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ABSTRACT. We construct a presymbol for the Banach algebra Alg (€2, S) gen-
erated by the Cauchy singular integral operator S and the operators of mul-
tiplication by functions in a Banach subalgebra Q of L°°. This presymbol is
a homomorphism Alg (2, 5) — Q & Q whose kernel coincides with the com-
mutator ideal of Alg (€2,.5). In terms of the presymbol, necessary conditions
for Fredholmness of an operator in Alg (2, S) are proved. All operators are
considered on reflexive rearrangement-invariant spaces with nontrivial Boyd
indices over the unit circle.
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216 Alexet Yu. Karlovich

1. Introduction

Let T be the unit circle equipped with the normalized Lebesgue measure dm =
|dr|/(27). For a function ¢ € L' = L(T,dm), the Cauchy singular integral is
defined by

(Sp)(t) := %v.p./T SQT(T_)T, teT.

Let X = X(T,dm) be a reflexive rearrangement-invariant space with nontrivial
Boyd indices (for the definitions, see Section 2) and let Q be an arbitrary Banach
subalgebra of L>°. We denote by £(X) the Banach algebra of all bounded linear
operators on X and by K(X) the closed two-sided ideal of all compact operators
on X. The smallest Banach subalgebra of £(X) containing the Cauchy singular
integral operator S and the operators of multiplication M, by functions ¢ €
is denoted by Alg (Q2,.5). The commutator ideal of Alg(,S), that is, the closed
two-sided ideal generated by all commutators AB — BA with A, B € Alg(Q,5) is
denoted by Com Alg (2, S).

S. G. Mikhlin suggested [22, 23] an idea of symbol calculus for investigation of
Fredholm properties of singular integral operators on Lebesgue spaces. Recall that
an operator acting on a Banach space is said to be Fredholm if its image is closed
and the dimensions of its kernel and cokernel are finite. In particular, S. G. Mikhlin
proved [24] (see also [25]) that every operator F' € Alg (C,S) C L(LP), 1 <p < o0,
where C' = C(T) stands for the C*-algebra of all continuous functions on T, admits
a canonical representation of the form

(1.1) F=M,P +MyP_+K,
where
(1.2) P.:=(I+5)/2, P_-:=(1-S5)/2

are the Riesz projections, I is the identity operator, p,% € C and K € IC(LP).
Moreover, in this case (L?) = Com Alg (C,S) and F' is Fredholm if and only if
o(t) # 0,1(t) # 0 for all t € T. The representation (1.1) allows us to construct
a canonical homomorphism (symbol) Alg (C,S) — C @& C with the kernel IC(LP),
where A @ B stands for the direct sum of Banach algebras A and B equipped with
the operations (a,b) + (¢,d) = (a + ¢,b + d), (a,b) - (¢,d) = (ac,bd) and the norm
(@, 5)lass == max{[lalL, [b]1s}.

The situation becomes more difficult if  is wider than C' and X is more gen-
eral than a Lebesgue space LP, 1 < p < oo. In this paper some necessary con-
ditions for Fredholmness of F € Alg(Q,S) C L(X) are obtained in terms of a
presymbol of Alg (2,.5). The presymbol is a canonical homomorphism of Alg (€2, .5)
onto the quotient algebra Alg (2,.5)/Com Alg (€2, .S) modulo the commutator ideal
Com Alg (2,5). In general, the latter ideal is wider than K(X). Some specific
algebras 0 C L were treated earlier in the case of (weighted) Lebesgue spaces
in [2, 3, 4, 5, 7, 10, 19, 25, 29] (see also the references therein). For more general
rearrangement-invariant spaces, only the algebra 2 = PC' of piecewise-continuous
functions was considered earlier in [13] (see also [15]).

In this paper we follow the approach of [9] and construct a presymbol of the
algebra Alg (Q2,S5) C L(X) for any Banach subalgebra 2 of L>° and any reflex-
ive rearrangement-invariant space X with nontrivial Boyd indices. More precisely,
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we describe a Banach algebra homomorphism Alg (2,5) — Q & Q with the ker-
nel Com Alg (©2,.5) and obtain the representation (1.1) for an arbitrary operator
F in Alg (2, S) with ¢,¢ € Q and K € Com Alg (£2,S5). In this construction a
collection of so-called Nikolski ideals J*(A) (see [9, Section 2] and also [26, 27, 28])
associated with a Douglas algebra A (see, e.g., [8, Ch. 9]) plays an important
role. Another important ingredients in the construction are two-sided estimates
for the norms of the Toeplitz operators P M, P, P_M,P_ and the Hankel oper-
ators P_M_ Py, P, M,P_ with a symbol ¢ € L. These estimates were recently
obtained in [16] for reflexive rearrangement-invariant spaces with nontrivial Boyd
indices.

The paper is organized as follows. In Section 2 we give necessary preliminaries
on rearrangement-invariant spaces and their Boyd indices. We conclude this section
with the estimates for the norms of Toeplitz and Hankel operators. In Section 3 we
study properties of Nikolski ideals associated with Douglas algebras. This allows
us to give estimates for quotient norms modulo these ideals for Hankel and singular
integral operators of the form M, P, 4 My P_. Our main results are concentrated
in Section 4. First, we construct the presymbol for the algebra Alg (92, 5) C L(X),
where () is an arbitrary Banach subalgebra of L>°. Secondly, we prove necessary
conditions for Fredholmness of an arbitrary operator F' € Alg (€2,S) and describe
the commutator ideal of the algebra Alg (2,.5). Finally, we discuss commutator
ideals of algebras Alg (Q2,.5) for  between C and QC, where QC is the algebra
of all quasicontinuous functions, and give a criterion for the Fredholmness of an
operator A € Alg (£2,.5) in this case.

The presentation is selfcontained. We complement and extend [9] giving details
in the cases which were omitted in [9] and vice versa. In places we consider topics
in the same sequence in which they are considered in [9]. As a reader of both papers
will see, in some cases we are able to adapt the proofs there directly to our context,
however in other places we have to involve more delicate arguments, for instance,
such as new analogues of classical estimates for the norms of Hankel and Toeplitz
operators (see [16]). We refine also some minor inaccuracies of [9].

