New York Journal of Mathematics

New York J. Math. 11 (2005) 225-245.

Isomorphic groupoid C^* -algebras associated with different Haar systems

Mădălina Roxana Buneci

ABSTRACT. We shall consider a locally compact groupoid endowed with a Haar system ν and having proper orbit space. We shall associate to each appropriate cross section $\sigma: G^{(0)} \to G^F$ for $d_F: G^F \to G^{(0)}$ (where F is a Borel subset of $G^{(0)}$ meeting each orbit exactly once) a C^* -algebra $M^*_{\sigma}(G, \nu)$. We shall prove that the C^* -algebras associated with different Haar systems are *-isomorphic.

CONTENTS

1.	Introduction	225
2.	Basic definitions and notations	227
3.	The decomposition of a Haar system over the principal groupoid	229
4.	A C^* -algebra associated to a locally compact groupoid	232
5.	The case of locally transitive groupoids	236
6.	The case of principal proper groupoids	241
References		244

1. Introduction

The reader is referred to Section 2 for the basic definitions and notations we shall use here.

The C^* -algebra of a locally compact groupoid was introduced by J. Renault in [9]. The construction extends the case of a group: the space of continuous functions with compact support on the groupoid is made into a *-algebra and endowed with the smallest C^* -norm making its representations continuous. In order to define the convolution on the groupoid one needs to assume the existence of a Haar system which is an analogue of Haar measure on a group. Unlike the case for groups, Haar systems need not be unique. A result of Paul Muhly, Jean Renault and Dana Williams establishes that the C^* -algebras of G associated with two Haar systems are strongly Morita equivalent [4, Theorem 2.8, p. 10]. If the groupoid G is transitive

ISSN 1076-9803/05

Received February 12, 2004, and in revised form on June 6, 2005.

Mathematics Subject Classification. 22A22, 43A22, 43A65, 46L99.

Key words and phrases. locally compact groupoid, C^* -algebra, *-isomorphism.

This work was partly supported by the MEC-CNCSIS grant At127/2004 and by the Postdoctoral Training Program HPRN-CT-2002-0277.

they have proved that the C^* -algebra of G is isomorphic to $C^*(H) \otimes \mathcal{K}(L^2(\mu))$, where H is the isotropy group G_u^u at any unit $u \in G^{(0)}$, μ is an essentially unique measure on $G^{(0)}$, $C^*(H)$ denotes the group C^* -algebra of H, and $\mathcal{K}(L^2(\mu))$ denotes the compact operators on $L^2(\mu)$ [4, Theorem 3.1, p. 16]. Therefore the C^* -algebras of a *transitive* groupoid G associated with two Haar systems are *-isomorphic.

In [8] Arlan Ramsay and Martin E. Walter have associated to a locally compact groupoid G a C^{*}-algebra denoted $M^*(G,\nu)$. They have considered the universal representation ω of $C^*(G,\nu)$ — the usual C^{*}-algebra associated to a Haar system $\nu = \{\nu^u, u \in G^{(0)}\}$ (constructed as in [9]). Since every cyclic representation of $C^*(G,\nu)$ is the integrated form of a representation of G, it follows that ω can be also regarded as a representation of $\mathcal{B}_c(G)$, the space of compactly supported bounded Borel functions on G. Arlan Ramsay and Martin E. Walter have used the notation $M^*(G,\nu)$ for the operator norm closure of $\omega(\mathcal{B}_c(G))$. Since ω is an *-isomorphism on $C^*(G,\nu)$, we can regard $C^*(G,\nu)$ as a subalgebra of $M^*(G,\nu)$.

Definition 1. A locally compact groupoid G is proper if the map

$$(r,d): G \to G^{(0)} \times G^{(0)}$$

is proper (i.e., the inverse image of each compact subset of $G^{(0)} \times G^{(0)}$ is compact) [1, Definition 2.1.9].

Throughout this paper we shall assume that G is a second countable locally compact groupoid for which the orbit space is Hausdorff and the map

$$(r,d): G \to R, (r,d)(x) = (r(x), d(x))$$

is open, where R is endowed with the product topology induced from $G^{(0)} \times G^{(0)}$. Therefore R will be a locally compact groupoid. The fact that R is a closed subset of $G^{(0)} \times G^{(0)}$ and that it is endowed with the product topology is equivalent to the fact R is a proper groupoid.

Throughout this paper by a groupoid with proper orbit space we shall mean a groupoid G for which the orbit space is Hausdorff and the map

$$(r,d): G \rightarrow R, (r,d)(x) = (r(x), d(x))$$

is open, where R is endowed with the product topology induced from $G^{(0)} \times G^{(0)}$.

Let us give an example of a groupoid with proper orbit space that is not a proper groupoid. First let us make some remarks. Any locally compact principal groupoid can be viewed as an equivalence relation on a locally compact space X having its graph $\mathcal{E} \subset X \times X$ endowed with a locally compact topology compatible with the groupoid structure. This topology can be finer than the product topology induced from $X \times X$. \mathcal{E} is proper if and only if \mathcal{E} is endowed with the product topology and \mathcal{E} is closed in $X \times X$. Let $\mathcal{E} \subset X \times X$ be a proper principal groupoid and let Γ be a locally compact group. Then $\mathcal{E} \times \Gamma$ is a groupoid under the following operations:

$$(u, v, x)^{-1} = (v, u, x^{-1})$$

 $(u, v, x)(v, w, y) = (u, w, xy).$

It is easy to see that $\mathcal{E} \times \Gamma$ is a groupoid with proper orbit space. If Γ is not a compact group, then $\mathcal{E} \times \Gamma$ is not a proper groupoid.

We shall assume that the orbit space of the groupoid G is proper and we shall choose a Borel subset F of $G^{(0)}$ meeting each orbit exactly once and such that $F \cap [K]$

has a compact closure for each compact subset K of $G^{(0)}$. For each appropriate cross section $\sigma: G^{(0)} \to G^F$ for $d_F: G^F \to G^{(0)}, d_F(x) = d(x)$, we shall construct a C^{*}-algebra $M^*_{\sigma}(G,\nu)$ which can be viewed as a subalgebra of $M^*(G,\nu)$. Given two Haar system $\nu_1 = \{\nu_1^u, u \in G^{(0)}\}$ and $\nu_2 = \{\nu_2^u, u \in G^{(0)}\}$ on G, we shall prove that the C^{*}-algebras $M^*_{\sigma}(G, \nu_1)$ and $M^*_{\sigma}(G, \nu_2)$ are *-isomorphic.

For a transitive (or more generally, a locally transitive) groupoid G we shall prove that the C*-algebras $C^*(G,\nu)$, $M^*(G,\nu)$ and $M^*_{\sigma}(G,\nu)$ coincide.

If G is a locally transitive groupoid endowed with a Haar system $\{\nu^u, u \in G^{(0)}\},\$ then it is the topological disjoint union of its transitivity components $G|_{[u]}$, and $C^*(G,\nu)$ is the direct sum of the $C^*(G|_{[u]},\nu_{[u]})$, where $\nu_{[u]} = \{\nu^s, s \in [u]\}$. This is a consequence of [2, Theorem 1, p. 10].

For a principal proper groupoid G, we shall prove that

$$C^*(G,\nu) \subset M^*_{\sigma}(G,\nu) \subset M^*(G,\nu).$$

Let $\pi: G^{(0)} \to G^{(0)}/G$ be the quotient map and let

$$\nu_i = \left\{ \varepsilon_u \times \mu_i^{\pi(u)}, \, u \in G^{(0)} \right\}, \quad i = 1, 2$$

be two Haar systems on the principal proper groupoid G. We shall also prove that if the Hilbert bundles determined by the systems of measures $\{\mu_i^{\dot{u}}\}_{\dot{u}}$ have continuous bases in the sense of Definition 24, then *-isomorphism between $M^*_{\sigma}(G,\nu_1)$ and $M^*_{\sigma}(G,\nu_2)$ can be restricted to a *-isomorphism between $C^*(G,\nu_1)$ and $C^*(G,\nu_2)$.

2. Basic definitions and notations

For establishing notation, we include some definitions that can be found in several places (e.g., [9], [5]). A groupoid is a set G endowed with a product map

$$(x,y) \to xy \quad [:G^{(2)} \to G$$

where $G^{(2)}$ is a subset of $G \times G$ called the set of composable pairs, and an inverse map

$$x \to x^{-1} \quad [: G \to G]$$

such that the following conditions hold:

- (1) If $(x,y) \in G^{(2)}$ and $(y,z) \in G^{(2)}$, then $(xy,z) \in G^{(2)}$, $(x,yz) \in G^{(2)}$ and (xy)z = x(yz).
- (2) $(x^{-1})^{-1} = x$ for all $x \in G$.
- (3) For all $x \in G$, $(x, x^{-1}) \in G^{(2)}$, and if $(z, x) \in G^{(2)}$, then $(zx)x^{-1} = z$. (4) For all $x \in G$, $(x^{-1}, x) \in G^{(2)}$, and if $(x, y) \in G^{(2)}$, then $x^{-1}(xy) = y$.

