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Gaussian Weighted Unreduced L2 Cohomology of
Locally Symmetric Spaces

Stephen S. Bullock

Abstract. Let (M, g) be a complete, noncompact Riemannian manifold of
finite volume. For w : M → (0,∞) a weighting function, the w weighted
unreduced L2 cohomology is defined as the usual unreduced L2 cohomology
except that dvol is replaced by the measure w dvol. This paper proves that
in the case M = Γ\G/K is a locally symmetric space of nonpositive sectional

curvature and arbitrary rank whereupon w(m) = e−dist(m,p0)2 is the Gaussian
relative to some basepoint p0, the w weighted unreduced L2 cohomology is
isomorphic to the usual de Rham cohomology. This isomorphism extends to
the standard coefficient bundles.

Note that weights for the de Rham cohomology of exponential decay have
already been constructed; see [Bor83], [Bor90] and [Fra98]. The Gaussian
weight behaves differently in terms of coefficient bundles.
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0. Introduction

Let (M, g) be a locally symmetric finite volume manifold of nonpositive sectional
curvature. Thus, the universal cover X = G/K is a globally symmetric space of
noncompact type. For convenience, say X is Riemannian irreducible, so G is R

semisimple. In particular, the center of G contains no nonidentity Q split tori. Let
K ⊂ G be a maximal compact subgroup. Finally, suppose a rational structureGQ ⊂
G with arithmetic torsionfree Γ ⊂ GQ the fundamental group of M. Nonarithmetic
lattices occur in rankRG = 1 and present no difficulties per §3.2.

Let E be a finite dimensional representation of GC. There is as described in
[MM63] a coefficient bundle E = E×ΓX ∼= (Γ\G)×KE. Any choice of orthonormal
basis of E induces (local) orthonormal sections of a Hermitian metric on E, parallel
to a canonical flat connection. This bundle metric on E may be explicitly described
as follows. Fix 〈−,−〉0 a metric on the base vector space E; this should be averaged
over K so as to be K invariant. Let x0 ∈ X be stabilized by K. Then for v, w
elements of E, v ×Γ (g · x0) is an element of the fiber of E ×Γ X at (Γg) · x0. We
define 〈v ×Γ (g · x0), w ×Γ (g · x0)〉E = 〈g−1 · v, g−1 · w〉0.
Remark 0.1. 1) C×M the untwisted coefficient bundle arises from the trivial

representation.
2) On Riemannian (M, g), there is no reason to both add a weight in front of

dvol and allow the choice of arbitrary bundle metrics on C ×M. However,
in the locally symmetric case the bundle metrics on C may not be standard.

Franke constructed [Fra98, p. 187] weighting functions wλ ∈ O(aλ) on each Siegel
set in the almost fundamental domain of the fundamental theorem of reduction
theory of [BHC62]. In our notation:

• P = UMA is the Langlands decomposition of a minimal rational parabolic,
and a is the Lie algebra of A with Killing dual ǎ. Also, take {qi}ci=1 a set of
representatives for Γ\GQ/PQ indexing the cusps of M.

• H(−) is the associated height function:

(H = log ◦ πA) : G = (UMA)K → a ∼= R�

for � = rankQG.
• 〈−,−〉 denotes the pairing between a and ǎ.
• χ : R → R is a cutoff function which is 1 on [T,∞) and 0 on (−∞, T −1] with

bounded gradient.
• Breaking with [Fra98], Σ+(g, a) denotes the positive restricted Q roots of g
according to P , and Σ++(g, a) denotes the simple restricted Q roots.

Each λ ∈ ǎ produces a weight function on M of bounded gradient [Fra98, p. 187]:

(1) wλ(ΓgK) =

c∑
i=1

∑
[γ]∈(Γ∩UM)\Γ

exp(〈λ,H(γq−1
i g)〉)

∏
α∈Σ++(g,a)

χ(〈α,H(γq−1
i g)〉)

 .
Remark 0.2. Some care must be taken in choosing T above. The details are
omitted to avoid a lengthy review of reduction theory [Fra98, §2.1].
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The present argument replaces the linear term λ by a negative definite quadratic
form −Q ∈ ǎ ⊗ ǎ:

(2) w−Q(ΓgK) =

c∑
i=1

∑
[γ]∈(Γ∩UM)\Γ

exp(−〈Q,H(γq−1
i g)〉)

∏
α∈Σ++(g,a)

χ(〈α,H(γq−1
i g)〉)

 .
Here, if Q =

∑
i,j λi ⊗ λj , then 〈Q,H〉 = ∑

i,j λi(H)λj(H) for H ∈ a.
Note that there exists Q > 0 which causes the weight above to be O(e−r2).

Indeed, the Killing form is the restriction of the metric of M to the flat sector
corresponding to a≥0, and one may choose Q realizing the Killing form. Thus the
fundamental theorem of reduction theory will imply w−Q ∈ O(e−r2).

Remark 0.3. Note exp(〈λ,H(−)〉) in these weighting functions may instead be
thought of as the exponential of a Busemann function of X. This appears in the
literature as a scholium of Lemma 1.3 [Leu95, p. 395].

These weighting functions will be used in the following context. Define

Ω•
(2),w(M,E) =

{
ω ∈ Ω•(M,E)

∣∣∣ ∫
M

|η|2Ew dvol <∞ for η = ω, dω
}
.(3)

This is a cochain complex using the exterior derivative for forms with coefficients
in E. The resulting cohomology is denoted H•

(2),w(M,E). In case w = wλ or
w = w−Q, the subscript of the weight may replace the weight itself in all notations.
Finally, w is omitted if w ≡ 1.

These conventions allow for a restatement of a restatement of prior work. In
[Fra98, p. 90], Franke proves a result which rephrases Borel’s results [Bor83] on
forms of uniform moderate growth. In the present notation,

limλ→(∞,...,∞)H
•
(2),−λ(M,E) ∼= H•(M,E).(4)

The present result is similar. It asserts H•
(2),−Q(M,E) ∼= H•(M,E). But there is

one novelty. Namely, the present result is uniform in E, meaning for fixed Q0 the
current result holds for all E. In contrast, any fixed λ0 has some E(λ0) for which
w−λ0 produces a nontrivial boundary truncation.

