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Pointwise Asymptotics for the Jumps of Ergodic
Averages

P. J. Catuogno and S. E. Ferrando

Abstract. We study the pointwise asymptotic behaviour for the number of
jumps of ergodic averages as the size of the oscillations decreases to zero.
The study is carried out in the setting of Chacon-Ornstein averages. We find
that under rather general conditions there exists a pointwise almost uniform
asymptotics that relates the number and size of the jumps. The proof makes
use of Bishop’s upcrossing inequalities.
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1. Introduction

It is well known that a sequence of ergodic averages can exhibit any speed of
convergence [8]. This multiplicity of rates of convergence does not exclude the pos-
sibility to obtain useful information on spatial characteristics (e.g., oscillations) of
ergodic averages. This information could be used, for example, to monitor con-
vergence of a sequence of ergodic averages. In this paper we describe a result on
majorizing pointwise asymptotics; results for minorizing asymptotics are also pos-
sible and are analogous to the topic of reverse inequalities [6]. These results will be
reported in another publication.

We first comment on the main result of the paper. Precise definitions of all the
quantities involved are given elsewhere in the paper. Let Jη(x) be the maximum
number of η-jumps (or oscillations) for an ergodic average at point x. We are
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interested in the asymptotics when η ↘ 0. Under appropiate conditions we prove
that if λ is an increasing function so that

∞∑
n=1

1
λ(2n)

<∞,(1)

we have the following asymptotic result when η ↘ 0:

Jη(x) η2 = o (λ(1/η)) a.u.(2)

where the “o(.) a.u.” notation denotes an almost uniform convergence in x.
In particular, for any given real number ε > 0 and integer r > 0 the above results
implies:

Jη(x) η2 = o
(
log1(1/η) . . . logr−1(1/η)(logr(1/η))1+ε

)
a.u.(3)

where we use the notation logr(x) = log ◦ · · · ◦ log(x), i.e., we have composed the
log function r times.

The proof of (2) relies mainly on Bishop’s upcrossing inequalities [2, 3] to es-
tablish an integral inequality for the jumps. This is done in a geometric way by
relating upcrossings and jumps. Then, we use an argument similar to the one of
Gal and Koksma ([4], see also [1]) that allows us to deduce pointwise asymptotics
from integral bounds. We work in the general setting introduced by Bishop in [2].
This allows us to obtain results for the Chacon-Ornstein averages as well as for
related sequences. Results on Cesaro averages follow as a special case.

For the case of Cesaro averages, as was observed by an anonymous referee, our
main result can be proved using a known weak (2, 2) estimative for the jumps (this
inequality is a consequence of Lemma 2 and Chebyshev inequality) and some of
the arguments in our paper. Actually, these techniques will give results for the
setting of Lp spaces with 1 ≤ p. As a comparison, notice that Theorem 2 for
the case of Cesaro averages is essentially an L2 result. Presently, our techniques
do not give the Lp results: Bishop’s methods need to be refined to make them
capable to extend the techniques from our paper to other Lp spaces. On the other
hand, our techniques work for the setting of Chacon-Ornstein where the approach
through weak inequalities is not presently available. More generally, our approach
can be used in problems where only upcrossing inequalities are available and jump
inequalities are not known.

The paper is organized as follows. In Section 2 we introduce the basic definitions
and background results then we proceed to prove the main result of the paper,
Theorem 2. In Appendix A we prove results which are needed to obtain an explicit
modulus of almost uniform convergence. In Appendix B we state Bishop’s general
result on upcrossing inequalities and specialize that result to the two cases treated
in our paper.

2. Pointwise asymptotics for jumps

We use the following notation and assumptions: (X,F , µ) is an arbitrary measure
space. Functions are assumed to be real valued and equalities and inequalities of
functions are meant in the almost everywhere sense. For the most part we work with
a positive linear contraction T from L1 to L1. Given a sequence of functions gn(x)
we will refer to the whole collection as a single object by means of g = {gn(x)}.
An admissible sequence q = {qk(x)} is a collection of measurable functions that
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satisfy qk(x) ≥ 0 and Tqk ≤ qk+1, we also assume q0 > 0 a.e. Let f(x) denote
an arbitrary mesurable function for the moment; some of the results will be stated
using the abstract notation Snf(x), n = −1, 0, 2, . . . (S−1f(x) = 0) which will
stand for either of the following two sequences:

i) The Chacon-Ornstein averages

Snf(x) = Anf(x) =
∑n

k=0 T
kf(x)∑n

k=0 qk(x)
.