The maps r and d on G, defined by the formulae $r(x) = xx^{-1}$ and $d(x) = x^{-1}x$, are called the range and the source maps. It follows easily from the definition that they have a common image called the unit space of G, which is denoted $G^{(0)}$. Its elements are units in the sense that xd(x) = r(x)x = x. Units will usually be denoted by letters as u, v, w while arbitrary elements will be denoted by x, y, z. It is useful to note that a pair (x, y) lies in $G^{(2)}$ precisely when d(x) = r(y), and that the cancellation laws hold (e.g., xy = xz iff y = z). The fibres of the range and the source maps are denoted $G^u = r^{-1}(\{u\})$ and $G_v = d^{-1}(\{v\})$, respectively. More generally, given the subsets $A, B \subset G^{(0)}$, we define $G^A = r^{-1}(A), G_B = d^{-1}(B)$ and $G^A_B = r^{-1}(A) \cap d^{-1}(B)$. The reduction of G to $A \subset G^{(0)}$ is $G|A = G^A_A$. The relation $u \sim v$ iff $G_v^u \neq \phi$ is an equivalence relation on $G^{(0)}$. Its equivalence classes are called orbits and the orbit of a unit u is denoted [u]. A groupoid is called transitive iff it has a single orbit. The quotient space for this equivalence relation is called the orbit space of G and denoted $G^{(0)}/G$. We denote by $\pi : G^{(0)} \to G^{(0)}/G, \pi(u) = \dot{u}$ the quotient map. A subset of $G^{(0)}$ is said saturated if it contains the orbits of its elements. For any subset A of $G^{(0)}$, we denote by [A] the union of the orbits [u] for all $u \in A$.

A topological groupoid consists of a groupoid G and a topology compatible with the groupoid structure. This means that:

- (1) $x \to x^{-1}$ [: $G \to G$] is continuous.
- (2) $(x, y) \to xy$ [: $G^{(2)} \to G$] is continuous where $G^{(2)}$ has the induced topology from $G \times G$.

We are exclusively concerned with topological groupoids which are second countable, locally compact Hausdorff. It was shown in [7] that measured groupoids may be assume to have locally compact topologies, with no loss in generality.

If X is a locally compact space, $C_c(X)$ denotes the space of complex-valuated continuous functions with compact support. The Borel sets of a topological space are taken to be the σ -algebra generated by the open sets. The space of compactly supported bounded Borel functions on X is denoted by $\mathcal{B}_c(X)$.

For a locally compact groupoid G, we denote by

$$G' = \{ x \in G : r(x) = d(x) \}$$

the isotropy group bundle of G. It is closed in G.

Let G be a locally compact second countable groupoid equipped with a Haar system, i.e., a family of positive Radon measures on G, $\{\nu^u, u \in G^{(0)}\}$, such that:

- (1) For all $u \in G^{(0)}$, $\operatorname{supp}(\nu^u) = G^u$.
- (2) For all $f \in C_c(G)$,

$$u \to \int f(x) d\nu^u(x) \ [: G^{(0)} \to \mathbf{C}]$$

is continuous.

(3) For all $f \in C_c(G)$ and all $x \in G$,

$$\int f(y)d\nu^{r(x)}(y) = \int f(xy)d\nu^{d(x)}(y)$$

As a consequence of the existence of continuous Haar systems, $r, d: G \to G^{(0)}$ are open maps ([11]). Therefore, in this paper we shall always assume that $r: G \to G^{(0)}$ is an open map

If μ is a measure on $G^{(0)}$, then the measure $\nu = \int \nu^u d\mu(u)$, defined by

$$\int f(y)d\nu(y) = \int \left(\int f(y)d\nu^u(y)\right)d\mu(u), \quad f \ge 0 \text{ Borel}$$

is called the measure on G induced by μ . The image of ν by the inverse map $x \to x^{-1}$ is denoted ν^{-1} . μ is said to be quasi-invariant if its induced measure ν is equivalent to its inverse, ν^{-1} . A measure belongings to the class of a quasi-invariant measure is also quasi-invariant. We say that the class is invariant.

If μ is a quasi-invariant measure on $G^{(0)}$ and ν is the measure induced on G, then the Radon–Nikodym derivative $\Delta = \frac{d\nu}{d\nu^{-1}}$ is called the modular function of μ .

In order to define the C^* -algebra of a groupoid G, the space $C_c(G)$ of continuous functions with compact support on G, endowed with the inductive limit topology, is made into a topological *-algebra and is given the smallest C^* -norm making its representations continuous. In somewhat more detail, for $f, g \in C_c(G)$ the convolution is defined by:

$$f * g(x) = \int f(xy)g(y^{-1})d\nu^{d(x)}(y)$$

and the involution by

$$f^*(x) = \overline{f(x^{-1})}.$$

Under these operations, $C_c(G)$ becomes a topological *-algebra.

A representation of $C_c(G)$ is a *-homomorphism from $C_c(G)$ into $\mathcal{B}(H)$, for some Hilbert space H, that is continuous with respect to the inductive limit topology on $C_c(G)$ and the weak operator topology on $\mathcal{B}(H)$. The full C^* -algebra $C^*(G)$ is defined as the completion of the involutive algebra $C_c(G)$ with respect to the full C^* -norm

$$\|f\| = \sup \|L(f)\|$$

where L runs over all nondegenerate representations of $C_c(G)$ which are continuous for the inductive limit topology.

Every representation $(\mu, G^{(0)} * \mathcal{H}, L)$ [5, Definition 3.20/p. 68] of G can be integrated into a representation, still denoted by L, of $C_c(G)$. The relation between the two representation is:

$$\langle L(f)\xi_1,\xi_2\rangle = \int f(x)\langle L(x)\xi_1(d(x)),\xi_2(r(x))\rangle \Delta^{-\frac{1}{2}}(x)d\nu^u(x)d\mu(u)$$

where $f \in C_c(G), \xi_1, \xi_2 \in \int_{G^{(0)}}^{\oplus} \mathcal{H}(u) d\mu(u).$

Conversely, every nondegenerate *-representation of $C_c(G)$ is obtained in this fashion (see [9] or [5]).

3. The decomposition of a Haar system over the principal groupoid

First we present some results on the structure of the Haar systems, as developed by J. Renault in Section 1 of [10] and also by A. Ramsay and M.E. Walter in Section 2 of [8].

In Section 1 of [10] Jean Renault constructs a Borel Haar system for G'. One way to do this is to choose a function F_0 continuous with conditionally compact support which is nonnegative and equal to 1 at each $u \in G^{(0)}$. Then for each $u \in G^{(0)}$ choose a left Haar measure β_u^u on G_u^u so the integral of F_0 with respect to β_u^u is 1.

Renault defines $\beta_v^u = x\beta_v^v$ if $x \in G_v^u$ (where $x\beta_v^v(f) = \int f(xy)d\beta_v^v(y)$ as usual). If z is another element in G_v^u , then $x^{-1}z \in G_v^v$, and since β_v^v is a left Haar measure on G_v^v , it follows that β_v^u is independent of the choice of x. If K is a compact subset of G, then $\sup \beta_v^u(K) < \infty$. Renault also defines a 1-cocycle δ on G such that for $\sum_{u,v} G_v^{(u,v)}(x) = 0$.

every $u \in G^{(0)}$, $\delta|_{G_u^u}$ is the modular function for β_u^u . δ and $\delta^{-1} = 1/\delta$ are bounded on compact sets in G.

Mădălina Roxana Buneci

Let

$$R = (r, d)(G) = \{ (r(x), d(x)), x \in G \}$$

be the graph of the equivalence relation induced on $G^{(0)}$. This R is the image of Gunder the homomorphism (r, d), so it is a σ -compact groupoid. With this apparatus in place, Renault describes a decomposition of the Haar system $\{\nu^u, u \in G^{(0)}\}$ for G over the equivalence relation R (the principal groupoid associated to G). He proves that there is a unique Borel Haar system α for R with the property that

$$\nu^u = \int \beta_t^s d\alpha^u(s,t) \text{ for all } u \in G^{(0)}.$$

In Section 2 of [8] A. Ramsay and M.E. Walter prove that

$$\sup \alpha^u((r,d)(K)) < \infty$$
, for all compact $K \subset G$

For each $u \in G^{(0)}$ the measure α^u is concentrated on $\{u\} \times [u]$. Therefore there is a measure μ^u concentrated on [u] such that $\alpha^u = \varepsilon_u \times \mu^u$, where ε_u is the unit point mass at u. Since $\{\alpha^u, u \in G^{(0)}\}$ is a Haar system, we have $\mu^u = \mu^v$ for all $(u, v) \in R$, and the function

$$u \to \int f(s)\mu^u(s)$$

is Borel for all $f \ge 0$ Borel on $G^{(0)}$. For each u the measure μ^u is quasi-invariant (see Section 2 of [8]). Therefore μ^u is equivalent to $d_*(v^u)$ [6, Lemma 4.5/p. 277].

If η is a quasi-invariant measure for $\{\nu^u, u \in G^{(0)}\}$, then η is a quasi-invariant measure for $\{\alpha^u, u \in G^{(0)}\}$. Also if Δ_R is the modular function associated to $\{\alpha^u, u \in G^{(0)}\}$ and η , then $\Delta = \delta \Delta_R \circ (r, d)$ can serve as the modular function associated to $\{\nu^u, u \in G^{(0)}\}$ and η .