The precise statement requires more notation. Let M be the reductive Borel-
Serre compactification of M introduced in [Zuc82]. For the remainder, j : M ↪→ M
is open inclusion so that j∗Ω•(E) is an incarnation of R•j∗E, while A•(E) is the
presheaf of special forms on M of [GHM94, §14], Equation (11). The sheafification
Sh(A•(E)) is the weighted cohomology sheaf W−∞C•(E), whose hypercohomology
is the usual de Rham cohomology with coefficients in E. Finally, L•

−Q(E) is the
sheafification of the presheaf L•

−Q(E) of w−Q L2 forms.

Lemma 0.4. Let M locally symmetric with E a standard bundle induced by E a
finite dimensional representation. E carries a Hermitian metric in the standard
quasiisometry class. Let Q > 0 in ǎ ⊗ ǎ. Then there is a quasiisomorphism on M

j∗Ω•(E) ← Sh(A•(E)) → L•
−Q(E).(5)

The following consequence is immediate, since quasiisomorphisms imply isomor-
phic hypercohomology.
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Theorem 0.5. Suppose the hypotheses of Lemma 0.4. Then one has

H•
(2),−Q(M,E) ∼= H•(M,E).

Corollary 0.6 follows. In fact, there now exists a strong weighted Kodaira decom-
position∗ given the finite dimensional answer above, while the Gaussian w = e−r2

results via choice E = C ×M for C trivial and −Q realizing the Killing form.

Corollary 0.6. Suppose (M, g) is a locally symmetric nonpositively curved finite
volume Riemannian manifold. Let r be distance to a basepoint and w = e−r2 be the
Gaussian weight on M. Then H•

(2),w(M) ∼= H•(M), where the latter is the usual
de Rham cohomology.

The above should be compared to the following conjecture by Edward Bueler.
To the author’s knowledge, this remains open even in the rank one finite volume
locally symmetric case.

Bueler’s Conjecture (1.1 of [Bue99]). Suppose (Mn, g) is complete, Ric ≥ −c2.
Let w(m) = ρt(m, p0) for p0 ∈M fixed and t fixed, where ρt(x, y) is the heat kernel
of the metric Laplacian on functions associated to g. Then for βp = dim Hp(M)
the usual Betti number of M ,

dim ker ∆w = βp, 0 ≤ p ≤ n.(6)

Also, the complex dom d is Fredholm, implying a strong Kodaira decomposition and
finite dimensional H•

(2),w(M).

Finally, the result has certain apparently unexciting implications for Lie alge-
bra cohomology. Nonetheless, errors might be made in deriving them from the
literature. A short appendix is included.

Remark 0.7. The author thanks Gopal Prasad for comments on an early manu-
script and the preprint and thanks the referee for enumerating several improvements
and a few errata.

1. Sheaves on M
1.1. Topology of M. The introduction mentioned in passing the reductive Borel-
Serre compactification of M, denoted here M. This compactification originated in
[Zuc82] and at its creation was optimized for computing L2 cohomology sheaves.
It also plays a central role in [GHM94], being the compactification on which the
various incarnations of weighted cohomology are constructed. Besides [Zuc82], the
compactification was also used in Theorem A of [Nai99]. The present argument is
similar but less delicate due to rapid decay of the weight.

To facilitate computations of stalk cohomologies of differential graded sheaves,
say at y ∈ Y , a sequence {Ui}∞i=1 of open neighborhoods of y with {y} = ∩∞

i=1Ui
is useful. Such a system of neighborhoods will be called fundamental. The main
issue with a compactification M is to build such fundamental neighborhoods about
n ∈ ∂M rather than m ∈ M.

By definition, X is naturally a quotient of the Borel-Serre enlargement X̃ of
[BS73], with Γ\X̃ = M̃ a manifold with corners. This is described in [Zuc82], pp.

∗See [BL92] for an explanation and references.
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184 and 190, where the projections pP : e′(P ) → ê(P ) of individual boundary strata
patch to a global projection.

Thus, say P = UMA is the rational Langlands decomposition of the real points of
an arbitrary rank fixed parabolic Q subgroup P . Here, U is the unipotent radical of
P . Recall x0 ∈ X corresponding toK is a fixed choice of basepoint corresponding to
a fixed Gaussian. Then A is identified with a maximal Q split torus in the center of
P/U , so that A is moreover invariant under the Cartan involution corresponding to
x0. ThenMA is similarly identified to P/U , whileM is identified with intersection
of the squares of all Q characters [GHM94, p. 150].

Since U is the exponential of a space of positive a weights, it is a simply connected
nilpotent group. On the other hand, M is reductive with the Cartan involution
of G having a well-defined restriction to M , so that XM = M/(K ∩ M) is a
globally symmetric space of rank strictly less than X for P nontrivial. We finally
fix notations ΓU = Γ ∩ U and ΓM for the projection of Γ onto M ∼= U\P/A.
Then ΓU is always a lattice subgroup in U given that P is rational, so that via a
standard property of simply connected nilpotent groups ΓU\U is compact. On the
other hand, MM = ΓM\XM is a lower rank finite volume locally symmetric space.

Now choose η1 × η2 ⊂ UM open with η1 so large as to include a fundamental
domain for the nilpotent lattice ΓU ⊂ U and η2 ⊂ M being K ∩ M invariant
with compact closure. Let {Hi}ri=1 be dual to {αi}ri=1 = Σ++(p, a) for r the rank
of P . We define the group isomorphism ψ : (0,∞)dimA → A as ψ(t1, . . . , tr) =
exp(

∑r
i=1 tiHi). Note ψ is not an isometry for the usual flat metric of (0,∞)r.