These averages specialize to Cesaro averages Anf(x) =
∑n

k=0 T
kf(x)/(n+ 1)

if qk(x) = 1 and T1 ≤ 1.
ii) Powers of T , namely

Snf(x) = Pnf(x) =
Tnf(x)∑n
k=0 qk(x)

.

This sequence is usually studied in connection with the Chacon-Ornstein av-
erages.

Next we make precise the meaning of the symbol “little o” in our paper.

Definition 1 (Almost Uniform Asymptotics). Given a sequence an(x) of measur-
able functions and a sequence c(n), the notation

an(x) = o(c(n)) a.u. (or lim
n→∞ (an(x)/c(n)) = 0 a.u.)

means the following: For all ε > 0 there exists a measurable set A ⊂ X with
µ(Ac) < ε and such that the sequence an(x)

c(n) converges uniformly to 0 on A as n
approaches ∞.

Remark 1. By Egorov’s theorem almost uniform (a.u.) convergence follows from
almost everywhere convergence for finite measure spaces. Our point of emphasizing
a.u. convergence is that our results will hold in arbitrary measure spaces and that
we give explicit modulus of convergence.

Definition 2 (Jumps). Given a sequence of functions g = {gn(x)}, n = −1, 0, . . .
(g−1(x) = 0), a fixed integer K > 0, a real number η > 0 and x ∈ X, define

Jη,K(g, x) = sup{k : ξ = (tr)r=0,...,k}
where ξ satisfies:

−1 ≤ t0 < t1 < t2 < · · · < tk ≤ K

and

|gtr+1(x) − gtr
(x)| ≥ η, for all r = 0, . . . , k − 1.(4)

Also define
Jη(g, x) = sup{Jη,K(g, x) : K > 0}

the function Jη(g) will be referred to as the number of η-jumps for the given se-
quence g. Results involving Jη(g, x) when gn(x) equal the Cesaro averages are
developed in [5]. In [7] it is proven, among many other results, that the function
Jη is not integrable if f ∈ L1.
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Definition 3 (Upcrossings). Given a sequence of functions g = {gn(x)}, n =
−1, 0, . . . (g−1(x) = 0), an integer K > 0, real numbers α, η > 0 and x ∈ X
define

Uη,K,α(g, x) = sup{k : ζ = (ur, vr)r=1,...,k.}(5)

where the sequence ζ satisfies,

−1 ≤ u1 < v1 < u2 < · · · < vk ≤ K(6)

gur (x) ≤ α and gvr (x) ≥ (α+ η)(7)

for r = 1, . . . , k. The function Uη,K,α(g, x) will be referred to as the number of
upcrossings through the interval [α, α+ η] (see [2]) for the given sequence g.

The following theorem allows us to derive the pointwise asymptotics in Theo-
rem 2. If one only wants to establish a.e. convergence, the argument is simpler.

Theorem 1. Given a sequence of nonnegative functions fi ∈ L1(X), i = 0, 1, . . . ,
a function φ defined on the positive integers such that

n−1∑
i=0

∫
fi(x) dµ(x) = O(φ(n))(8)

and ϕ a positive, increasing function defined on the positive integers so that for
some sequence k1 < k2 < · · · we have

∞∑
n=0

φ(kn+1)
ϕ(kn)

<∞,(9)

then

lim
N→∞

1
ϕ(N)

N−1∑
i=0

fi(x) = 0 a.u.(10)

Proof. We define

an(x) =
1

ϕ(kn)

kn+1−1∑
i=0

fi(x)

From (8) and (9) it follows that
∞∑

n=0

∫
an(x) dµ(x) ≤ C

∞∑
n=0

φ(kn+1)
ϕ(kn)

<∞.(11)

We will use now the proof of Lemma 3 and its notation. Let an = C φ(kn+1)
ϕ(kn) ,

n = 0, 1, . . . , with associated sequence qn. Given δ1 > 0 and δ2 > 0, there exists a
measurable set B such that µ(B) ≤ δ1 and an integer N2 such that

an(x) ≤ δ2 for all x ∈ Bc and n ≥ N2.(12)

Take P2 = kN2 , to establish (10) it is enough to prove that

1
ϕ(P )

P−1∑
i=0

fi(x) ≤ δ2 for all x ∈ Bc and P ≥ P2.(13)
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Let P ≥ P2 and let nP be the unique integer such that knP
≤ P < knP +1. Then

N2 ≤ nP , and from equation (12), the fact that ϕ is an increasing function on the
integers and fi(x) ≥ 0, we obtain (13). �
Definition 4. We say that a given sequence g = {gn(x)} crosses the interval [α, α+
η] from left to right if there are integers −1 ≤ n1 < n2 satisfying gn1(x) ≤ α and
gn2(x) ≥ α + η. Similarly for a crossing from right to left. Finally, we say that
gn(x) crosses the interval [α, α + η] if it crosses the interval from left to right or
from right to left.

