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Symplectic torus bundles and group extensions

Peter J. Kahn

Abstract. Symplectic torus bundles ξ : T 2 → E → B are classified by the
second cohomology group of B with local coefficients H1(T 2). For B a com-
pact, orientable surface, the main theorem of this paper gives a necessary and
sufficient condition on the cohomology class corresponding to ξ for E to admit
a symplectic structure compatible with the symplectic bundle structure of ξ:
namely, that it be a torsion class. The proof is based on a group-extension-
theoretic construction of J. Huebschmann, 1981. A key ingredient is the notion
of fibrewise-localization.
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1. Introduction

A symplectic F -bundle in this paper is a smooth fibre bundle ξ : F i→ E
p→ B

whose structure group is the group of symplectomorphisms Symp(F, σ) for some
symplectic form σ on F . For such a bundle, the fibres Fb = p−1(b) admit canonical
symplectic forms σb, the pullbacks of σ via symplectic trivializations. A natural
question to ask about ξ is under what conditions the forms σb “piece together” to
produce a symplectic form on E. More exactly, when is there a closed 2-form β on
E such that

β|Fb = σb, for all b ∈ B,(1)
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with β nondegenerate? When B is connected, an argument of W. Thurston (cf. [8,
page 199]) shows that a closed 2-form β satisfying (1) exists if and only if the de
Rham cohomology class of σ is contained in image(i∗ : H2

DR(E) → H2
DR(F )).

Thurston further shows that when such a β exists and E is compact and B is
symplectic, then β may be modified to be nondegenerate while still satisfying (1).
McDuff and Salamon [8, page 202] use Thurston’s result to settle the existence
question for a large family of surface bundles:

Theorem. Suppose that F is a closed, oriented, connected surface of genus �= 1,
and let ξ : F → E → B be a symplectic F -bundle with B a compact, connected
symplectic manifold. Then, E admits a symplectic structure inducing the given
structures on the fibres.

Their argument does not apply to the case of torus bundles, however; indeed,
they present the following simple counterexample in that case. Consider the com-
position

S1 × S3 pr→ S3 H→ S2,

where H is the well-known Hopf map. This composition is the projection of a
symplectic torus bundle. No symplectic form can exist on the total space S1 × S3,
however, because H2

DR(S1 × S3) = 0.

1.1. The results. This paper obtains a necessary and sufficient condition for the
existence of β in the case of symplectic torus bundles over surfaces. Before stating
our main result, however, we remind the reader of some subsidiary facts. For any
fibre bundle ξ : F → E → B with group G, the action of G on F produces a
π0(G)-action on the homology and cohomology of F . When B is a pointed space,
there is a well-defined homomorphism π1(B) → π0(G) that gives each homology or
cohomology group of F the structure of a Z[π1(B)]-module. Now suppose that F
is the 2-torus T 2 and G = Symp(T 2, σ). It is not hard to show (see Appendices
A and B) that π0(G) ≈ SL(2,Z) and that the π0(G)-action on H1(T 2) may be
identified with the natural action of SL(2,Z) on Z2. Given any representation
ρ : π1(B) → π0(G) = SL(2,Z), we let Z2

ρ denote the corresponding Z[π1(B)]-
module.

The following proposition and remark follow immediately from known, classical
results of algebraic topology, as described in Appendices A and B.
Proposition 1.1. Assume that B has the homotopy type of a pointed, path-
connected CW complex, and choose any representation ρ : π1(B) → SL(2,Z).
Then there is a natural, bijective correspondence between the based equivalence
classes of symplectic torus bundles over B inducing the module structure Z2

ρ on
H1(T 2) and the elements of H2(B; Z2

ρ), the second cohomology group of B with
local coefficients Z2

ρ.

Remark. We call the cohomology class corresponding to the symplectic torus bun-
dle ξ the characteristic class of ξ and denote it by c(ξ). The characteristic class
c(ξ) vanishes if and only if ξ admits a section. When the representation ρ is trivial,
c(ξ) = 0 if and only if ξ is trivial.

We can now state the main result of this paper.
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Theorem 1.1. Suppose that ξ is a symplectic torus bundle over a connected surface
B. Then the total space of ξ admits a closed form β satisfying (1) if and only if
the characteristic class c(ξ) is a torsion element of H2(B; Z2

ρ). If, in addition, B is
compact and orientable and such a form exists, it can be chosen to be a symplectic
form.

The last statement of the theorem is simply an application of Thurston’s ar-
gument mentioned above. So our proof of the theorem focuses exclusively on the
existence of a closed 2-form β satisfying (1).

The following consequences of the theorem are almost immediate. We give proofs
in §5.

Corollary 1.2. Let B be a connected surface, and let ρ : π1(B) → SL(2,Z) be a
representation. Among the symplectic torus bundles over B that induce the rep-
resentation ρ, there are, up to equivalence, only finitely many whose total spaces
admit closed forms β satisfying (1).

Corollary 1.3. Every principal torus bundle has a canonical structure as a sym-
plectic torus bundle. Let ξ : T 2 → E → B be such a bundle, with B a connected
surface. Then, E fails to admit a closed 2-form β satisfying (1) if and only if B is
closed and orientable and ξ is nontrivial.

A specialization of this corollary perhaps deserves a separate statement.

Corollary 1.4. Suppose the closed, connected symplectic 4-manifold E admits a
free T 2-action such that the orbits are symplectic submanifolds. Then, as T 2-
manifolds, E ≈ T 2 × (E/T 2).

Remark. There does not appear to be a reasonable, nontrivial sense in which the
T 2-equivariant diffeomorphism of this corollary can be taken to be a symplectomor-
phism. There is simply too much leeway allowed by the hypotheses for symplectic
forms on E.