2. Rearrangement-invariant spaces and their indices

2.1. Rearrangement-invariant spaces. For a general discussion of rearrang-
ement-invariant spaces, see [1, 18, 20]. In this section we collect necessary facts.

Denote by M the set of all measurable complex-valued functions on T, and let
M be the subset of functions in M whose values lie in [0, 00]. The characteristic
function of a measurable set E C T will be denoted by xg. A mapping p: M+ —
[0, 00] is called a function norm if for all functions f,g, f, € M™T (n € N), for all
constants a > 0, and for all measurable subsets E of T, the following properties
hold:

(a)  p(f)=0% f=0ae, plaf)=ap(f), p(f+g)<p(f)+pl9),
(b) 0<g<fae = p(g) <p(f) (the lattice property),
)
)

0< fulfae = p(fn) 1 p(f) (the Fatou property),
plxe) <o, [ fm < Cuplf)
E
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with Cg € (0,00) depending on F and p but independent of f. When functions
differing only on a set of measure zero are identified, the set X of all functions
f € M for which p(|f]) < oo, is a Banach space under the norm || f||x := p(|f]).
Such a space X is called a Banach function space. If p is a function norm, its
associate norm p’ is defined on M* by

d@:wﬂAMMmfethﬂﬂ}gwa

The Banach function space X’ determined by the function norm p’ is called the
associate space (Kdthe dual) of X. The associate space X' is a subspace of the dual
space X*.

Let My and ./\/13' be the classes of a.e. finite functions in M and M, respec-
tively. Two functions f,g € M are said to be equimeasurable if

m{r €T:|f(r)|> A} =m{r €T:|g(r)] > A} forall X>0.

A function norm p : MT — [0, 00] is called rearrangement-invariant if for every
pair of equimeasurable functions f, g € M{ the equality p(f) = p(g) holds. In that
case, the Banach function space X generated by p is said to be a rearrangement-
invariant space. A Banach function space X is rearrangement-invariant if and only
if its associate space X' is rearrangement-invariant too [1, p. 60].

The Lebesgue space LP, 1 < p < oo, is the simplest example of a rearrangement-
invariant space. Orlicz and Lorentz spaces are other important classical examples
of rearrangement-invariant spaces. For every rearrangement-invariant space X (see,
e.g., [1, p. 78]), we have L>® C X C L.

2.2. Boyd indices. By the Luxemburg representation theorem [1, Ch. 2, The-
orem 4.10], there is a unique rearrangement-invariant function norm p over [0, 1]
with the Lebesgue measure dt such that p(f) = p(f*) for all f € M{, where f*
is the non-increasing rearrangement of f (see, e.g., [1, p. 39]). The rearrangement-
invariant space over ([0,1],dt) generated by p is called the Luxemburg representa-
tion of X. For each s € Ry := (0,00), let FE; denote the dilation operator defined
on Mo([0,1],dt) by

| f(st), ste]0,1]
Epw={ § el ten
For every s € R, the operator E/, is bounded on the Luxemburg representation
of X [1, p. 165], its norm is denoted by hx(s). The function hx : Ry — Ry is
submultiplicative and non-decreasing. From [18, Ch. 2, Theorem 1.3] it follows that
the limits

ax = lim M, Bx = lim M
s—0 logs s—oo  logs
exist and ax < OBx. The numbers ax and Bx are called the lower and upper Boyd
indices of the rearrangement-invariant space X, respectively [6]. For the Lebesgue
spaces LP,1 < p < oo, the Boyd indices coincide and equal 1/p. For an arbitrary
rearrangement-invariant space, its Boyd indices belong to [0,1]. We will say that
the Boyd indices are nontrivial if ax,Bx € (0,1). In the case of Orlicz spaces the
latter condition is equivalent to the reflexivity of the space (see, e.g., [21]). One
can find properties of the Boyd indices in [1, 6, 20, 21].
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2.3. Singular integral operators, Toeplitz and Hankel operators. Let M,
be the operator of multiplication by a function ¢ € L*°. The Calderén-Mitjagin
interpolation theorem (see, e.g., 20, Theorem 2.a.10]) implies that M., is bounded
on arbitrary rearrangement-invariant space and

(2.1) [Mollx) < llplloo-

The Cauchy singular integral operator S is bounded on a rearrangement-invariant
space X if and only if X has nontrivial Boyd indices (see, e.g., [18, Ch. 2, Section 8.6]
and also [1, Ch. 3, Theorem 5.18]).

Lemma 2.1 (see [16, Lemma 4.2 and Proposition 4.3]). If X is a reflexive rear-
rangement-invariant space with nontrivial Boyd indices, then the operators P and
P_ given by (1.2) are bounded projections on X and on X' and their norms are
equal

v = [1Prllccxy = 1P-llcc) = 1P+ ey = 1P-llexry.-

The exact value of v for Lebesgue spaces LP,1 < p < oo, was recently found by
B. Hollenbeck and I. E. Verbitsky [11, Theorem 2.1]: v = v» = 1/sin(n/p). A
lower estimate of v for an arbitrary reflexive rearrangement-invariant space with
nontrivial Boyd indices was obtained in [14, Theorem 4.5]. The exact value of this
constant is unknown even for reflexive Orlicz spaces.

In the following we will always assume that X is a reflexive rearrangement-
invariant space with nontrivial Boyd indices.

For a set F C L, put F := {f : f € F}. Let H® be the Hardy space of all
bounded analytic functions in the open unit disk D := {z € C : |z] < 1}. Consider
the Toeplitz operators

TJ =P MyP., T, :=P M,P_
and the Hankel operators

H; =P_MyP,, H,: =P M,P_.
Their norms admit the following estimates.

