by and has an effect on the
motion of the fluid, and thus the equations of the tube and fluid must be solved
simultaneously. The Navier-Stokes equations, governing the fluid dynamics, are
solved by a finite difference method. Others have considered alternative methods
for immersed boundaries as well [18].

We present a particular tube configuration with a given set of parameters to
demonstrate the viability of using the immersed boundary method to address the
problem. Exact duplication of laboratory experiments is difficult at this time but
detailed studies of collapsible tubes will be addressed in the future.

Although the particular tube that we study exhibits axially symmetric collapse,
such symmetry is not imposed a priori. On the contrary, we start the tube in an
asymmetric configuration to check the stability of the axially symmetric mode of
collapse. We anticipate that changes in tube properties will make axially symmetric
collapse unstable, however our method will still be applicable to the asymmetric
case, which is the one that is more typically observed in experiments.

Vesier and Yoganathan [39] have also used the immersed boundary method to
simulate three-dimensional flow through a flexible elastic tube. The focus of their
work was the validation of the method, and they therefore considered a case in which
the solution is known through the work of Womersley [40, 41, 42], namely a tube
that undergoes small-amplitude, long-wavelength perturbations from its initially
cylindrical configuration, these perturbations being driven by a pulsatile flow. In
addition, they considered steady flow, simulating Poiseuille flow in a tube. Similarly,
we also considered steady flow through a uniform cylindrical tube. Under these
conditions, our results agree qualitatively with their results. Velocity profiles in the
interior of the tube are parabolic with some deviations at the wall. These deviations
were small and can be attributed to the differences between our tube and true
Poiseuille flow. Since these results are in agreement with Vesier and Yoganathan,
we concur with the validation of the method. We now consider the large-amplitude,
short-wavelength deformations that are associated with the phenomenon of partial
tube collapse. Partial collapse occurs when the external pressure is greater than the
downstream pressure but is less than the upstream pressure. To study the large-
amplitude deformations that occur in this situation, we have to introduce a tube
model in which computational points are elastically linked to each other, rather
than to fixed points in space.

2. Mathematical formulation

We model the flow through a collapsible elastic tube using the immersed bound-
ary method [22, 28, 29, 31, 32, 33]. This involves both a particular way of writing
the equations of motion, and also a numerical method for solving those equations.
The mathematical formulation will be considered here and the numerical method
in a subsequent section. In both cases, the emphasis will be on those aspects that
are specific to the current problem of flow in collapsible tubes.
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We consider an incompressible, viscous fluid which is treated in an Eulerian man-
ner, with an immersed elastic boundary which is treated in a Lagrangian manner.
The boundary, which is modeled as a collection of massless fibers, applies a force
to the fluid in which it is immersed and is moved by the fluid at the local fluid
velocity. The force of the boundary on the fluid is determined by the boundary
configuration and by the assumed elastic properties of the boundary.

Note in particular that we postulate the same fluid inside and outside the tube,
and that the mass in the problem is provided by the fluid (both inside and out)
and not by the tube per se. While these assumptions might be a limitation for
some applications such as airflow in the lung, they are right on target for the
problem of blood flow. This is because the tissue outside a typical blood vessel has
about the same density as blood. (There are exceptions to this, of course, such
as a blood vessel in a bone, or a blood vessel in the lung, or a blood vessel close
to the skin.) The inertial and viscous loads provided by the external tissue are
presumably important and are included in our model. They would be neglected
by treating the external medium as a constant-pressure boundary condition, as
is commonly done. One could go further in our direction and model the elastic
properties of the external tissue as well. This could be done within our framework
by laying down elastic fibers in the space external to the tube, instead of just on
the tube wall, as we have done here.

The motion of the fluid is governed by the incompressible Navier-Stokes equa-
tions:

ρ

(
∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

)
+∇p(x, t) = µ∆u(x, t) + F(x, t)(1)

∇ · u(x, t) = 0,(2)

with x = (x1, x2, x3). F(x, t) is the force density resulting from the fibers of the
immersed boundary. These forces will be specified below. Since we consider the
case of a massless tube with the same fluid inside and out, the effect of gravity
can be absorbed into a redefinition of the pressure, after which gravity no longer
appears in the equations. We assume here that this has already been done. Thus,
in the above equations, p(x, t) is the deviation of the pressure from the hydrostatic
pressure at level x3. The particular collapsible tube model we are considering
functions in exactly the same way in orbit as on Earth.

The Navier-Stokes equations are given in Cartesian coordinates, with x = (x1, x2,
x3). The fibers, which give the boundary its elasticity, however, are described in
curvilinear coordinates (q, s), where q = constant is the equation of a fiber, s locates
the position along a fiber, and (q, s) are both constant for any material point. Note
that s may be the arclength in some particular initial configuration, but it is not
the arclength in general since the fibers change length as the tube is deformed; the
distance along a fiber between any two material points need not remain constant.

