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Subspaces of Lp for 0 ≤ p < 1 that are admissible
as kernels

James T. Allis, Jr.

Abstract. In Lp for 0 ≤ p < 1, we classify a large collection of subspaces as
admissible kernels, meaning that each subspace is the kernel of some continuous
linear automorphism on Lp for 0 ≤ p < 1. We then show that this result
eliminates those subspaces as potential rigid subspaces.
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1. Introduction

The aim of this paper is to classify a large collection of subspaces of Lp, 0 ≤ p < 1.
Because we focus on those p-Banach spaces, unless otherwise specified, a space Lp

will be a p-Banach space Lp ([0, 1]) with 0 ≤ p < 1. If X is a subspace of Lp, then
we will call X an admissible kernel if there is a continuous linear automorphism
T ∈ L(Lp) such that X = kerT . Even though a large collection of well-behaved
subspaces will be shown to be admissible kernels, we will also demonstrate that
there are nice subspaces that are not admissible kernels. The first step will be to
establish an important property of admissible kernels, and then this property will
be used to classify a collection of admissible kernels.
On a side note, it will be shown that looking at admissible kernels will also help

in the search for a classical example of a rigid space, that is, a space whose only
continuous linear automorphisms are constant multiples of the identity operator.
In 1977, J. Roberts, following a construction of L. Waelbroeck [Wae77], constructed
a closed, infinite-dimensional, linear subspace of L0 = L0[0, 1] that was rigid (the
original construction went unpublished but an enhanced version embedded in Lp

was published in [KR81]). Although the rigid subspace was a subspace of the space
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of measurable functions (or alternately a subspace of any Lp), the subspace itself
was not classical in nature.

Acknowledgements. The author would like to thank the reviewer for suggesting
a much more efficient and powerful approach.

2. A property and the classification

Obviously, the trivial subspace is an admissible kernel. It also turns out that most
simple subspaces are. For example, consider a one-dimensional subspace X = 〈f〉
of Lp. Since Lp is transitive, there is an operator Q ∈ L(Lp) so that Qf = 1. One
can actually say that Qg = 1 if and only if g = f a.e. (see for example [KPR84]
p. 126). That means that the image under Q of X is the constant functions. Now
consider the operators S : Lp([0, 1])→ Lp([0, 1]2) defined by Sf(x, y) = f(x)−f(y)
and R : Lp([0, 1]2) → Lp([0, 1]) defined by Rf(x) = f(0, x). We can see that the
kernel of the composition RS is the set of constant functions. Then the kernel
of the composition T = RSQ will be exactly X, and hence any one-dimensional
subspace of Lp will be an admissible kernel.
Now that we know of some admissible kernels, it is helpful to be able to combine

them to make new ones.

Theorem 1. Let {Xn}∞n=1 be a collection of admissible kernels in Lp. Then ∩∞
n=1Xn

is an admissible kernel.

Proof. For each n, Xn is an admissible kernel so let Tn be the continuous linear
operator whose kernel is Xn. Now construct a sequence of nonsingular, measurable
maps, {σn}∞i=1 where σn(x) = 2nx − 1. Each of these is a linear, order-preserving
dilation of

[
1
2n , 1

2n−1

)
onto [0, 1).

Next define the operator T by

Th =
∞∑

n=1

KnCσnTnh

where Kn = χ
[ 1
2n , 1

2n−1 ) and Cσnh = h ◦ σn. The series will converge since the
domains of the terms are pairwise disjoint. Further, Th = 0 if and only if Th is
zero on each of the intervals

[
1
2n , 1

2n−1

)
, which happens if and only if Tnh = 0 for

each n, so kerT = ∩Xn. �

Our aim is to show that the closed linear span of a collection of linearly indepen-
dent random variables will be an admissible kernel. We will therefore start with a
result that will help deal with a basis.

Theorem 2. Let X be a subspace of Lp with a basis {fn}, and let Sn be the partial
sum operators for the basis. If each Sn can be extended to an operator on Lp in
such a way that Sng → g for all g ∈ Lp, then X is an admissible kernel.

