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Algebras of Singular Integral Operators
on Rearrangement-Invariant Spaces

and Nikolski Ideals

Alexei Yu. Karlovich

Abstract. We construct a presymbol for the Banach algebra Alg (Ω, S) gen-
erated by the Cauchy singular integral operator S and the operators of mul-
tiplication by functions in a Banach subalgebra Ω of L∞. This presymbol is
a homomorphism Alg (Ω, S) → Ω ⊕ Ω whose kernel coincides with the com-
mutator ideal of Alg (Ω, S). In terms of the presymbol, necessary conditions
for Fredholmness of an operator in Alg (Ω, S) are proved. All operators are
considered on reflexive rearrangement-invariant spaces with nontrivial Boyd
indices over the unit circle.
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1. Introduction

Let T be the unit circle equipped with the normalized Lebesgue measure dm =
|dτ |/(2π). For a function ϕ ∈ L1 = L1(T, dm), the Cauchy singular integral is
defined by

(Sϕ)(t) :=
1
πi

v.p.

∫
T

ϕ(τ)dτ
τ − t

, t ∈ T.

Let X = X(T, dm) be a reflexive rearrangement-invariant space with nontrivial
Boyd indices (for the definitions, see Section 2) and let Ω be an arbitrary Banach
subalgebra of L∞. We denote by L(X) the Banach algebra of all bounded linear
operators on X and by K(X) the closed two-sided ideal of all compact operators
on X. The smallest Banach subalgebra of L(X) containing the Cauchy singular
integral operator S and the operators of multiplication Mϕ by functions ϕ ∈ Ω
is denoted by Alg (Ω, S). The commutator ideal of Alg (Ω, S), that is, the closed
two-sided ideal generated by all commutators AB − BA with A,B ∈ Alg (Ω, S) is
denoted by ComAlg (Ω, S).
S. G. Mikhlin suggested [22, 23] an idea of symbol calculus for investigation of

Fredholm properties of singular integral operators on Lebesgue spaces. Recall that
an operator acting on a Banach space is said to be Fredholm if its image is closed
and the dimensions of its kernel and cokernel are finite. In particular, S. G. Mikhlin
proved [24] (see also [25]) that every operator F ∈ Alg (C, S) ⊂ L(Lp), 1 < p < ∞,
where C = C(T) stands for the C∗-algebra of all continuous functions on T, admits
a canonical representation of the form

F =MϕP+ +MψP− +K,(1.1)

where

P+ := (I + S)/2, P− := (I − S)/2(1.2)

are the Riesz projections, I is the identity operator, ϕ,ψ ∈ C and K ∈ K(Lp).
Moreover, in this case K(Lp) = ComAlg (C, S) and F is Fredholm if and only if
ϕ(t) �= 0, ψ(t) �= 0 for all t ∈ T. The representation (1.1) allows us to construct
a canonical homomorphism (symbol) Alg (C, S) → C ⊕ C with the kernel K(Lp),
where A⊕B stands for the direct sum of Banach algebras A and B equipped with
the operations (a, b) + (c, d) = (a + c, b + d), (a, b) · (c, d) = (ac, bd) and the norm
‖(a, b)‖A⊕B := max{‖a‖A, ‖b‖B}.
The situation becomes more difficult if Ω is wider than C and X is more gen-

eral than a Lebesgue space Lp, 1 < p < ∞. In this paper some necessary con-
ditions for Fredholmness of F ∈ Alg (Ω, S) ⊂ L(X) are obtained in terms of a
presymbol of Alg (Ω, S). The presymbol is a canonical homomorphism of Alg (Ω, S)
onto the quotient algebra Alg (Ω, S)/ComAlg (Ω, S) modulo the commutator ideal
ComAlg (Ω, S). In general, the latter ideal is wider than K(X). Some specific
algebras Ω ⊂ L∞ were treated earlier in the case of (weighted) Lebesgue spaces
in [2, 3, 4, 5, 7, 10, 19, 25, 29] (see also the references therein). For more general
rearrangement-invariant spaces, only the algebra Ω = PC of piecewise-continuous
functions was considered earlier in [13] (see also [15]).
In this paper we follow the approach of [9] and construct a presymbol of the

algebra Alg (Ω, S) ⊂ L(X) for any Banach subalgebra Ω of L∞ and any reflex-
ive rearrangement-invariant space X with nontrivial Boyd indices. More precisely,
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we describe a Banach algebra homomorphism Alg (Ω, S) → Ω ⊕ Ω with the ker-
nel ComAlg (Ω, S) and obtain the representation (1.1) for an arbitrary operator
F in Alg (Ω, S) with ϕ,ψ ∈ Ω and K ∈ ComAlg (Ω, S). In this construction a
collection of so-called Nikolski ideals J±(A) (see [9, Section 2] and also [26, 27, 28])
associated with a Douglas algebra A (see, e.g., [8, Ch. 9]) plays an important
role. Another important ingredients in the construction are two-sided estimates
for the norms of the Toeplitz operators P+MϕP+, P−MϕP− and the Hankel oper-
ators P−MϕP+, P+MϕP− with a symbol ϕ ∈ L∞. These estimates were recently
obtained in [16] for reflexive rearrangement-invariant spaces with nontrivial Boyd
indices.
The paper is organized as follows. In Section 2 we give necessary preliminaries

on rearrangement-invariant spaces and their Boyd indices. We conclude this section
with the estimates for the norms of Toeplitz and Hankel operators. In Section 3 we
study properties of Nikolski ideals associated with Douglas algebras. This allows
us to give estimates for quotient norms modulo these ideals for Hankel and singular
integral operators of the form MϕP+ +MψP−. Our main results are concentrated
in Section 4. First, we construct the presymbol for the algebra Alg (Ω, S) ⊂ L(X),
where Ω is an arbitrary Banach subalgebra of L∞. Secondly, we prove necessary
conditions for Fredholmness of an arbitrary operator F ∈ Alg (Ω, S) and describe
the commutator ideal of the algebra Alg (Ω, S). Finally, we discuss commutator
ideals of algebras Alg (Ω, S) for Ω between C and QC, where QC is the algebra
of all quasicontinuous functions, and give a criterion for the Fredholmness of an
operator A ∈ Alg (Ω, S) in this case.
The presentation is selfcontained. We complement and extend [9] giving details

in the cases which were omitted in [9] and vice versa. In places we consider topics
in the same sequence in which they are considered in [9]. As a reader of both papers
will see, in some cases we are able to adapt the proofs there directly to our context,
however in other places we have to involve more delicate arguments, for instance,
such as new analogues of classical estimates for the norms of Hankel and Toeplitz
operators (see [16]). We refine also some minor inaccuracies of [9].