The above description applies to a thin-walled tube in which the wall has been
idealized as a surface. Note, however, that it is straightforward to model a thick-
walled tube by introducing an additional parameter r that locates a layer of fibers
within the thickness of the wall. In that case, since the fibers themselves are
massless but are immersed in the same incompressible fluid that is found inside
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and outside the tube, the simulated thick wall acts as an incompressible, fiber-
reinforced, neutrally buoyant, elastic material. In this paper, however, we confine
ourselves to the thin-walled case.

The positions, X, of the points of the fibers may be given in terms of these
curvilinear coordinates by X(q, s, t) at the time t. In terms of these curvilinear
coordinates, the motion of the boundary is described as x = X(q, s, t). Our goal is
to determine the function X(q, s, t) along with the motion of the fluid u(x, t).

Because of the fiber elasticity, there is a mapping from the fiber point positions
X to the density of the force supplied by the fibers, given by

X(·, ·, t) −→ f(·, ·, t).(3)

We thus write the force as a function dependent on the positions X of the fiber
points,

f(·, ·, t) = S[X(·, ·, t)].(4)

The exact nature of this dependence is determined by the elastic properties of the
fibers and will be considered in more detail later.

These forces are calculated at the fiber coordinates and are then transferred to
the fluid. But since the fluid equations are written in Cartesian coordinates, we
need the total force density in Cartesian coordinates, such that∫

D
F(x, t) dx =

∫
X(q,s,t)∈D

f(q, s, t) dq ds(5)

where D is some arbitrary domain in (x, y, z)-space. F(x, t) can be defined explicitly
by means of the three dimensional Dirac δ function,

F(x, t) =
∫

f(q, s, t)δ(x − X(q, s, t)) dq ds,(6)

where the integral is taken over all the fiber points. Note that this is an integration
over only two spatial dimensions although the δ function in the integrand is three
dimensional. This defines F(x, t) as a distribution with support on the fiber surface.
The function F(x, t) is singular like a one dimensional δ function, and thus is
infinite on the boundary, while the integral of F(x, t) over any finite volume remains
finite. To check that the explicit formula for F(x, t) satisfies the implicit condition
that precedes it, integrate over the arbitrary domain D, interchange the order of
integration, and use the properties of the Dirac δ function.

As noted above, the fiber points will move at the local fluid velocity, which is
the no-slip condition for a viscous fluid. Thus, given a fluid velocity field u(x, t),
the local fluid velocity must also be determined in terms of the fiber coordinates.
This is again done by using the Dirac δ function,

U(q, s, t) =
∫

u(x, t)δ(x − X(q, s, t)) dx.(7)

To drive the fluid through the tube, and to regulate the transmural pressure dif-
ference, we allow for sources and sinks, each having a spatial strength distribution,
ψ(x), and a volume flow rate Q(t). Their presence makes a contribution to the con-
tinuity equation. Combining all these, we have the complete system of equations,
which we write down here:
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ρ

(
∂u
∂t

+ u · ∇u
)
+∇p = µ∆u + F(8)

∇ · u(x, t) =
m∑

j=0

Qj(t)ψj(x)(9)

F(x, t) =
∫

f(q, s, t)δ(x − X(q, s, t)) dq ds(10)

∂X
∂t

(q, s, t) = U(q, s, t) =
∫

u(x, t)δ(x − X(q, s, t)) dx(11)

f(·, ·, t) = S[X(·, ·, t)].(12)

The first two equations are the Navier-Stokes equations for the fluid including
sources and sinks. The last equation is the equation of the boundary. The remaining
two equations give the interaction between the fluid and the boundary.

3. The tube

The boundary we choose in the present application of the immersed boundary
method is an elastic cylindrical tube through which the fluid will flow. It is com-
posed of fibers of points, where we use the term fiber in a general sense to mean a
collection of sequentially connected points. Although we speak of all the points as
being on fibers, not all of the fibers behave in the same way, and thus we must make
a distinction among them. In developing this tube model we look to applications,
in particular that of blood flow in veins. We use the structure of veins as a guide
in the selection of the types of fibers which are used. It is well known that elastic
fibers in vein walls may run longitudinally, transversely, or obliquely. Bundles of
collagenous and elastic fibers as well as smooth muscle cells form helices in the vein
wall, winding in opposite directions. This arrangement adds to the strength and
support of the vein walls [36]. We use this structure in our model. Thus, our tube
is composed of two sets of helical fibers, winding about the tube in opposite senses,
a set of straight beam-like stiffening fibers running the length of the tube without
winding around the tube, and a collection of rings or hoops, equally spaced along
the length of the tube. The ends of the fibers, as well as the first and last ring, will
remain approximately fixed in space. The rest of the tube will be free to move at
the local fluid velocity and will apply forces locally to the fluid.