Definition 5. Set αi = i η
2 for i = 0, 1, . . . , and define

Uη/2,K(g, x) =
∞∑

i=0

Uη/2,K,αi
(g, x).

The following simple (but crucial) lemma states that if the sequence is bounded
from below, we can add the upcrossings to bound the number of jumps. We only
need this result for the case when the sequence g is nonnegative.

Lemma 1. Let g = {gn(x)} and gn(x) ≥ 0 then

Jη,K(g, x) ≤ 2 U η
2 ,K(g, x).(14)

Proof. Fix x once and for all. We will prove by induction in r ≥ 0 that given
integers −1 = t0 < t1 < · · · < tr ≤ K such that

|gtk+1(x) − gtk
(x)| ≥ η for all k = 0, . . . , r − 1,(15)

and if we let ki(tr) denote the number of times gtk
(x), k = 0, . . . , r, crosses the

interval [αi, αi + η/2], then:
(a) If ki(tr) is odd, then

ki(tr) < 2 Uη/2,tr,αi
(g, x).(16)

(b) If ki(tr) is even, then

ki(tr) ≤ 2 Uη/2,tr,αi
(g, x).(17)

For simplicity, set ki(−1) = 0. Given integers −1 = t0 < t1 < · · · < tr+1 ≤ K
satisfying (15) we need to establish (16) and (17) for ki(tr+1). It is enough to
consider only the intervals [αi, αi+η/2] for which ki(tr+1) = ki(tr)+1. We consider
the two cases above for ki(tr):

(a): ki(tr) is odd. It follows that

ki(tr+1) = ki(tr) + 1 ≤ 2 Uη/2,tr,αi
(g, x) ≤ 2 Uη/2,tr+1,αi

(g, x),

hence (17) holds for the case when ki(tr+1) is even.
(b): ki(tr) is even. It follows from our definitions that

gtr (x) ≤ αi and gtr+1(x) ≥ (αi + η/2).(18)

From the inductive hypothesis we know that ki(tr) ≤ 2 Uη/2,tr,αi
(g, x). It fol-

lows from the definition of ki(tr+1) and the fact that it is an odd number that
Uη/2,tr+1,αi

(g, x) ≥ (ki(tr+1)+1)
2 , hence ki(tr+1) < 2 Uη/2,tr+1,αi

(g, x) as was re-
quired to prove.

Now let Jη,K(g, x) = n. Thus, there is an increasing sequence of integers ui =
ui(x), −1 ≤ u0 < u1 < · · · < un ≤ K, i = 0, . . . , n, such that |guk+1(x)−guk

(x)| ≥ η
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for all k = 0, . . . , n− 1. Given that g is bounded from below by zero, we can take
u0 = −1 without loss of generality. We then have

n ≤
∞∑

i=0

ki(un) ≤ 2
∞∑

i=0

Uη/2,K,αi
(g, x) = 2 U η

2 ,K(g, x),(19)

where the first inequality follows from the definitions and the second one follows
from equations (16) and (17). �

For the definition and a discussion of the function wη,K,α(S, x) which appears in
the proof of the next lemma we refer to Appendix B, at this point we just notice
that Uη,K,α(S, x) ≤ wη,K,α(S, x) (where the notation S = {Sn(x)} was introduced
in Section 1).

Lemma 2. Let q = {qn(x)} be an admissible sequence, assume both f and f2

q0

belong to L1(X) and f(x) ≥ 0. Then
∫
q0(x) Jη,K(S, x) dµ(x) ≤ 4

η2

∫
f2(x)
q0(x)

dµ+
6
η

∫
f(x) dµ.(20)

Proof. Similarly to Definition 5, let αi = i η
2 for i = 0, . . . , and set

w η
2 ,K(S, x) =

∞∑
i=0

w η
2 ,K,αi

(S, x).