Theorem 2.2 (see [16, Corollaries 4.6 and 5.10]). If ¢ € L*°, then

(2.2) lele < ITFllex) < 7l

(2.3) el < 175 llecx) < P lelloos

. 1 — < + < 2 _

@8 it le—vle < Hfloo < 7 lle— vl

(2.5) inf o=l < [Hylexy < 2% nf o = 9]lo
YeH™>® PpeH™>®

3. Nikolski ideals associated with Douglas algebras

3.1. Definition of the Nikolski ideals. Consider the set of all inner functions,
that is, the set

B = {beHoo S b)) =1 ae. on T}.
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A Banach subalgebra A of L™ generated by H* and B with B C 9B is called a
Douglas algebra (see, e.g., [8, Ch. 9, Section 1]). For a Douglas algebra A, put

%A::{be%:BeA}, A=A, A =&, Qu:=A,NA_.

The following characteristic property of the Douglas algebras can be easily deduced
from the definition.

Lemma 3.1. A function f € L> belongs to a Douglas algebra A if and only if for
every € > 0 there exist h € H® and b € By such that ||f — hb]|e < €.
Example 3.2 (see [8, Ch. 9, Sections 1-2]).
(a) If A = L, then B, =B and Qu = L™
(b) if A= H®, then B, =T and Q, = C;
(c) if A = H>*+4C, then B, is the set of all finite Blaschke products and Q4 = QC
is the algebra of all quasicontinuous functions.

For a Douglas algebra A, following [9, Section 2], put
(3.1) IT(A) = {FeL(X): inf [|[P-MyF|ex) = o},
beEB,

(3-2) ITA) =

=

FeL(X) : inf |[PMFlleco =0},

2

(3-3) JA) = JTA)NTT(A).

If Aq, Ao are Douglas algebras and Ay C Ay, then B,, C B,,. Hence, form the
definitions of the sets J¥(A;) and J(A;), where i = 1,2, we get

J7(A1) CI (Ag), JH(A) CIT(A2), J(A1) CI(Ag).
Lemma 3.3. The sets 37 (A),JT(A), and J(A) are closed right ideals in L(X).
Proof. Let F} € 37 (A), I, € £(X), and b € B,. Then
(P M) (FLE) || o) < 1P+ Ml ooxollF2ll 2 cx)-
Taking the infimum over all b € B4, we get

bielgA | (P M) (F1F2)| 2x) < | F2llx) <bi€IgA ||P+MbF1||L(X)> =0.

Hence, F1 F» € 37 (A), that is, JT(A) is a right ideal.
Now we prove that JT(A) is closed. Let F € £(X) and let {F,}5°; C JT(A)
satisfy

lim ||F - Fn”E(X) =0.
n—oo
Given € > 0, we choose N € N such that

(3.4) 1F = Fullzx) < for every n > N.

&
2(|1Py Il 2xy

Take m > N. Since F,, € J*(A), by the definition of J*(A), there exists b € B,
such that

(3.5) | Py MpFo |l 2(x) <

Do ™
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Then, taking into account (3.4), (3.5), and (2.1), we get
[Py MgF | 2(x) < [Py Mp(F = Fo)|l 2(x) + 1Py MpFol 2 (x)
SNPllecollMpllecn lF = Fnllex) + 1P+ MpFom | 2(x)
IR
2 2
Since € is arbitrary, this means that

inf ||P.M:F =0.
b1€T%BA|| ' MyF|lzx) =0

Thus, F € 3*(A), which shows that J*(A) is closed.
In the case of I~ (A) the proof is similar. Since J~(A) and J*(A) are closed right
ideals, J(A) = J7(A)NJT(A) is also a closed right ideal of £(X). O

We use here the terminology of [9, Section 2] and call the ideals 3 (A) and J(A)
as the Nikolski ideals associated with the Douglas algebra A. Analogous ideals were
used by N. K. Nikolski [26, 27, 28] for studying of Toeplitz and Hankel operators
on the Hardy space H2.

3.2. Properties of the Nikolski ideals. In this subsection we study properties
of Nikolski ideals.

Lemma 3.4. Let A be a Douglas algebra and let F € L(X). Then
() PoF € 3% (A);
(b) F € J*(A) if and only if PLF € J*(A);
(¢) FeJ(A) if and only if P+ F € J(A) and P_F € J(A);
(d) if F € 3(A), then SF € 3(A).

Proof. (a) If b € By, then b € H* and b € H>®. From (2.5) and (2.4) we deduce
that, respectively,

(3.6) P M;P_F =0, P_M,P,F=0.

Then from (3.6) and the definition of J*(A) and J~(A) we get P_F € J*(A) and
P.F € 3 (A), respectively. Part (a) is proved.
(b) From (3.6) it follows that

(3.7) Py MyF = P,M;P,F, P_M,F = P_M,P_F.

From (3.7) and the definition of J*(A) we infer that F' € J¥(A) if and only if
PLF € 3J*(A). Part (b) is proved.

(c) Necessity. By Part (a), P_.F € J*(A) and P F € 3~ (A). Due to Part (b),
if FeJA) =3 (A)NJ*(A), then PLF € J*(A) and P_F € 3 (A). Thus, P_F
and P, F belong to J(A). Necessity of (¢) is proved.

Sufficiency. If P_F and Py F belong to J(A), then by Part (b), F € 37 (A) and
F € 3t (A). Thus, F € J(A). Part (c) is proved.

(d) By Part (c), if F € J(A), then PLF and P_F belong to J(A). Hence,
SF=P.F—P_Fej3A). O
Lemma 3.5. Let A be a Douglas algebra.

(a) If fe HY and F € JE(A), then MfF € 3= (A).
(b) Suppose f € Bu. If F € J~(A) (resp. F € J*(A)), then M7F € 3~ (A)
(resp. MyF € J(A)).
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(c) If f € Az and F € 35(A), then M;F € JE(A).

Proof. (a) If f(7) =0 a.e. on T and F € J*(A), then MyF =0 € JE(A).
Suppose f € H*\ {0} and F € J*(A). Then for any ¢ > 0 there exists b € B,
such that
€

(3.8) P Fll gy < o
P P oo £l

Since f € H>® = H®, from (2.5) we get P MyP_ = 0. Therefore,

(3.9) Py MzMF = Py My(Py + P_)M;F = Py M; P, M;F.