Henceforth, d3t 2 denotes not
∑r

i=1 dt
2
i but rather the flat pullback metric from a>0.

For T > 0, the Siegel set S(T, η1 ×η2) is η1η2ψ([T,∞)dimA) ⊂ G. The term also
refers to S(T, η1 × η2) · x0. The fundamental neighborhoods of n ∈ ∂M are minor
modifications of such Siegel sets.

Describing these requires a review of the construction of M. To do so, let X̃
denote the Borel-Serre enlargement of the globally symmetric space X = G/K and
X be the reductive Borel-Serre enlargement of [Zuc82]. Then the added boundary
strata e′(P ) of M̃ = Γ\X̃ for P a Q parabolic admits a natural fibration

ΓU\U −→ e′(P )
pP−→(ΓM\XM = ê(P )).(7)

Zucker verifies that these projections pP patch in a well defined way given the
incidence of e′(P ) and e′(R) for P ⊂ R parabolic, so that M is the singular image
under the patched projection of the manifold with corners M̃. Thus, each point in
a boundary strata of M is associated to a point in some ΓM\XM .

We finally describe how to modify a Siegel set to form a fundamental neigh-
borhood to n ∈ ∂M. By construction, there is a rational parabolic P = UMA
with n ∈ ê(P ). Choose η2(i) for i = 1, 2, . . . a sequence of fundamental neighbor-
hoods about n in ΓM\XM , and choose η1 ⊂ U as above. Then for πΓ : X → M
projection,

Ũi = πΓ[S(i, η1 × η2(i))] � η2(i) ⊂ Γ\X � ê(P )(8)

is the closure of the interior of πΓ[S(i, η1 × η2(i))] in M and forms a fundamental
system of neighborhoods about n ∈ ∂M as i→ ∞.
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1.2. L2 sheaves and metrics. We briefly recall the two sheaves on M which will
be shown to be quasiisomorphic. The first j∗Ω•(E) is

Γ(U, j∗Ω•(E)) = Ω•(U ∩M,E).(9)

Here, Γ denotes sections rather than a group. For the second, consider this presheaf:

Γ(U,L•
−Q(E)) =

{
ω ∈ Γ(j∗Ω•(E))

∣∣∣ ∫
U∩M

(|ω|2 + |dω|2)w−Qdvol <∞
}
.(10)

Then L•
−Q(E) is the sheafification, i.e., the differential graded sheaf implementing

the corresponding local integrability condition.
One may now check that the sections on the compact space M of L•

−Q(E) are
exactly the globally weighted L2 forms, given that sheafification replaces the global
square integrability with the local version. These global sections also compute the
hypercohomology, since the argument for fineness on p. 191 of [Zuc82] generalizes
to the present weighted L2 sheaf.

Finally, the differential graded presheaf A•(E) of special forms is constructed
in [GHM94, §14]. It fits into the d.g.s. in the middle of the quasiisomorphism of
Equation (5):

j∗Ω•(E) ← Sh(A•(E)) → L•
−Q(E).

To describe these, let Ui correspond to a fundamental system about n ∈ ∂M.

(11) Γ(Ui,A•(E)|ê(P )) ={∑
αj ⊗ ωj ⊗ φj

∣∣ αj ∈ C, ωj ∈ Ω•(η2(i),E), φj ∈ C•(u, E)
}
.

Here, C•(u, E) = ∧•u∗ ⊗ E is identified with Ω•(U,E)U ⊂ Ω•((Γ ∩ U)\U,E), and
η2(i) ⊂ XM is an open set with compact closure.

The arrow pointing left in Equation (5) is inclusion. It is true but not obvious
that the arrow which points right is also inclusion. To see this, recall Ui ∼= (ΓU\U)×
η(i)× (0,∞)r via a diffeomorphic decomposition. The η(i) is a Riemannian factor,
say with coordinates carrying a local metric dx2

M with ∇R ≡ 0 on XM . The
ΓU\U factor collapses; say β runs over Σ+(p, aP ) for u = ⊕βuβ with du2

β an inner
product. Then taking ψ as our coordinates on the last factor, [Bor74, §4] shows
that the pullback of the metric on M via the Langlands decomposition is

ds2 = d3t 2 + dx2
M +

∑
β>0

exp(−2〈β,H ◦ ψ(3t )〉)du2
β .(12)

Here, d3t 2 is the pullback under ψ of the flat metric on a>0 rather than
∑r

i=1 dt
2
i .

The above formula then demands every special form is square integrable versus the
weights of Equation (2).

2. Proof of quasiisomorphism

2.1. Contraction onto U invariant forms. A direct limit of cochain homo-
topies is a cochain homotopy. Thus, the quasiisomorphism will be implied by
checking for the appropriate presheaves that on each fundamental neighborhood Ui
of a generic boundary point n ∈ ∂M we may construct cochain homotopy equiva-
lences of each of Γ(Ui, L•

−Q(E)) and Γ(Ui, j∗Ω•(E)) onto the space of special forms
Γ(Ui,A•(E)).
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The first step of the argument described in §2.1 is known. It reproves the No-
mizu/van Est theorem of [Nom54] and [vE58] while checking L2 boundedness con-
ditions on boundary neighborhoods. See [Zuc82, pp. 195–201]. However, the argu-
ment has already been cited multiple times without discussion by other authors. A
mild variant reappears here.

2.1.1. ΓU\U as a tower. Let β vary over Σ+(p, aP ) for u = ⊕βuβ . Since
Σ+(p, aP ) is a set of restricted roots, perhaps dim uβ > 1. Nonetheless, we may
choose a basis {Xi}n−1

i=1 ⊂ u so that each Xi ∈ uβ(i) for i = 1 . . . n− 1 and moreover
i > j demands β(i) ≤ β(j). In particular, these conventions demand X1 ∈ z(u).