The proof of Theorem 1.1 breaks into three cases according as the base surface
B is nonclosed, closed of genus zero, and closed of genus different from zero. The
first two cases are substantially easier than the third and are proved at the end of
this section and in §4, respectively. In these two cases, the theorem reduces to the
following propositions.

Proposition 1.2. Every symplectic torus bundle over a connected, nonclosed sur-
face admits a section and has a total space that admits a closed 2-form β satisfying
(1).

Proposition 1.3. (a) The total space of a symplectic torus bundle over S2 ad-
mits a closed 2-form satisfying (1) if and only if the bundle is trivial. (See
the reference to [3] in the remarks at the end of this section.)

(b) Let E be the total space of a symplectic torus bundle ξ over RP 2. If the
representation ρ corresponding to ξ is trivial, then E admits a closed 2-form
β satisfying (1). If ρ is nontrivial, then E admits such a 2-form if and only
if c(ξ) = 0, that is, if and only if ξ admits a section.
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The case in which B is a closed surface of genus �= 0 forms the heart of the paper
and occupies §§2,3. The following two examples suggest the variety of concrete
possibilities in this case. In both examples the base space B is itself the torus T 2.
Thus, in both, the representation ρ is a homomorphism π1(T 2) = Z2 → SL(2,Z).

Example 1. For any (a, b) ∈ Z2, define ρ by the equation

ρ(a, b) =
(

1 b
0 1

)
.

In this example, one computes that the bundles are classified by H2(T 2; Z2
ρ) = Z.

Consequently, up to equivalence, there is only one torus bundle ξ — namely, the one
satisfying c(ξ) = 0 — for which the total space admits a symplectic form satisfying
(1). According to the classification, this is the unique bundle admitting a section.
The total space of ξ is the renowned Kodaira–Thurston manifold, the earliest known
example of a symplectic manifold that is not Kähler (cf. [8, page 89]).

Example 2. Let m and n be any fixed integers ≥ 0. Then, for (a, b) ∈ Z2, define
ρ by

ρ(a, b) =
(−2mn+ 1 2mn2 + n

−m mn+ 1

)a+b

.

In this example, the bundles are classified by H2(T 2; Z2
ρ) = Zm ⊕ Zn. So, when

m,n �= 0, there are exactly mn symplectic torus bundles over the torus, and, for
every one of them, the total space admits the desired symplectic form.

Both examples proceed by computing H2 and then applying Theorem 1.1. The
computation begins with Poincaré duality for T 2 (with twisted coefficients), which
implies that the desired result is just the group of coinvariants of the module Z2

ρ

(cf. [1, page 57]). We leave this computation to the reader.

1.2. Reformulating Thurston’s criterion. We conclude this introduction with
a brief reformulation of Thurston’s cohomology criterion for the existence of the
desired closed 2-forms β in the context of symplectic torus bundles. This will
immediately imply Proposition 1.2.

Thurston’s criterion is stated in our opening paragraph in terms of de Rham
cohomology, but clearly, by de Rham’s theorem, it may be equivalently stated in
terms of singular cohomology with real coefficients. In fact, a further easy reduc-
tion is desirable: namely, we pass to rational coefficients. Indeed, note that since
H2(T 2; R) ≈ R, the existence of a nontrivial class in the image of i∗ : H2(E; R) →
H2(T 2; R) is equivalent to the surjectivity of this map, and this in turn is easily
checked to be equivalent to the surjectivity of i∗ : H2(E; Q) → H2(T 2; Q) ≈ Q.

Now using rational coefficients, we consider the Serre cohomology spectral se-
quence for the symplectic torus bundle ξ : T 2 i→ E

p→ B, for which the E2-term
is given by

Ep,q
2 = Hp(B;Hq(T 2; Q)).

Therefore, E0,2
2 = H0(B;H2(T 2; Q)) = H2(T 2; Q)π1(B), the group of π1(B)-in-

variant classes in H2(T 2; Q). But π1(B) acts via symplectomorphisms, which are
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orientation-preserving, so E0,2
2 = H2(T 2; Q). Now when B is a surface, its coho-

mology vanishes above dimension two, so that d0,2
2 is the only possibly nontrivial

differential issuing from E0,2
r , r ≥ 2. Thus

ker(d0,2
2 : H2(T 2; Q) → H2(B;H1(T 2; Q))) = E0,2

∞ ,

which equals i∗(H2(E; Q)). Therefore, in this context, Thurston’s cohomology
criterion becomes

d0,2
2 = 0.(2)

Proof of Proposition 1.2. Proposition 1.2 now follows easily, using the fact that
every connected, nonclosed surface has the homotopy type of a 1-dimensional sim-
plicial complex. Every F -bundle over such a base space admits a section when
F is path-connected. Moreover, the target of d0,2

2 , namely H2(B;H1(T 2; Q)), is
identically zero, so (2) is satisfied. �
Remarks. To conclude this introduction, I am pleased to to acknowledge my in-
debtedness to K. Brown for a number of very helpful conversations during the
preparation of this paper. I also want to mention two related papers, which were
brought to my attention after this work was completed. The first is a paper by
Hansjörg Geiges [3], which deals primarily with the case of torus bundles over a
torus. However, it also obtains (p. 545) our Proposition 1.3(a) — the case B = S2.
The second paper is an e-print by Rafa�l Walczak [11], who uses Seiberg–Witten
theory to answer the question of when the total space of the bundle admits a sym-
plectic structure (whether or not it is compatible with the fibering). This last can
be viewed as complementary to the current paper.