From (3.8), (3.9), and (2.1) we get
[Py MMy F| x) < 1Py lleo) IMell e |1 Pe MeF |l g x) < e
Since € > 0 is arbitrary, the latter inequality means that M;F € JT(A).
Analogously, one can prove that f € H® and F' € 3~ (A) imply MyF € 3~ (A).
Part (a) is proved.
(b) Suppose f € B, and F € JT(A). Then for any € > 0 there exists b € By

such that ||PyMyF|(x) < €. Since b € By and f € By, we have bf € By.
Therefore, for Fy = M;F and any € > 0 there exists by = bf € B, such that

[Py My Fi|| o x) = [[P- MMy Fll 2 x) = | Py MF || £(x) <e.

Since ¢ is arbitrary, the latter inequality means that Fy = M;F € J+(A).
Analogously one can show that f € B, and F' € 37 (A) imply M7F € J~(A).
Part (b) is proved.
(c) Suppose f € A_ = A and F € 3J*(A). By Lemma 3.1, for every ¢ > 0 there
exists b € B,y and h € H>® such that

(3.10) I = bhlloo = If — hbllc <e.

In view of Part (a), since h € H*, we have M}, F € J*(A). Further, by Part (b),
My F = My(MpF) € 3" (A). From (3.10) and (2.1) it follows that

(3.11) M F — MynFlloixy < If = 0hlloo | Fll2xy < el Fllzix)-

Since MypF € J*(A), Lemma 3.3 and (3.11) imply that M;F € J*(A).
Analogously, one can show that f € Ay and F' € J7(A) imply MsF € 3~ (A).
Part (c) and the lemma are proved. (]

Lemma 3.6. Let A be a Douglas algebra.
(a) If ¢ € A, then HEF € J(A).
(b) If ¢ € Qa, then HE € J(A).

Proof. (a) Let ¢ € A_ = A. By Lemma 3.1, for any ¢ > 0 there exist h € H>®
and b € B, such that |§ — hb|s = ||¢ — hb||s < &. In view of (3.7),
(3.12) Py MzH, = P, MzP, M,P_ = P, MzM,P_ = Hg;.
From (3.12) and (2.5) it follows that
_ — 2 . T
(3.13) [P+ MeH ey = 1 H llex) < w};}f b — Y|l oo-

oo
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Since |b(7)| = 1 a.e. on T, we have
3.14 inf ||bg —¥||eo = inf — oo < |l — hbllos < .
(3.14) Jd b —lloo = mf_flo—b¥lloc < llp — hblloc <&
Combining (3.13) and (3.14), we infer that for any e > 0 there exists b € B, such
that | Py MzH, ||z(x) < ¥*e. This means that
bieng | P+ MzH, ||l 2x) =0,
that is, H, € J*(A). On the other hand, applying Lemma 3.4(a) to F' = M,P_,
we obtain H, = Py(M,P_) € 37 (A). Thus, H; € 37 (A)NJ*(A) = J(A).

The proof for ¢ € Ay is similar. Part (a) is proved.
Statement (b) is a direct consequence of (a) because Qu = A_NA,. O

Corollary 3.7. For every ¢ € L, we have M, P+ € 3=(L*).
Proof. From the definitions of Tj and Hf it follows that

(3.15) M, Py =TI + HE.
In view of Example 3.2(a), L>® = Qr~. Then, by Lemma 3.6(a),
(3.16) HE € J(L™) =J (L®)NIT(L™).

Applying Lemma 3.4(a) to F; = M,P_ and to F» = M, P, we get
(317)T; = P_F, = P_M,P_ € 3*(L™), T} = PiF, = PyM,P; € 3 (L),
respectively. Combining (3.15)—(3.17), we obtain M, Py € J£(L>). O

Theorem 3.8. Let 2 be a Banach subalgebra of L>° and let A be a Douglas algebra.
If Q C Qn, then Alg (22,8) N J(A) is a closed two-sided ideal of Alg (2, .5).

Proof. From Lemma 3.3 it follows that Alg (Qa,S)NJ(A) is a closed right ideal of
Alg (Qa,S). On the other hand, if F' € J(A), then, by Lemma 3.4(b), SF € J(A).
ffeQa=A_NA,;and F e J(A)=JF (A)NJIT(A), then, due to Lemma 3.5(c),
M¢F € 37 (A)NJT(A). This means that for every F' € J(A) and every generator B
of Alg (Qa,S) we have BF' € J(A). Therefore, for every F' € Alg (Qa,S)NJ(A) and
every C € Alg(Qa,S) we have CF € Alg (Q4, S)NJ(A), that is, Alg (Qa, S)NJI(A)
is also a left ideal of Alg(Qa,S). Thus, Alg(Qa,S) N J(A) is a closed two-sided
ideal of Alg (Q4,S).

By Lemma 3.3, Alg (©2,.5) N J(A) is a closed right ideal of Alg (2, S).

On the other hand, let F; € Alg(£,S) and Fy € Alg(Q,S5) N J(A). Then,
obviously, F1F» € Alg(Q,S). Since Q C Q4 and Alg(Qa,S) N J(A) is a closed
two-sided ideal of Alg (Qa4, S), we have Fy F5 € Alg (Qa,S) NJ(A). Therefore,

FiF, € Alg (2,5) 0 (Alg (Qx, ) N3(A)) = Alg(2,5) N J(A),

that is, Alg (2,5) NJ(A) is a left ideal of Alg (£2,S). Thus, Alg(2,5)NJ(A) is a
closed two-sided ideal of Alg (12, .5). O

From Example 3.2(b) and the definition of J(H>) one can straightforwardly
deduce that J(H*°) = {0}. A more interesting example is the ideal J(H> + C).

Lemma 3.9. We have
(3.18) J(H*® 4+ C) =K(X).
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Proof. First, we show that
(3.19) J(H* +C) Cc K(X).

Let FF € J(H* + C). By Lemma 3.4(c), PLF € J(H* +C) C JT(H* + C).
Therefore, by the definition of JT(H> + C) and Example 3.2(c), for an arbitrary
€ > 0 there exists a finite Blaschke product b such that

(3.20) | Py MyPyFllz(x) <e.
On the other hand,
(3.21) PLF — MyH F = My(M; — P_M;) Py F = MyP, M;P, F.