From Lemma 1 applied to the sequence S = {Sn(x)} we obtain:

Jη,K(S, x) ≤ 2 w η
2 ,K(S, x).(21)

Notice that if N(x) =
⌊

2f(x)
ηq0(x)

⌋
is the integer part of 2f(x)

ηq0(x) it follows that

i≤N(x)∑
i=0

(
f(x) − i η q0(x)

2

)
≤

(
f2(x)
ηq0(x)

+
3f(x)

2

)
.(22)

We remark that in Appendix B we indicate that Theorem 3 is applicable to both
sequences Sn(x) = Anf(x) and Sn(x) = Pnf(x). Using (22) and Theorem 3 we
compute:

∞∑
i=0

∫
q0(x) w η

2 ,K,αi
(S, x) dµ(x) ≤ 2

η

∞∑
i=0

∫
(f(x) − αi q0(x))+ dµ(x)

≤ 2
η

∞∑
i=0

∫
{f>αiq0}

(f(x) − αi q0(x)) dµ(x)

≤ 2
η

∫ i≤N(x)∑
i=0

(
f(x) − i η q0(x)

2

)
dµ(x)

≤ 2
η2

∫
f2(x)
q0(x)

dµ(x) +
3
η

∫
f(x) dµ(x).
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Hence by Fubini’s theorem,∫
q0(x) Jη,K(S, x) dµ(x) ≤

∫
2 q0(x) w η

2 ,K(S, x) dµ(x)

≤ 4
η2

∫
f2(x)
q0(x)

dµ+
6
η

∫
f(x) dµ.

Hence (20) is proven. �

Theorem 2. Let q = {qn(x)} be an admissible sequence, assume both f and f2

q0

belong to L1(X) and ζ is a positive and increasing function defined on the integers
so that

∞∑
n=1

1
ζ(2n)

<∞.(23)

Then for any nonincreasing sequence ηk tending to 0, we have the following asymp-
totic result:

Jη2N
(S, x) η2

N = o (ζ(2N)) a.u.(24)

Proof. Notice that to prove (24) it is enough to consider the case when f(x) ≥ 0.
This is so because if f = f+−f−, then Jη(f)(S, x) ≤ Jη/2(f+)(S, x)+Jη/2(f−)(S, x).
Let ηk be a nonincreasing sequence such that ηk ↘ 0.

Using (20) we have
N−1∑
k=0

∫
q0(x) η2

kJηk
(S, x) dµ(x) ≤ 4N

∫
f2(x)
q0(x)

dµ(x) + 6η0N
∫
f(x) dµ(x).(25)

If we take ϕ(N) = Nζ(N), φ(N) = N , and kn = 2n+1, we have
∞∑

n=0

φ(kn+1)
ϕ(kn)

=
∞∑

n=1

2
ζ(2n)

<∞.(26)

If we let fi(x) = η2
i q0(x) Jηi(S, x) in Theorem 1, Equations (8) and (9) from The-

orem 1 hold, and (10) implies
N−1∑
k=0

η2
kJηk

(S, x) = o (N ζ(N)) a.u.(27)

We now note that by hypothesis ηk is a decreasing sequence and that Jηk
(S, x) is

increasing as ηk goes to zero. It follows that
2N−1∑
k=0

η2
k Jηk

(S, x) ≥ (2N − 1)
2

η2
2NJηN

(S, x).(28)

Hence from (27)

η2
2N JηN

(S, x) = o (ζ(2N)) a.u.,(29)

and (24) follows.
It is easy to obtain an explicit modulus of convergence by taking

an =
Cφ(2n+2)
ϕ(2n+1)

=
16 ||f ||22
ζ(2n+1)
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with qn = (
∑∞

r=n ar)−1/2 in Theorem 1 and backtraking the computations in that
theorem to Lemma 3. �

Corollary 1. Let q and f(x) be as in Theorem 2. Then for any positive, increasing
function λ defined on (0,∞) such that

∞∑
n=1

1
λ(2n)

<∞,(30)

we have the following asymptotic result in η ↘ 0:

Jη(S, x) η2 = o (λ(1/η)) a.u.(31)

Proof. To establish (31) it is sufficient to prove the asymptotics:

J2−N (S, x) 2−2N = o
(
λ(2N−1)

)
a.u.(32)

In fact, given 0 < η ≤ 2 there exists an integer N = N(η) such that 2−N ≤ η <
2−N+1, and then

Jη(S, x) η2 ≤ J2−N (S, x) 22(−N+1)

= 4J2−N (S, x) 2−2N .

And as λ(2N−1) ≤ λ(1/η) we have that:

Jη(S, x) η2

λ(1/η)
≤ 4

J2−N (S, x) 2−2N

λ(2N−1)
.