2. An interpretation of the main theorem in terms of group
extensions

Let B be a connected, closed surface of genus �= 0 and fundamental group π.
As is well-known, B is a K(π, 1), and so one sees easily that the homotopy exact
sequence of the symplectic torus bundle ξ : T 2 i→ E

p→ B collapses to the short
exact sequence

E : Z2 i∗� G
p∗� π,(3)

which will be convenient to regard as a group extension of π by Z2. Thus, the
group G equals π1(E), and E is a K(G, 1). Huebschmann [6] uses the cohomology
spectral sequence of (3) (which is the same as the Serre spectral sequence of ξ) and
obtains group-extension-theoretic interpretations of some of its differentials. We
are interested in his interpretation of

d0,2
2 : H2(Z2; Q) → H2(π;H1(Z2; Q)).

Here, we follow Huebschmann and use group-cohomology notation for the cohomol-
ogy groups, but of course these are the same as the cohomology groups of the base
and fibre of ξ as before. Since 2-dimensional group cohomology classifies group ex-
tensions with abelian kernel, the map d0,2

2 may be regarded as mapping extensions
of Z2 by Q — more precisely, central extensions, since Z2 acts trivially on Q — to
extensions of π by H1(Z2; Q). Huebschmann presents a construction that uses E

to pass from an extension E1 of the first kind to an extension E2 of the second.
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In what follows, we shall refer to the 2-dimensional cohomology class correspond-
ing to an extension E∗ as c(E∗).

2.1. Huebschmann’s construction. Let E1 denote an arbitrary central exten-
sion of Z2 by Q

E1 : Q � G1

r1� Z2.(4)

We follow Huebschmann by using E and E1 to construct an extension E2

E2 : H1(Z2; Q) � G2 � π.(5)

We do this in several steps.

Step (a): Since, in the extension E, Z2 is normal in G, inner automorphisms of G
determine automorphisms of Z2. Thus, we have a representation

ρ : π → Aut(Z2) = GL(2,Z).

Recalling that E comes from a symplectic torus bundle, our comment in §1.1 implies
that

ρ(π) ⊆ SL(2,Z).(6)

We shall also make use of the composition

G
p∗� π

ρ→ GL(2,Z).

Now consider an automorphism, h, of G1. Since ker(r1) of (4) may be characterized
as the set of all infinitely divisible elements of G1, we have h(ker(r1)) = ker(r1), so
that h induces an automorphism f of Z2. The rule h �→ f , thus, gives a represen-
tation

ρ1 : Aut(G1) → Aut(G1/Q) = GL(2,Z).(7)

Lemma 1. SL(2,Z) ⊆ ρ1(Aut(G1)).

Proof. An automorphism f : Z2 → Z2 can be used to construct a pullback exten-
sion

f �E1 : Q � f �G1 � Z2(8)

of E1. By naturality, c(f �E1) = f∗(c(E1)), where f∗ is the automorphism of
H2(Z2; Q) ≈ Q induced by f . One checks easily that this automorphism is multi-
plication by det(f) = ±1. Therefore, if f belongs to SL(2,Z), we have c(f �E1) =
c(E1), implying an equivalence of extensions E1 ≈ f �E1. Post-composing this with
the canonical map of extensions f �E1 → E1, which equals f on Z2, we obtain an
automorphism of the extension E1, yielding an automorphism h : G1 → G1 such
that ρ1(h) = f . �

The homomorphisms ρ ◦ p∗ and ρ1 allow us to form the fibre product Π =
G×GL(2,Z) Aut(G1). Let p1 and p2 denote the projections Π → G, Π → Aut(G1),
respectively. Note that the inclusions in (6) and Lemma 1 combine to show that
p1 is surjective.
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Step (b): Combining (3) and (4), we have a composite homomorphism

λ : G1

r1� Z2 i∗� G.(9)

and a homomorphism µ : G1 → Π given by

µ(x) = (λ(x), ιx),(10)

where ιx denotes inner automorphism by x. It is not hard to check that

ρ ◦ p∗(λ(x)) = ρ1(ιx) = I,

where I is the 2 × 2 identity matrix in GL(2,Z). Therefore, µ does indeed take
values in Π. Let G2 denote the quotient Π/im(µ) and λ2 the projection Π → G2.

Step(c): Note that µ vanishes on ker(r1) so that it factors as G1

r1� Z2 � Π,
where the second map lifts the injection i∗ : Z2 � G. It follows that p1 maps
im(µ) bijectively onto im(i∗) , which implies that p1 descends to a surjection r :
G2 � π, and λ2 maps ker(p1) = H1(Z2; Q) isomorphically onto ker(r). Therefore,
r : G2 � π is an extension of π by H1(Z2; Q), which is the desired extension E2 (see
(5) above). The following diagram of exact sequences summarizes the situation:

0 0 0� � �
Q

0−−−−→ H1(Z2; Q) H1(Z2; Q)� � �
G1

µ−−−−→ Π λ2−−−−→ G2 −−−−→ 0

r1

� p1

� r

�
0 −−−−→ Z2 i∗−−−−→ G

p∗−−−−→ π −−−−→ 0� � �
0 0 0

Theorem (Huebschmann, [6]). d0,2
2 (c(E1)) = c(E2).