From (3.20), (3.21), and (2.1) it follows that
(3.22) | Py F — MbH;FHa(x) < [ Ma|| x| Py MPy Fl| £(x) < e

Since the finite Blaschke product b is continuous on T, by [13, Lemma 6.4], the
operator MyS — SMjz is compact on X. Hence, the operator

MyHS F = MyP_(MgP; — Py My)F

is compact on X. From this and (3.22), taking into account that ¢ is arbitrary,
we obtain Py F' € K(X). Analogously one can show that P_F € K(X). Thus,
F=P_F+P,F € K(X), and we have proved (3.19).

Let F(X) be the ideal of all operators of finite rank on X. Let us show that

(3.23) F(X)CJH>®+C).
Every operator K € F(X) has the form

(3.24) KN =3 a;(t) / b(r)f(r)dr, teT,
=1 T

where a; € X and b; € X’ for j € {1,...,m}. Since X is reflexive, the set P of
all trigonometric polynomials is dense in X (see, e.g., [16, Corollary 3.2]). Hence,
every operator of the form (3.24) can be approximated in the operator norm by the
operators of the form (3.24) with a; € P. This means that it is sufficient to prove
that the operator of the form

(K )(t) = xi(t) / f(g(r)dr, geX', teT,

belongs to J(H*> + C) for every i € Z.

Obviously, x; € {f € C : |f| =1} C Byoic for each j € Z. For every i € Z,
we take ji,jo € Z such that j; < i < jo. Then P_(x;,x:) = 0 and Py (Xj,xi) = 0.
Therefore, P_MX].1 K, =0 and P+MEKZ- = 0. This means that

KieJ (H®+C)NIHH®+C)=JH™®+C) forevery i€ Z.

Thus, we have proved (3.23).

Since X is reflexive and its Boyd indices are nontrivial, Corollary 6.11 of [1,
Ch. 3] says that every function in X can be approximated in the norm of X by
the partial sums of its Fourier series. That is, there exists a sequence of finite-rank
operators on X converging strongly to the identity operator. Consequently, every
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operator in (X)) can be approximated in the operator norm by operators in F(X).
On the other hand, by Lemma 3.3, J(H*°+C) is a closed ideal. Thus, (3.23) implies

(3.25) K(X) CJH>+CO).
Combining (3.19) and (3.25), we arrive at (3.18). O

3.3. Estimates for quotient norms. Let A be a closed subspace of £L(X). We
denote by |F|x the quotient norm of F' € £(X) modulo AV, that is, the norm of
the image of F' in the quotient algebra £(X)/N . In other words,

Fly:= inf ||[F - N .

|Far A}IEINH lzcx)

Theorem 3.10. Let A be a Douglas algebra. If ¢ € L™, then:
1

. — i - < |HF |l5-a) < [HF |50 <42 i —

3:26) = inf o=l < 1Ly < VE by <9 nf o = ¥l
1. - - 2 .

621 < inf o=Vl < |Hy Iy < |y oy <% nf llg = ¥l

Proof. Since J(A) =3 (A)NJT(A), we immediately get

(3.28) |H  l5- ) < [HS 3y, [Hy ly+ ) < THg lya)-

By Lemma 3.6(a), if 1) € A_, then H, € J(A). Hence, taking into account (2.1),

‘ S _ - -
(3:29) [H |3a) FgﬁlfA) H, F||L(X),w1€nj;f7 [H, — Hyllex)

= nf 1H,_yllex) < b <||P+||C(X)||Mtp—1l)||£l(X)||P—HE(X))
<~* inf [l — ¥|loe-
<7° jnf I =l
Let us prove that
. i — < N .
(3.30) B 1o~ Yl < 1H L3500
For any F € J*(A) and b € B, from (3.12) we deduce that
(3.31) P+M5(H; —F)= Hip — P MGF.
Then, taking into account (2.1), from (3.31) we get

(3.32) YNHy = Fllexy 2 1P lecollMplleaxollHy — Fllex)
> ||Hg} — Py MgF || £ (x)

> ||Hg_f||c(x) — | P MGF || £(x)-
Since H>* C A= A_ and b € A for any Douglas algebra A, from (2.5) we get
3.33 H- > inf ||bp — = inf —b > inf — .
(8:33)  IHg lleco 2 mf_be = tlloc = inf_flp=b¥lloc 2 nf [lp = lloo
From (3.32) and (3.33) we obtain for any F' € J*(A) and b € By,
(3.34) wienAf, lp = Ylloo <AIH, = Fllex) + 1P MyFll£ex)-
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Then (3.34) and (3.2) imply

it o vle s nt (g (187 — Flleoo + 1P )

inf H, - F inf ||P.M:F
Fegﬁr(A) <V|| 7 ||L(X)+b1€n%AH + My ”L(X))

=~y inf |H, -F = 7| H |3+ (a)-
Y panf e = Flleco = v1Hg g+

So, we have proved (3.30).
Combining (3.28)—(3.30), we arrive at (3.27). Inequalities (3.26) are proved
similarly to (3.27). O

Theorem 3.11. If p, ¢ € L*°, then
1
(3.35) [My Py + MyP_|3p~) 2 5 max{[[¢]loc; [[¥[loc }-

Proof. Let us prove that

(3.36) M, Py + MyP_|5pm) > ”w”w

Let FF € 37 (L) and b € B . Then, taking into account (2.1), we get

(3.37) VNMyP- = Flleixy = 1P- ey Mol oo | My P- = Fl£(x)
2 [|P-My(MyP- = F)|£x)
2 || P-MyMy P zx) = [[P-MpF | £(x)
= [Ty llex) = 1P-MpF|l £(x)-

By (2.3), taking into account that |b(7)| =1 a.e. on T,

(3.38) 1T leco > 1B6lo = 16]o-

From (3.37) and (3.38), for every F' € 3~ (L*°) and every b € B, we get

leloo

1
(3.39) <My P = Fllgx) + ;HP—MbFHc(X)-

From (3.39) and (3. ) we deduce that

[Wlle o ( : ( 1 ))
3.40 inf f MyP_ —F + —||P-MpF
(3.40) S F€3 Fey Lt || My l2ex) 7“ bl 2 x)
1
= f MyP_ — F + — inf ||P_MpF
—oint (08P = Flleoo + gt 1P-0Flec )
= f MyP_ —F = |MyP_|5- ().
FGJIH(LOQ)H Y lzex) = [MyP-[3- (L)
By Corollary 3.7, M, P, € 3~ (L*). Therefore,
(3.41) |MyPy + MyP_|5- (1) = |MyP_|5- (1)
Since J(L>°) C 3~ (L*°), we have
(3.42) | My Py + MyP_|y1) > [MpPy + My P[5~ (1)

Combining (3.40)—(3.42), we arrive at (3.36).
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Analogously one can prove that

(3.43) |M,Py + MyP_|5) > “;‘”.