Since $\mu^u = \mu^v$ for all $(u, v) \in R$, the system of measures $\{\mu^u\}_u$ may be indexed by the elements of the orbit space $G^{(0)}/G$.

Definition 2. We shall call the pair of systems of measures

$$(\{\beta_v^u\}_{(u,v)\in R}, \{\mu^u\}_{\dot{u}\in G^{(0)}/G})$$

. . .

(described above) the decomposition of the Haar system $\{\nu^u, u \in G^{(0)}\}$ over the principal groupoid associated to G. Also we shall call δ the 1-cocycle associated to the decomposition.

Remark 3. Let us note that up to trivial changes in normalization, the system of measures $\{\beta_v^u\}$ and the 1-cocycle in the preceding definition are unique. They do not depend on the Haar system, but only on the continuous function F_0 .

Lemma 4. Let G be a locally compact second countable groupoid such that the bundle map $r|_{G'}$ of G' is open. Let $\{\nu^u, u \in G^{(0)}\}$ be a Haar system on G and let $(\{\beta^u_v\}, \{\mu^{\dot{u}}\})$ be its decomposition over the principal groupoid associated to G. Then for each $f \in C_c(G)$ the function

$$x \to \int f(y) d\beta_{d(x)}^{r(x)}(y)$$

is continuous on G.

Proof. By Lemma 1.3/p. 6 of [10], for each $f \in C_c(G)$ the function

$$u \to \int f(y) d\beta^u_u(y)$$

is continuous.

Let $x \in G$ and $(x_i)_i$ be a sequence in G converging to x. Let $f \in C_c(G)$ and let g be a continuous extension on G of $y \to f(xy)$ [: $G^{d(x)} \to \mathbb{C}$]. Let K be the compact set

$$(\{x, x_i, i = 1, 2, \dots\}^{-1} \operatorname{supp}(f) \cup \operatorname{supp}(g)) \cap r^{-1}(\{d(x), d(x_i), i = 1, 2, \dots\}).$$

We have

$$\begin{split} \left| \int f(y) d\beta_{d(x)}^{r(x)}(y) - \int f(y) d\beta_{d(x_i)}^{r(x_i)}(y) \right| &= \left| \int f(xy) d\beta_{d(x)}^{d(x)}(y) - \int f(x_i y) d\beta_{d(x_i)}^{d(x_i)}(y) \right| \\ &= \left| \int g(y) d\beta_{d(x)}^{d(x)}(y) - \int f(x_i y) d\beta_{d(x_i)}^{d(x_i)}(y) \right| \\ &\leq \left| \int g(y) d\beta_{d(x)}^{d(x)}(y) - \int g(y) d\beta_{d(x_i)}^{d(x_i)}(y) \right| \\ &+ \left| \int g(y) d\beta_{d(x)}^{d(x_i)}(y) - \int f(x_i y) d\beta_{d(x_i)}^{d(x_i)}(y) \right| \\ &\leq \left| \int g(y) d\beta_{d(x)}^{d(x)}(y) - \int g(y) d\beta_{d(x_i)}^{d(x_i)}(y) \right| \\ &+ \sup_{y \in G_{d(x_i)}^{d(x_i)}} \left| g(y) - f(x_i y) \right| \beta_{d(x_i)}^{d(x_i)}(K). \end{split}$$

A compactness argument shows that $\sup_{y \in G_{d(x_i)}^{d(x_i)}} |g(y) - f(x_iy)|$ converges to 0. Also $\left| \int g(y) d\beta_{d(x)}^{d(x)}(y) - \int g(y) d\beta_{d(x_i)}^{d(x_i)}(y) \right|$ converges to 0 because the function $u \to \int f(y) d\beta_u^u(y)$ is continuous. Hence

$$\left| \int f(y) d\beta_{d(x)}^{r(x)}(y) - \int f(y) d\beta_{d(x_i)}^{r(x_i)}(y) \right|$$

converges to 0.

Proposition 5. Let G be a second countable locally compact groupoid with proper orbit space. Let $\{\nu^u, u \in G^{(0)}\}$ be a Haar system on G and let $(\{\beta^u_v\}, \{\mu^{\dot{u}}\})$ be its decomposition over the principal groupoid associated to G. Then for each $g \in C_c(G^{(0)})$, the map

$$u \to \int g(v) d\mu^{\pi(u)}(v)$$

is continuous.

Proof. Let $g \in C_c(G^{(0)})$ and $u_0 \in G^{(0)}$. Let K_1 be a compact neighborhood of u_0 and K_2 be the support of g. Since G is locally compact and (r, d) is open from G to (r, d)(G), there is a compact subset K of G such that (r, d)(K) contains $(K_1 \times K_2) \cap (r, d)(G)$. Let $F_1 \in C_c(G)$ be a nonnegative function equal to 1 on a compact neighborhood U of K. Let $F_2 \in C_c(G)$ be a function which extends to G

the function $x \to F_1(x) / \int F_1(y) d\beta_{d(x)}^{r(x)}(y)$, $x \in U$. We have $\int F_2(y) d\beta_v^u(y) = 1$ for all $(u, v) \in (r, d)(K)$. Since for all $u \in K_1$,

$$\int g(v)d\mu^{\pi(u)}(v) = \int g(v) \int F_2(y)d\beta_v^u(y)d\mu^{\pi(u)}(v)$$
$$= \int g(d(y))F_2(y)d\nu^u(y),$$

it follows that $u \to \int g(v) d\mu^{\pi(u)}(v)$ is continuous at u_0 .

Remark 6. Let G be a locally compact second countable groupoid with proper orbit space. Let $\{\nu^u, u \in G^{(0)}\}$ be a Haar system on G and $\{\{\beta_v^u\}, \{\mu^{\dot{u}}\}\}$ be its decomposition over the associated principal groupoid. If μ is a quasi-invariant probability measure for the Haar system, then $\mu_1 = \int \mu^{\pi(u)} d\mu(u)$ is a Radon measure which is equivalent to μ . Indeed, let $f \geq 0$ Borel on $G^{(0)}$ such that $\mu(f) = 0$. Since μ is quasi-invariant, it follows that for μ a.a. $u, \nu^u(f \circ d) = 0$, and since $\mu^{\pi(u)}$ is equivalent to $d_*(v^u)$, it follows that $\mu^{\pi(u)}(f) = 0$ for μ a.a. u. Conversely, if $\mu_1(f) = 0$, then $\mu^{\pi(u)}(f) = 0$ for μ a.a. u, and therefore $\nu^u(f \circ d) = 0$. Thus the quasi-invariance of μ implies $\mu(f) = 0$. Thus each Radon quasi-invariant measure is equivalent to a Radon measure of the form $\int \mu^{\dot{u}} d\tilde{\mu}(\dot{u})$, where $\tilde{\mu}$ is a probability measure on the orbit space $G/G^{(0)}$.

4. A C^* -algebra associated to a locally compact groupoid with proper orbit space

Let ${\cal G}$ be a locally compact second countable groupoid with proper orbit space. Let

$$\pi: G^{(0)} \to G^{(0)}/G$$

be the quotient map. Since the quotient space is proper, $G^{(0)}/G$ is Hausdorff.

As we mentioned at the outset, our standing hypothesis that G has a Haar system guarantees that r is open. Consequently, so is the map π .

Applying Lemma 1.1 of [3] to the locally compact second countable spaces $G^{(0)}$ and $G^{(0)}/G$ and to the continuous open surjection $\pi : G^{(0)} \to G^{(0)}/G$, it follows that there is a Borel set F in $G^{(0)}$ such that:

- (1) F contains exactly one element in each orbit $[u] = \pi^{-1}(\pi(u))$.
- (2) For each compact subset K of $G^{(0)}$, $F \cap [K] = F \cap \pi^{-1}(\pi(K))$ has a compact closure.

For each unit u let us define e(u) to be the unique element in the orbit of u that is contained in F, i.e., $\{e(u)\} = F \cap [u]$. For each Borel subset B of $G^{(0)}$, π is continuous and one-to-one on $B \cap F$ and hence $\pi(B \cap F)$ is Borel in $G^{(0)}/G$. Therefore the map $e : G^{(0)} \to G^{(0)}$ is Borel (for each Borel subset B of $G^{(0)}$, $e^{-1}(B) = [B \cap F] = \pi^{-1}(\pi(B \cap F))$ is Borel in $G^{(0)}$). Also for each compact subset K of $G^{(0)}$, e(K) has a compact closure because $e(K) \subset F \cap [K]$.

Since the orbit space $G^{(0)}/G$ is proper the map

$$(r,d): G \to R, (r,d)(x) = (r(x), d(x))$$

is open and R is closed in $G^{(0)} \times G^{(0)}$. Applying Lemma 1.1 of [3] to the locally compact second countable spaces G and R and to the continuous open surjection

 $(r,d): G \to R$, it follows that there is a regular cross section $\sigma_0: R \to G$. This means that σ_0 is Borel, $(r,d)(\sigma_0(u,v)) = (u,v)$ for all $(u,v) \in R$, and $\sigma_0(K)$ is relatively compact in G for each compact subset K of R.