By using fibers (in the above generalized sense) as the elements from which we
construct our tube, we admittedly make it difficult to model the kinds of tubes that
are often used in experiments, which are essentially shells made of homogeneous
isotropic material. Biological tissue, however, is rarely isotropic and has a fibrous
organization involving several different kinds of fibers: collagen, elastin, etc. On the
other hand, we freely admit that the particular arrangement of fibers used here is
only preliminary, and that more work is needed to construct a realistic fiber-based
model of a blood vessel wall. Such a model would, for example, have multiple
layers of helical fibers with different helical pitches, rather than the single pair of
mirror-image helical layers used here. It will be interesting to study the effect of
the fiber architecture on the manner in which the vessel collapses, but that remains
for future work.
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As noted previously, we define curvilinear coordinates for the fibers, (q, s, t),
where q designates a fiber, s = arclength along the fiber (at time 0), and t = time.
Note that the coordinate s is the arclength from the “beginning” of the fiber at
the time t = 0, i.e., the initial distance along the fiber from the starting point
of the fiber. Note also that this starting point is somewhat arbitrary. We choose
these initial points for convenience. So for the helices and straight fibers the initial
position is chosen to be one end of the cylinder. We will use q = θ to identify the
fiber by its initial angular location on the circle at the upstream end of the cylinder.
In addition to the two sets of helical fibers winding their way around and along the
tube, we also include a set of straight fibers and hoops, or rings, positioned along
the length of the collapsible tube. In laboratory experiments, the flexible tubing
is typically mounted on rigid support tubes located at each end of the collapsible
tube. These are simulated by a series of rings of points, located between the ends
of the collapsible tube and the “caps,” which are defined next. Each end of the
tube has a cap closing off the tube, composed of a section of a sphere. The caps
are made up of points arranged in rings which form “latitude lines” of the sphere,
and a point at the pole. A fluid flow source is located at the center of the sphere
comprising the cap at the upstream end; similarly a sink is located at the center
of the spherical cap at the downstream end. The source and sink are meant to
simulate an input reservoir and outflow reservoir. Their properties are described
below.

With the tube geometry defined we can determine the forces generated by the
fibers which will, in turn, act on the fluid. The forces are given by the gradient of
the elastic energy in the fibers. The energy may be written as [22, 30, 31]

E =
1
2
S0,Hr

∫ 2π

0

∫ LH

0

(∣∣∣∣∂XHr

∂s

∣∣∣∣ − 1
)2

ds dθ(13)

+
1
2
S0,Hl

∫ 2π

0

∫ LH

0

(∣∣∣∣∂XHl

∂s

∣∣∣∣ − 1
)2

ds dθ

+
1
2
S0,B

∫ 2π

0

∫ L

0

∣∣∣∣∂2XB

∂s2

∣∣∣∣
2

ds dθ

+
1
2
S0,Rs

∫ L

0

∫ 2πr

0

(∣∣∣∣∂XR

∂s

∣∣∣∣ − 1
)2

ds dx

+
1
2
S0,Rb

∫ L

0

∫ 2πr

0

∣∣∣∣∂2XR

∂s2

∣∣∣∣
2

ds dx

where we have written the energy as a sum of five terms, each being the contribution
due to a different set of fibers. LH is the total, unstressed length of a helical fiber,
L is the unstressed length of a straight beam-like fiber (length of the collapsible
tube), and r is the unstressed radius of the rings (radius of the fully open tube).
S0,Hr and S0,Hl

are stiffness constants for the two (right-handed and left-handed)
sets of helical fibers; S0,B is a stiffness constant for the “beam” fibers; and S0,Rs

and S0,Rb
are spring-like and beam-like stiffness constants for the ring fibers. Note

that we have indexed the point positions on the various sets of fibers differently,
for, even though both sets of helices, the straight fibers and the rings define the
same cylinder, they parameterize it differently.
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The first two terms are the contributions due to the helical fibers. The expression(∣∣∂X
∂s

∣∣ − 1
)
gives a measure of the deviation of the separation of consecutive points

on a fiber from a given unstressed point separation, relative to that unstressed
separation. These fibers will thus resist stretching and compression. The third term
is the contribution due to the straight beam-like fibers. This term is determined by
the second derivative of the point positions with respect to arclength and thus will
give a bending rigidity to the beams. The last two terms represent the contribution
of the hoops to the elastic energy of the tube. One term has a contribution like
that of the helical fibers and the other a contribution like that of the beams. Thus
the hoops will have both stretching and compression rigidity as well as bending
rigidity. During steady flow, the fibers are stretched by about 1% relative to their
unstretched configuration.

The above formula for the elastic energy is discretized by using finite difference
formulae for the derivatives and summations for the integrals. Let El be the con-
tribution of the l-th discrete fiber to the total elastic energy. Note that El is the
discrete elastic energy of the discrete fiber l, not the energy density evaluated on
that fiber. The force at the (l,m)-th boundary point, i.e., the m-th point on the
l-th fiber (which may be a helical fiber, a beam, or a hoop), is given by

f(l,m) = −∇l,mEl = −
(

∂El

∂x1(l,m)
i +

∂El

∂x2(l,m)
j +

∂El

∂x3(l,m)
k
)

(14)

where we used the subscript l,m on ∇ to denote the m-th point on the l-th fiber.
Note that f(l,m), as defined by this formula is the discrete force, not force density,
applied to the fluid by the m-th point of the l-th fiber.