From (3.36) and (3.43) we obtain (3.35). O

4. The presymbol of the algebra Alg (92, .S)

4.1. The construction of a presymbol. For a Banach subalgebra €2 of L, we
denote by H(Q2) the closed two-sided ideal of Alg (2, S) generated by all Hankel
operators H} and H,, with ¢, € Q.

Lemma 4.1. If Q is a Banach subalgebra of L™, then H(Y) = Com Alg (£2, S).
This lemma follows from the straightforwardly checked identities
MyMy = MyM,, 2H} —H;)=M,S—SM,, (M,S—SM,)Ps==+2HF.
Lemma 4.2. IfQ is a Banach subalgebra of L>°, then
Com Alg (22,8) C Alg (Q,5) NJ(L>).

Proof. In view of Example 3.2(a), we have Q@ C L> = Q. Due to Lemma 3.6(b),
if o, € Q, then H:; € J(L) and H, € J(L*®). On the other hand, obviously,
Hf, H, belong to Alg(Q,S). Thus, H(Q) C Alg(Q,5) NJ(L>). From the latter
imbedding and Lemma 4.1 it follows that Com Alg (€2, S) C Alg (2, S)NJ(L>). O

Lemma 4.3. Let Q be a Banach subalgebra of L. For any p,v € Q we have
1
(4.1) |My Py + My P |com Alg (2,5) = S max{[|¢l[oo, [|9/oo }-

Proof. From Lemma 4.2 it follows that

Com Alg (22, 5) C Alg (Q,5) NJ(L>) C J(L*=).
Therefore,
(4.2) |MyPy + My P_|com Alg (2,5) = |[MyPy + My P_|5(1).
On the other hand, by Theorem 3.11,

1
(4.3) Mo P+ My Py 2~ max{f[@lloc, [19]l oo}
From (4.2) and (4.3) we get (4.1). O

Let Algo(€2,S) denote the linear subspace of Alg (€2, .5) consisting of all operators
of the form

(4.4) F=M,P, + MyP_ + K,
where ¢, €  and K € Com Alg (22, .5).

Lemma 4.4. If Q is a Banach subalgebra of L, then Algy(2,S5) is a Banach
subalgebra of Alg (2, 5).
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Proof. Let a,b,¢,d € Q and K1, Ky € Com Alg (2, S). Then
Fy:=M,PL +MyP_+ Ky, Fy:=MP,+M;P_+ K
belong to Alg(£2,.5) and
(4.5) FiFy = Mo Py + My P_ 4+ K,
where
K = (M,Py + MyP_)Ky + Ky (M.Py + MyP_)
+ K Ky + My (Hy — HY) + My(H; — Hy).

From the properties of the two-sided ideal Com Alg (€2, S) and Lemma 4.1 it follows
that K € Com Alg (92,5). Therefore, F1F> € Algo(£2,5), that is, Alg(€2,5) is a
subalgebra of Alg (2, .5).

Now we show that Algo(2,S) is closed in Alg (£2,.5). Suppose that a sequence
{F,}22, converges to F' € Alg (1, 5), where

(4.6) F,=M, P+ My P_+K, K,¢cComAlg(Q,5S), ¢, ¢, €N
By Lemma 4.3, for any m,n € N, we have

(4.7) 1 Fm — Fullzox)

Y

(Mo, o, Pt + My, —p, P—|com Alg (2,5)

Y

1
; max{|[®m — Ynlloos [¥m — Ynlloo }-

Since {F,}32 is a Cauchy sequence in £(X), from (4.7) it follows that {©,}52,
and {1, }22; are Cauchy sequences in L>°. But  is closed in L, therefore, the
limits

p:= lim ¢,, ¥:= lim ¥,
belong to ) and
(4.8) M,P, = nlirgo My, Py, MyP_ = lim My, P_.

n—oo
Put K := F — (M Py + MyP_). From (4.6) and (4.8) we get
(4.9) K = lim |F, — (M, Py + My, P_)| = lim K,.

n—oo n—o0

Since Com Alg (€2, 5) is a closed two-sided ideal in Alg (€2, S), we infer from (4.9)
that K € Com Alg (£2,5). Thus, F € Alg(9,5), which proves that Algy(f2,.5) is
closed in Alg (92, .5). O

Now we are in a position to prove the main result of this paper.

Theorem 4.5. Let Q) be a Banach subalgebra of L. An operator F € Alg (Q,5)
admits a unique representation (4.4), where ¢, € Q and K € Com Alg (£, S).
The mapping F — (p, 1) defines a Banach algebra homomorphism (presymbol)

o Alg (Q,5) - Q@ Q.

The kernel ker pq of this homomorphism coincides with Com Alg (92,.5) and the
norm of this homomorphism satisfies the inequality ||pq| < 7.
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Proof. Since 0 € Com Alg (£2,5) and £1 € Q, we have
M,=M,P, + M,P_ € Algo(2,S), S=P,—P_cAlgoQ,>5).
So, the generators of Alg (Q,S) lie in Algo(€2,S). Then, in view of Lemma 4.4,
Algo(Q,85) = Alg (9, S). Consequently, every operator F' belonging to Alg (£, S)
admits a representation of the form (4.4).
This representation is unique. Indeed, assume the contrary. Then there exist

01, P2, P1,9%2 € Q and Kq, Ko € Com Alg (92,.5) such that the triple {¢1, %1, K1}
does not coincide with the triple {2, 19, K3} and

F =M, Py + My P_+ K, =M,,P, +M,P_+K,.