2. Rearrangement-invariant spaces and their indices

2.1. Rearrangement-invariant spaces. For a general discussion of rearrang-
ement-invariant spaces, see [1, 18, 20]. In this section we collect necessary facts.
Denote by M the set of all measurable complex-valued functions on T, and let

M+ be the subset of functions in M whose values lie in [0,∞]. The characteristic
function of a measurable set E ⊂ T will be denoted by χE . A mapping ρ :M+ →
[0,∞] is called a function norm if for all functions f, g, fn ∈ M+ (n ∈ N), for all
constants a ≥ 0, and for all measurable subsets E of T, the following properties
hold:

(a) ρ(f) = 0⇔ f = 0 a.e., ρ(af) = aρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),
(b) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f) (the lattice property),
(c) 0 ≤ fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f) (the Fatou property),

(d) ρ(χE) < ∞,

∫
E

f dm ≤ CEρ(f)
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with CE ∈ (0,∞) depending on E and ρ but independent of f . When functions
differing only on a set of measure zero are identified, the set X of all functions
f ∈ M for which ρ(|f |) < ∞, is a Banach space under the norm ‖f‖X := ρ(|f |).
Such a space X is called a Banach function space. If ρ is a function norm, its
associate norm ρ′ is defined on M+ by

ρ′(g) := sup
{∫

T

fg dm : f ∈ M+, ρ(f) ≤ 1
}
, g ∈ M+.

The Banach function space X ′ determined by the function norm ρ′ is called the
associate space (Köthe dual) of X. The associate space X ′ is a subspace of the dual
space X∗.
Let M0 and M+

0 be the classes of a.e. finite functions in M and M+, respec-
tively. Two functions f, g ∈ M0 are said to be equimeasurable if

m{τ ∈ T : |f(τ)| > λ} = m{τ ∈ T : |g(τ)| > λ} for all λ ≥ 0.

A function norm ρ :M+ → [0,∞] is called rearrangement-invariant if for every
pair of equimeasurable functions f, g ∈ M+

0 the equality ρ(f) = ρ(g) holds. In that
case, the Banach function space X generated by ρ is said to be a rearrangement-
invariant space. A Banach function space X is rearrangement-invariant if and only
if its associate space X ′ is rearrangement-invariant too [1, p. 60].
The Lebesgue space Lp, 1 ≤ p ≤ ∞, is the simplest example of a rearrangement-

invariant space. Orlicz and Lorentz spaces are other important classical examples
of rearrangement-invariant spaces. For every rearrangement-invariant space X (see,
e.g., [1, p. 78]), we have L∞ ⊂ X ⊂ L1.

2.2. Boyd indices. By the Luxemburg representation theorem [1, Ch. 2, The-
orem 4.10], there is a unique rearrangement-invariant function norm ρ over [0, 1]
with the Lebesgue measure dt such that ρ(f) = ρ(f∗) for all f ∈ M+

0 , where f∗

is the non-increasing rearrangement of f (see, e.g., [1, p. 39]). The rearrangement-
invariant space over ([0, 1], dt) generated by ρ is called the Luxemburg representa-
tion of X. For each s ∈ R+ := (0,∞), let Es denote the dilation operator defined
on M0([0, 1], dt) by

(Esf)(t) :=
{

f(st), st ∈ [0, 1]
0, st �∈ [0, 1] , t ∈ [0, 1].

For every s ∈ R+, the operator E1/s is bounded on the Luxemburg representation
of X [1, p. 165], its norm is denoted by hX(s). The function hX : R+ → R+ is
submultiplicative and non-decreasing. From [18, Ch. 2, Theorem 1.3] it follows that
the limits

αX := lim
s→0

log hX(s)
log s

, βX := lim
s→∞

log hX(s)
log s

exist and αX ≤ βX . The numbers αX and βX are called the lower and upper Boyd
indices of the rearrangement-invariant space X, respectively [6]. For the Lebesgue
spaces Lp, 1 ≤ p ≤ ∞, the Boyd indices coincide and equal 1/p. For an arbitrary
rearrangement-invariant space, its Boyd indices belong to [0, 1]. We will say that
the Boyd indices are nontrivial if αX , βX ∈ (0, 1). In the case of Orlicz spaces the
latter condition is equivalent to the reflexivity of the space (see, e.g., [21]). One
can find properties of the Boyd indices in [1, 6, 20, 21].
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2.3. Singular integral operators, Toeplitz and Hankel operators. Let Mϕ

be the operator of multiplication by a function ϕ ∈ L∞. The Calderón-Mitjagin
interpolation theorem (see, e.g., [20, Theorem 2.a.10]) implies that Mϕ is bounded
on arbitrary rearrangement-invariant space and

‖Mϕ‖L(X) ≤ ‖ϕ‖∞.(2.1)

The Cauchy singular integral operator S is bounded on a rearrangement-invariant
spaceX if and only ifX has nontrivial Boyd indices (see, e.g., [18, Ch. 2, Section 8.6]
and also [1, Ch. 3, Theorem 5.18]).

Lemma 2.1 (see [16, Lemma 4.2 and Proposition 4.3]). If X is a reflexive rear-
rangement-invariant space with nontrivial Boyd indices, then the operators P+ and
P− given by (1.2) are bounded projections on X and on X ′ and their norms are
equal

γ := ‖P+‖L(X) = ‖P−‖L(X) = ‖P+‖L(X′) = ‖P−‖L(X′).

The exact value of γ for Lebesgue spaces Lp, 1 < p < ∞, was recently found by
B. Hollenbeck and I. E. Verbitsky [11, Theorem 2.1]: γ = γLp = 1/ sin(π/p). A
lower estimate of γ for an arbitrary reflexive rearrangement-invariant space with
nontrivial Boyd indices was obtained in [14, Theorem 4.5]. The exact value of this
constant is unknown even for reflexive Orlicz spaces.

In the following we will always assume that X is a reflexive rearrangement-
invariant space with nontrivial Boyd indices.

For a set F ⊂ L∞, put F := {f : f ∈ F}. Let H∞ be the Hardy space of all
bounded analytic functions in the open unit disk D := {z ∈ C : |z| < 1}. Consider
the Toeplitz operators

T+
ϕ := P+MϕP+, T−

ϕ := P−MϕP−

and the Hankel operators

H+
ϕ := P−MϕP+, H−

ϕ := P+MϕP−.

Their norms admit the following estimates.

Theorem 2.2 (see [16, Corollaries 4.6 and 5.10]). If ϕ ∈ L∞, then

‖ϕ‖∞ ≤ ‖T+
ϕ ‖L(X) ≤ γ2‖ϕ‖∞,(2.2)

‖ϕ‖∞ ≤ ‖T−
ϕ ‖L(X) ≤ γ2‖ϕ‖∞,(2.3)

inf
ψ∈H∞

‖ϕ− ψ‖∞ ≤ ‖H+
ϕ ‖L(X) ≤ γ2 inf

ψ∈H∞
‖ϕ− ψ‖∞,(2.4)

inf
ψ∈H∞

‖ϕ− ψ‖∞ ≤ ‖H−
ϕ ‖L(X) ≤ γ2 inf

ψ∈H∞
‖ϕ− ψ‖∞.(2.5)

3. Nikolski ideals associated with Douglas algebras

3.1. Definition of the Nikolski ideals. Consider the set of all inner functions,
that is, the set

B :=
{
b ∈ H∞ : |b(t)| = 1 a.e. on T

}
.
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A Banach subalgebra A of L∞ generated by H∞ and B with B ⊂ B is called a
Douglas algebra (see, e.g., [8, Ch. 9, Section 1]). For a Douglas algebra A, put

BA :=
{
b ∈ B : b ∈ A

}
, A+ := A, A− := A, QA := A+ ∩ A−.

The following characteristic property of the Douglas algebras can be easily deduced
from the definition.

Lemma 3.1. A function f ∈ L∞ belongs to a Douglas algebra A if and only if for
every ε > 0 there exist h ∈ H∞ and b ∈ BA such that ‖f − hb‖∞ < ε.