Definition 2.1. For 0 ≤ k ≤ n−1, u(k) = 〈X1, . . . , Xk〉 with the brackets denoting
the real span. U(k) = expuk and ΓU,(k) = U(k) ∩ ΓU . As u(k) is an ideal in u, set
u(k) = u/u(k) a Lie algebra with U (k) = expu(k) and Γ(k)

U = ΓU/ΓU,(k). Finally, put
T (k) = (Γ(k)

U /Γ(k−1)
U )\(U (k)/U (k−1)).

Here, T (k) is a torus since T (k) ∼= {exp n�Xk}n∈Z\{exp tXk}t∈R for some length
�. Thus, T (k) ∼= SO(2). This allows ΓU\U to be written as a tower of SO(2)
principal bundles. The tower written horizontally is

T (1) T (i) T (i+1)

↓ ↓ ↓
(ΓU\U) → · · · Γ(i)

U \U (i) → Γ(i+1)
U \U (i+1) → · · · → Γ(n−1)

U \U (n−1) = {e}.

(13)

Fix a fundamental neighborhood V = Uk for some k, i.e., V = (ΓU\U)× η(k)×
(0,∞)r for η(k) ⊂ XM an open set with compact closure. For V (i) = (Γ(i)

U \U (i))×
η(k)×(0,∞)r, extend the notation Π(i) to also denote Π(i) : V → V (i) the composite
projection onto V (i). Finally, define C∞(V )i = {f ∈ C∞(V )|Xf ≡ 0 if X ∈ u(i)}.
The following lemma follows via an omitted induction.

Lemma 2.2. There is a bijective correspondence f ↔ f between C∞(V (i)) and
C∞(V )i which respects Π(i) in the sense that f ◦Π(i) = f .

2.1.2. Antiderivative operators of SO(2) actions. For the remainder of this
section, we fix a principal SO(2) bundle SO(2) → E Π→B. In the application, E =
V (i) while B = V (i+1). We use Z to denote the vector field which traverses the
SO(2) fiber in time 2π. In the application, this is some renormalization of Xi

dependent on the circumference of the circular fibers.

Definition 2.3. Let f : E → C. Then a(f)(x) = 1
2π

∫ 2π

0
f(xe2πsZ)ds. We put

f0 = f − a(f).
Definition 2.4. Pick any constant c, and let N ⊂ E be an open set with a SO(2)
principal bundle chart ϕ : N →W×SO(2;R). Then letting θ stand for exp(θ(E21−
E12)) in the argument of ϕ(w,−),

[sf ]ϕ(w, θ) =
∫ θ

c

f0(ϕ(w,ψ))dψ − 1
2π

∫ 2π

0

∫ θ

c

f0(ϕ(w,ψ))dψ dθ(14)

is readily verified to be independent of c and moreover the local choice of N . The
associated globally defined operator on E will be denoted s : C∞

c (E) → C∞
c (E).
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These two operators on functions allow us to redefine Zucker’s cochain homotopy
operators without recourse to d∗SO(2) the exterior derivative adjoint in an SO(2)
direction. Certain boundedness properties and commutation properties of each are
required in the computations that complete the argument. These are collected in
the following lemma, which is stated without proof. Each part follows from either
i) the definitions, ii) the Schwarz inequality, or iii) dominated convergence.

Lemma 2.5. i) Say µ is some measure on E which restricts to a product mea-
sure on each SO(2) principal bundle chart. Then a : C∞

c (E) → C∞
c (E) is

w µ L2 bounded for any w > 0 constant on every SO(2) fiber.
ii) The same holds for s : C∞

c (E) → C∞
c (E).

iii) Zaf = aZf ≡ 0.
iv) Zsf = sZf = f0.
v) Suppose that in every bundle chart ϕ(W × SO(2)), the vector field X has no

component in the vertical SO(2) direction. Then [X, s] = 0 and [X, a] = 0.

2.1.3. Central case of cochain homotopy. Recall the conventions Σ++(p, a) =
{αi}ri=1 and λ =

∑
ciαi. Let N the set of a weights of C•(u, E) induced by u =

⊕(p,a)uα, and say 2ρ =
∑

Σ+(p,a) dim uββ is the exponential decay rate of the volume
form. Change conventions slightly so that L•

(2)((0,∞)r, k(3t )) may denote k(3t )
weighted L2 forms on the sector. Finally, V is some fixed fundamental neighborhood
Ui. Then we have the decomposition V ∼=dif (ΓU\U)× η2 × (0,∞)r. Thus

Γ(A•(E)) = C ⊗ Ω•(η2,E)⊗ C•(u, E)(15)

Γ(L•
−Q(E)) = ⊕ν∈N

{[
L•

(2)((0,∞)r, exp(−〈Q,H ◦ ψ(3t )〉 − 2〈ν + ρ,H ◦ ψ(3t )〉)

⊗̂L2((Γ ∩ U)\U))]⊗̂L•
2(η2,E)⊗C•(u, E)ν

}
.

Before describing the generic case of a cochain homotopy which projects down
the tower of Equation (13), we begin with the case of Z = X1 central. Several
simplifications arise.

Thus, say LZ is the Lie derivative of Z. Since Z is central, in terms of the
decompositions the Lie derivative is given by LZ(f ⊗ φ1 ⊗ φ2) = Zf ⊗ φ1 ⊗ φ2.
Moreover, a computation using Z central also verifies [d, s ⊗ 1 ⊗ 1] = 0 for s the
antiderivative with respect to Z. Neither fact is true for noncentral directions.

Definition 2.6. The linear operators P,B are P = a⊗1⊗1 and B = (s⊗1⊗1)◦ιZ
according to Equation (15).