Clearly, the situation ¢ = 9,11 = 10, K1 # K> is impossible. Therefore, 1 # @2
or 11 # 5. From Lemma 4.3 it follows that

0= [[(My, — Myp,) Py + (My, — My,)P— + K1 — Ks||(x)
> ‘M</71—</72P+ + Mll)l—lbzp— IComAlg (2,5)

V

1
> max{ |1 — @2|lcos [|¥1 — Y2lloc }-

Hence, 1 = @2 and 91 = 15, so we arrive at a contradiction.

The fact that pg is a homomorphism with kernel Com Alg (€2, .5) follows from
the first statement of the theorem and the relation (4.5).

Let F € Alg(Q,S) and F # 0. Then, by just proved, F' admits a unique repre-
sentation F' = M,Py + MyP_ + K with (¢,9) € Q® Q and K € Com Alg (22, 5).
In view of Lemma, 4.3,

1
HFHL(X) > |MwP+ + MlZJP*'ComAlg(Q,S) > § maX{|<PHooa ||7/’||oo}

Then
lpo(F)lloea _ max{lofleo [[¢lle}  _
1Fleeo 5 max{[lello, [¥llo}

Taking the supremum over all F' # 0 in the latter inequality, we get ||ua| <~v. O
Remark 4.6. Theorem 4.1 in [9] contains wrong estimate for ||uq||.

4.2. Necessary conditions for Fredholmness. In this subsection we obtain
necessary conditions for Fredholmness of an operator F' € Alg (£2,.5) in terms of its
presymbol.

It is well-known that an operator A is Fredholm if and only if there exists a
reqularizer R of A, that is, AR—TI and RA —I are compact operators (see, e.g., [10,
Vol. 1, Section 4.7]). Recall that a Banach subalgebra € of L> is said to be inverse
closed in L if for every f € Q satisfying esTseijrrlf [f(7)| > 0, we have 1/f € Q. The

group of invertible elements of an algebra A is denoted by GA.
Theorem 4.7. (a) If F € Alg (L, S) is Fredholm, then
pio(F) € G (L™ & L™).

(b) Suppose Q2 is an inverse closed subalgebra of L. If F € Alg(Q,S) is Fred-
holm, then

ua(F)eG(QaQ).
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Proof. (a) Assume the contrary, that is F' € Alg (L*,S) is Fredholm, but its
presymbol pre (F) = (¢,%) is not invertible in L @& L. Then there exists a
regularizer R of F' and

esTsel%lf lo(T)| =0, esrsel’ﬂ‘nf [v(7)[ = 0.

Assume for definiteness that 1 ¢ GL*, then there exists a set of positive measure
on T with the characteristic function y satisfying the inequality

1
(4.10) Ix¥lloo < 7
=T PR e
By the definition of regularizer, we have
(4.11) FR=I+K,
with K7 € K(X). In view of Theorem 4.5,
(4.12) F=M/,P,+ MyP_+ Ky, ¢,eclL™ K,;ecComAlg(L™,S5).
Multiplying (from the left) both sides of (4.11) by P_M, and taking into account
(4.12), we get
P_M,(M,P; + MyP_ + K3)R = P_M, + P_M,K,.
This equality can be rewritten in the form
(4.13) T ,R=MP- +K,
where
K =P MK, —-P_M,K;R— H;&,R + (P_M, — M, P_).
In view of Lemma 3.9, X(X) = J(H* + C). Since H*® + C C L™, we have
J(H>® 4+ C) C J(L*>®). Therefore, K(X) C J(L>). Since K; € K(X), we deduce
that
(4.14) P_M,K, € K(X) C J(L™).

Further, K» belongs to the closed two-sided ideal Com Alg (L*°,S). Conse-
quently, —P_M, K>R belongs to Com Alg (L>°,S) too. Taking into account that
X% € L, from Lemma 4.1 we obtain H}, € H(L>) = Com Alg (L>, S), whence,
—H,R € ComAlg(L>,S). By the definition of the ideal Com Alg(L>,S), we
get P_M, — M, P_ € ComAlg (L*,S). Thus,

(4.15) —P_M,K>R — H;&,R + (P_M, — M, P_) € ComAlg (L*, ).
Due to Lemma 4.2, Com Alg (L*°,S) C J(L*°). Then from (4.14) and (4.15) we
obtain K € J(L°). Applying Theorem 3.11, we get
1 1
(416) B+ Klleg) 2 P laqzm) = Tl = -
On the other hand, from (4.13), (4.10), and (2.1) we obtain
(4.17) My P- + K|l c(x) = 1Ty Bllcx) = |1 P- My P-R|| £(x)
2
VIRl ey 1
<?lIxelloo IR < SrEr = o
Combining (4.16) and (4.17), we arrive at the wrong inequality 1/ < 1/7. There-
fore, 1» € GL*. Analogously one can prove that ¢ € GL*™. Part (a) is proved.
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(b) If Q is inverse closed in L, then Q@2 is inverse closed in L>° @ L. Clearly,
F € Alg(9,85) C Alg (L, S) and, by Theorem 4.5, uq(F') = ppe(F). Due to Part
(a), if F'is Fredholm, then ppe(F) € G (L* @ L*°). Since Q & Q is inverse closed
in L*° @& L, the inclusion puq(F) = ppe(F) € G (L™ @& L*) implies the inclusion
pa(F) € G(Q @ Q). Part (b) and the theorem is proved. O

4.3. The commutator ideal of the algebra Alg (2, S). In this subsection we
describe the commutator ideal of the algebra Alg (Q2,.5).