It was noted above that the collapsible tube is mounted on rigid supports at each
end. These are given by a sequence of points arranged in rings, located between
the ends of the tube and the end caps. The length of these extensions is twice
the radius of the tube, but the length may be varied. Indeed, different lengths
were tried, showing no significant variation in the results due to varying extension
length.

The force at any of the points of the rigid extensions and tube caps which hold
the upstream source and downstream sink is a Hooke’s law restoring force, relative
to fixed points in space, namely the initial position of the point as defined in the
construction phase. They provide a feedback mechanism which tends to keep these
points approximately fixed at their initial locations. Although we sometimes speak
of these points as “fixed”, or the structures that they comprise as “rigid”, it should
be noted that they have to move slightly in order to develop the forces that here
simulate the zero-velocity boundary condition that is normally applied along a fixed,
rigid boundary.

Finally all the terms that contribute force at a given fiber point are added. This
yields the total force that must be applied to the fluid in the neighborhood of that
fiber point.

4. Sources and sinks

The simulated tube is provided with an external source/sink, an upstream source,
and a downstream sink, the spatial distributions of which are defined by specifying
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three non-negative functions ψj(x), j = 0, 1, 2, respectively, such that∫
ψj(x)dx = 1.(15)

That the integral of ψj is equal to 1 has dual significance. First, in the formula for
the divergence of u that is given below, it ensures that Qj(t) can be interpreted as
the total flux through source j at time t. Second, it will allow the same function
ψj to be used as a weight function in defining the average pressure at the location
of the source or sink described by ψj .

The support of ψ0 is taken to be a thin planar slab parallel to the axis of the
tube but external to the tube. The external source/sink described by ψ0 is needed
to allow changes in volume of the tube, and also to provide a reference pressure
relative to which the other source and sink pressures can be defined. ψ1 and ψ2

are treated as small spherical sources (which may be seen as point sources spread
over several grid points in each direction). The support of ψ1 is localized within
the sphere that defines the upstream cap, and the support of ψ2 is localized within
the sphere that defines the downstream cap.

The volume rate of flow at source or sink j will be denoted Qj(t), positive for a
source and negative for a sink. The manner in which the Qj are specified will be
described below. The sources and sinks appear in the fluid equations through the
continuity equation

∇ · u(x, t) =
2∑

j=0

Qj(t)ψj(x).(16)

Since our domain will be taken to be periodic (see below),∫
∇ · u(x, t)dx = 0.(17)

Therefore, we must impose the restriction

2∑
j=0

Qj(t) = 0.(18)

We use this to determine Q0 once Q1 and Q2 are known.
In the numerical experiments reported here, the upstream flow Q1 is held con-

stant, and the downstream flow Q2 is chosen to simulate the situation in which
the downstream sink is connected to a pressure reservoir through a nonlinear hy-
draulic resistance (with inertia), the specific form of which is specified below. This
downstream condition was chosen because it simulates the downstream conditions
imposed in the classic collapsible-tube experiments of Conrad [6].

To specify the relationship between flow and pressure at the downstream sink,
we first need to define the pressure at that location. This is done as follows. Let

P2(t) =
∫

p(x, t)ψ2(x)dx(19)

where p(x, t) is the pressure field of the fluid. To make this pressure meaningful,
however, we need to compare it to some reference pressure. A convenient reference
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is the pressure at the external source/sink:

P0(t) =
∫

p(x, t)ψ0(x)dx.(20)

Thus, the pressure at the downstream sink is taken to be

P̃2(t) = P2(t)− P0(t).(21)

Note that P̃2(t) remains invariant if we add an arbitrary constant, or even an
arbitrary function of time, to the pressure field p(x, t).

Now that the pressure P̃2(t) at the downstream sink is defined, we can specify
how the flow Q2(t) is related to that pressure. The relationship that we impose is
the following:

P̃ ∗
2 − P̃2(t) = R2Q2 +K2 |Q2|Q2 + L2

dQ2

dt
,(22)

where P̃ ∗
2 , R2, K2, and L2 are given constants. The constant P̃ ∗

2 represents the
pressure in a reservoir to which the downstream sink is connected. The pressure
drop across the connection between the sink and the reservoir is assumed to have
three components: a linear hydraulic resistance characterized by the coefficient
R2, a square-law hydraulic resistance characterized by the coefficient K2, and an
inertance characterized by the coefficient L2. Note that the pressure drop across
the square-law resistance involves |Q2|Q2 rather than Q2

2, since the pressure should
always decrease across this nonlinear component when it is traversed in the direction
of the flow. The two types of hydraulic resistance are included because they are
typically present downstream in experiments on collapsible tubes [6]. The inertance
is included primarily to avoid a numerical instability (see below), although it is
certainly not wrong to include an inertance, since real fluids inevitably have inertia.