Huebschmann’s result allows us to analyze properties of d0,2
2 (e.g., condition

(2)) by applying his construction to a certain family of central extensions. Note,
however, that the family we are interested in may be described as H2(Z2; Q) ≈ Q, a
1-dimensional vector space over Q. So, to determine the vanishing of d0,2

2 , it suffices
to analyze Huebschmann’s construction for any single central extension of Z2 by Q

that represents a nonzero element of cohomology. We describe such an extension
shortly, but first we must make a short preparatory digression.
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2.2. Fibrewise-localization. The theory of localization in algebraic topology has
been well-known since the work of Quillen, Sullivan, Bousfield, Kan, Dwyer, Hilton,
Mislin and others. We summarize only that small fragment of the subject that we
need here. A useful reference for the reader is [5]. We shall confine ourselves to
localizing at 0, i.e., to rationalization, although most of what we describe applies
to the general case.

Localization of a nilpotent group N is equivalent to localization of the Eilenberg-
MacLane space K(N, 1). We’ll use the language of groups here, however, rather
than that of topology. For the moment, we restrict entirely to nilpotent groups.
A local group may be defined here as a nilpotent group that is uniquely p-divisible
for all primes p. A localization of the nilpotent group N consists of a localization
homomorphism (or localization map) � : N → N0, where N0 is local, such that � is
universal for homomorphisms ofN into local groups (i.e., every such homomorphism
h : N → L factors as h0� for a unique homomorphism h0 : N0 → L). N0 and � are
uniquely determined up to the obvious equivalence. When N is abelian, N0 may be
taken to be N ⊗Q and � given by x �→ x⊗ 1. A key fact about localization is that
localization maps induce localization homomorphisms of homology. Localization
respects exact sequences. Indeed, it is not hard to show that, given any exact
sequence S of nilpotent groups, we may localize its terms and maps, obtaining an
exact sequence S0 of local groups and a map of exact sequences �S : S → S0 that
localizes the individual terms. Thus, we may apply this to group extensions in
which all the groups are nilpotent.

Let

S : N ′ � N � N ′′

be a short exact sequence of nilpotent groups, and let

S0 : N ′
0 � N0 � N ′′

0

denote its localization. Then �S may be thought of as a triple of localization maps
(�N ′ , �N , �N ′′). We use �N ′′ : N ′′ → N ′′

0 to pull back the sequence S0 to an exact
sequence

Sf0 : N ′
0 � Nf0 � N ′′,

which we call the fibrewise-localization of S. The pullback construction produces a
natural map of exact sequences �f : S → Sf0 which on N ′′ is just the identity and
on N ′ is just the localization map �N ′ : N ′ → N ′

0.
While this construction is perfectly valid, we want to use fibrewise-localization in

the case of group extensions with abelian kernel without assuming any nilpotency
restrictions. So we present another construction, valid for all such extensions. Con-
sider a group extension with abelian kernel A,

S : A � B � C,(11)

and consider any normalized 2-cocycle φ associated with S. This is a function
φ : C× C → A subject to normalization and 2-cocyle identities (cf. [1, pp. 91 ff.]).
φ is defined by choosing a function C → B that splits the surjection B � C in
(11) and measuring how far this deviates from being a homomorphism. Now, form

the composite C× C
φ→ A

�→ A0, where � is a localization map. This composite is
a new normalized 2-cocycle for an extension of C by A0. We define this extension
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to be the fibrewise-localization of S and denote it by Sf0. There is an obvious
map of extensions S → Sf0 with the same properties as before. It is not hard to
show, using basic facts about extensions, that, up to equivalence of extensions, this
construction is independent of the initial choice of 2-cocycle φ corresponding to S

and independent of the choice of localization map �, and it coincides with our earlier
description of fibrewise-localization for nilpotent extensions of nilpotent groups with
abelian kernels. Note also that this construction shows that if c(S) and c(Sf0) are
the cohomology classes of the corresponding extensions (i.e., the cohomology classes
of the corresponding 2-cocycles), then the homomorphism H2(C;A) → H2(C;A0)
induced by the localization map � : A→ A0 sends c(S) to c(Sf0).

We now present a useful and well-known extension of Z2 by Z.
The discrete Heisenberg group H may be described as the set Z3 of all integer

triples with the following multiplication

(r, s, t) • (u, v, w) = (r + u+ sw, s+ v, t+ w).(12)

The center Z[H] and commutator [H,H] both equal Z = Z × 0 × 0, so that we
clearly obtain the central extension

H : Z � H � Z2.

We call this the Heisenberg extension. The following result about H is well-known.
For the convenience of the reader, we present a proof due to K. Brown.

Lemma 2. The cohomology class c(H) generates H2(Z2; Z) ≈ Z.

Proof. Let the group H be given by the presentation 〈x, y : [x, [x, y]], [y, [x, y]]〉. If
a, b ∈ H are the triples (0, 1, 0), (0, 0, 1), respectively, then it is not hard to check
that they generate H, that [a, b] = (1, 0, 0), and that, accordingly, a and b satisfy
the relations for x and y in H above. Therefore, the rule x �→ a, y �→ b well-
defines a surjective homomorphism f : H → H. We let the reader check that this is
injective as well. Thus, H ≈ H, so that, given any group H ′ and elements c, d ∈ H ′

satisfying the stated relations, there is a unique homomorphism H → H ′ sending
a to c and b to d.

We apply this last fact to an arbitrary central extension M : Z � M � Z2,
choosing the elements c, d ∈ M to be arbitrary lifts of (1, 0), (0, 1) ∈ Z2, respec-
tively. Let h : H → M be the corresponding homomorphism. h clearly induces
a map of extensions H → M which is the identity on Z2 and is an endomorphism
on Z, say multiplication by some integer k. By tracing out the definition of the
2-cocycle corresponding to an extension, it is easy to check that c(M) = kc(H).
Thus, c(H) generates H2(Z2; Z) ≈ Z. �

We now define the extension of Z2 by Q that interests us: namely, it is the
fibrewise-localization of the Heisenberg extension, Hf0.