Theorem 4.8. Let () be a Banach subalgebra of L and let A be a Douglas algebra.
Then Q C Q if and only if

(4.18) Alg (2, 8) N J(A) = Com Alg (2, S).
Proof. Necessity. By Theorem 3.8, the set Alg (£2,5) NJ(A) is a closed two-sided
ideal of Alg (€2, S). Moreover, by Lemma 3.6(b), this ideal contains all operators

H; and H, with ¢,¢ € Q. But Lemma 4.1 states that Com Alg (Q,5) is the
smallest closed two-sided ideal containing all such operators. This means that

(4.19) Com Alg (£2,8) C Alg (22, 5)NJ(A).

To prove the reverse inclusion, assume that F' € Alg (©, S)NJ(A). By Theorem 4.5,
there exist ¢,9 € Q and K € Com Alg (Q2, S) such that F' = M, Py + MyP_ + K.
Therefore, in view of Lemma 4.2, K € Alg(Q,5) N J(L*). On the other hand,
since A C L, we have J(A) C J(L*°). Then F € Alg (22, 5)NJ(L>*). Thus,

(4.20) M,Py + MyP_ =F — K € Alg(Q,5) N J(L™®).

From Example 3.2(a) and Theorem 3.8 it follows that Alg (2, S)NJF(L>°) is a closed
two-sided ideal of Alg (€2, S). Since Alg (£2,.5) N J(L>®) C J(L*), we have

(Mo Py + My P_|a1g (2,5)n3(1%) = [MePy + My P_[3(1).
From here and Theorem 3.11 it follows that
1
(4.21) Mo Py + My P-|aig @,.9)03(1) = Zmaxd[| oo, [[¢lloc -
From (4.20) and (4.21) we get ¢ = 1) = 0 a.e. on T. Thus, F' = K € Com Alg (2, 5).
This means that
(4.22) Alg (©,5)NJ(A) C ComAlg (©2,5).
Combining (4.19) and (4.22), we arrive at (4.18). Necessity is proved.
Sufficiency. Let ¢ € Q. From (4.18) and Lemma 4.1 it follows that
(4.23) HZ € H(Q2) = Com Alg (2, S) = Alg (2,5) NJ(A) C J(A).
By Theorem 3.10,
. + . —
@20t e —dle <H L, it eVl <91 lace
From (4.23) it follows that |H} |5y = |H, |5a) = 0. Therefore, (4.24) implies
peALNA_=Qu. Thus, Q C Qa. O

Corollary 4.9. Let ) be a Banach subalgebra of L>° and let A be a Douglas algebra.
If Q C Qy, then

(4.25) Com Alg (2, S) = Alg (€, §) N Com Alg (Q4, S).
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Proof. Since 2 C @4, we have

(4.26) Alg (9, 5) = Alg (2, ) N Alg (Qa, S).

By Theorem 4.8 and (4.26),

(4.27) Com Alg (2, S) = Alg (©, S) N F(A) = (Alg (Q,8) N Alg (Qa, S)) NJ(A)

= Alg (2,5) N (Alg (@4, 8) N3(A)).
Applying Theorem 4.8 to the trivial situation Qs C Q4, we get
(4.28) Alg (Qa,S)NJ(A) = Com Alg (Qa, 5).
Combining (4.27) and (4.28), we arrive at (4.25). O

4.4. Singular integral operators with quasicontinuous coefficients. In the
following lemma we characterize the commutator ideal of Banach algebras Alg (2, .5)
for 2 being a subalgebra between C' and QC.

Lemma 4.10.
(a) For a Banach subalgebra Q of L™ which lies between C and QC,
(4.29) Com Alg (22, 8) = K(X).

(b) For every Banach subalgebra Q of L such that C C Q and QC \ Q # 0,
the ideal of compact operators K(X) is properly contained in the commutator
ideal Com Alg (2, .S).

Proof. (a) Repeating the proof of [12, Lemma 9.1] (see also [3, Lemma 8.23]), one
can show that
(4.30) K(X) cC Alg(C,S).

On the other hand, consider the Douglas algebra A = H* + C. Then Qa = QC
(see Example 3.2(c)). By Lemma 3.9, J(H*™ 4 C) = K(X). Combining these facts
with Theorem 4.8, we get

(4.31) Com Alg (22,5) = Alg (Q,S)NJ(H™ + C) = Alg (2,5) N K(X).
Since C' C Q C QC, we have
(4.32) Alg (C,S) C Alg(Q,5) C Alg (QC, S).

From (4.30)—(4.32) we get
K(X) CcAlg(C,S)NK(X) C Alg(£2,S)NK(X) = Com Alg (22, 5) C K(X).

Thus, we arrive at (4.29).

(b) Since C C £, we have £(X) = ComAlg(C,S) € ComAlg(Q,5). On
the other hand, by [17, Theorem 4.1], for a function ¢ € L*°, the commutator
M,S — SM, is compact on X if and only if ¢ € QC. Thus, for ¢ € Q\ QC, we
have M,S — SM, € Com Alg (©,S) \ K(X). O

Lemma 4.10(b) shows that if the set QC \ € is nonempty, then Theorem 4.7
gives only necessary conditions for Fredholmness of an operator F' € Alg(£2,.5).
However, in view of Lemma 4.10(a), they become sufficient if € lies between C' and
QC and it is inverse closed in L*°. More precisely, the following criterion is true.
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Theorem 4.11. Suppose a Banach subalgebra Q) of L*° is inverse closed in L>° and
lies between C and QC'. An operator F € Alg (Q, S) admits a unique representation
of the form (4.4) with ¢, € Q and K € K(X), and it is Fredholm if and only if

(4.33) esTsel%lf lo(T)] >0, esTsel%lf [v(T)| > 0.

Proof. From Theorem 4.5 and Lemma 4.10(a) it follows that F' € Alg (£, .5) ad-
mits a unique representation of the form (4.4) with p,¢ € Q and K € K(X) =
Com Alg (€2,5). Theorem 4.7 implies that conditions (4.33) are necessary for Fred-
holmness of F.

Let us prove that these conditions are also sufficient. Since € is inverse closed
in L*, conditions (4.33) imply 1/¢,1/1 € Q. Then, taking into account that
K(X) = Com Alg (2, 5), it is not difficult to show that R := M, P, + My, P_ is
a regularizer for F. Hence, F' is Fredholm. O
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