Using Cartan’s magic formula dιZ+ιZd = LZ , we see that (B,P ) forms a cochain
homotopy of Ω•

c(V,E):

dB +Bd = s(dιZ + ιZd) = s(LZ) = 1− P.(16)

Lemma 2.5 and Equation (12) will moreover imply that P and B are bounded via
the weighted L2 conditions. Thus, (B,P ) is a well-defined cochain homotopy on
each of the three spaces of sections. Note that the boundedness check for B uses ιZ
bounded, which follows since |Z| → 0 as m→ ∂M. As the forms in im P for each
of the three d.g.s. are invariant under the SO(2) action given by integrating Z, they
may now be viewed as forms on V (2) = (Γ(2)

U \U (2))× η(i)× (0,∞)r rather than on
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V = V (1). The next section describes the induction argument that continues this
process until the output forms are invariant under u and hence U .

2.1.4. Generic cochain homotopy. Recall that for 0 ≤ � ≤ n − 1, C∞(V )� =
{f ∈ C∞(V ) | Xf ≡ 0 if X ∈ u(�)}. Via the Langlands decomposition, we may
view { ∂

∂ti
}ri=1�{Yj}�{Xk} as a frame on V . Here the coordinate fields span (0,∞)r,

Yj span the patch η2 ofXM , andXk ∈ uβ(k) so that k1 ≤ k2 demands β(k1) ≥ β(k2).
Then using coefficient functions C∞(V )� in the dual coframe produces a filtration
Ω•(V,E) ⊃ Ω•(V,E)1 ⊃ . . .Ω•(V,E)n−1. Each space of forms of Equation (15)
intersects the subspaces of this filtration nontrivially, and the central case of cochain
homotopy of Subsection 2.1.3 contracts each onto its Ω•(V,E)1 subspace. The
special forms are Ω•(V,E)n−1.

Induction hypothesis: Each space of forms of Equation (15) has been contracted
onto its (�− 1)st subspace.

Definition 2.7. Extend the definition of s(f) and a(f) to act on Ω•(V,E) by acting
on the coefficient functions of the above coframe. Fix throughout the subsection
the convention that Z is the positive multiple of X� with flow traversing the SO(2)
fiber of V (�−1) in time 2π. Then P = a and B̃ = s ◦ ιZ .

(P, B̃) is not a cochain homotopy equivalence, but the argument may be salvaged.
To begin, suppose throughout fτ⊗η⊗φ is decomposed according to Equation (15),
with η a form on η2 ⊂ XM . Then for Θj : C•(u, E) → C•+1(u, E) left exterior
multiplication by Xj , ιj left interior multiplication, and Θt,i, ιt,i similar for τ ∈
∧•[dti]ri=1, we have the following expression for the exterior derivative. It is intended
that this formula extend linearly:

d(fτ ⊗ η ⊗ φ) =
r∑

i=1

∂f

∂ti
Θt,iτ ⊗ η ⊗ φ+ (−1)degτ∧η(Zf)τ ⊗ η ⊗ΘZψ(17)

+
∑
j �=�

(−1)degτ∧ηXjfτ ⊗ η ⊗Θjφ+ (−1)degηfτ ⊗ dη ⊗ φ

+ (−1)degτ∧ηfτ ⊗ η ⊗ dφ.
Recalling B̃(fτ ⊗ η⊗φ) = (−1)degτ∧ηsfτ ⊗ η⊗φ, we compute dB̃(fτ ⊗ η⊗φ) and
B̃d(fτ ⊗ η ⊗ φ).

B̃d(f ⊗ η ⊗ φ) = (−1)degτ∧η
r∑

i=1

(
s
∂

∂ti

)
Θt,iτ ⊗ η ⊗ ιZφ(18)

+ s(Zf)τ ⊗ η ⊗ ιZΘZφ+
∑
j �=�

s(Xjf)τ ⊗ η ⊗ ιZΘjφ

+ (−1)degτ+1(sf)τ ⊗ dη ⊗ ιZφ+ (sf)τ ⊗ η ⊗ ιZdφ

dB̃(f ⊗ η ⊗ φ) = (−1)degτ∧η
r∑

i=1

∂

∂ti
(sf)Θt,iτ ⊗ η ⊗ ιZφ

+ (Zs)fτ ⊗ η ⊗ΘZιZφ+
∑
j �=�

(Xjs)fτ ⊗ η ⊗ΘjιZφ

+ (−1)degτ (sf)τ ⊗ dη ⊗ φ+ (sf)τ ⊗ η ⊗ dιZφ.
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Thus using ΘZιZ+ ιZΘZ = 1, ΘjιZ+ ιZΘj = 0, Zs = sZ = 1−a, and the obvious
cancellations, one obtains

(dB̃ + B̃d)(fτ ⊗ η ⊗ φ) = (Zs)f ⊗ η ⊗ φ+ (sf)τ ⊗ η ⊗ (ιZd+ dιZ)φ(19)

= (1− P )(fτ ⊗ η ⊗ φ)−Q(fτ ⊗ η ⊗ φ)
for Q(fτ ⊗ η ⊗ φ) = −(sf)τ ⊗ η ⊗ (dιZ + ιZd)φ and extended linearly. Some
preliminary facts about Q must be argued before constructing the genuine cochain
homotopy.

Lemma 2.8. i) Let −λ0 be the lowest a weight of C•(u, E), while Z ∈ uβ. Then
for N so large that C•(u, E)−λ0+nβ = {0} for n ≥ N , one has QN = 0.

ii) [d, P ] = 0.
iii) [d,Q] = 0.
iv) QP = PQ = 0.
v) Q is bounded in the weighted L2 norm on forms.

Sketch. i) follows from the similar statement for ιZd + dιZ , since d : C•(u, E) →
C•(u, E) preserves the weight space decomposition. ii) is a computation, and iii)
follows from ii) since [d, dB̃ + B̃d] = 0. iv) is a computation using saf = asf ≡ 0.
v) follows from the similar statement for s and the metric Equation (12). �

Now label B = B̃(
∑N−1

i=0 Qi) for N per the lemma. A computation checks that
(B,P ) is a cochain homotopy, using i)-iv) of the lemma. A check using v) shows
that the cochain homotopy respects the complexes of weighted L2 forms and special
forms. Thus each space of forms in decomposition Equation (15) may be contracted
onto its U invariant subspace.