Corollary 3. c(Hf0) generates the 1-dimensional Q vector space H2(Z2; Q).

Proof. Let �∗ : H2(Z2; Z) → H2(Z2; Q) denote the homomorphism induced by
the coefficient injection Z → Q. As already observed, �∗ maps c(H) to c(Hf0). At
the same time, it is clear that �∗ is a localization map, essentially the same as the
standard injection Z → Q. Therefore, by the foregoing lemma, c(Hf0) �= 0, as
desired. �
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2.3. Reinterpreting the main theorem. Let us return to the context with
which this section opened: namely, to the symplectic torus bundle ξ : T 2 i→ E

p→ B
with B a closed, connected K(π, 1) surface. The group π acts via symplectomor-
phisms on H1(T 2) = Z2. Thus, we have a representation ρ and corresponding
(left) Z[π]-module Z2

ρ, as explained before. In a similar way, the cohomology group
H1(T 2; Q) ≈ Q2 receives the structure of a Z[π]-module. We want this to be a left
Z[π]-module also despite the contravariance of cohomology, so we use the standard
convention for this, which we may describe here as follows: identify H1(T 2; Q) with
Hom(H1(T 2),Q), and for any α ∈ π, h ∈ Hom(H1(T 2),Q), and x ∈ H1(T 2), let
(αh)(x) = h(α−1x).

We now return to our use of group cohomology notation in the following lemma,
the proof of which is given in the next section.

Lemma 4. Let D : H1(Z2; Q) → H1(Z2; Q) denote Poincaré duality, and let ψ be
the composite

Z2 = H1(Z2; Z) �→ H1(Z2; Q) D−1

−→ H1(Z2; Q),

where, here, � is the localization map induced by the usual injection Z � Q. Then,
using the module structures described above, ψ is a Z[π]-injection and a localization
map. Therefore,

ψ� : H2(π; Z2) → H2(π;H1(Z2; Q))

induced by ψ is also a localization map.

We can now state a reinterpretation of Theorem 1.1 in this group-extension
context.

Theorem 2.1. Let Hf0 be the fibrewise-localization of the Heisenberg extension,
and let E be the group extension (3) described at the start of §2. Apply Hueb-
schmann’s construction to these, obtaining an extension E2 as in (5). Then,

ψ�(c(E)) = −c(E2).

We prove Theorem 2.1 in the next section. We close this section by using it to
prove Theorem 1.1 in case B is closed, connected of genus �= 0:

Proof. Let ξ : T 2 i→ E
p→ B be a symplectic torus bundle with corresponding

group extension E. As discussed in Appendix C, the classes c(ξ)and c(E) are the
same, so we may deal exclusively with the latter. Suppose it has finite order. Then,
by Huebschmann’s theorem and Theorem 2.1,

d0,2
2 (c(Hf0)) = c(E2) = −ψ�(c(E)) = 0.

By Corollary 3 of §2.2, this implies that d0,2
2 = 0, which is condition (2). Therefore,

as already argued, the desired form β exists. The converse follows by reversing the
steps. �

3. Proof of Theorem 2.1

The basic idea of the proof of Theorem 2.1 is to produce suitable 2-cocycles f
and F for the extensions E and E2, respectively, and then to show that, if ψ� is
the chain map induced by ψ, then ψ�(f) = −F . To carry this out, we need to be
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more explicit about ψ and about the groups and maps occurring in Huebschmann’s
construction.

3.1. The map ψ. We begin with a proof of Lemma 4 of §2.

Proof. That ψ = D−1� is a localization map and injective is obvious. Choose
any α ∈ π, and let a be a symplectomorphism of T 2 representing α. This is a
degree-one map. Therefore, the standard cap product identity yields a∗Da∗ = D,
or a∗D = D(a∗)−1, that is α D = Dα. So, D is Z[π]-equivariant. That � is also
equivariant is immediate from definitions. Hence ψ is a map of Z[π]-modules.

It remains to show that ψ� : H2(π; Z2) → H2(π;H1(Z2; Q)) is a localization
map. By definition, ψ� factors as

H2(π; Z2)
��→ H2(π; Q2)

(D−1)�−→≈ H2(π;H1(Z2; Q)).

So, ψ� is equivalent to ��. But π is finitely-presented, hence of type FP2 ([1, page
197]). It follows without difficulty that �� is equivalent to the standard localization
map H2(π; Z2) → H2(π; Z2) ⊗ Q. �

For computations which follow below, it will be useful to obtain an alternative
description of ψ. Accordingly, we let e1 and e2 be the standard generators of
H1(Z2; Z) = Z2; we may write a1e1 +a2e2 as (a1, a2). Let e∗1, e

∗
2 denote the basis of

H1(Z2; Q) dual to �(e1), �(e2), using this to write elements of H1(Z2; Q) as pairs.
Then, one easily computes, ψ(e1) = e∗2 and ψ(e2) = −e∗1, so that, in pair notation,

ψ(a1, a2) = (−a2, a1).(13)

3.2. E and the 2-cocycle f . Recall that E is the extension

Z2 i∗� G
p∗� π.