Example 3.2 (see [8, Ch. 9, Sections 1–2]).
(a) If A = L∞, then BA = B and QA = L∞;
(b) if A = H∞, then BA = T and QA = C;
(c) if A = H∞+C, thenBA is the set of all finite Blaschke products andQA = QC

is the algebra of all quasicontinuous functions.

For a Douglas algebra A, following [9, Section 2], put

J−(A) :=
{
F ∈ L(X) : inf

b∈BA

‖P−MbF‖L(X) = 0
}
,(3.1)

J+(A) :=
{
F ∈ L(X) : inf

b∈BA

‖P+MbF‖L(X) = 0
}
,(3.2)

J(A) := J−(A) ∩ J+(A).(3.3)

If A1,A2 are Douglas algebras and A1 ⊂ A2, then BA1 ⊂ BA2 . Hence, form the
definitions of the sets J±(Ai) and J(Ai), where i = 1, 2, we get

J−(A1) ⊂ J−(A2), J+(A1) ⊂ J+(A2), J(A1) ⊂ J(A2).

Lemma 3.3. The sets J−(A), J+(A), and J(A) are closed right ideals in L(X).
Proof. Let F1 ∈ J+(A), F2 ∈ L(X), and b ∈ BA. Then

‖(P+Mb)(F1F2)‖L(X) ≤ ‖P+MbF1‖L(X)‖F2‖L(X).

Taking the infimum over all b ∈ BA, we get

inf
b∈BA

‖(P+Mb)(F1F2)‖L(X) ≤ ‖F2‖L(X)

(
inf
b∈BA

‖P+MbF1‖L(X)

)
= 0.

Hence, F1F2 ∈ J+(A), that is, J+(A) is a right ideal.
Now we prove that J+(A) is closed. Let F ∈ L(X) and let {Fn}∞n=1 ⊂ J+(A)

satisfy

lim
n→∞ ‖F − Fn‖L(X) = 0.

Given ε > 0, we choose N ∈ N such that

‖F − Fn‖L(X) <
ε

2‖P+‖L(X)
for every n > N.(3.4)

Take m > N . Since Fm ∈ J+(A), by the definition of J+(A), there exists b ∈ BA

such that

‖P+MbFm‖L(X) <
ε

2
.(3.5)
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Then, taking into account (3.4), (3.5), and (2.1), we get

‖P+MbF‖L(X) ≤ ‖P+Mb(F − Fm)‖L(X) + ‖P+MbFm‖L(X)

≤ ‖P+‖L(X)‖Mb‖L(X)‖F − Fm‖L(X) + ‖P+MbFm‖L(X)

<
ε

2
+

ε

2
= ε.

Since ε is arbitrary, this means that

inf
b∈BA

‖P+MbF‖L(X) = 0.

Thus, F ∈ J+(A), which shows that J+(A) is closed.
In the case of J−(A) the proof is similar. Since J−(A) and J+(A) are closed right

ideals, J(A) = J−(A) ∩ J+(A) is also a closed right ideal of L(X). �

We use here the terminology of [9, Section 2] and call the ideals J±(A) and J(A)
as the Nikolski ideals associated with the Douglas algebra A. Analogous ideals were
used by N. K. Nikolski [26, 27, 28] for studying of Toeplitz and Hankel operators
on the Hardy space H2.

3.2. Properties of the Nikolski ideals. In this subsection we study properties
of Nikolski ideals.

Lemma 3.4. Let A be a Douglas algebra and let F ∈ L(X). Then
(a) P∓F ∈ J±(A);
(b) F ∈ J±(A) if and only if P±F ∈ J±(A);
(c) F ∈ J(A) if and only if P+F ∈ J(A) and P−F ∈ J(A);
(d) if F ∈ J(A), then SF ∈ J(A).

Proof. (a) If b ∈ BA, then b ∈ H∞ and b ∈ H∞. From (2.5) and (2.4) we deduce
that, respectively,

P+MbP−F = 0, P−MbP+F = 0.(3.6)

Then from (3.6) and the definition of J+(A) and J−(A) we get P−F ∈ J+(A) and
P+F ∈ J−(A), respectively. Part (a) is proved.
(b) From (3.6) it follows that

P+MbF = P+MbP+F, P−MbF = P−MbP−F.(3.7)

From (3.7) and the definition of J±(A) we infer that F ∈ J±(A) if and only if
P±F ∈ J±(A). Part (b) is proved.
(c) Necessity. By Part (a), P−F ∈ J+(A) and P+F ∈ J−(A). Due to Part (b),

if F ∈ J(A) = J−(A) ∩ J+(A), then P+F ∈ J+(A) and P−F ∈ J−(A). Thus, P−F
and P+F belong to J(A). Necessity of (c) is proved.

Sufficiency. If P−F and P+F belong to J(A), then by Part (b), F ∈ J−(A) and
F ∈ J+(A). Thus, F ∈ J(A). Part (c) is proved.
(d) By Part (c), if F ∈ J(A), then P+F and P−F belong to J(A). Hence,

SF = P+F − P−F ∈ J(A). �

Lemma 3.5. Let A be a Douglas algebra.
(a) If f ∈ H∞

∓ and F ∈ J±(A), then MfF ∈ J±(A).
(b) Suppose f ∈ BA. If F ∈ J−(A) (resp. F ∈ J+(A)), then MfF ∈ J−(A)

(resp. MfF ∈ J+(A)).
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(c) If f ∈ A∓ and F ∈ J±(A), then MfF ∈ J±(A).

Proof. (a) If f(τ) = 0 a.e. on T and F ∈ J±(A), then MfF = 0 ∈ J±(A).
Suppose f ∈ H∞

− \ {0} and F ∈ J+(A). Then for any ε > 0 there exists b ∈ BA

such that

‖P+MbF‖L(X) <
ε

‖P+‖L(X)‖f‖∞ .(3.8)

Since f ∈ H∞
− = H∞, from (2.5) we get P+MfP− = 0. Therefore,

P+MbMfF = P+Mf (P+ + P−)MbF = P+MfP+MbF.(3.9)

From (3.8), (3.9), and (2.1) we get

‖P+MbMfF‖L(X) ≤ ‖P+‖L(X)‖Mf‖L(X)‖P+MbF‖L(X) < ε.

Since ε > 0 is arbitrary, the latter inequality means that MfF ∈ J+(A).
Analogously, one can prove that f ∈ H∞

+ and F ∈ J−(A) imply MfF ∈ J−(A).
Part (a) is proved.
(b) Suppose f ∈ BA and F ∈ J+(A). Then for any ε > 0 there exists b ∈ BA

such that ‖P+MbF‖L(X) < ε. Since b ∈ BA and f ∈ BA, we have bf ∈ BA.
Therefore, for F1 =MfF and any ε > 0 there exists b1 = bf ∈ BA such that

‖P+Mb1
F1‖L(X) = ‖P−MbfMfF‖L(X) = ‖P+MbF‖L(X) < ε.

Since ε is arbitrary, the latter inequality means that F1 =MfF ∈ J+(A).
Analogously one can show that f ∈ BA and F ∈ J−(A) imply MfF ∈ J−(A).