Let us define $\sigma : G^{(0)} \to G^F$ by $\sigma(u) = \sigma_0(e(u), u)$ for all u. It is easy to note that σ is a cross section for $d : G^F \to G^{(0)}$ and $\sigma(K)$ is relatively compact in G for all compact $K \subset G^{(0)}$. If F is closed, then σ is regular.

Replacing σ by

$$v \to \sigma(e(v))^{-1}\sigma(v)$$

we may assume that $\sigma(e(v)) = e(v)$ for all v. Let us define $q: G \to G_F^F$ by

$$q(x) = \sigma(r(x))x\sigma(d(x))^{-1}, x \in G.$$

Let $\nu = \{\nu^u : u \in G^{(0)}\}$ be a Haar system on G and let $(\{\beta_v^u\}, \{\mu^{\dot{u}}\})$ be its decompositions over the principal groupoid. Let δ be the 1-cocycle associated to the decomposition.

Let us denote by $\mathcal{B}_{\sigma}(G)$ the linear span of the functions of the form

$$x \to g_1(r(x))g(q(x))g_2(d(x))$$

where g_1, g_2 are compactly supported bounded Borel functions on $G^{(0)}$ and g is a bounded Borel function on G_F^F such that if S is the support of g, then the closure of S is compact in G. $\mathcal{B}_{\sigma}(G)$ is a subspace of $\mathcal{B}_c(G)$, the space of compactly supported bounded Borel functions on G.

If $f_1, f_2 \in \mathcal{B}_{\sigma}(G)$ are defined by

$$f_1(x) = g_1(r(x))g(q(x))g_2(d(x))$$

$$f_2(x) = h_1(r(x))h(q(x))h_2(d(x))$$

then

$$f_1 * f_2(x) = g * h(q(x))g_1(r(x))h_2(d(x))\langle g_2, \overline{h_1} \rangle_{\pi(r(x))}$$
$$f_1^*(x) = \overline{g_2(r(x))g(q(x)^{-1})g_1(d(x))}.$$

Thus $\mathcal{B}_{\sigma}(G)$ is closed under convolution and involution.

Let ω be the universal representation of $C^*(G, \nu)$ the usual C^* -algebra associated to a Haar system $\nu = \{\nu^u, u \in G^{(0)}\}$ (constructed as in [9]). Since every cyclic representation of $C^*(G, \nu)$ is the integrated form of a representation of G, it follows that ω can be also regarded as a representation of $\mathcal{B}_c(G)$, the space of compactly supported bounded Borel functions on G. Arlan Ramsay and Martin E. Walter have used the notation $M^*(G, \nu)$ for the operator norm closure of $\omega(\mathcal{B}_c(G))$. Since ω is an *-isomorphism on $C^*(G, \nu)$, we can regarded $C^*(G, \nu)$ as a subalgebra of $M^*(G, \nu)$.

Definition 7. We denote by $M^*_{\sigma}(G, \nu)$ the operator norm closure of $\omega(\mathcal{B}_{\sigma}(G))$.

Lemma 8. Let $\{\mu_1^{\dot{u}}\}_{\dot{u}}$ and $\{\mu_2^{\dot{u}}\}_{\dot{u}}$ be two systems of measures on $G^{(0)}$ satisfying: (1) $\operatorname{supp}(\mu_i^{\dot{u}}) = [u]$ for all $\dot{u}, i = 1, 2$.

(2) For all compactly supported bounded Borel functions f on $G^{(0)}$ the function

$$u \to \int f(v) \mu_i^{\pi(u)}(v)$$

is bounded and Borel.

Then there is a family $\{U_{\dot{u}}\}_{\dot{u}}$ of unitary operators with the following properties:

- (1) $U_{\dot{u}}: L^2(\mu_1^{\dot{u}}) \to L^2(\mu_2^{\dot{u}})$ is a unitary operator for each $\dot{u} \in G^{(0)}/G$.
- (2) For all bounded Borel functions f on $G^{(0)}$,

$$u \to U_{\pi(u)}(f)$$

is a bounded Borel function with compact support.

(3) For all bounded Borel functions f on $G^{(0)}$,

$$U_{\pi(u)}(\overline{f}) = \overline{U_{\pi(u)}(f)}.$$

Proof. Using the same argument as in [7] (p. 323) we can construct a sequence f_1, f_2, \ldots of real valued bounded Borel function on $G^{(0)}$ such that $\dim(L^2(\mu_1^{\dot{u}})) = \infty$ if and only if $||f_n||_2 = 1$ in $L^2(\mu_1^{\dot{u}})$ for $n = 1, 2, \ldots$ and then $\{f_1, f_2, \ldots\}$ gives an orthonormal basis of $L^2(\mu_1^{\dot{u}})$, while $\dim(L^2(\mu_1^{\dot{u}})) = k < \infty$ if and only if $||f_n||_2 = 1$ for $n \le k$, and $||f_n||_2 = 0$ for n > k and then $\{f_1, f_2, \ldots, f_k\}$ gives an orthonormal basis of $L^2(\mu_1^{\dot{u}})$. Let g_1, g_2, \ldots be a sequence with the same properties as f_1, f_2, \ldots corresponding to $\{\mu_2^{\dot{u}}\}_{\dot{u}}$. Let us define $U_{\dot{u}}: L^2(\mu_1^{\dot{u}}) \to L^2(\mu_2^{\dot{u}})$ by

$$U_{\dot{u}}(f_n) = g_n$$
 for all n

Then the family $\{U_{\dot{u}}\}_{\dot{u}}$ has the required properties.

Theorem 9. Let G be a locally compact second countable groupoid with proper orbit space. Let $\{\nu_i^u, u \in G^{(0)}\}, i = 1, 2$ be two Haar systems on G. Let F be a Borel subset of $G^{(0)}$ containing only one element e(u) in each orbit [u]. Let $\sigma : G^{(0)} \to G^F$ be a cross section for $d : G^F \to G^{(0)}$ with $\sigma(e(v)) = e(v)$ for all $v \in G^{(0)}$ and such that $\sigma(K)$ is relatively compact in G for all compact $K \subset G^{(0)}$. Then the C^{*}-algebras $M^*_{\sigma}(G, \nu_1)$ and $M^*_{\sigma}(G, \nu_2)$ are *-isomorphic.

Proof. Let $(\{\beta_v^u\}, \{\mu_i^{\dot{u}}\})$ be the decompositions of the Haar systems over the principal groupoid. Let δ be the 1-cocycle associated to the decompositions, i = 1, 2.

We shall denote by $\langle \cdot, \cdot \rangle_{i,\dot{u}}$ the inner product of $(L^2(G^{(0)}, \delta(\sigma(\cdot))\mu_i^{\dot{u}})), i = 1, 2$. Let us define $q: G \to G_F^F$ by

$$q(x) = \sigma(r(x))x\sigma(d(x))^{-1}, x \in G.$$

We shall define a *-homomorphism Φ from $\mathcal{B}_{\sigma}(G)$ to $\mathcal{B}_{\sigma}(G)$. It suffices to define Φ on the set of functions on G of the form

$$x \to g_1(r(x))g(q(x))g_2(d(x))$$

Let $\{U_{\dot{u}}\}_{\dot{u}}$ be the family of unitary operators with the properties stated in Lemma 8, associated to the systems of measures $\{\delta(\sigma(\cdot))\mu_i^{\dot{u}}\}_{\dot{u}}, i = 1, 2.$

Let us define Φ by

$$\Phi(f) = (x \to U_{\pi(r(x))}(g_1)(r(x))g(q(x))U_{\pi(d(x))}(g_2)(d(x)))$$

where f is defined by

$$f(x) = g_1(r(x))g(q(x))g_2(d(x))$$

If f_1 and f_2 are defined by

$$f_1(x) = g_1(r(x))g(q(x))g_2(d(x))$$

$$f_2(x) = h_1(r(x))h(q(x))h_2(d(x))$$

then

$$f_1 * f_2(x) = g * h(q(x))g_1(r(x))h_2(d(x))\langle g_2, h_1 \rangle_{1,\pi(r(x))}$$

and consequently

$$\Phi(f_1 * f_2) = g * h(q(x)) U_{\pi(r(x))}(g_1)(r(x)) U_{\pi(r(x))}(h_2)(d(x)) \langle g_2, \overline{h_1} \rangle_{1,\pi(r(x))}$$

= $\Phi(f_1) * \Phi(f_2).$

Let $\tilde{\eta}$ be a probability measure on $G^{(0)}/G$ and $\eta_i = \int \mu_i^{\dot{u}} d\tilde{\eta}(\dot{u}), i = 1, 2$. Let L_1 be the integrated form of a representation $(L, \mathcal{H} * G^{(0)}, \eta_1)$ and L_2 be the integrated form of $(L, \mathcal{H} * G^{(0)}, \eta_2)$. Let *B* be the Borel function defined by

$$B(u) = L(\sigma(u))$$

and $W : \int_{G^{(0)}}^{\oplus} \mathcal{H}(u) d\eta_1(u) \to \int_{G^{(0)}}^{\oplus} \mathcal{H}(e(u)) d\eta_1(u)$ be defined by