Next, apply the Poincaré lemma to η2 so that Y∗f ≡ 0 for the coefficient functions
in the coframe { ∂

∂ti
}�{Yj}�{Xk}. This is standard. The final cochain homotopies

compute the weighted L2 cohomology of sectors (0,∞)r.

2.2. Contraction on a>0.

2.2.1. Cochain homotopies on sectors. The goal of this subsection is to gen-
eralize a result first quoted in [Bul01] from half lines to sectors. The original result
is that for k(t) a weight on (0,∞) satisfying the differential inequality d

dt logk(t) <
−ε2 <∞, one has the following inequality:∫ ∞

0

∥∥∥∥∫ t

0

f(s)ds
∥∥∥∥2

k(t)dt < const
∫ ∞

0

‖f(t)‖2k(t)dt.(20)

The present argument is thus quite indebted to [Muc72] and [BH92].
The setting throughout is (0,∞) · C, where C ⊂ Sn−1 is a set of vectors on the

sphere which is open with compact closure so that (0,∞) · C is starlike about 30.
The scalar multiplication will also be thought of as providing coordinates, so that
3x in the cone may also be written as (t, 3θ ) for t ∈ (0,∞) and 3θ ∈ C. We also
use t rather than the more typical r for the radial coordinate, given the previous
paragraph.
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Proposition 2.9. In the setting above, let k(3x ) > 0 be a smooth weighting function
on (0,∞) · C so that raywise within the cone the following differential inequality
holds:

∂

∂t
log k(t, 3θ ) ≤ −2ε < 0, uniformly over all 3θ ∈ C.(21)

Abbreviate X = ∂
∂t , and define the integral operator by

I(fIdt dθI + gIdθI) =
(∫

X

fI

)
dt dθI +

(∫
X

gI

)
dθI .(22)

Here, the dθI are wedges of duals of coordinate fields of Sn−1 which expand linearly
away from 30 when lifted to the cone, and (

∫
X
f)(3x ) =

∫ |%x |
0
f(s3x/|3x |)ds. Finally,

define B• = ιX ◦ I for • ≥ 1 and B0 ≡ 0, where ιX is contraction by X. Then each
B• is bounded in the k(3x ) weighted L2 norm on compactly supported smooth forms
on the cone, and thus each extends to the L2 space of forms L2((0,∞)·C, k(3x )dvol).
Remark 2.10. The most natural of these operators is B1, which is just the line
integral B1φ =

∫ %x
%0
φ.

Corollary 2.11. Given the raywise differential inequality (21), the weighted L2

cohomology of the sector is

H•
(2)((0,∞) · C, k(3x )) ∼= C ⊕ 0 · · · ⊕ 0.(23)

In fact, the cochain homotopy onto the right-hand side is given by taking P0f =
f(30 ), P• ≡ 0 else, and B• per Proposition 2.9.

Remark 2.12. This would imply that in Equation (15),

H•
(2)((0,∞)r, exp(−〈Q,H · ψ(3t )〉 − 2〈ν + ρ,H ◦ ψ(3t )〉) ∼= C ⊕ 0⊕ 0 · · · .(24)

That in turn ends the final cochain homotopy on the differential presheaf sections,
proving Lemma 0.4 hence Theorem 0.5 hence 0.6.

Proof of Corollary 2.11. Via dominated convergence, one has that [d, I] ≡ 0.
Now since the coordinate coframe in (22) was dual to a coordinate frame, the Lie
derivative of the radial direction LX in fact just differentiates coefficient functions
in terms of this coframe. Thus, LXIφ = φ. Now for φ a form of degree at least
one, so that neither B term is a zero operator, Cartan’s formula shows

(dB +Bd)φ = dιXIφ+ ιXIdφ = (dιX + ιXd)Iφ = LXIφ = φ = (1− P )φ.
On the other hand, for functions (dB0 + B1d)f =

∫ %x
%0
df = f(3x ) − f(30 ). Finally,

the critical boundedness check for B• follows from 2.9. �

Proof of Proposition 2.9. The proposition follows given that one can use the
uniform raywise estimate (21) to show that for some finite constant C(I, 2ε) and
any multiindex I fixed one has∫

(0,∞)·C

∥∥∥∥∫
X

fI

∥∥∥∥2

t−2#Ik(3x ) dvol ≤ C(I, 2ε)
∫

(0,∞)·C
‖fI‖2t−2#Ik(3x ) dvol.(25)

Note that dvol = t dt d3θ simply adds another factor of t. The lemmas of the next
subsection, namely 2.13, 2.14, and 2.15, prove the estimate (25) above. �
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2.2.2. Lemmas and estimates. As stated in the last subsection and the intro-
duction, the present argument follows [Muc72] and [BH92]. Also, the lemmas below
check that the constant which bounds the growth rate of the exterior derivative is
traced explicitly through the present computation and found to be 4/ε2 for 2ε per
(21).

Lemma 2.13. Let n ∈ Z. Consider the inequality∫
C

∫
(0,∞)

∥∥∥∥∫
X

f

∥∥∥∥2

tnk(t, 3θ ) dt d3θ ≤ C(λ)
∫
C

∫
(0,∞)

‖f‖2tnk(t, 3θ ) dt d3θ(26)

for f varying over those square integrable functions of k(3x )tn dt d3θ. If there exists
a function λ(3x ) so that{

k(s, 3θ )−1t−nλ(s, 3θ )
∫ ∞

s

k(t, 3θ )tn
(∫ t

0

λ(u, 3θ )−1du

)
dt

}
≤ Cλ <∞(27)

uniformly over 3θ ∈ C and s > 0, then (26) holds with C(λ) = Cλ <∞.

Lemma 2.14. Suppose we define a possibly infinite constant B as follows:

B = supCsupr>0

√∫ r

0

k(t, 3θ )−1t−ndt

∫ ∞

r

k(t, 3θ )tndt .(28)

Then we may choose λ(t, 3θ ) = tnk(t, 3θ )
√∫ t

0
s−nk(t, 3θ )ds which guarantees the ex-

pression of (27) of Lemma 2.13 is bounded above by Cλ ≤ 4B2.