The numerical scheme that we use to determine Qn+1
2 , the value of Q2 at the

n+ 1 time step, is as follows:

P̃ ∗
2 − P̃n

2 = R2Q
n+1
2 +K2|Qn+1

2 |Qn+1
2 + L2

Qn+1
2 −Qn

2

∆t
.(23)

This is the backward-Euler method, except that we use P̃n
2 instead of P̃n+1

2 . This
choice is made for convenience even though it does adversely affect the stability of
the scheme. Indeed, to maintain stability, it was necessary to decrease the time
step by a factor of four, compared to that required by the velocity solver. (Note
that we are not dealing merely with the above ordinary differential equation for
Q2; that equation is coupled through the pressure to the Navier-Stokes equations
for the fluid.) The alternative of using P̃n+1

2 , which is coupled to Qn+1
2 through

the fluid mechanics, is indeed feasible [29], but it is complicated and somewhat
computationally expensive. We opt here for the simpler alternative of using P̃n

2 .
It is this choice, however, that makes it necessary to introduce at least a small
inertance (suggested by David McQueen [21]) to stabilize the sink flow. Without
that inertance we observed a peculiar numerical instability that gets worse as the
time step is reduced.

Despite the nonlinearity, it is clear that the above equation for Qn+1
2 has exactly

one solution, since the right-hand side is an unbounded monotonic function ofQn+1
2 .

The solution can be found by noting that the equation for Qn+1
2 is a quadratic
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equation for Qn+1
2 > 0 and a different quadratic equation for Qn+1

2 < 0. These
two quadratic equations together have at most four roots. Each root can be tested
for self-consistency. If it is a root of the quadratic equation that was derived by
assuming Qn+1

2 > 0, then it is a solution to our problem if and only if it is indeed
greater than zero. Similarly, if it is a root of the quadratic equation that was
derived by assuming Qn+1

2 < 0, then it is a solution to our problem if and only if
it is indeed less than zero. But we have just proved that our problem has exactly
one solution, so it must be the case that one and only one of four roots of the two
quadratic equations will pass this consistency test. That is the one we actually use.

5. Numerical method

The numerical method used in this work is an immersed boundary method [22,
28, 29, 31, 32, 33]. The fluid equations are discretized on a regular cubic lattice
with periodic boundary conditions, the structure of which is not disturbed in any
way by the immersed elastic boundary. Communication in both directions between
the immersed boundary and the fluid is accomplished by using an approximation
δh to the Dirac delta function. The specific choice of δh used in this work is

δh(x) =
{

1
4h

(
1 + cos πx

2h

)
, |x| ≤ 2h

0, |x| ≥ 2h.(24)

From this, the three-dimensional δh is defined by

δh(x) = δh(x1)δh(x2)δh(x3)(25)

where x = (x1, x2, x3). The motivation for this choice of δh is discussed in [29].
The Navier-Stokes solver used is an implementation of the projection method

[4, 5]. A non-standard feature, however, is our choice of the divergence and gradient
operators, which are “tuned” to the choice of δh in a way that will be described
below. This makes a dramatic improvement in the volume-conservation properties
of the immersed boundary method [35, 37, 38].

The spatial difference operators used in this work will now be defined. First, we
introduce the standard forward, backward, and central difference operators in the
three space directions:

(D+
s φ)(x) =

φ(x + hes)− φ(x)
h

(26)

(D−
s φ)(x) =

φ(x)− φ(x − hes)
h

(27)

(D0
sφ)(x) =

φ(x + hes)− φ(x − hes)
2h

(28)

where s = 1, 2, 3 and es represents the unit vector in the s direction. These opera-
tors are used in the viscous and convection terms of the Navier-Stokes equations:

∆u ≈
3∑

s=1

D+
s D

−
s u(29)

u · ∇u ≈
3∑

s=1

usD
0
su.(30)
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As mentioned above, the divergence and gradient operators, which appear in
the projection step of the projection method, are not defined from the standard
difference operators but rather according to a recipe that takes the function δh

into account. Let x denote a grid point and X an arbitrary point in space. The
interpolated velocity field in which the immersed boundary moves is defined by

U(X) =
∑
x

u(x)δh(x − X)h3(31)

where
∑

x denotes the sum over the cubic lattice of the fluid. By the properties of
δh, U(X) is continuous with continuous first derivatives. Then, since ∇ · U is well
defined, we may define the operator D such that

(D · u)(x) = h−3

∫
B(x)

(∇ · U)(X)dX(32)

where B(x) is a cube of side h with edges aligned with the grid and centered on the
grid point x. Note that (D ·u)(x) is the average of ∇·U over the cube B(x). After
applying the divergence theorem to the above equation, substituting the above
expression for U(X), and using the fact that δh is an even function, we may write
the discrete divergence D of u(x), in three dimensions, as

(D · u)(x) =
∑
x′

[
u1(x′1, x

′
2, x

′
3)γ(x1 − x′1)ω(x2 − x′2)ω(x3 − x′3)(33)

+ u2(x′1, x
′
2, x

′
3)ω(x1 − x′1)γ(x2 − x′2)ω(x3 − x′3)

+ u3(x′1, x
′
2, x

′
3)ω(x1 − x′1)ω(x2 − x′2)γ(x3 − x′3)

]
where x = (x1, x2, x3) and x′ = (x′1, x

′
2, x

′
3), and with

γ(x) = δh(x+X)
∣∣∣X=h/2
X=−h/2(34)