 $W(\zeta) = (u \to B(u)(\zeta(u))).$

Since every element of $L^2(G^{(0)}, \delta(\sigma(\cdot))\mu_1^{\dot{w}}, \mathcal{H}(e(w)))$ is a limit of linear combinations of elements $u \to a(u)\xi$ with $a \in L^2(G^{(0)}, \delta(\sigma(\cdot))\mu_1^{\dot{w}})$ and $\xi \in \mathcal{H}(e(w))$, we can define a unitary operator

$$V_{\dot{w}}: L^2(G^{(0)}, \delta(\sigma(\cdot))\mu_1^{\dot{w}}, \mathcal{H}(e(w))) \to L^2(G^{(0)}, \delta(\sigma(\cdot))\mu_2^{\dot{w}}, \mathcal{H}(e(w)))$$

by

$$V_{\dot{w}}(u \to a(u)\xi) = U_{\dot{w}}(a)\xi.$$

Let $V : \int_{G^{(0)}}^{\oplus} \mathcal{H}(e(u))d\eta_1(u) \to \int_{G^{(0)}}^{\oplus} \mathcal{H}(e(u))d\eta_2(u)$ be defined by
 $V(\zeta) = (u \to V_{\dot{u}}(\zeta(u))).$

If
$$\zeta_1, \zeta_2 \in \int_{G^{(0)}}^{\oplus} \mathcal{H}(e(u)) d\eta_1(u)$$
 and f is of the form
$$f(x) = g_1(r(x))g(q(x))g_2(d(x)),$$

we have

$$\langle WL_1(f)W^*\zeta_1,\zeta_2\rangle = \int \int g(x)\delta(x)^{\frac{-1}{2}} \langle L(x)A_1(\dot{w}),B_1(\dot{w})\rangle d\beta_{e(w)}^{e(w)}(x)d\tilde{\eta}(\dot{w})$$

where

$$A_{1}(\dot{w}) = \int g_{2}(v)\zeta_{1}(v)\delta(\sigma(v))^{\frac{1}{2}}d\mu_{1}^{\dot{w}}(v)$$
$$B_{1}(\dot{w}) = \int g_{1}(u)\zeta_{2}(u)\delta(\sigma(u))^{\frac{1}{2}}d\mu_{1}^{\dot{w}}(u).$$

Moreover, if f is of the form $f(x) = g_1(r(x))g(q(x)g_2(d(x)))$ and $\zeta_1, \zeta_2 \in \int_{G^{(0)}}^{\oplus} \mathcal{H}(e(u))d\eta_2(u)$, then

$$\langle VWL_1(f)W^*V^*\zeta_1,\zeta_2\rangle = \int \int g(x)\delta(x)^{\frac{-1}{2}} \langle L(x)A_2(\dot{w}), B_2(\dot{w})\rangle d\beta_{e(u)}^{e(u)}(x)d\tilde{\eta}(\dot{w})$$
$$= \langle WL_2(\Phi(f))W^*\zeta_1,\zeta_2\rangle$$

where

$$\begin{aligned} A_{2}(\dot{w}) &= \int g_{2}(v) V^{*} \zeta_{1}(v) \delta(\sigma(v))^{\frac{1}{2}} d\mu_{1}^{\dot{w}}(v) \\ &= \int U_{\dot{v}}(g_{2})(v) \zeta_{1}(v) \delta(\sigma(v))^{\frac{1}{2}} d\mu_{2}^{\dot{w}}(v) \\ B_{2}(\dot{w}) &= \int g_{1}(v) V^{*} \zeta_{2}(v) \delta(\sigma(v))^{\frac{1}{2}} d\mu_{1}^{\dot{w}}(v) \\ &= \int U_{\dot{u}}(g_{1})(u) \zeta_{2}(u) \delta(\sigma(u))^{\frac{1}{2}} d\mu_{2}^{\dot{w}}(u). \end{aligned}$$

Therefore $||L_1(f)|| = ||L_2(\Phi(f))||$. Consequently we can extend Φ to a *homomorphism between the $M^*_{\sigma}(G,\nu_1)$ and $M^*_{\sigma}(G,\nu_2)$. It is not hard to see that Φ is in fact a *-isomorphism:

$$\Phi^{-1}(f) = (x \to U^*_{\pi(r(x))}(g_1)(r(x))g(q(x))U^*_{\pi(d(x))}(g_2)(d(x)))$$

for each f of the form

$$f(x) = g_1(r(x))g(q(x))g_2(d(x)).$$

5. The case of locally transitive groupoids

A locally compact *locally transitive* groupoid G is a groupoid for which all orbits [u] are open in $G^{(0)}$. We shall prove that if G is a locally compact second countable locally transitive groupoid endowed with a Haar system ν , then

$$C^*(G,\nu) = M^*(G,\nu) = M^*_{\sigma}(G,\nu)$$

for any regular cross section σ .

Notation 10. Let $\{\nu^u, u \in G^{(0)}\}$ be a fixed Haar system on G. Let μ be a quasiinvariant measure, Δ its modular function, ν_1 be the measure induced by μ on Gand $\nu_0 = \Delta^{-\frac{1}{2}}\nu_1$. Let

$$II_{\mu}(G) = \{ f \in L^{1}(G, \nu_{0}) : \|f\|_{II, \mu} < \infty \},\$$

where $||f||_{II,\mu}$ is defined by

$$||f||_{II,\mu} = \sup\left\{\int |f(x)j(d(x))k(r(x))|d\nu_0(x), \int |j|^2 d\mu = \int |k|^2 d\mu = 1\right\}.$$

If μ_1 and μ_2 are two equivalent quasi-invariant measures, then

$$||f||_{II,\mu_1} = ||f||_{II,\mu_2}$$

because $||f||_{II,\mu} = ||II_{\mu}(|f|)||$ for each quasi-invariant measure μ , where II_{μ} is the one-dimensional trivial representation on μ .

Define

$$||f||_{II} = \sup \left\{ ||f||_{II,\mu} : \mu \text{ quasi-invariant Radon measure on } G^{(0)} \right\}.$$

The supremum can be taken over the classes of quasi-invariant measures.

If $\|\cdot\|$ is the full C^* -norm on $C_c(G)$, then (see [8])

$$||f|| \le ||f||_{II} \text{ for all } f.$$

Lemma 11. Let G be a locally compact second countable groupoid with proper orbit space. Let $\{\nu^u, u \in G^{(0)}\}$ be a Haar system on G, let $(\{\beta^u_v\}, \{\mu^u\})$ its decomposition over the principal groupoid associated to G and let δ the associated 1-cocycle. If f is a universally measurable function on G, then

$$||f||_{II} \le \sup_{\dot{w}} \left(\int \int \left(\int |f(x)| \delta(x)^{-\frac{1}{2}} d\beta_v^u(x) \right)^2 d\mu^{\dot{w}}(v) d\mu^{\dot{w}}(u) \right)^{\frac{1}{2}}.$$

Proof. Each Radon quasi-invariant measure is equivalent with a Radon measure of the form $\int \mu^{\dot{u}} d\tilde{\mu}(\dot{u})$, where $\tilde{\mu}$ is a probability measure on the orbit space $G/G^{(0)}$. Therefore for the computation of $\|\cdot\|_{II}$ it is enough to consider only the quasi-invariant measures of the form $\mu = \int \mu^{\dot{u}} d\tilde{\mu}(\dot{u})$, where $\tilde{\mu}$ is a probability measure on $G^{(0)}/G$. It is easy to see that the modular function of $\int \mu^{\dot{u}} d\tilde{\mu}(\dot{u})$ is $\Delta = \delta$. Let $j, k \in L^2(G^{(0)}, \mu)$ with $\int |j|^2 d\mu = \int |k|^2 d\mu = 1$. We have

$$\begin{split} \int \int \int \int |f(x)|\delta(x)^{-\frac{1}{2}} d\beta_v^u(x)|j(v)||k(u)|d\mu^{\dot{w}}(v)d\mu^{\dot{w}}(u)d\tilde{\mu}(\dot{w}) \\ &\leq \int \left(\int \int \left(\int |f(x)|\delta(x)^{-\frac{1}{2}} d\beta_v^u(x)\right)^2 d\mu^{\dot{w}}(v)d\mu^{\dot{w}}(u)\right)^{\frac{1}{2}} \\ &\cdot \left(\int \int |j(v)|^2 |k(u)|^2 d\mu^{\dot{w}}(v)d\mu^{\dot{w}}(u)\right)^{\frac{1}{2}} d\tilde{\mu}(\dot{w}) \\ &\leq \sup_{\dot{w}} \left(\int \int \left(\int |f(x)|\delta(x)^{-\frac{1}{2}} d\beta_v^u(x)\right)^2 d\mu^{\dot{w}}(v)d\mu^{\dot{w}}(u)\right)^{\frac{1}{2}} \\ &\cdot \int \left(\int |j(v)|^2 d\mu^{\dot{w}}(v)\right)^{\frac{1}{2}} (|k(u)|^2 d\mu^{\dot{w}}(u)\right)^{\frac{1}{2}} d\tilde{\mu}(\dot{w}) \\ &\leq \sup_{\dot{w}} \left(\int \int \left(\int |f(x)|\delta(x)^{-\frac{1}{2}} d\beta_v^u(x)\right)^2 d\mu^{\dot{w}}(v)d\mu^{\dot{w}}(u)\right)^{\frac{1}{2}}. \end{split}$$

Consequently,

$$\|f\|_{II} \le \sup_{\dot{w}} \left(\int \int \left(\int |f(x)| \delta(x)^{-\frac{1}{2}} d\beta_v^u(x) \right)^2 d\mu^{\dot{w}}(v) d\mu^{\dot{w}}(u) \right)^{\frac{1}{2}}.$$

If G is locally transitive, each orbit [u] is open in $G^{(0)}$. Each measure $\mu^{\dot{u}}$ is supported on [u]. Since ([u]) is a partition of $G^{(0)}$ into open sets, it follows that there is a unique Radon measure m on $G^{(0)}$ such that the restriction of m at $C_c([u])$ is $\mu^{\dot{u}}$ for each [u].