Observe that η ↘ 0 implies N = N(η) ↗ ∞, thus (32) implies (31). If we take
N = 2n, ηn = 1

n , and ζ(x) = λ(x
4 ) and apply Theorem 2, we have that:

1
4
J2−N (S, x) 2−2N = o

(
λ(2N−1)

)
a.u.(33)

Then (31) follows. �

Corollary 2. Let f(x) be as in Theorem 2. Then for any ε > 0 and integer r > 0
we have the following asymptotic result in η ↘ 0:

Jη(S, x) η2 = o
(
log1(1/η) . . . logr−1(1/η)(logr(1/η))1+ε

)
a.u.(34)

Proof. This result follows from the convergence of the series:

∞∑
n=r

1
log1(2n) . . . logr−1(2n) (logr(2n))1+ε

(35)

and the above Corollary. �

As mentioned previously, the results for Chacon-Ornstein averages Sn(x) = Anf(x)
specialize to the Cesaro averages by taking qn(x) = 1 and assuming the extra
condition T1 ≤ 1.
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Appendix A. Background results

We need the following result about series:

Proposition 1. Let an be a sequence of nonnegative real numbers with
∑∞

n=0 an <
∞. Then there exists an unbounded nondecreasing sequence of positive real numbers
qn such that

∑∞
n=0 qnan <∞.

Proof. If only a finite number of the an are nonzero, the proposition is trivial.
Now, we suppose that there are infinite nonzero an, in this case we take qn =
(
∑∞

r=n ar)−1/2, obviously qn is an unbounded nondecreasing sequence of positive
real numbers which satisfy

qnan =
q2n+1 − q2n
q2n+1qn

≤ 2
(

1
qn

− 1
qn+1

)
.(36)

Since
∑∞

n=0

(
1
qn

− 1
qn+1

)
= 1

q0
, we have that

∑∞
n=0 qnan <∞. �

Lemma 3. Given a sequence of functions an ∈ L1(X), n = 0, 1, . . . , with an(x) ≥
0, if

∞∑
n=0

∫
an(x) dµ(x) <∞,(37)

then

an(x) = o(1) a.u.(38)

Proof. Let an ≥ ∫
an(x) dµ(x) with

∑∞
n=0 an < ∞ and qn as in Proposition 1.

Let δ1 > 0 and N1 = N(δ1) be such that

∞∑
n=N1

qnan ≤ δ1.

Define

B := {x ∈ X : qnan(x) ≥ 1 for some n ≥ N1}
Bn := {x ∈ X : qnan(x) ≥ 1}.

Since B ⊆ ⋃∞
n=N1

Bn, we have

µ(B) ≤
∞∑

n=N1

µ(Bn) ≤
∞∑

n=N1

∫
Bn

qnan(x) dµ(x) ≤
∞∑

n=N1

qnan ≤ δ1.

Now given δ2 > 0, choose N2, such that N2 ≥ N1 and qn ≥ 1/δ2 for all n ≥ N2.
Then for all x ∈ Bc, an(x) ≤ δ2, for all n ≥ N2. �

Remark 2. It is clear that we can obtain qnan(x) = o(1) a.u. by iterating Lemma 3.
However, this stronger statement will not improve the asymptotic given by (24).
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Appendix B. Upcrossing inequalities

Here we describe Bishop’s general results on upcrossing inequalities as presented
in [2]. The general result represents a constructive outgrowth of the Chacon-
Ornstein theorem. Let T be a linear operator on L1 such that T ≥ 0 and ||Tf ||1 ≤
||f ||1 for all f ∈ L1. Let {f0, f1, . . . , fK} denote a set of measurable functions
such that (fi)+ ∈ L1 and T (

∑
j∈Ω fj)+ ≥ ∑

j∈Ω fj+1 for any finite subset Ω ⊂
{0, . . . ,K − 1}. Moreover, measurable functions pi(x) ≥ 0, i = 0, . . . ,K are given
such that Tpi(x) ≤ pi+1(x). We now define an integer valued function wK(x):

wK(x) = sup{k : ζ = (ur, vr)r=1,...,k}(39)

where the sequence ζ satisfies

−1 ≤ u1 < v1 < u2 < · · · < vk ≤ K,(40)
ur∑

j=0

fj(x) ≤
vr∑

j=0

(fj(x) − pj(x)) r = 1, . . . , k, and(41)

ur+1∑
j=0

fj(x) ≤
vr∑

j=0

(fj(x) − pj(x)) r = 1, . . . , k − 1.(42)