ω(x) =
∫ h/2

−h/2

δh(x+X)dX.(35)

As the notation D ·u suggests, the foregoing definition of D is indeed of the form

D · u = D1u1 +D2u2 +D3u3,(36)

where the operators D1, D2, and D3 are defined as follows:

(D1φ)(x1, x2, x3) =
∑

(x′
1,x′

2,x′
3)

φ(x1, x2, x3)γ(x1 − x′1)ω(x2 − x′2)ω(x3 − x′3)(37)

(D2φ)(x1, x2, x3) =
∑

(x′
1,x′

2,x′
3)

φ(x1, x2, x3)ω(x1 − x′1)γ(x2 − x′2)ω(x3 − x′3)(38)

(D3φ)(x1, x2, x3) =
∑

(x′
1,x′

2,x′
3)

φ(x1, x2, x3)ω(x1 − x′1)ω(x2 − x′2)γ(x3 − x′3).(39)

We can use these operators not only for the discrete divergence but also for the
discrete gradient. Thus

Dφ(x) = ((D1φ)(x), (D2φ)(x), (D3φ)(x))(40)

is the expression that we shall use for the gradient of φ.
At the beginning of the nth time step, the fluid velocity un and the boundary

configuration Xn are known. The pressure pn is also known, since it was computed
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along with un during the projection step at the previous time step. The pressure
field can be used to update the source and sink flows in the manner described above.
Once this has been done Qn+1

j is known, for j=0,1,2. Our task now is to update the
velocity and pressure fields, and also the immersed boundary configuration. This
is done as follows.

First compute fn from the boundary configuration Xn. The details of how to
do this have been described above, in Section 3. Next, use the function δh to apply
this force to the fluid:

Fn(x) =
∑
l,m

f(l,m)δh(x − X(l,m)).(41)

Once F has been defined on the fluid lattice, we can use the projection method
[4, 5] to integrate the Navier-Stokes equations. The steps are as follows: First, let

un,0 = un +
∆t
ρ

Fn.(42)

Next, solve successively the following systems of equations for un,1, un,2, and un,3:

ρ

[
(un,1 − un,0)

∆t
+ un

1D
0
1u

n,1

]
= µD+

1 D
−
1 un,1(43)

ρ

[
(un,2 − un,1)

∆t
+ un

2D
0
2u

n,2

]
= µD+

2 D
−
2 un,2(44)

ρ

[
(un,3 − un,2)

∆t
+ un

3D
0
3u

n,3

]
= µD+

3 D
−
3 un,3.(45)

Note that each of these involves coupling in one spatial direction only, and thus
constitutes a collection of periodic tridiagonal systems [34].

The final step in integrating the Navier-Stokes equations is the projection step,
in which we solve the following system for un+1 and pn+1:

ρ

(
un+1 − un,3

∆t

)
+ Dpn+1 = 0(46)

D · un+1 =
2∑

j=0

Qj(t)ψj .(47)

The equations of the projection step are linear with constant coefficients, and the
fluid domain is a periodic box. Thus, the projection step can be carried out with the
help of the Fast Fourier Transform. The implementation of this idea is complicated
by the rather intricate construction of the operator D, (see above), but this does
not impair the efficiency of the scheme, since the Fourier transform of this operator
can be precomputed and stored. For details, see [37, 38].

Once the fluid velocity is known at the grid points, the positions of the boundary
points can be updated as follows:

Xn+1(l,m) = Xn(l,m) + ∆t
∑
x

un+1(x)δh(x − Xn(l,m))h3,(48)

in which, as before,
∑

x denotes the sum over the computational lattice of the fluid.
Thus the positions of the boundary points are updated by moving the boundary
points at the local (interpolated) fluid velocity. This completes the time step and
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the process is repeated by calculating the new force imposed by the new boundary
configuration, etc.

6. Simulation results

The situation we simulate is that of a long, thin-walled, collapsible tube mounted
on rigid cylindrical supports. As discussed above, the wall of the tube is comprised
of fibers of several different types: helical fibers that resist changes in length from
a prescribed rest length, longitudinal fibers that resist bending and also supply
longitudinal tension, and fiber rings that resist length changes and bending. We
report here one particular instance of the tube and parameters to demonstrate
the efficacy of the three-dimensional computational model. Detailed comparative
analyses of collapsible tubes will be presented in future reports. The lattice used
to simulate the experiment is taken to be 20 cm x 2.5 cm x 2.5 cm, with 256 x 32
x 32 points and a lattice spacing of h = 20

256 (= 0.078125) cm in each direction. The
collapsible tube is 10 cm in length with a radius of 0.625 cm. Each rigid extension
has a length equal to twice the radius of the tube. The upstream flow rate is set to
Q1 = 15cm3/sec. The downstream reservoir pressure is set to -29.4 mm Hg ≈ -3.9
x 104 dynes/cm2. The downstream flow is calculated from the quadratic relation
as described previously. We assume a fluid density of 1 g/cm3 and a viscosity of 8
g/(cm sec). The Reynolds number is about 2. The value of viscosity is high and
may be the reason for not seeing spontaneous oscillations. While we are restricted,
for now, to low values of the Reynolds number, this is not outside the range of
actual values. For example, values in dogs range from about 0.001 for capillaries
to 1000-4500 for major arteries [3]. Thus our value of 2 is in the range of that of
small vessels which have been observed to undergo sausage-string collapse [1, 10].
The high viscosity may also be responsible for the tube being pulled toward the
downstream cap. Such a large viscosity was needed for numerical stability.