Part (b) is proved.
(c) Suppose f ∈ A− = A and F ∈ J+(A). By Lemma 3.1, for every ε > 0 there

exists b ∈ BA and h ∈ H∞
− such that

‖f − bh‖∞ = ‖f − hb‖∞ < ε.(3.10)

In view of Part (a), since h ∈ H∞
− , we have MhF ∈ J+(A). Further, by Part (b),

MbhF =Mb(MhF ) ∈ J+(A). From (3.10) and (2.1) it follows that

‖MfF −MbhF‖L(X) ≤ ‖f − bh‖∞‖F‖L(X) < ε‖F‖L(X).(3.11)

Since MbhF ∈ J+(A), Lemma 3.3 and (3.11) imply that MfF ∈ J+(A).
Analogously, one can show that f ∈ A+ and F ∈ J−(A) imply MfF ∈ J−(A).

Part (c) and the lemma are proved. �

Lemma 3.6. Let A be a Douglas algebra.
(a) If ϕ ∈ A±, then H±

ϕ ∈ J(A).
(b) If ϕ ∈ QA, then H±

ϕ ∈ J(A).

Proof. (a) Let ϕ ∈ A− = A. By Lemma 3.1, for any ε > 0 there exist h ∈ H∞
−

and b ∈ BA such that ‖ϕ− hb‖∞ = ‖ϕ− hb‖∞ < ε. In view of (3.7),

P+MbH
−
ϕ = P+MbP+MϕP− = P+MbMϕP− = H−

bϕ
.(3.12)

From (3.12) and (2.5) it follows that

‖P+MbH
−
ϕ ‖L(X) = ‖H−

bϕ
‖L(X) ≤ γ2 inf

ψ∈H∞
−
‖bϕ− ψ‖∞.(3.13)
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Since |b(τ)| = 1 a.e. on T, we have

inf
ψ∈H∞

−
‖bϕ− ψ‖∞ = inf

ψ∈H∞
−
‖ϕ− bψ‖∞ ≤ ‖ϕ− hb‖∞ < ε.(3.14)

Combining (3.13) and (3.14), we infer that for any ε > 0 there exists b ∈ BA such
that ‖P+MbH

−
ϕ ‖L(X) < γ2ε. This means that

inf
b∈BA

‖P+MbH
−
ϕ ‖L(X) = 0,

that is, H−
ϕ ∈ J+(A). On the other hand, applying Lemma 3.4(a) to F = MϕP−,

we obtain H−
ϕ = P+(MϕP−) ∈ J−(A). Thus, H−

ϕ ∈ J−(A) ∩ J+(A) = J(A).
The proof for ϕ ∈ A+ is similar. Part (a) is proved.
Statement (b) is a direct consequence of (a) because QA = A− ∩ A+. �

Corollary 3.7. For every ϕ ∈ L∞, we have MϕP∓ ∈ J±(L∞).

Proof. From the definitions of T±
ϕ and H±

ϕ it follows that

MϕP∓ = T∓
ϕ +H∓

ϕ .(3.15)

In view of Example 3.2(a), L∞ = QL∞ . Then, by Lemma 3.6(a),

H±
ϕ ∈ J(L∞) = J−(L∞) ∩ J+(L∞).(3.16)

Applying Lemma 3.4(a) to F1 =MϕP− and to F2 =MϕP+, we get

T−
ϕ = P−F1 = P−MϕP− ∈ J+(L∞), T+

ϕ = P+F2 = P+MϕP+ ∈ J−(L∞),(3.17)

respectively. Combining (3.15)–(3.17), we obtain MϕP∓ ∈ J±(L∞). �
Theorem 3.8. Let Ω be a Banach subalgebra of L∞ and let A be a Douglas algebra.
If Ω ⊂ QA, then Alg (Ω, S) ∩ J(A) is a closed two-sided ideal of Alg (Ω, S).

Proof. From Lemma 3.3 it follows that Alg (QA, S)∩J(A) is a closed right ideal of
Alg (QA, S). On the other hand, if F ∈ J(A), then, by Lemma 3.4(b), SF ∈ J(A).
If f ∈ QA = A− ∩A+ and F ∈ J(A) = J−(A)∩ J+(A), then, due to Lemma 3.5(c),
MfF ∈ J−(A)∩J+(A). This means that for every F ∈ J(A) and every generator B
of Alg (QA, S) we have BF ∈ J(A). Therefore, for every F ∈ Alg (QA, S)∩J(A) and
every C ∈ Alg (QA, S) we have CF ∈ Alg (QA, S)∩J(A), that is, Alg (QA, S)∩J(A)
is also a left ideal of Alg (QA, S). Thus, Alg (QA, S) ∩ J(A) is a closed two-sided
ideal of Alg (QA, S).
By Lemma 3.3, Alg (Ω, S) ∩ J(A) is a closed right ideal of Alg (Ω, S).
On the other hand, let F1 ∈ Alg (Ω, S) and F2 ∈ Alg (Ω, S) ∩ J(A). Then,

obviously, F1F2 ∈ Alg (Ω, S). Since Ω ⊂ QA and Alg (QA, S) ∩ J(A) is a closed
two-sided ideal of Alg (QA, S), we have F1F2 ∈ Alg (QA, S) ∩ J(A). Therefore,

F1F2 ∈ Alg (Ω, S) ∩
(
Alg (QA, S) ∩ J(A)

)
= Alg (Ω, S) ∩ J(A),

that is, Alg (Ω, S) ∩ J(A) is a left ideal of Alg (Ω, S). Thus, Alg (Ω, S) ∩ J(A) is a
closed two-sided ideal of Alg (Ω, S). �
From Example 3.2(b) and the definition of J(H∞) one can straightforwardly

deduce that J(H∞) = {0}. A more interesting example is the ideal J(H∞ + C).

Lemma 3.9. We have

J(H∞ + C) = K(X).(3.18)
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Proof. First, we show that

J(H∞ + C) ⊂ K(X).(3.19)

Let F ∈ J(H∞ + C). By Lemma 3.4(c), P+F ∈ J(H∞ + C) ⊂ J+(H∞ + C).
Therefore, by the definition of J+(H∞ + C) and Example 3.2(c), for an arbitrary
ε > 0 there exists a finite Blaschke product b such that

‖P+MbP+F‖L(X) < ε.(3.20)

On the other hand,

P+F −MbH
+

b
F =Mb(Mb − P−Mb)P+F =MbP+MbP+F.(3.21)

From (3.20), (3.21), and (2.1) it follows that

‖P+F −MbH
+

b
F‖L(X) ≤ ‖Mb‖L(X)‖P+MbP+F‖L(X) < ε.(3.22)

Since the finite Blaschke product b is continuous on T, by [13, Lemma 6.4], the
operator MbS − SMb is compact on X. Hence, the operator

MbH
+

b
F =MbP−(MbP+ − P+Mb)F

is compact on X. From this and (3.22), taking into account that ε is arbitrary,
we obtain P+F ∈ K(X). Analogously one can show that P−F ∈ K(X). Thus,
F = P−F + P+F ∈ K(X), and we have proved (3.19).
Let F(X) be the ideal of all operators of finite rank on X. Let us show that

F(X) ⊂ J(H∞ + C).(3.23)

Every operator K ∈ F(X) has the form

(Kf)(t) =
m∑
j=1

aj(t)
∫

T

bj(τ)f(τ) dτ, t ∈ T,(3.24)

where aj ∈ X and bj ∈ X ′ for j ∈ {1, . . . ,m}. Since X is reflexive, the set P of
all trigonometric polynomials is dense in X (see, e.g., [16, Corollary 3.2]). Hence,
every operator of the form (3.24) can be approximated in the operator norm by the
operators of the form (3.24) with aj ∈ P. This means that it is sufficient to prove
that the operator of the form

(Kif)(t) = χi(t)
∫

T

f(τ)g(τ) dτ, g ∈ X ′, t ∈ T,

belongs to J(H∞ + C) for every i ∈ Z.
Obviously, χj ∈ {f ∈ C : |f | = 1} ⊂ BH∞+C for each j ∈ Z. For every i ∈ Z,

we take j1, j2 ∈ Z such that j1 < i < j2. Then P−(χj1χi) = 0 and P+(χj2χi) = 0.
Therefore, P−Mχj1

Ki = 0 and P+Mχj2
Ki = 0. This means that

Ki ∈ J−(H∞ + C) ∩ J+(H∞ + C) = J(H∞ + C) for every i ∈ Z.