To specialize these general definitions to count upcrossings for the Chacon-Ornstein
averages Anf(x), take fj(x) = T jf(x) − α qj(x)) and pj(x) = η qj(x). To
specialize the general definitions to count upcrossings in the setting of powers
of T , namely Pnf(x), take fj(x) = T jf(x) − T j−1f(x) − α qj(x) for j ≥ 1,
f0(x) = f(x)α q0(x) for j = 0, and pj(x) = η qj(x). Each of these specializations
will define a function wK(x), denoted by wη,K,α(S, x), that satisfies the property:
Uη,K,α(S, x) ≤ wη,K,α(S, x). For the case f(x) ≥ 0, α ≥ 0, η > 0, Bishop’s
theorem [2] in both settings is:

Theorem 3.∫
p0(x) wη,K,α(S, x) dµ(x) ≤

∫
(f(x) − α q0(x))+ dµ(x).

The key property Uη,K,α ≤ wη,K,α, is easily proven. Bishop also indicates in [2]
that further specializations of the general result imply that wK(x) becomes a ma-
jorization for the number of upcrossings in the context of Lebesgue’s differentiation
theorem and martingale convergence theorem. This indicates that analogues of our
Theorem 2 are plausible in these other settings as well.

References

[1] M. B. Alaya, On the simulation of expectations of random variables depending on a
stopping time, Stochastic Analysis and Applications, 11 (1993), 133–153, MR 94b:65017,
Zbl 777.65079.

[2] Errett Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967,
MR 36 #4930, Zbl 183.01503.

[3] Errett Bishop, A constructive ergodic theorem, Journal of Mathematics and Mechanics 17
(1968), 631–639, MR 37 #4235.

[4] L. S. Gal, J. F. Koksma, Sur l’ordre de grandeur des fonctions sommables, Indagationes
Math. 12 (1950), 192–207, MR 12,86b Zbl 041.02406.

[5] R. L. Jones, R. Kaufman, J. Rosenblatt, and M. Wierdl, Oscillation in ergodic theory, Ergodic
Theory and Dyn. Sys. 18 (1998), 889–935, MR 2000b:28019, Zbl 924.28009.

http://www.emis.de/cgi-bin/MATH-item?924.28009
http://www.ams.org/mathscinet-getitem?mr=2000b:28019
http://www.emis.de/cgi-bin/MATH-item?041.02406
http://www.ams.org/mathscinet-getitem?mr=12:86b
http://www.ams.org/mathscinet-getitem?mr=37:4235
http://www.emis.de/cgi-bin/MATH-item?183.01503
http://www.ams.org/mathscinet-getitem?mr=36:4930
http://www.emis.de/cgi-bin/MATH-item?777.65079
http://www.ams.org/mathscinet-getitem?mr=94b:65017


Pointwise Asymptotics for the Jumps of Ergodic Averages 69

[6] R. L. Jones and J. Rosenblatt, Reverse inequalities, J. Fourier Anal. Appl. 6 (2000), 325–341,
MR 2001g:28029.

[7] R. L. Jones, J. Rosenblatt, and M. Wierdl, Counting in ergodic theory, Canadian J. Math.
51 (1999), 996–1019, MR 2000i:28021.

[8] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, New York, 1985, MR 87i:28001,
Zbl 575.28009.

Departamento de Matematicas, Facultad de Ciencias Exactas y Naturales, Universi-
dad Nacional de Mar del Plata, Funes 3350, Mar del Plata 7600, Argentina.

pedrojc@mdp.edu.ar

Department of Mathematics, Physics and Computer Science, Ryerson Polytechnic
University, Toronto, Ontario M5B 2K3, Canada.

ferrando@acs.ryerson.ca http://www.scs.ryerson.ca/˜ferrando/

This paper is available via http://nyjm.albany.edu:8000/j/2001/7-5.html.

http://nyjm.albany.edu:8000/j/2001/7-5.html
http://www.scs.ryerson.ca/~ferrando/
mailto:ferrando@acs.ryerson.ca
mailto:pedrojc@mdp.edu.ar
http://www.emis.de/cgi-bin/MATH-item?575.28009
http://www.ams.org/mathscinet-getitem?mr=87i:28001
http://www.ams.org/mathscinet-getitem?mr=2000i:28021
http://www.ams.org/mathscinet-getitem?mr=2001g:28029