Proof. For each n, let Xn = (Sn − Sn−1)−1 (〈fn〉). Notice that although Xn is
not necessarily one-dimensional, each one is the inverse image of a one-dimensional
subspace and hence can be shown to be an admissible kernel by using a composition
of operators. It therefore follows from Theorem 1 that ∩Xn is also an admissible
kernel.
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Let f ∈ X, then f =
∑

cnfn for some collection {cn}. From that, we know that
(Sn − Sn−1) f = cnfn and hence f ∈ (Sn − Sn−1)

−1 (〈fn〉) = Xn. This is true for
all n, so f ∈ ∩Xn.
Conversely, suppose f ∈ Xn for all n. For simplicity, assume that S0g = 0 for

all g ∈ Lp. With that, (Sn − Sn−1) f = αnfn for some collection {αn}. From this
we see that Tnf =

∑n
i=1 (Sn − Sn−1) f = Snf −S0f = Snf converges to f . At the

same time, Tnf =
∑n

i=1 αifi which means that Tnf converges to
∑∞

i=1 αifi = f ,
and f ∈ X.
Thus, X = ∩Xn and by Theorem 1 must be an admissible kernel. �

The last step is to classify the collection of subspaces that are spanned by a
collection of independent symmetric random variables with an added property as
admissible kernels.

Theorem 3. Let {fn}∞n=1 be a sequence of independent symmetric random vari-
ables which generate the full σ-algebra of Borel sets. Then X = 〈fn〉∞n=1 is an
admissible kernel.

Proof. Let {fn}∞n=1 be a sequence defined with the above properties and let λ
be the chosen Borel probability measure on R. We can assume that each random
variable is symmetric about 0. For each n, define µn(B) = λ

(
f−1

n (B)
)
for all

Borel sets B. Then each µn is a Borel probability measure. Since the collection
{fn} generates the Borel sets and each µn is a probability measure, the space
Lp (Πn (R, µn)) is isomorphic to Lp (R, λ) and hence can be used in its place.
With that in mind, the original random variables fn can be realized by the

simpler form fn (x1, x2, . . . ) = xn. Define a sequence of maps σn : ΠnR → ΠnR

by
σn(x1, x2, . . . ) = (x1, x2, . . . , xn,−xn+1,−xn+2, . . . ) .

Each σn is measure preserving and for any g ∈ L0, g ◦ σn converges to g.
Define a sequence of operators Sn by Sng = 1

2 (g + g ◦ σn). Since every f ∈ X is

symmetric, Snf =
n∑

i=1

αifi, where the αi are the coefficients of the fi for f . That

is, the Sn act as partial sums for the elements of X. On the other hand, since
g ◦σn → g for any g ∈ L0, we also have Sng converges to g for all g ∈ L0. Therefore
by Theorem 2, X is an admissible kernel. �

So, for example, the closed linear span of the Radamacher functions is an ad-
missible kernel, but, as we will see later, Hp, 0 ≤ p < 1 is not.

3. Consequences

A subspaceX is called strictly transitive if given any sequence x1, x2, . . . , xn ∈ X
which is linearly independent and any sequence y1, y2, . . . , yn ∈ X, there is a con-
tinuous linear automorphism T which maps each xi to the corresponding yi. A
subspace that is strictly transitive can not be rigid. The following theorem says
that subspaces that are admissible kernels are strictly transitive and hence can not
possibly be rigid.

Theorem 4. Let X be a subspace of Lp. If X is an admissible kernel, then Lp/X
is strictly transitive.
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Proof. Let T ∈ L(Lp) be the operator with kerT = X. It will suffice to show that
if f1, f2, . . . , fn are independent with respect to X (i.e., if

∑
aifi ∈ X, then ai = 0

for all i), then Tfi �= 0 for all i and {Tfi} are independent.
The independence of {fi} with respect to X implies that for each i, fi /∈ X =

kerT , so Tfi �= 0. Now suppose that there are {ai}n
i=1 not all zero so that∑

aiTfi = 0. Then 0 =
∑

aiTfi = T (
∑

aifi), which implies that
∑

aifi ∈ X,
and this is a contradiction. �
This means that the subspaces from Theorem 3, which include many classical

spaces, can not be rigid. It also tells us that an unconditional basis is not necessarily
sufficient to be an admissible kernel, i.e., that the requirements in Theorem 3 can
not be relaxed too far and still hold. For example, consider the subspace Hp of
Lp for p < 1. Hp has an unconditional basis [KPR84], yet since every operator
T : Lp/Hp → Lp is zero, Hp can not be an admissible kernel.
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