Thus, we have proved (3.23).
Since X is reflexive and its Boyd indices are nontrivial, Corollary 6.11 of [1,

Ch. 3] says that every function in X can be approximated in the norm of X by
the partial sums of its Fourier series. That is, there exists a sequence of finite-rank
operators on X converging strongly to the identity operator. Consequently, every
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operator in K(X) can be approximated in the operator norm by operators in F(X).
On the other hand, by Lemma 3.3, J(H∞+C) is a closed ideal. Thus, (3.23) implies

K(X) ⊂ J(H∞ + C).(3.25)

Combining (3.19) and (3.25), we arrive at (3.18). �

3.3. Estimates for quotient norms. Let N be a closed subspace of L(X). We
denote by |F |N the quotient norm of F ∈ L(X) modulo N , that is, the norm of
the image of F in the quotient algebra L(X)/N . In other words,

|F |N := inf
N∈N

‖F −N‖L(X).

Theorem 3.10. Let A be a Douglas algebra. If ϕ ∈ L∞, then:

1
γ
inf
ψ∈A+

‖ϕ− ψ‖∞ ≤ |H+
ϕ |J−(A) ≤ |H+

ϕ |J(A) ≤ γ2 inf
ψ∈A+

‖ϕ− ψ‖∞,(3.26)

1
γ
inf
ψ∈A−

‖ϕ− ψ‖∞ ≤ |H−
ϕ |J+(A) ≤ |H−

ϕ |J(A) ≤ γ2 inf
ψ∈A−

‖ϕ− ψ‖∞.(3.27)

Proof. Since J(A) = J−(A) ∩ J+(A), we immediately get

|H+
ϕ |J−(A) ≤ |H+

ϕ |J(A), |H−
ϕ |J+(A) ≤ |H−

ϕ |J(A).(3.28)

By Lemma 3.6(a), if ψ ∈ A−, then H−
ψ ∈ J(A). Hence, taking into account (2.1),

|H−
ϕ |J(A) = inf

F∈J(A)
‖H−

ϕ − F‖L(X) ≤ inf
ψ∈A−

‖H−
ϕ −H−

ψ ‖L(X)(3.29)

= inf
ψ∈A−

‖H−
ϕ−ψ‖L(X) ≤ inf

ψ∈A−

(
‖P+‖L(X)‖Mϕ−ψ‖L(X)‖P−‖L(X)

)

≤ γ2 inf
ψ∈A−

‖ϕ− ψ‖∞.

Let us prove that

inf
ψ∈A−

‖ϕ− ψ‖∞ ≤ γ|H−
ϕ |J+(A).(3.30)

For any F ∈ J+(A) and b ∈ BA from (3.12) we deduce that

P+Mb(H
−
ϕ − F ) = H−

bϕ
− P+MbF.(3.31)

Then, taking into account (2.1), from (3.31) we get

γ‖H−
ϕ − F‖L(X) ≥ ‖P+‖L(X)‖Mb‖L(X)‖H−

ϕ − F‖L(X)(3.32)

≥ ‖H−
bf

− P+MbF‖L(X)

≥ ‖H−
bf
‖L(X) − ‖P+MbF‖L(X).

Since H∞ ⊂ A = A− and b ∈ A for any Douglas algebra A, from (2.5) we get

‖H−
bϕ
‖L(X) ≥ inf

ψ∈H∞
‖bϕ− ψ‖∞ = inf

ψ∈H∞
‖ϕ− bψ‖∞ ≥ inf

ψ∈A−
‖ϕ− ψ‖∞.(3.33)

From (3.32) and (3.33) we obtain for any F ∈ J+(A) and b ∈ BA,

inf
ψ∈A−

‖ϕ− ψ‖∞ ≤ γ‖H−
ϕ − F‖L(X) + ‖P+MbF‖L(X).(3.34)
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Then (3.34) and (3.2) imply

inf
ψ∈A−

‖ϕ− ψ‖∞ ≤ inf
F∈J+(A)

(
inf
b∈BA

(
γ‖H−

ϕ − F‖L(X) + ‖P+MbF‖L(X)

))

= inf
F∈J+(A)

(
γ‖H−

ϕ − F‖L(X) + inf
b∈BA

‖P+MbF‖L(X)

)

= γ inf
F∈J+(A)

‖H−
ϕ − F‖L(X) = γ|H−

ϕ |J+(A).

So, we have proved (3.30).
Combining (3.28)–(3.30), we arrive at (3.27). Inequalities (3.26) are proved

similarly to (3.27). �

Theorem 3.11. If ϕ,ψ ∈ L∞, then

|MϕP+ +MψP−|J(L∞) ≥ 1
γ
max{‖ϕ‖∞, ‖ψ‖∞}.(3.35)

Proof. Let us prove that

|MϕP+ +MψP−|J(L∞) ≥ ‖ψ‖∞
γ

.(3.36)

Let F ∈ J−(L∞) and b ∈ BL∞ . Then, taking into account (2.1), we get

γ‖MψP− − F‖L(X) ≥ ‖P−‖L(X)‖Mb‖L(X)‖MψP− − F‖L(X)(3.37)

≥ ‖P−Mb(MψP− − F )‖L(X)

≥ ‖P−MbMψP−‖L(X) − ‖P−MbF‖L(X)

= ‖T−
bψ‖L(X) − ‖P−MbF‖L(X).

By (2.3), taking into account that |b(τ)| = 1 a.e. on T,

‖T−
bψ‖L(X) ≥ ‖bψ‖∞ = ‖ψ‖∞.(3.38)

From (3.37) and (3.38), for every F ∈ J−(L∞) and every b ∈ BL∞ , we get

‖ψ‖∞
γ

≤ ‖MψP− − F‖L(X) +
1
γ
‖P−MbF‖L(X).(3.39)

From (3.39) and (3.1) we deduce that

‖ψ‖∞
γ

≤ inf
F∈J−(L∞)

(
inf

b∈BL∞

(
‖MψP− − F‖L(X) +

1
γ
‖P−MbF‖L(X)

))
(3.40)

= inf
F∈J−(L∞)

(
‖MψP− − F‖L(X) +

1
γ

inf
b∈BL∞

‖P−MbF‖L(X)

)

= inf
F∈J−(L∞)

‖MψP− − F‖L(X) = |MψP−|J−(L∞).