Corollary 12. Let G be a locally compact second countable locally transitive groupoid endowed with a Haar system $\nu = \{\nu^u, u \in G^{(0)}\}$. Let f be a universally measurable function such that $\|f\|_{II} < \infty$.

(1) If $(f_n)_n$ is a uniformly bounded sequence of universally measurable functions supported on a compact set, and if $(f_n)_n$ converges pointwise to f, then $(f_n)_n$ converges to f in the norm of $C^*(G, \nu)$.

Mădălina Roxana Buneci

(2) If $(f_n)_n$ is an increasing sequence of universally measurable nonnegative functions on G that converges pointwise to f, then $(f_n)_n$ converges to f in the norm of $C^*(G, \nu)$.

Proof. Let $(\{\beta_v^u\}, \{\mu^{\dot{u}}\})$ be the decomposition of the Haar system over the principal groupoid associated to G and δ the associated 1-cocycle. Let m be the unique measure such that restriction of m at $C_c([u])$ is $\mu^{\dot{u}}$ for each [u]. Let $(f_n)_n$ be a sequence of universally measurable functions supported on a compact set K. Let

$$M = \sup_{u,v} \beta_u^v(K^{-1})$$

and let us assume that $(f_n)_n$ converges pointwise to f. By Lemma 11,

$$\|f - f_n\|_{II} \le \sup_{\dot{w}} \left(\int \int \left(\int |f(x) - f_n(x)| \delta(x)^{-\frac{1}{2}} d\beta_v^u(x) \right)^2 d\mu^{\dot{w}}(v) d\mu^{\dot{w}}(u) \right)^{\frac{1}{2}},$$

hence

$$\begin{split} \|f - f_n\|_{II} &\leq \sup_{\dot{w}} M\left(\int \int \left(\int |f(x) - f_n(x)|^2 d\beta_v^u(x)\right) d\mu^{\dot{w}}(v) d\mu^{\dot{w}}(u)\right)^{\frac{1}{2}} \\ &\leq M\left(\int \int \left(\int |f(x) - f_n(x)|^2 d\beta_u^v(x)\right) dm(v) dm(u)\right)^{\frac{1}{2}}. \end{split}$$

If $\|\cdot\|$ denotes the C^* -norm, then

$$\lim_{n} \|f - f_n\| \le \lim_{n} \|f - f_n\|_{II} = 0,$$

because

$$\int \int \left(\int |f(x) - f_n(x)|^2 d\beta_u^v(x) \right) dm(v) dm(u)$$

converges to zero, by the Dominated Convergence Theorem.

Let $(f_n)_n$ be an increasing sequence of universally measurable nonnegative functions that converges pointwise to f. Since

$$\begin{split} \|f - f_n\|_{II} &\leq \sup_{\dot{w}} \left(\int \int \left(\int |f(x) - f_n(x)| \delta(x)^{-\frac{1}{2}} d\beta_v^u(x) \right)^2 d\mu^{\dot{w}}(v) d\mu^{\dot{w}}(u) \right)^{\frac{1}{2}} \\ &\leq \left(\int \int \left(\int |f(x) - f_n(x)| \delta(x)^{-\frac{1}{2}} d\beta_v^u(x) \right)^2 dm(v) dm(u) \right)^{\frac{1}{2}} \end{split}$$

it follows that

$$\lim_{n} \|f - f_n\|_{II} = 0.$$

Proposition 13. Let G be a locally compact second countable locally transitive groupoid endowed with a Haar system $\nu = \{\nu^u, u \in G^{(0)}\}$. Then any function in $\mathcal{B}_c(G)$, the space of compactly supported bounded Borel functions on G, can be viewed as an element of $C^*(G,\nu)$.

Proof. Let $(\{\beta_v^u\}, \{\mu^{\dot{u}}\})$ be the decomposition of the Haar system over the principal groupoid associated to G, and δ the associated 1-cocycle. Let m be the unique measure such that restriction of m at $C_c([u])$ is $\mu^{\dot{u}}$ for each [u]. Let m be a dominant for the family $\{\mu^{\dot{u}}\}$. Let ν_1 be the measure on G defined by

$$\int f(x)d\nu_1(x) = \left(\int \int \left(\int f(x)d\beta_u^v(x)\right) dm(v)dm(u)\right)$$

for all Borel nonnegative functions f. If $f \in \mathcal{B}_c(G)$, then f is the limit in $L^2(G, \nu_1)$ of a sequence, $(f_n)_n$, in $C_c(G)$ that is supported on some compact set K supporting f. If we write

$$M = \sup_{u,v} \beta^v_u(K^{-1}),$$

then

$$\begin{split} \|f - f_n\|_{II} &\leq \sup_{\dot{w}} M\left(\int \int \left(\int |f(x) - f_n(x)|^2 d\beta_v^u(x)\right) d\mu^{\dot{w}}(v) d\mu^{\dot{w}}(u)\right)^{\frac{1}{2}} \\ &\leq M\left(\int \int \left(\int |f(x) - f_n(x)|^2 d\beta_u^v(x)\right) dm(v) dm(u)\right)^{\frac{1}{2}}. \end{split}$$

If |||| denotes the C^* -norm, then

$$\lim_{n} \|f - f_n\| \le \lim_{n} \|f - f_n\|_{II} = 0.$$

Thus f can be viewed as an element in $C^*(G, \nu)$.

The following is an immediate consequence of Proposition 13:

Proposition 14. If G is a locally compact second countable locally transitive groupoid endowed with a Haar system $\{\nu^u, u \in G^{(0)}\}$ with bounded decomposition, then

$$C^*(G,\nu) = M^*(G,\nu).$$

Remark 15. Let *G* be locally compact locally transitive groupoid. Let *F* be a subset of $G^{(0)}$ containing only one element e(u) in each orbit [u]. It is easy to see that *F* is a closed subset of *G* and that *F* is a discrete space. Let $\sigma : G^{(0)} \to G^F$ be a regular cross section of d_F . Let us endow $\bigcup_{[u]} [u] \times G^{e(u)}_{e(u)} \times [u]$ with the topology induced from $G^{(0)} \times G^F_F \times G^{(0)}$. The topology of $\bigcup_{[u]} [u] \times G^{e(u)}_{e(u)} \times [u]$ is locally compact because $\bigcup_{[u]} [u] \times G^{e(u)}_{e(u)} \times [u]$ is a closed subset of the locally compact space

compact because $\bigcup_{[u]} [u] \times G_{e(u)}^{e(u)} \times [u]$ is a closed subset of the locally compact space $G^{(0)} \times G_F^F \times G^{(0)}$. With the operations

$$(u, x, v)(v, y, w) = (u, xy, w)$$

 $(u, x, v)^{-1} = (v, x^{-1}, u),$

 $\bigcup_{[u]} [u] \times G_{e(u)}^{e(u)} \times [u] \text{ becomes a groupoid. Define } \phi: G \to \bigcup_{[u]} [u] \times G_{e(u)}^{e(u)} \times [u] \text{ by}$

$$\phi(x) = (r(x), \sigma(r(x))x\sigma(d(x))^{-1}, d(x))$$

and note that ϕ is a Borel isomorphism which carries compact sets to relatively compact sets.

Lemma 16. Let G be locally compact second countable locally transitive groupoid. Let F be a subset of $G^{(0)}$ containing only one element e(u) in each orbit [u]. Let σ : $G^{(0)} \to G^F$ be a regular cross section of d_F . Then any compactly supported bounded Borel function on G is the pointwise limit of a uniformly bounded sequence $(f_n)_n$ of Borel functions supported on a compact set supporting f, having the property that each f_n is a linear combination of functions of the form

 $x \to g_1(r(x))g(\sigma(r(x))x\sigma(d(x))^{-1})g_2(d(x))$

where g_1, g_2 are compactly supported bounded Borel functions on $G^{(0)}$ and g is a compactly supported bounded Borel function on G_F^F .