Recent developments in the immersed boundary methodology have made it pos-
sible to raise the Reynolds numbers of computations such as these from the current
value of 2 at least to 200 if not higher, see for example [17, 23, 24]. An important fu-
ture direction will be to apply this improved methodology to the flow in collapsible
tubes. But the collapse of tubes at Reynolds number of order 1 is also interesting,
and perhaps because it is unfamiliar, contains some surprises, as we shall see.

A real collapsible tube, in the laboratory, does not collapse in an axially sym-
metric manner [14]. The tube begins to get compressed, taking on an elliptical
shape, and eventually developing two distinct channels. Since the tube itself has
axisymmetric properties, this represents an instability of the axisymmetric state.

It is not clear a priori whether the axisymmetric state of our model tube will be
stable or unstable. This may depend on the specific choice of stiffness parameters
for the different types of fibers that comprise the tube. If an instability is present,
however, we want to see it. Therefore, we start the tube in a non-axisymmetric
configuration. This is done as follows. Once the tube is defined its points are
perturbed in one Cartesian direction so that the tube takes on an elliptical shape.
The amount of eccentricity varies sinusoidally along the length of the tube, so that
both ends remain circular and fixed, and maximum eccentricity occurs at the center
of the tube. Figure 1 shows the initial configuration of the perturbed tube (without
extensions or caps). For clarity, only a fraction of the helical and longitudinal fibers



Fluid Flow in Collapsible Elastic Tubes 295

Figure 1. Initial configuration of the elastic tube, showing a sub-
set of the helical and longitudinal fibers. The tube is shown in
perspective, viewed from a position that lies outside the tube on
one of the perpendicular bisectors of the tube axis.

Figure 2. Initial configuration of the elastic tube, including rigid
extensions and end caps, shown in perspective.

unperturbed

perturbed
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Figure 3. Radius (cm) of the tube (of Figure 1) plotted against
axial distance (cm) along the tube, in two orthogonal directions.
In one direction the tube is unperturbed (lower curve), while it is
perturbed in the orthogonal direction (upper curve). The tube,
which is taken to be 10 cm long, is centered in the computational
lattice, which is 20 cm long.

are shown; the rings are not shown. Figure 2 shows the initial configuration with
the extensions and caps.

Figure 3 shows the radial distance from the axis of the perturbed tube along two
perpendicular Cartesian directions. Along one direction the tube is unperturbed
(lower curve), while it has its maximum perturbation in the orthogonal direction.
The amount of perturbation varies smoothly in the intermediate directions. (Note
that, although the computational region is 20 cm long, the figure shows only the
elastic region of the tube which is 10 cm long, centered in the computational region,
from 5 cm to 15 cm. The remaining 10 cm of the computational region contain the
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Figure 4. Superposition of cross sections, equally spaced along
the length of the tube (of Figure 1). The size and direction of the
perturbation from cylindrical symmetry are shown.

Figure 5. Elastic tube with rigid extensions and caps at a later
time. The beginning of collapse is visible at the downstream (right)
end. In addition an initial bulge is visible at the upstream end.

rigid supports and the end caps which are not shown in the figure.) Figure 4 shows
the initial position of the rings in a two dimensional projection plot. It is, in effect,
a superposition of successive cross sections taken along the length of the tube. In
it we can see the amount of variation in the shape of the cross sections of the tube.
In this particular example, the maximum amount of perturbation is 20%.

Figures 5, 6, and 7 show the tube, cross sections and radius at a later time. The
cross sections become more nearly circular with time,thus showing that the tube is
tending towards axial symmetry. The tube shows an initial bulge in the upstream
end and collapse at the downstream end. The downstream end has been pulled
into the extension slightly. Thus, with the particular parameters chosen here, the
axisymmetric mode of collapse is stable, since the tube tends towards an axisym-
metric configuration and we will not observe asymmetric buckling. Although exact
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Figure 6. Superposition of cross sections, equally spaced along
the length of the tube (of Figure 5). While some deviation from
axial symmetry is still visible, we can see that the tube is tending
toward symmetry, showing that, for the particular set of stiffness
parameters, the axisymmetric mode of the collapse is stable.

comparisons are not possible, qualitatively, the behavior of the radius shows sim-
ilarities with axisymmetric deformations in other studies of pre-buckling behavior
in fluid-carrying cylindrical shells [12, 13].