Lemma 2.15. Suppose we label M = supt>0e2εt(
∫ ∞
t

e−εt)−2 = ε−2. Then given
the uniform raywise bound of (21), one has

√
M ≥ B for B the constant of (28)

of Lemma 2.14. Thus (26) of Lemma 2.13 holds with

Cλ ≤ 4B2 ≤ 4M = 4ε−2 <∞.(29)

Proof of Lemma 2.13. Using the Schwarz inequality for λ(s, 3θ )ds,∥∥∥∥∫
X

f

∥∥∥∥2

≤
∫ t

0

‖f(s, 3θ )‖2λ(s, 3θ )ds
(∫ t

0

λ(u, 3θ )−1du

)
.

Now one substitutes into the weighted L2 integral and applies Fubini’s theorem.∫
C

∫ ∞

0

∥∥∥∥∫ t

0

f(s, 3θ )ds
∥∥∥∥2

k(3x )tndt d3θ

≤
∫
C

∫ ∞

0

∫ t

0

‖f(s, 3θ )‖2λ(s, 3θ )ds
(∫ t

0

λ(u, 3θ )−1du

)
k(t, 3θ )tndt d3θ

=
∫
C

∫ ∞

0

∫ ∞

s

‖f‖2λ(s, 3θ )
(∫ t

0

λ(u, 3θ )−1du

)
k(t, 3θ )tndt ds d3θ

=
∫
C

∫ ∞

0

{− −−}‖f‖2k(s, 3θ )snds d3θ

≤ Cλ

∫
C

∫ ∞

0

‖f‖2k(s, 3θ )snds d3θ

with {− −−} per the statement of the lemma. The lemma follows. �
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Proof of Lemma 2.14. Recall λ(s, 3θ ) = snk(s, 3θ )
√∫ s

0
u−nk(u, 3θ )−1du. For this

choice of λ, let us note as a preliminary that for each 3θ∫ t

0

λ(u, 3θ )−1du =
∫ t

0

2
d

du

√∫ u

0

w−nk(w, 3θ )−1dw du = 2

√∫ t

0

u−nk(u, 3θ )−1du.

Thus one obtains the following estimates, beginning by plugging λ(t, 3θ ) above into
the expression of Lemma 2.13 to be bounded.

k(s,3θ )−1s−nsnk(s, 3θ )
(∫ s

0

u−nk(u, 3θ )−1du

)1/2 ∫ ∞

s

k(t, 3θ )
[∫ t

0

λ(u, 3θ )−1du

]
dt

=
(∫ s

0

u−nk(u, 3θ )−1du

)1/2 ∫ ∞

s

k(t, 3θ )tn
[
2

(∫ t

0

u−nk(u, 3θ )−1du

)1/2
]
dt

≤ (2B)
(∫ s

0

u−nk(u, 3θ )−1du

)1/2 ∫ ∞

s

k(t, 3θ )tn
(∫ ∞

t

unk(u, 3θ )du
)−1/2

dt

= (2B)
(∫ s

0

u−nk(u, 3θ )−1du

)1/2

2
(∫ ∞

s

tnk(t, 3θ )dt
)1/2

≤ 4B2.

This concludes the proof of the lemma. �

Proof of Lemma 2.15. For each fixed 3θ0, choose a decreasing function d%θ0 so

that k(t, 3θ0) = d%θ0(t)e
−εt. Now label M̃ as the following supremum:

M̃ = supCsupt

(∫ ∞

t

snk(s, 3θ )ds
)2

t−2nk(t, 3θ )−2.

Then in fact since all the d%θ decrease, one has

M̃ ≤ supCsupt
d%θ (t)

2(
∫ ∞
t

e−εtdt)2

d%θ (t)
2e−2εt

=M <∞.

Now flipping the definition about, k(s, 3θ )−1s−n ≤ Mk(s, 3θ )sn(
∫ ∞
s
tnk(t, 3θ )dt)−2.

Whence substituting within the integral,(∫ t

0

k(s, 3θ )−1s−nds

)1/2

≤M1/2

[∫ t

0

k(s, 3θ )sn
(∫ ∞

s

unk(u, 3θ )du
)−2

ds

]1/2

=M1/2

[(∫ ∞

t

snk(s, 3θ )ds
)−1

−
(∫ ∞

0

snk(s, 3θ )ds
)−1

]1/2

≤M1/2

(∫ ∞

t

snk(s, 3θ )ds
)−1/2

.

Thus M1/2 ≥ (
∫ ∞
t
snk(s, 3θ )ds)1/2(

∫ t

0
k(s, 3θ )−1s−nds)1/2 uniformly over t and 3θ ∈

C, as we wished to prove. �
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Remark 2.16. Reading through the argument, one notices that dlog tn → 0 as
t→ ∞ for any n ∈ Z. As logarithmic derivatives are multiplicative, one notes after
the proof that one might instead use the estimate 4ε−2 directly without the extra
factors of tn by renaming k̃(t, 3θ ) = tnk(t, 3θ ).

3. Appendices

3.1. Appendix: Regularity for locally symmetric spaces. The decay of the
weights given by formula (2) is extremely rapid. Informal discussions lead the
present author to thus believe there are no applications of the (g,K) cohomology
of the right regular representation of w−Q or the multiplicative inverse. Nonetheless,
references are included here to make these well-defined concepts.

We begin by recalling two regularity results. (N, g) is any complete manifold.
Then a regularization result, due to Cheeger [Che80] shows that the (unreduced)
L2 cohomologies computed with either smooth square integrable forms or with the
Hilbert complex of L2 forms coincide. The proof uses Friedrich’s mollifiers. Similar
results arise as scholia in the weighted case; see [BL92]. This justifies Equation (3)
stating that H•

(2),w(N) is the cohomology of the complex{
ω

∣∣ ∫
M

|ω|2 w dvol <∞ and
∫
M

|dω|2 w dvol <∞
}
.