Proof. Endow $\bigcup_{[u]} [u] \times G_{e(u)}^{e(u)} \times [u]$ with the topology induced from $G^{(0)} \times G_F^F \times G^{(0)}$

as in Remark.15. The topology of $\bigcup_{[u]} [u] \times G_{e(u)}^{e(u)} \times [u]$ is locally compact. Any

compactly supported Borel bounded function on $G^{(0)} \times G_F^F \times G^{(0)}$ is pointwise limit of uniformly bounded sequences $(f_n)_n$ of Borel functions supported on a compact set, such that each function f_n is a linear combination of functions of the form

$$(u, x, v) \rightarrow g_1(u)g(x)g_2(v)$$

where g_1, g_2 are compactly supported bounded Borel functions on $G^{(0)}$ and g is a compactly supported bounded Borel function on G_F^F . Consequently, any compactly supported bounded Borel function on $\bigcup_{[u]} [u] \times G_{e(u)}^{e(u)} \times [u]$ has the same property. Since

 $\phi: G \to \bigcup_{[u]} [u] \times G_{e(u)}^{e(u)} \times [u] \text{ defined by}$ $\phi(x) = (r(x), \sigma(r(x))x\sigma(d(x))^{-1}, d(x))$

is a Borel isomorphism which carries compact sets to relatively compact sets, it follows that any compactly supported bounded Borel function on G can be represented as a pointwise limit of a uniformly bounded sequence $(f_n)_n$ of Borel functions supported on a compact set supporting f, having the property that each f_n is a linear combination of functions of the form

$$x \to g_1(r(x))g(\sigma(r(x))x\sigma(d(x))^{-1})g_2(d(x)).$$

Corollary 17. Let G be locally compact second countable locally transitive groupoid. Let F be a subset of $G^{(0)}$ containing only one element e(u) in each orbit [u]. Let $\sigma : G^{(0)} \to G^F$ be a regular cross section of d_F . Then the linear span of the functions of the form

 $x \to g_1(r(x))g(\sigma(r(x))x\sigma(d(x))^{-1})g_2(d(x))$

where $g_1, g_2 \in \mathcal{B}_c(G^{(0)})$ and $g \in \mathcal{B}_c(G_F^F)$, is dense in the full C^* -algebra of G.

Proof. Let f be a function on G, defined by

$$f(x) = g_1(r(x))g(\sigma(r(x))x\sigma(d(x))^{-1})g_2(d(x))$$

where $g_1, g_2 \in \mathcal{B}_c(G^{(0)})$ and $g \in \mathcal{B}_c(G_F^F)$. Then f lies in $\mathcal{B}_c(G)$, and so may be viewed as an element of the $C^*(G, \nu)$, as we note in Proposition 13. Each $f \in \mathcal{B}_c(G)$ (in particular in $C_c(G)$) is the limit (pointwise and consequently in the C^* -norm according to Corollary 12) of a uniformly bounded sequence $(f_n)_n$ of Borel functions supported on a compact set supporting f, having the property that each f_n is a linear combination of functions of the required form.

Proposition 18. Let G be a locally compact second countable locally transitive groupoid endowed with a Haar system $\{\nu^u, u \in G^{(0)}\}$. Let F be a subset of $G^{(0)}$ containing only one element e(u) in each orbit [u]. Let $\sigma : G^{(0)} \to G^F$ be a regular cross section of d_F . Then

$$C^*(G,\nu) = M^*(G,\nu) = M^*_{\sigma}(G,\nu).$$

Proof. We have proved that $C^*(G,\nu) = M^*(G,\nu)$. From the preceding corollary, it follows that the linear span of the functions of the form

$$x \to g_1(r(x))g(\sigma(r(x))x\sigma(d(x))^{-1})g_2(d(x))$$

where $g_1, g_2 \in \mathcal{B}_c(G^{(0)})$ and $g \in \mathcal{B}_c(G_F^F)$ is dense in $C^*(G, \nu)$. But this space is contained in $\mathcal{B}_{\sigma}(G)$. Therefore $C^*(G, \nu) = M^*(G, \nu) = M^*_{\sigma}(G, \nu)$.

6. The case of principal proper groupoids

Notation 19. Let G be a locally compact second countable groupoid with proper orbit space. Let F be a Borel subset of $G^{(0)}$ containing only one element e(u) in each orbit [u]. Let $\sigma : G^{(0)} \to G^F$ be a cross section for $d_F : G^F \to G^{(0)}, d_F(x) = d(x)$ with $\sigma(e(v)) = e(v)$ for all $v \in G^{(0)}$ and such that $\sigma(K)$ is relatively compact in Gfor all compact $K \subset G^{(0)}$. Let $q : G \to G_F^F$ be defined by

$$q(x) = \sigma(r(x))x\sigma(d(x))^{-1}$$

We shall endow G_F^F with the quotient topology induced by q. We shall denote by $\mathbf{C}_{\sigma}(G)$ the linear span of the functions of the form

$$x \to g_1(r(x))g(\sigma(r(x))x\sigma(d(x))^{-1})g_2(d(x))$$

where $g_1, g_2 \in C_c(G^{(0)})$ and g continuous on G_F^F such that its support is relatively compact in G.

Proposition 20. Using Notation 19, if the space of continuous functions (with the respect to the quotient topology induced by q) with relatively compact support on G_F^F separates the points of G_F^F , then $\mathbf{C}_{\sigma}(G)$ is dense in $C_c(G)$ (for the inductive limit topology). In particular, if the quotient topology induced by q on G_F^F is a locally compact (Hausdorff) topology, then $\mathbf{C}_{\sigma}(G)$ is dense in $C_c(G)$.

Proof. If the space of continuous functions on G_F^F (with the respect to the quotient topology induced by q) having relatively compact support separates the points of G_F^F , then $\mathbf{C}_{\sigma}(G)$ separates the points of G. By Stone–Weierstrass Theorem, it follows that $\mathbf{C}_{\sigma}(G)$ is dense in $C_c(G)$ (for the inductive limit topology).

Proposition 21. Let G be a locally compact principal groupoid. If G is proper, then the quotient topology induced by q on G_F^F is a locally compact (Hausdorff) topology. Consequently, $\mathbf{C}_{\sigma}(G)$ is dense in $C_c(G)$ for the inductive limit topology (we use Notation 19).

Proof. Let $\pi: G \to G^{(0)}/G$ be the canonical projection. Let us note that for a principal groupoid the condition

is equivalent to

$$\pi(r(x)) = \pi(r(y)).$$

First we shall prove that the topology on G_F^F is Hausdorff. Let $(x_i)_i$ and $(y_i)_i$ be two nets with $q(x_i) = q(y_i)$ for every *i*. Let us suppose that $(x_i)_i$ converges to x and $(y_i)_i$ converges to y. Then

$$\lim \pi(r(x_i)) = \lim \pi(r(y_i)) = \pi(r(x)) = \pi(r(y)).$$

Hence q(x) = q(y), and therefore the topology on G_F^F is Hausdorff. We shall prove that q is open. If $(z_i)_i$ is a net converging to q(x) in G_F^F , then $\pi \circ r(z_i)$ converges to $\pi \circ r(x)$. Since

$$\pi \circ r : G \to G^{(0)}/G$$

is an open map, there is a net $(x_i)_i$ converging to x, such that $\pi \circ r(x_i) = \pi \circ r(z_i)$, and consequently $q(x_i) = q(z_i) = z_i$. Hence q is an open map and the quotient topology induced by q on G_F^F is locally compact.

Theorem 22. Let G be a locally compact second countable groupoid with proper orbit space. Let F be a Borel subset of $G^{(0)}$ meeting each orbit exactly once. Let $\sigma : G^{(0)} \to G^F$ be a cross section for $d : G^F \to G$ such that $\sigma(K)$ is relatively compact in G for all compact $K \subset G^{(0)}$. Let us assume that the quotient topology induced by q on G_F^F is a locally compact (Hausdorff) topology. Let $\{\nu^u, u \in G^{(0)}\}$ be a Haar system on G. Then

$$C^*(G,\nu) \subset M^*_{\sigma}(G,\nu) \subset M^*(G,\nu).$$

Proof. From Proposition 20, $\mathbf{C}_{\sigma}(G)$ is dense in $C_c(G)$ for the inductive limit topology and hence is dense in $C^*(G,\nu)$. Since $\mathbf{C}_{\sigma}(G) \subset \mathcal{B}_{\sigma}(G)$, it follows that $C^*(G,\nu) \subset M^*_{\sigma}(G,\nu)$.

Corollary 23. Let G be a locally compact second countable principal proper groupoid. Let F be a Borel subset of $G^{(0)}$ meeting each orbit exactly once. Let $\sigma : G^{(0)} \to G^F$ be a cross section for $d : G^F \to G$ such that $\sigma(K)$ is relatively compact in G for all compact $K \subset G^{(0)}$. Let $\{\nu^u, u \in G^{(0)}\}$ be a Haar system on G. Then

$$C^*(G,\nu) \subset M^*_{\sigma}(G,\nu) \subset M^*(G,\nu).$$

Proof. Applying Proposition 21, we obtain that the quotient topology induced by q on G_F^F is a locally compact (Hausdorff) topology. Therefore G satisfies the hypothesis of Theorem 22.