Choose an arbitrary function s : π → G splitting p∗ and define the normalized
2-cocycle f by the usual rule

i∗(f(x, y)) = s(x)s(y)s(xy)−1.(14)

Now f , together with the representation ρ : π → GL(2,Z) induced by E, can be
used to form another extension E′ of π as follows: In the cartesian product Z2 × π
define a group multiplication • by the rule

E′ : (u, x) • (v, y) = (u+ ρ(x)(v) + f(x, y), xy).(15)

Define homomorphisms Z2 � Z2 × π and Z2 × π � π by the rules u �→ (u, ε) and
(u, x) �→ x, respectively, where ε denotes the identity of π. These piece together to
give the extension E′. It is a classical fact that E and E′ are equivalent extensions,
and so c(E) = c(E′). Therefore, without losing generality, we may assume that
E = E′.

With this assumption, the map λ : Hf0 = G1 → G defined in (9) can now be
expressed as follows:

λ(a, b, c) = (b, c, ε),

where we omit extra parentheses when harmless. We want to get a similar explicit
representation of the map µ used above to define G2, and for this, we need some
computational information about Hf0 and Aut(Hf0).
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3.3. Computational information about Hf0 and Aut(Hf0). We shall al-
ways regard H as embedded in Hf0 via the inclusion Z3 ⊆ Q × Z2.

Given elements x and y in some group, we let xy denote the conjugate xyx−1.
The following lemma may be easily derived by the reader from the definition of the
operation (12).

Lemma 5. In Hf0,
(a,b,c)(x, y, z) = (x+ bz − cy, y, z),

[(a, b, c), (x, y, z)] = (bz − yc, 0, 0).

Corollary 6. The center Z[Hf0] equals Q × 0 × 0, setwise and as abelian groups.

Thus, the surjection Hf0 → Z2 in Hf0 is just the projection Hf0 → Hf0/Z[Hf0].
Recall that we have denoted this r1 in our description of Huebschmann’s construc-
tion (cf. (4)).

Lemma 7. Every endomorphism h of H (resp., Hf0) is uniquely determined by
the values h(0, 1, 0) and h(0, 0, 1).

Proof. The result is obvious for H, since (0, 1, 0) and (0, 0, 1) generate it. So, sup-
pose h is an endomorphism of Hf0. Similarly to our discussion above Equation (7),
we observe here that the center Z[Hf0] = Q×0×0 may be characterized as the set
of all infinitely-divisible elements of Hf0, which implies that h(Z[Hf0]) ⊆ Z[Hf0].
Thus, h|Z[Hf0] may be identified with an endomorphism of Q. But every such
endomorphism is uniquely determined by its value at any single nonzero element.
Therefore, h|Z[Hf0] is determined by h(1, 0, 0) = [h(0, 1, 0), h(0, 0, 1)]. Since Hf0

is generated by H ∪ Z[Hf0], the result holds for Hf0. �
Lemma 8. For any triples (a, b, c), (d, e, f) ∈ Hf0, there exists an endomorphism
h of Hf0 satisfying h(0, 1, 0) = (a, b, c) and h(0, 0, 1) = (d, e, f). h is an automor-
phism if and only if the determinant∣∣∣∣b c

e f

∣∣∣∣ = ±1

Proof. By Lemma 5 and Corollary 6, the commutator [(a, b, c), (d, e, f)] belongs to
Z[Hf0], so by the argument in the proof of Lemma 2 of §2.2, there is a unique ho-
momorphism k : H → Hf0 satisfying k(0, 1, 0) = (a, b, c) and k(0, 0, 1) = (d, e, f).
By Lemma 5, k(1, 0, 0) = (bf − ec, 0, 0), so it belongs to Z[Hf0], and there is a
unique extension of k|Z[H] to an endomorphism of Z[Hf0]. Every element y of
Hf0 can be written as a product zx, with z ∈ Z[Hf0] and x ∈ H, so we attempt
to define h by the rule, h(y) = k(z)k(x). It is an easy exercise to verify that this
gives a well-defined endomorphism. Now suppose that h is an automorphism. Then
it induces an automorphism of Z2 given by the matrix(

b c
e f

)
,

which immediately shows that the stated determinant must equal ±1. Conversely,
if the determinant is ±1, then by what was just said, the endomorphism of Z2

induced by h is an automorphism, and, by the equation h(1, 0, 0) = (bf − ec, 0, 0),
so is the endomorphism of Z[Hf0]. The Five-Lemma then implies that h is an
automorphism. �
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We now introduce some convenient ‘matrix’ notation for automorphisms h ∈
Aut(Hf0). If h(0, 1, 0) = (a, b, c) and h(0, 0, 1) = (d, e, f), as above, we associate
with h the matrix 

a d
b e
c f


 .

We may occasionally wish to abbreviate this by letting, say, u denote the top row
and, say, M the remaining 2 × 2 submatrix and writing the above matrix as(

u
M

)
.

Of course, the identity automorphism has the obvious matrix representation
0 0

1 0
0 1


 .

Slightly less obvious, but useful, is the matrix representation of the inner automor-
phism ιx, where x = (a, b, c). An easy application of Lemma 5 and Equation (13)
above shows that this is 

−c b
1 0
0 1


 =

(
ψ(b, c)
I

)
,

where I is the 2×2 identity matrix. It is possible to work out the multiplication, i.e.,
composition, in Aut(Hf0) in terms of this notation, but the formula is complicated
and not particularly useful here — in addition to the usual quadratic terms of
linear algebra, there are also third and fourth order terms. We do record one
special case, however: namely, the case of elements of the kernel of the natural
projection ρ1 : Aut(Hf0) → GL(2,Z) in (7). In matrix notation, these elements
consist of all matrices of the form, (

u
I

)
.

In this case, one computes easily that(
u
I

)
◦

(
v
I

)
=

(
u+ v
I

)
.