By increasing the stiffness of the hoop fibers, we arrived at the next example.
The initial configuration of the tube, together with its extensions and caps, was
the same as before. In Figures 8 and 9 we again see the state of the tube and
the radius along the length of the tube, at some time during the simulation. In
these figures we can clearly see the collapse of the downstream end. The amount
by which the tube has been drawn into the rigid extension at the downstream end
has been reduced by the inclusion of what we have termed a “screen force” at that
end. For each point of the tube, we have added a Hooke’s law type restoring force,
proportional to the amount by which the point has passed the clamped end of
the tube in the axial direction. (The particulars of this force, including its energy
function, etc. are just like that of the spring force associated with the caps, except
that here the springs are one-dimensional and one-sided, i.e., they respond only to
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Figure 7. Radius (cm) of the tube (of Figure 5) plotted against
axial distance (cm) along the tube. Note that the vertical scale
has been expanded to show detail. The upstream bulge and down-
stream collapse are clearly visible. Also note that the downstream
end has been pulled passed the clamped end of the tube and into
the extension slightly.

Figure 8. Elastic tube with rigid extensions and caps undergoing
collapse. The upstream bulge and downstream collapse are seen.
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Figure 9. Radius (cm) of the tube (of Figure 8) plotted against
axial distance (cm) along the tube, with an expanded vertical scale
to show detail.
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Figure 10. An instance of the model where the tube has displayed
multiple regions of partial collapse separated by noncollapsed seg-
ments of the tube.
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Figure 11. Radius (cm) of the tube (of Figure 10) displaying
multiple regions of partial collapse, plotted against axial distance
(cm) along the tube, with an expanded vertical scale to show detail.
Note the partial inversion of the tube where collapse is observed.

the x1 component of displacement, and then only when that displacement is in the
downstream direction.)

By further increasing the bending rigidity of the fibers, we have been able to
demonstrate an interesting phenomenon. The tube has developed multiple re-
gions of partial collapse which are separated by non-collapsed segments (Figures 10
and 11). Partial inversion of the tube at each segment of collapse is seen. This
inversion seems to be a consequence of the longitudinal bending rigidity, which
smooths out the discontinuities that would otherwise occur at the borders between
the collapsed and uncollapsed regions. Instead of smoothing in the manner one
might expect, in which the radius of the tube would remain a single-valued func-
tion of axial position, the tube takes advantage of the opportunity to fold back on
itself to reduce the bending energy even further.

Although multiple regions of collapse are not observed in typical laboratory ex-
periments on collapsible tubes, they are seen in small blood vessels constricting in
response to high blood pressure [1, 11]. We quote the description of this phenome-
non from [1]: “As the infusion is continued, a substantial narrowing of the smaller
blood vessels is observed, and suddenly the narrowed vessels develop a peculiar
pattern consisting of alternating regions of constrictions and dilations, giving the
vessels the appearance of sausages on a string... The sausage-string pattern has
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been observed in the small vessels of many organs, including the brain, the gut,
and the kidney...”

It is paradoxical that these blood vessels are decreasing in radius and eventually
collapsing as the blood pressure is increased. Presumably, the reason for this is a
muscular reflex which constricts the vessels in response to elevated blood pressure.
The constricting force of the muscles is at least qualitatively analogous to an in-
crease in external pressure, and it sets the stage in a similar way for collapsible
tube phenomena to occur. That the manner of collapse is similar to that seen in
our computational experiments may be coincidental, but it is at least worthy of
further investigation.

7. Conclusions and future work

This paper describes a numerical method to simulate the behavior of fluid flow
through a collapsible tube. It is unique in that it simulates this behavior of an elastic
tube in three spatial dimensions without relying on any simplifications associated
with assumed symmetries of the tube. It uses the improved volume conservation
version [38] of the immersed boundary method in three dimensions, a version which
has previously been implemented only in two dimensions.

The program that implements this numerical method calculates the velocity,
pressure, and force fields at each point on a three dimensional lattice, and also the
position and shape of the immersed boundary forming the tube, at discrete points
in time. Video animations of the data have been made, and thus the “actual”
motion of the fluid and tube can be observed.

Results obtained to date have emphasized the transient collapse of an initially
open tube. In most cases, (partial) collapse is seen primarily near the downstream
end of the tube, but in others, the collapsible tube partitions itself into sections of
open tubing separated by sections in which (partial) collapse has occurred.

In future work, we plan to lower the viscosity of the fluid. This will require a
modification of the numerical method used for the fluid dynamics. Fortunately, the
immersed boundary method is modular in the sense that the Navier-Stokes solver
can be changed without requiring changes in the other parts of the code. Lowering
the viscosity should make it possible to simulate the spontaneous oscillations that
are commonly observed in collapsible tube experiments, and it should also broaden
the range of phenomena to which the methodology described here may be applied.
It will also allow for more complete comparison with solutions from other methods.
Another project for the future is to study the problem of non-axisymmetric vs.
axisymmetric collapse, both through stability analysis of the axisymmetric state
and through numerical experiments on tubes that collapse in an asymmetric man-
ner. Finally, we plan to apply the methodology described here to biomechanical
problems in which collapsible tube phenomena play a significant role, such as the
fluid dynamics of veins and pulmonary airways (especially in asthma), and renal
tubules.
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