By Corollary 3.7, MϕP+ ∈ J−(L∞). Therefore,

|MϕP+ +MψP−|J−(L∞) = |MψP−|J−(L∞).(3.41)

Since J(L∞) ⊂ J−(L∞), we have

|MϕP+ +MψP−|J(L∞) ≥ |MϕP+ +MψP−|J−(L∞).(3.42)

Combining (3.40)–(3.42), we arrive at (3.36).
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Analogously one can prove that

|MϕP+ +MψP−|J(L∞) ≥ ‖ϕ‖∞
γ

.(3.43)

From (3.36) and (3.43) we obtain (3.35). �

4. The presymbol of the algebra Alg (Ω, S)

4.1. The construction of a presymbol. For a Banach subalgebra Ω of L∞, we
denote by H(Ω) the closed two-sided ideal of Alg (Ω, S) generated by all Hankel
operators H+

ϕ and H−
ψ with ϕ,ψ ∈ Ω.

Lemma 4.1. If Ω is a Banach subalgebra of L∞, then H(Ω) = ComAlg (Ω, S).
This lemma follows from the straightforwardly checked identities

MϕMψ =MψMϕ, 2(H+
ϕ −H−

ϕ ) =MϕS − SMϕ, (MϕS − SMϕ)P± = ±2H±
ϕ .

Lemma 4.2. If Ω is a Banach subalgebra of L∞, then

ComAlg (Ω, S) ⊂ Alg (Ω, S) ∩ J(L∞).

Proof. In view of Example 3.2(a), we have Ω ⊂ L∞ = QL∞ . Due to Lemma 3.6(b),
if ϕ,ψ ∈ Ω, then H+

ϕ ∈ J(L∞) and H−
ψ ∈ J(L∞). On the other hand, obviously,

H+
ϕ , H

−
ψ belong to Alg (Ω, S). Thus, H(Ω) ⊂ Alg (Ω, S) ∩ J(L∞). From the latter

imbedding and Lemma 4.1 it follows that ComAlg (Ω, S) ⊂ Alg (Ω, S)∩J(L∞). �

Lemma 4.3. Let Ω be a Banach subalgebra of L∞. For any ϕ,ψ ∈ Ω we have

|MϕP+ +MψP−|Com Alg (Ω,S) ≥ 1
γ
max{‖ϕ‖∞, ‖ψ‖∞}.(4.1)

Proof. From Lemma 4.2 it follows that

ComAlg (Ω, S) ⊂ Alg (Ω, S) ∩ J(L∞) ⊂ J(L∞).

Therefore,

|MϕP+ +MψP−|Com Alg (Ω,S) ≥ |MϕP+ +MψP−|J(L∞).(4.2)

On the other hand, by Theorem 3.11,

|MϕP+ +MψP−|J(L∞) ≥ 1
γ
max{‖ϕ‖∞, ‖ψ‖∞}.(4.3)

From (4.2) and (4.3) we get (4.1). �

Let Alg 0(Ω, S) denote the linear subspace of Alg (Ω, S) consisting of all operators
of the form

F =MϕP+ +MψP− +K,(4.4)

where ϕ,ψ ∈ Ω and K ∈ ComAlg (Ω, S).
Lemma 4.4. If Ω is a Banach subalgebra of L∞, then Alg 0(Ω, S) is a Banach
subalgebra of Alg (Ω, S).
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Proof. Let a, b, c, d ∈ Ω and K1,K2 ∈ ComAlg (Ω, S). Then
F1 :=MaP+ +MbP− +K1, F2 :=McP+ +MdP− +K2

belong to Alg 0(Ω, S) and

F1F2 =MacP+ +MbdP− +K,(4.5)

where

K = (MaP+ +MbP−)K2 +K1(McP+ +MdP−)

+K1K2 +Ma(H−
d −H+

c ) +Mb(H+
c −H−

d ).

From the properties of the two-sided ideal ComAlg (Ω, S) and Lemma 4.1 it follows
that K ∈ ComAlg (Ω, S). Therefore, F1F2 ∈ Alg 0(Ω, S), that is, Alg 0(Ω, S) is a
subalgebra of Alg (Ω, S).
Now we show that Alg 0(Ω, S) is closed in Alg (Ω, S). Suppose that a sequence

{Fn}∞n=1 converges to F ∈ Alg (Ω, S), where
Fn =MϕnP+ +MψnP− +Kn, Kn ∈ ComAlg (Ω, S), ϕn, ψn ∈ Ω.(4.6)

By Lemma 4.3, for any m,n ∈ N, we have

‖Fm − Fn‖L(X) ≥ |Mϕm−ϕnP+ +Mψm−ψnP−|Com Alg (Ω,S)(4.7)

≥ 1
γ
max{‖ϕm − ϕn‖∞, ‖ψm − ψn‖∞}.

Since {Fn}∞n=1 is a Cauchy sequence in L(X), from (4.7) it follows that {ϕn}∞n=1

and {ψn}∞n=1 are Cauchy sequences in L∞. But Ω is closed in L∞, therefore, the
limits

ϕ := lim
n→∞ϕn, ψ := lim

n→∞ψn

belong to Ω and

MϕP+ = lim
n→∞MϕnP+, MψP− = lim

n→∞MψnP−.(4.8)

Put K := F − (MϕP+ +MψP−). From (4.6) and (4.8) we get

K = lim
n→∞

[
Fn − (Mϕn

P+ +Mψn
P−)

]
= lim
n→∞Kn.(4.9)

Since ComAlg (Ω, S) is a closed two-sided ideal in Alg (Ω, S), we infer from (4.9)
that K ∈ ComAlg (Ω, S). Thus, F ∈ Alg 0(Ω, S), which proves that Alg 0(Ω, S) is
closed in Alg (Ω, S). �

Now we are in a position to prove the main result of this paper.

Theorem 4.5. Let Ω be a Banach subalgebra of L∞. An operator F ∈ Alg (Ω, S)
admits a unique representation (4.4), where ϕ,ψ ∈ Ω and K ∈ ComAlg (Ω, S).
The mapping F �→ (ϕ,ψ) defines a Banach algebra homomorphism (presymbol)

µΩ : Alg (Ω, S)→ Ω⊕ Ω.
The kernel kerµΩ of this homomorphism coincides with ComAlg (Ω, S) and the
norm of this homomorphism satisfies the inequality ‖µΩ‖ ≤ γ.
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Proof. Since 0 ∈ ComAlg (Ω, S) and ±1 ∈ Ω, we have
Mϕ =MϕP+ +MϕP− ∈ Alg 0(Ω, S), S = P+ − P− ∈ Alg 0(Ω, S).

So, the generators of Alg (Ω, S) lie in Alg 0(Ω, S). Then, in view of Lemma 4.4,
Alg 0(Ω, S) = Alg (Ω, S). Consequently, every operator F belonging to Alg (Ω, S)
admits a representation of the form (4.4).
This representation is unique. Indeed, assume the contrary. Then there exist

ϕ1, ϕ2, ψ1, ψ2 ∈ Ω and K1,K2 ∈ ComAlg (Ω, S) such that the triple {ϕ1, ψ1,K1}
does not coincide with the triple {ϕ2, ψ2,K2} and

F =Mϕ1P+ +Mψ1P− +K1 =Mϕ2P+ +Mψ2P− +K2.