Definition 24. Let $\{\mu^{\dot{u}}\}_{\dot{u}}$ be a system of measures on $G^{(0)}$ satisfying:

- (1) $\operatorname{supp}(\mu^{\dot{u}}) = [u]$ for all \dot{u} .
- (2) For all compactly supported continuous functions f on $G^{(0)}$ the function

$$u \to \int f(v) \mu^{\pi(u)}(v)$$

is continuous.

We shall say that the Hilbert bundle determined by the system of measures $\{\mu^{\dot{u}}\}_{\dot{u}}$ has a continuous basis if there is sequence f_1, f_2, \ldots of real valued *continuous* functions on $G^{(0)}$ such that $\dim(L^2(\mu^{\dot{u}})) = \infty$ if and only if $||f_n||_2 = 1$ in $L^2(\mu^{\dot{u}})$ for $n = 1, 2, \ldots$ and then $\{f_1, f_2, \ldots\}$ gives an orthonormal basis of $L^2(\mu^{\dot{u}})$, while

 $\dim(L^2(\mu^{\dot{u}})) = k < \infty$ if and only if $||f_n||_2 = 1$ for $n \le k$, and $||f_n||_2 = 0$ for n > kand then $\{f_1, f_2, \ldots, f_k\}$ gives an orthonormal basis of $L^2(\mu^{\dot{u}})$.

Remark 25. Let $\{\mu_1^{\dot{u}}\}_{\dot{u}}$ and $\{\mu_2^{\dot{u}}\}_{\dot{u}}$ be two systems of measures on $G^{(0)}$ satisfying: (1) $\operatorname{supp}(\mu_i^{\dot{u}}) = [u]$ for all $\dot{u}, i = 1, 2$.

(2) For all compactly supported continuous functions f on $G^{(0)}$ the function

$$u \to \int f(v) \mu_i^{\pi(u)}(v)$$

is continuous.

Let us assume that the Hilbert bundles determined by the systems of measures $\{\mu_i^{\dot{u}}\}_{\dot{u}}$ have continuous bases. Let $f_1.f_2,\ldots$ be a continuous basis for Hilbert bundle determined by $\{\mu_1^{\dot{u}}\}_{\dot{u}}$ and let g_1,g_2,\ldots be a continuous basis for Hilbert bundle determined by $\{\mu_2^{\dot{u}}\}_{\dot{u}}$. Let us define a unitary operator $U_{\dot{u}}: L^2(\mu_1^{\dot{u}}) \to L^2(\mu_2^{\dot{u}})$ by

$$U_{\dot{u}}(f_n) = g_n \text{ for all } n.$$

Then the family $\{U_{\dot{u}}\}_{\dot{u}}$ has the following properties:

(1) For all bounded Borel functions f on $G^{(0)}$,

$$u \to U_{\pi(u)}(f)$$

- is a bounded Borel function with compact support.
- (2) For all bounded Borel functions f on $G^{(0)}$,

$$U_{\pi(u)}(\overline{f}) = \overline{U_{\pi(u)}(f)}.$$

(3) For all compactly supported continuous functions f on $G^{(0)}$ there is a sequence $(h_n)_n$ of compactly supported continuous functions on $G^{(0)}$ such that

$$\sup_{\dot{u}} \int |U_{\dot{u}}(f) - h_n|^2 d\mu_2^{\dot{u}} \to 0 \ (n \to \infty).$$

Indeed, we can define

q

$$h_n(v) = \sum_{k=1}^n g_k(v) \int f(u) f_k(u) d\mu_1^{\pi(v)}(u).$$

Remark 26. Let G be a locally compact second countable groupoid with proper orbit space. Let F be a Borel subset of $G^{(0)}$ containing only one element e(u) in each orbit [u]. Let us assume that $F \cap [K]$ has a compact closure for each compact subset K of $G^{(0)}$, and let $\sigma : G^{(0)} \to G^F$ be a cross section for $d_F : G^F \to G^{(0)}$ such that $\sigma(K)$ is relatively compact in G for all compact $K \subset G^{(0)}$. Let us endow G_F^F with the quotient topology induced by $q : G \to G_F^F$

$$(x) = \sigma(r(x))x\sigma(d(x))^{-1}, x \in G.$$

If g is continuous on G_F^F and has relatively compact support in G, and if g_1, g_2 are two functions on $G^{(0)}$ with the property that there is two sequences $(h_n^1)_n$ and $(h_n^2)_n$ of compactly supported continuous functions on $G^{(0)}$ such that

$$\sup_{\dot{u}} \int |g_i - h_n^i|^2 d\mu_2^{\dot{u}} \to 0 \ (n \to \infty)$$

for i = 1, 2, then

$$x \xrightarrow{f} g_1(r(x))g(\sigma(r(x))x\sigma(d(x))^{-1})g_2(d(x))$$

can be viewed as an element of $C^*(G,\nu)$. Indeed, it is easy to see that

$$\|f - (h_n^1 \circ r)(g \circ q)(h_n^2 \circ d)\|_{II} \to 0 \ (n \to \infty).$$

Proposition 27. Let G be a locally compact second countable principal proper groupoid. Let $\nu_i = \{\nu_i^u, u \in G^{(0)}\}, i = 1, 2$, be two Haar systems on G and let $(\{\beta_v^u\}, \{\mu_i^{\dot{u}}\})$ be the corresponding decompositions over the principal groupoid. If the Hilbert bundles determined by the systems of measures $\{\mu_i^{\dot{u}}\}_{\dot{u}}$ have continuous bases, then the C^{*}-algebras C^{*}(G, ν_1) and C^{*}(G, ν_2) are *-isomorphic.

Proof. We use Notation 19. From Proposition 20, $\mathbf{C}_{\sigma}(G)$ is dense in $C_c(G)$ for the inductive limit topology and hence is dense in $C^*(G,\nu_1)$. We shall define a *-homomorphism Φ from $\mathbf{C}_{\sigma}(G)$ to $C^*(G,\nu_2)$. It suffices to define Φ on the set of functions on G of the form

$$x \to g_1(r(x))g(q(x))g_2(d(x))$$

where $g_1, g_2 \in C_c(G^{(0)})$ and g continuous on G_F^F having relatively compact support in G. Let $\{U_{\dot{u}}\}_{\dot{u}}$ be the family of unitary operators with the properties stated in Remark 25 associated to the systems of measures $\{\mu_i^{\dot{u}}\}_{\dot{u}}, i = 1, 2$.

Let us define Φ by

$$\Phi(f) = (x \to U_{\pi(r(x))}(g_1)(r(x))g(q(x))U_{\pi(d(x))}(g_2)(d(x)))$$

where f is defined by

$$f(x) = g_1(r(x))g(q(x))g_2(d(x))$$

with $g_1, g_2 \in C_c(G^{(0)})$ and g continuous on G_F^F having relatively compact support in G.

As noted in Remark 26, the functions of the form $\Phi(f)$ can be viewed as elements of $C^*(G, \nu_2)$. With the same argument as in the proof of Theorem 9, it follows that Φ can be extended to *-isomorphism between $C^*(G, \nu_1)$ and $C^*(G, \nu_2)$.

References

- C. Anantharaman-Delaroche, J. Renault, Amenable groupoids, Monographies de L'Enseignement Mathématique, 36, L'Enseignement Mathématique, Geneve, 2000, MR 1799683 (2001m:22005), Zbl 0960.43003.
- M. Buneci, The structure of the Haar systems on locally compact groupoids, Math. Phys. Electron. J. 8 (2002) Paper 4, 11 pp., MR 1978500 (2004c:46102), Zbl 1023.46057.
- G. Mackey, Induced representations of locally compact groups. I, Ann. of Math., 55 (1952), 101–139, MR 0044536 (13,434a).
- [4] P. Muhly, J. Renault and D. Williams, Equivalence and isomorphism for groupoid C*algebras, J. Operator Theory 17 (1987), 3–22, MR 0873460 (88h:46123), Zbl 0645.46040.
- [5] P. Muhly, Coordinates in operator algebra, (Book in preparation).
- [6] A. Ramsay, Virtual groups and groups actions, Adv. in Math. 6 (1971), 253–322, MR 0281876 (43 #7590), Zbl 0216.14902.
- [7] A. Ramsay, Topologies on measured groupoids, J. Funct. Anal. 47 (1982), 314–343, MR 0665021 (83k:22014), Zbl 0519.22003.
- [8] A. Ramsay and M. E. Walter, Fourier-Stieltjes algebras of locally compact groupoids, J. Funct. Anal. 148 (1997), 314–367, MR 1469344 (99a:22010), Zbl 0901.43002.
- [9] J. Renault, A groupoid approach to C^{*}-algebras, Lecture Notes in Math., 793, Springer, Berlin, 1980, MR 0584266 (82h:46075), Zbl 0433.46049.
- J. Renault, The ideal structure of groupoid crossed product C*-algebras, J. Operator Theory, 25 (1991), 3–36, MR 1191252 (94g:46074), Zbl 0786.46050.

[11] J. Westman, Nontransitive groupoid algebras, preprint, Univ. of California at Irvine, 1967.

UNIVERSITY CONSTANTIN BRÂNCUŞI, 210152 TÂRGU-JIU, ROMANIA ada@utgjiu.ro

This paper is available via $\rm http://nyjm.albany.edu:8000/j/2005/11-12.html.$