Thus, the kernel is isomorphic, as an abelian group, to Q2. Now, in fact, we
know this for other reasons: the kernel is known to be isomorphic to Hom(Z2,Q) ≈
H1(Z2; Q) ≈ Q2. However, it is convenient for our computations to have an explicit
realization as Q2.

The following lemma provides a critical ingredient in the proof of Theorem 2.1:

Lemma 9. ρ1 : Aut(Hf0) → Aut(Z2) = GL(2,Z) is a split surjection.

Proof. That ρ1 is surjective is an immediate corollary of Lemma 8. To show that
it splits, we consider the extension H1(Z2; Q) � Aut(Hf0)

ρ1� GL(2,Z), which
represents an element of H2(GL(2,Z);H1(Z2; Q)). Now, the virtual cohomological
dimension of GL(2,Z) is 1 ([1, page 229]). It follows easily that Hi(GL(2,Z);V ) = 0
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for all i ≥ 2 and all Q[GL(2,Z)]-modules V . Thus, H2(GL(2,Z);H1(Z2; Q)) = 0,
implying that ρ1 splits. �

Remark. A stronger result holds than what is given by this lemma. Specifically, it
is possible to define an explicit splitting of the the surjection Aut(H) → Aut(Z2),
which then yields a splitting of ρ1. A description of this is somewhat lengthy, so
we have opted for the more abstract, shorter proof above.

Choose and fix an arbitrary (homomorphic!) splitting τ : GL(2,Z) → Aut(Hf0).

3.4. The proof of Theorem 2.1. We begin by rewriting the definition of the
map µ : Hf0 → Π = G×GL(2,Z) Aut(Hf0) in terms of the notation just introduced.
Recall that, for z ∈ Hf0, µ(z) = (λ(z), ιz), as above in (10) and ff. Setting z =
(a, b, c) and using results in §§3.2, 3.3, we have

µ(a, b, c) =


(b, c, ε),


−c b

1 0
0 1





 .(16)

We now proceed to define a 2-cocycle F for the extension E2 by first defining
a function t : π → G2 that splits the surjection r : G2 � π . Recall that the
standard projection Π → G2 = Π/im(µ) is denoted λ2. For any w ∈ Π, let us write
λ2(w) = [w]. Then, for any x ∈ π, we define t(x) by

t(x) = [(0, 0, x), τ(ρ(x))].(17)

Now we define F by the usual formula:

j(F (x, y)) = t(x)t(y)t(xy)−1,(18)

where j : H1(Z2; Q) → G2 is the inclusion onto ker(r). Let us make j more explicit.
Choose any φ ∈ H1(Z2; Q) = Hom(Z2,Q). Then j(φ) is precisely the image under
λ2 of the following pair in G×GL(2,Z) Aut(Hf0) = Π:

(0, 0, ε),


φ(e1) φ(e2)

1 0
0 1





 ,(19)

where, as before, e1, e2 are the standard generators of Z2. Now using Equation
(15), which gives the multiplication in G, we can compute t(x)t(y):

t(x)t(y) = [(0, 0, x)(0, 0, y), τ(ρ(x))τ(ρ(y))]

= [(f(x, y), xy), τ(ρ(xy))]

=
[
(f(x, y), ε),

(
0
I

)]
[(0, 0, xy), τ(ρ(xy))].

Note that the second and third equalities follow from the definition of the mul-
tiplication in G, as given in Equation (15), as well as the fact that τ and ρ are
homomorphisms! Now, using Equation (17), we get

t(x)t(y) =
[
(f(x, y), ε),

(
0
I

)]
t(xy),
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which, when combined with (18), yields

j(F (x, y)) =
[
(f(x, y), ε),

(
0
I

)]
.

Setting f(x, y) = (f1, f2) = f1e1 +f2e2 ∈ Z2 and applying Equations (16) and (19),
this becomes

j(F (x, y)) =


(0, 0, ε),


f2 −f1

1 0
0 1







= j(−ψ(f(x, y))).

Since j is injective, ψ(f(x, y)) = −F (x, y), or ψ�(f) = −F . This completes our
proof of Theorem 2.1.

4. The main theorem when B = S2 or RP 2

Let ξ : T 2 i→ E
p→ B be a symplectic torus bundle with B a closed genus zero

surface. In this case, Theorem 1.1 reduces to Proposition 1.3, which we prove in
this section by methods essentially unrelated to our earlier arguments.

First we deal with the case B = S2.

Proof of Proposition 1.3(a). As we explain in Appendix B, the classification of
symplectic torus bundles over a simply-connected space is the same as the clas-
sification of principal torus bundles over that space. It is well-known that when
B = S2 these are classified by π1(T 2). Indeed, the homotopy class corresponding
to ξ may be described as follows (cf. [10, page 98]). Consider the following portion
of the exact homotopy sequence of ξ:

π2(S2) ∂→ π1(T 2) → π1(E) → 0.

Then the required homotopy class is ±∂(ι) ∈ π1(T 2), where ι is the class of the
identity map of S2. Since π1(E) is a homomorphic image of π1(T 2), it is abelian
and thus equals H1(E). It follows that this last has rank one or two according as ξ
is nontrivial or trivial, respectively. By Poincaré duality, which applies because E
is closed and orientable, the same is true of the rank of H3(E).

We now turn to the following portion of the Wang sequence for ξ:

H2(E; Q) i∗→ H2(T 2; Q) θ→ H1(T 2; Q) → H3(E; Q) → 0.