Clearly, the situation ϕ1 = ϕ2, ψ1 = ψ2,K1 �= K2 is impossible. Therefore, ϕ1 �= ϕ2

or ψ1 �= ψ2. From Lemma 4.3 it follows that

0 = ‖(Mϕ1 −Mϕ2)P+ + (Mψ1 −Mψ2)P− +K1 −K2‖L(X)

≥ |Mϕ1−ϕ2P+ +Mψ1−ψ2P−|Com Alg (Ω,S)

≥ 1
γ
max{‖ϕ1 − ϕ2‖∞, ‖ψ1 − ψ2‖∞}.

Hence, ϕ1 = ϕ2 and ψ1 = ψ2, so we arrive at a contradiction.
The fact that µΩ is a homomorphism with kernel ComAlg (Ω, S) follows from

the first statement of the theorem and the relation (4.5).
Let F ∈ Alg (Ω, S) and F �= 0. Then, by just proved, F admits a unique repre-

sentation F = MϕP+ +MψP− +K with (ϕ,ψ) ∈ Ω⊕ Ω and K ∈ ComAlg (Ω, S).
In view of Lemma 4.3,

‖F‖L(X) ≥ |MϕP+ +MψP−|Com Alg (Ω,S) ≥ 1
γ
max{|ϕ‖∞, ‖ψ‖∞}.

Then
‖µΩ(F )‖Ω⊕Ω

‖F‖L(X)
≤ max{‖ϕ‖∞, ‖ψ‖∞}

1
γ max{‖ϕ‖∞, ‖ψ‖∞} = γ.

Taking the supremum over all F �= 0 in the latter inequality, we get ‖µΩ‖ ≤ γ. �
Remark 4.6. Theorem 4.1 in [9] contains wrong estimate for ‖µΩ‖.
4.2. Necessary conditions for Fredholmness. In this subsection we obtain
necessary conditions for Fredholmness of an operator F ∈ Alg (Ω, S) in terms of its
presymbol.
It is well-known that an operator A is Fredholm if and only if there exists a

regularizer R of A, that is, AR−I and RA−I are compact operators (see, e.g., [10,
Vol. 1, Section 4.7]). Recall that a Banach subalgebra Ω of L∞ is said to be inverse
closed in L∞ if for every f ∈ Ω satisfying ess inf

τ∈T

|f(τ)| > 0, we have 1/f ∈ Ω. The
group of invertible elements of an algebra A is denoted by GA.
Theorem 4.7. (a) If F ∈ Alg (L∞, S) is Fredholm, then

µL∞(F ) ∈ G (L∞ ⊕ L∞) .

(b) Suppose Ω is an inverse closed subalgebra of L∞. If F ∈ Alg (Ω, S) is Fred-
holm, then

µΩ(F ) ∈ G (Ω⊕ Ω) .
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Proof. (a) Assume the contrary, that is F ∈ Alg (L∞, S) is Fredholm, but its
presymbol µL∞(F ) = (ϕ,ψ) is not invertible in L∞ ⊕ L∞. Then there exists a
regularizer R of F and

ess inf
τ∈T

|ϕ(τ)| = 0, ess inf
τ∈T

|ψ(τ)| = 0.
Assume for definiteness that ψ /∈ GL∞, then there exists a set of positive measure
on T with the characteristic function χ satisfying the inequality

‖χψ‖∞ <
1

γ3‖R‖L(X)
.(4.10)

By the definition of regularizer, we have

FR = I +K1(4.11)

with K1 ∈ K(X). In view of Theorem 4.5,

F =MϕP+ +MψP− +K2, ϕ, ψ ∈ L∞, K2 ∈ ComAlg (L∞, S).(4.12)

Multiplying (from the left) both sides of (4.11) by P−Mχ and taking into account
(4.12), we get

P−Mχ(MϕP+ +MψP− +K2)R = P−Mχ + P−MχK1.

This equality can be rewritten in the form

T−
χψR =MχP− +K,(4.13)

where

K = P−MχK1 − P−MχK2R−H+
χϕR+ (P−Mχ −MχP−).

In view of Lemma 3.9, K(X) = J(H∞ + C). Since H∞ + C ⊂ L∞, we have
J(H∞ + C) ⊂ J(L∞). Therefore, K(X) ⊂ J(L∞). Since K1 ∈ K(X), we deduce
that

P−MχK1 ∈ K(X) ⊂ J(L∞).(4.14)

Further, K2 belongs to the closed two-sided ideal ComAlg (L∞, S). Conse-
quently, −P−MχK2R belongs to ComAlg (L∞, S) too. Taking into account that
χ, ϕ ∈ L∞, from Lemma 4.1 we obtain H+

χϕ ∈ H(L∞) = ComAlg (L∞, S), whence,
−H+

χϕR ∈ ComAlg (L∞, S). By the definition of the ideal ComAlg (L∞, S), we
get P−Mχ −MχP− ∈ ComAlg (L∞, S). Thus,

−P−MχK2R−H+
χϕR+ (P−Mχ −MχP−) ∈ ComAlg (L∞, S).(4.15)

Due to Lemma 4.2, ComAlg (L∞, S) ⊂ J(L∞). Then from (4.14) and (4.15) we
obtain K ∈ J(L∞). Applying Theorem 3.11, we get

‖MχP− +K‖L(X) ≥ |MχP−|J(L∞) ≥ 1
γ
‖χ‖∞ =

1
γ
.(4.16)

On the other hand, from (4.13), (4.10), and (2.1) we obtain

‖MχP− +K‖L(X) = ‖T−
χψR‖L(X) = ‖P−MχψP−R‖L(X)(4.17)

≤ γ2‖χϕ‖∞‖R‖L(X) <
γ2‖R‖L(X)

γ3‖R‖L(X)
=
1
γ
.

Combining (4.16) and (4.17), we arrive at the wrong inequality 1/γ < 1/γ. There-
fore, ψ ∈ GL∞. Analogously one can prove that ϕ ∈ GL∞. Part (a) is proved.
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(b) If Ω is inverse closed in L∞, then Ω⊕Ω is inverse closed in L∞⊕L∞. Clearly,
F ∈ Alg (Ω, S) ⊂ Alg (L∞, S) and, by Theorem 4.5, µΩ(F ) = µL∞(F ). Due to Part
(a), if F is Fredholm, then µL∞(F ) ∈ G (L∞ ⊕ L∞). Since Ω⊕ Ω is inverse closed
in L∞ ⊕ L∞, the inclusion µΩ(F ) = µL∞(F ) ∈ G (L∞ ⊕ L∞) implies the inclusion
µΩ(F ) ∈ G (Ω⊕ Ω). Part (b) and the theorem is proved. �
4.3. The commutator ideal of the algebra Alg (Ω, S). In this subsection we
describe the commutator ideal of the algebra Alg (Ω, S).