In the locally symmetric case, a stronger regularity holds. Retaining M =
Γ\G/K as in the body, let U(g) denote the universal enveloping algebra of g, i.e.,
the algebra of left G invariant differential operators on G. We wish to express the
w weighted cohomology as the Lie algebra cohomology of a U(g) module. Stated
simply, we want the same cohomology to be produced by an even smaller complex:{

ω
∣∣ ∫

Γ\X
|Dω|2w dvol <∞ ∀D ∈ U(g)

}
.(30)

Borel proved this stronger regularity result in the unweighted case [Bor83]. Specifi-
cally, he proved a cochain homotopy from the cohomology of Equation (3) onto that
of Equation (30). For the argument, mollification takes places via a convolution in
G.

Definition 3.1 ([Fra98, p. 191]). A weight w is admissible if |∇log w| is bounded.

Franke proved the stronger regularity in the weighted case† , given that w is
admissible. Of course, Gaussians are inadmissible. Nonetheless, Borel’s argument
generalizes immediately to the case at hand. The proof will not be repeated, but a
new statement is in order.

Theorem 3.2 ([Bor83], 2.7, p. 618). Let w : Γ\X → (0,∞) be a Borel measurable
weighting function on a locally symmetric space, with w̃ the right K invariant lift.
We do not suppose |dlogw| is bounded. Put L∞

2,w̃(Γ\G) = V be the Harish-Chandra
module of smooth vectors within the regular representation L2,w̃(Γ\G). Then there
is an isomorphism H•

(2),w(Γ\X,E) ∼= H•(g,K, V ⊗ E).

†In fact, he proves both regularities directly with weighted Sobolev inequalities.
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Remark 3.3. 1) For most w, w̃dg is not G invariant. This does not destroy
the statement, but it should be read carefully. For the (g,K) cohomology
actually depends on V∞ = {f |Df ∈ L2,w̃(Γ\G)∀D ∈ U(g)}.

2) The argument runs roughly as follows. First, lift the question to C0(Γ\G)⊗
∧•g∗⊗E. Here, one may produce a cochain homotopy (B,P ) whose projection
operator P convolves with an approximate convolution identity supported on
a neighborhood of the identity in G. That clearly is w̃dg bounded and maps
the coefficient functions into C∞, but unfortunately the associated B does not
preserve the subspace ∩X∈kker ιX associated to the (g,K) cohomology. The
argument circumvents that problem via explicit analysis of an appropriate
spectral sequence.

3.2. Appendix: Extensions to nonarithmetic lattices. There are no great
difficulties in generalizing these results to the nonarithmetic lattices. Such lattices
only exist in case rankGR = 1. Below appears a short description of the minor
modifications of the previous argument which apply to the nonarithmetic case.

• There is strictly speaking no Q rank. However, since we suppose M non-
compact, the case at hand mimics the case where both ranks are one. In
particular, λ ∈ ǎ>0 should be read as λ nonzero and positive according to a
parabolic preserving some line. The correct definition of −Q < 0 follows.

• Rational parabolics are generally replaced by parabolics stabilizing a line in
the language of [GR70], i.e., the stabilizer of the boundary point the lift of
an embedded ray of M. Equivalently, any parabolic P with P = UA and
(Γ ∩ U)\U compact may replace a rational parabolic in the body.

• Given these conventions, M is point-end.
• The special form presheaf is again just U invariant forms in some neighbor-
hood of a boundary point of the point-end compactification. Weighted L2

cohomology is defined in the usual way [Zuc82, p. 175].
Then one can readily repeat all arguments, using Theorem 1.2 of [GR70] in place
of the reduction theory of [BHC62].
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[BL92] J. Brüning and M. Lesch, Hilbert complexes, J. Funct. Anal., 108(1) (1992), 88–132,
MR 93k:58208, Zbl 0826.46065.

[Bue99] Edward L. Bueler, The heat kernel weighted Hodge Laplacian on noncompact manifolds,
Trans. Amer. Math. Soc., 351(2) (1999), 683–713, MR 99d:58164, Zbl 0920.58002.

http://www.emis.de/cgi-bin/MATH-item?0920.58002
http://www.ams.org/mathscinet-getitem?mr=99d:58164
http://www.emis.de/cgi-bin/MATH-item?0826.46065
http://www.ams.org/mathscinet-getitem?mr=93k:58208
http://www.emis.de/cgi-bin/MATH-item?0766.26013
http://www.ams.org/mathscinet-getitem?mr=94a:26039
http://www.emis.de/cgi-bin/MATH-item?0274.22011
http://www.ams.org/mathscinet-getitem?mr=52:8337
http://www.emis.de/cgi-bin/MATH-item?0107.14804
http://www.ams.org/mathscinet-getitem?mr=26:5081
http://www.emis.de/cgi-bin/MATH-item?0689.22007
http://www.ams.org/mathscinet-getitem?mr=91b:17019
http://www.emis.de/cgi-bin/MATH-item?0528.22010
http://www.ams.org/mathscinet-getitem?mr=84h:17009
http://www.emis.de/cgi-bin/MATH-item?0316.57026
http://www.ams.org/mathscinet-getitem?mr=52:8338


256 Stephen S. Bullock

[Bul01] Stephen S. Bullock, Weighted L2 cohomology of asymptotically hyperbolic manifolds,
New York J. Math., 7 (2001), 7–22, MR 2002f:58029.

[Che80] Jeff Cheeger, On the Hodge theory of Riemannian pseudomanifolds, in “Geometry of the
Laplace operator” (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979),
Amer. Math. Soc., Providence, R.I., 1980, 91–146, MR 83a:58081, Zbl 0461.58002.

[Fra98] Jens Franke, Harmonic analysis in weighted L2-spaces, Ann. Sci. École Norm. Sup. (4),
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