Theorem 4.8. Let Ω be a Banach subalgebra of L∞ and let A be a Douglas algebra.
Then Ω ⊂ QA if and only if

Alg (Ω, S) ∩ J(A) = ComAlg (Ω, S).(4.18)

Proof. Necessity. By Theorem 3.8, the set Alg (Ω, S) ∩ J(A) is a closed two-sided
ideal of Alg (Ω, S). Moreover, by Lemma 3.6(b), this ideal contains all operators
H+
ϕ and H−

ψ with ϕ,ψ ∈ Ω. But Lemma 4.1 states that ComAlg (Ω, S) is the
smallest closed two-sided ideal containing all such operators. This means that

ComAlg (Ω, S) ⊂ Alg (Ω, S) ∩ J(A).(4.19)

To prove the reverse inclusion, assume that F ∈ Alg (Ω, S)∩J(A). By Theorem 4.5,
there exist ϕ,ψ ∈ Ω and K ∈ ComAlg (Ω, S) such that F =MϕP+ +MψP− +K.
Therefore, in view of Lemma 4.2, K ∈ Alg (Ω, S) ∩ J(L∞). On the other hand,
since A ⊂ L∞, we have J(A) ⊂ J(L∞). Then F ∈ Alg (Ω, S) ∩ J(L∞). Thus,

MϕP+ +MψP− = F −K ∈ Alg (Ω, S) ∩ J(L∞).(4.20)

From Example 3.2(a) and Theorem 3.8 it follows that Alg (Ω, S)∩J(L∞) is a closed
two-sided ideal of Alg (Ω, S). Since Alg (Ω, S) ∩ J(L∞) ⊂ J(L∞), we have

|MϕP+ +MψP−|Alg (Ω,S)∩J(L∞) ≥ |MϕP+ +MψP−|J(L∞).

From here and Theorem 3.11 it follows that

|MϕP+ +MψP−|Alg (Ω,S)∩J(L∞) ≥ 1
γ
max{‖ϕ‖∞, ‖ψ‖∞}.(4.21)

From (4.20) and (4.21) we get ϕ = ψ = 0 a.e. on T. Thus, F = K ∈ ComAlg (Ω, S).
This means that

Alg (Ω, S) ∩ J(A) ⊂ ComAlg (Ω, S).(4.22)

Combining (4.19) and (4.22), we arrive at (4.18). Necessity is proved.

Sufficiency. Let ϕ ∈ Ω. From (4.18) and Lemma 4.1 it follows that

H±
ϕ ∈ H(Ω) = ComAlg (Ω, S) = Alg (Ω, S) ∩ J(A) ⊂ J(A).(4.23)

By Theorem 3.10,

inf
ψ∈A+

‖ϕ− ψ‖∞ ≤ γ|H+
ϕ |J(A), inf

ψ∈A−
‖ϕ− ψ‖∞ ≤ γ|H−

ϕ |J(A).(4.24)

From (4.23) it follows that |H+
ϕ |J(A) = |H−

ϕ |J(A) = 0. Therefore, (4.24) implies
ϕ ∈ A+ ∩ A− = QA. Thus, Ω ⊂ QA. �
Corollary 4.9. Let Ω be a Banach subalgebra of L∞ and let A be a Douglas algebra.
If Ω ⊂ QA, then

ComAlg (Ω, S) = Alg (Ω, S) ∩ ComAlg (QA, S).(4.25)
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Proof. Since Ω ⊂ QA, we have

Alg (Ω, S) = Alg (Ω, S) ∩Alg (QA, S).(4.26)

By Theorem 4.8 and (4.26),

ComAlg (Ω, S) = Alg (Ω, S) ∩ J(A) =
(
Alg (Ω, S) ∩Alg (QA, S)

)
∩ J(A)(4.27)

= Alg (Ω, S) ∩
(
Alg (QA, S) ∩ J(A)

)
.

Applying Theorem 4.8 to the trivial situation QA ⊂ QA, we get

Alg (QA, S) ∩ J(A) = ComAlg (QA, S).(4.28)

Combining (4.27) and (4.28), we arrive at (4.25). �

4.4. Singular integral operators with quasicontinuous coefficients. In the
following lemma we characterize the commutator ideal of Banach algebras Alg (Ω, S)
for Ω being a subalgebra between C and QC.

Lemma 4.10.
(a) For a Banach subalgebra Ω of L∞ which lies between C and QC,

ComAlg (Ω, S) = K(X).(4.29)

(b) For every Banach subalgebra Ω of L∞ such that C ⊂ Ω and QC \ Ω �= ∅,
the ideal of compact operators K(X) is properly contained in the commutator
ideal ComAlg (Ω, S).

Proof. (a) Repeating the proof of [12, Lemma 9.1] (see also [3, Lemma 8.23]), one
can show that

K(X) ⊂ Alg (C, S).(4.30)

On the other hand, consider the Douglas algebra A = H∞ + C. Then QA = QC
(see Example 3.2(c)). By Lemma 3.9, J(H∞ +C) = K(X). Combining these facts
with Theorem 4.8, we get

ComAlg (Ω, S) = Alg (Ω, S) ∩ J(H∞ + C) = Alg (Ω, S) ∩ K(X).(4.31)

Since C ⊂ Ω ⊂ QC, we have

Alg (C, S) ⊂ Alg (Ω, S) ⊂ Alg (QC,S).(4.32)

From (4.30)–(4.32) we get

K(X) ⊂ Alg (C, S) ∩ K(X) ⊂ Alg (Ω, S) ∩ K(X) = ComAlg (Ω, S) ⊂ K(X).
Thus, we arrive at (4.29).
(b) Since C ⊂ Ω, we have K(X) = ComAlg (C, S) ⊂ ComAlg (Ω, S). On

the other hand, by [17, Theorem 4.1], for a function ϕ ∈ L∞, the commutator
MϕS − SMϕ is compact on X if and only if ϕ ∈ QC. Thus, for ϕ ∈ Ω \ QC, we
have MϕS − SMϕ ∈ ComAlg (Ω, S) \ K(X). �

Lemma 4.10(b) shows that if the set QC \ Ω is nonempty, then Theorem 4.7
gives only necessary conditions for Fredholmness of an operator F ∈ Alg (Ω, S).
However, in view of Lemma 4.10(a), they become sufficient if Ω lies between C and
QC and it is inverse closed in L∞. More precisely, the following criterion is true.
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Theorem 4.11. Suppose a Banach subalgebra Ω of L∞ is inverse closed in L∞ and
lies between C and QC. An operator F ∈ Alg (Ω, S) admits a unique representation
of the form (4.4) with ϕ,ψ ∈ Ω and K ∈ K(X), and it is Fredholm if and only if

ess inf
τ∈T

|ϕ(τ)| > 0, ess inf
τ∈T

|ψ(τ)| > 0.(4.33)

Proof. From Theorem 4.5 and Lemma 4.10(a) it follows that F ∈ Alg (Ω, S) ad-
mits a unique representation of the form (4.4) with ϕ,ψ ∈ Ω and K ∈ K(X) =
ComAlg (Ω, S). Theorem 4.7 implies that conditions (4.33) are necessary for Fred-
holmness of F .
Let us prove that these conditions are also sufficient. Since Ω is inverse closed

in L∞, conditions (4.33) imply 1/ϕ, 1/ψ ∈ Ω. Then, taking into account that
K(X) = ComAlg (Ω, S), it is not difficult to show that R :=M1/ϕP+ +M1/ψP− is
a regularizer for F . Hence, F is Fredholm. �
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[5] A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, Springer-Verlag, Berlin, 1990,
MR 92e:47001, Zbl 0732.47029.

[6] D. W. Boyd, Indices of function spaces and their relationship to interpolation, Canad. J.
Math. 21 (1969), 1245–1254, MR 54 #909, Zbl 0184.34802.

[7] V. M. Deundyak and K. A. Georgiev, An outer derivation construction on the algebra of
singular integral operators with general coefficients in weighted spaces and its applications,
in “Operator Theory and Related Topics, Vol. II (Odessa, 1997)”, Operator Theory: Ad-
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