Clearly, i∗ in this sequence is onto when H3(E) has rank two and 0 when H3(E) has
rank one. Since the surjectivity of i∗ with rational coefficients is equivalent to the
existence of the desired form β, this concludes the proof of Proposition 1.3(a). �

We now deal with the case B = RP 2. Let π : S2 → RP 2 be the double cover,
and let Ẽ be the total space of the pullback π∗ξ, a symplectic torus bundle over
S2. Then we have the following lemma:
Lemma 10. The total space E of ξ admits a closed 2-form β satisfying (1) if
and only if Ẽ does.

Proof. (⇒): Let π : Ẽ → E be the bundle map over π given by the pullback
construction. If β is a closed 2-form on E satisfying (1), then π∗(β) is a closed
2-form on Ẽ satisfying (1).
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(⇐): Let b : Ẽ → Ẽ be the nontrivial deck transformation. It is not hard to
check, using the definition of the pullback construction, that b maps fibres of Ẽ to
fibres so as to preserve the pullback symplectic structures. Now let γ be a closed
2-form on Ẽ satisfying (1), and define

β̃ =
1
2

(γ + b∗γ).

Since β̃ is invariant under deck transformations it descends to a closed 2-form β on
E. It clearly also satisfies (1), which implies the same for β. �

This lemma immediately implies the first statement of Proposition 1.3(b).

Corollary 11. Suppose that the representation ρ : π1(RP 2) → GL(2,Z) is trivial.
Then E admits a closed 2-form β satisfying (1).

Proof. If the module structure on Z2 is trivial, then H2(RP 2; Z2
ρ) ≈ (Z2)2. Clearly

then the map π∗ : H2(RP 2; Z2
ρ) → H2(S2; Z2) ≈ Z2 is trivial. By the classification

theorem, it follows that the pullback π∗(ξ) is trivial. But Proposition 1.3(a) then
implies that the total space of this pullback admits the desired 2-form. Therefore,
by the lemma, so does E. �

It remains to deal with the case B = RP 2, ρ nontrivial. Since we are dealing
with a symplectic torus bundle, ρ must take values in SL(2,Z), which easily implies
that im(ρ) = {±I}. We now consider the cohomology Serre spectral sequence of
the covering π : S2 → RP 2, which has

Ep,q
2 = Hp(Z2;Hq(S2; Z2

ρ))

and converges to H∗(RP 2; Z2
ρ). Here, the group Hq(S2; Z2

ρ) is the ordinary coho-
mology of S2 with Z2 coefficients, but the action of Z2 is a joint action, simultaneous
on (the chains of) S2 (via the antipodal map) and on Z2 via ρ. It is easy to see
that H0(S2; Z2

ρ) ≈ Z2
ρ as Z[Z2]-modules, and H2(S2; Z2

ρ) ≈ Z2, i.e., Z2 with the
trivial Z2-action.

A direct computation (e.g., see [1, pages 58-9]) yields the following values for
Ep,q

2 :

Ep,q
2 =




Z2 if (p, q) = (0, 2);
(Z2)2 if q = 0 and p odd, or if q = 2 and p > 0 and even;
0, otherwise.

It follows easily from this that we have an exact sequence

0 → H2(RP 2; Z2
ρ) π∗

→ H2(S2; Z2
ρ) = Z2 → (Z2)2 → 0.

Thus, H2(RP 2; Z2
ρ) ≈ Z2, and π∗ is injective. Therefore, in this case Theorem 1.1

reduces to the following, which is an elaboration of the second statement of Propo-
sition 1.3(b):

Proposition 4.1. The symplectic bundles ξ : T 2 → E → RP 2 inducing a nontriv-
ial Z2-module structure Z2

ρ on H1(T 2) = Z2 are classified by H2(RP 2; Z2
ρ) ≈ Z2.

For such a ξ, E admits a closed 2-form satisfying (1) if and only if c(ξ) = 0.
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Proof. The foregoing calculation implies the first statement of the proposition.
The second follows from the injectivity of π∗, Lemma 10, and Proposition 1.3(a).

�

This concludes our proof of Theorem 1.1.

5. Proofs of the main corollaries

Proof of Corollary 1.2. For any connected surface B, H2(B; Z2
ρ) is a finitely-

generated abelian group, hence, its torsion subgroup is finite. The result now
follows from Proposition 1.1 and Theorem 1.1. �

Proof of Corollary 1.3. The group of a principal torus bundle is T 2 acting on
itself by translations. If σ denotes the standard symplectic form on T 2, then the
translations clearly preserve σ, i.e., T 2 ⊆ Symp(T 2, σ), so the bundle has a canon-
ical symplectic structure. The corresponding representation

ρ : π1(B) → π0(Symp(T 2, σ))

factors through π0(T 2) = 0, so it is trivial. Hence, when B is a connected surface,
the only cases in which the characteristic classes c(ξ) ∈ H2(B; Z2) do not have
finite order are when B is closed and orientable and ξ is nontrivial. �

Proof of Corollary 1.4. Let i : T 2 → E be the inclusion onto a fixed orbit, and
let p : E → E/T 2 be the usual projection. Then, it is a standard fact that T 2 →
E → E/T 2 is a principal torus bundle, say ξ. By Corollary 1.3, ξ has a canonical
structure as a symplectic torus bundle. Let σ be the standard symplectic form on
T 2, and let σb be the corresponding symplectic forms on the fibres (equiv., orbits).
By hypothesis, E admits a symplectic form with respect to which all the fibres are
symplectic submanifolds. Thus, the restriction map i∗ : H2

DR(E) → H2
DR(T 2) is

surjective, and, by Thurston’s result, there is a closed 2-form β on E satisfying
condition (1), that is, β|T 2

b = σb, for all b ∈ E/T 2. Assuming that the closed,
connected surface E/T 2 is orientable, we can then apply the preceding corollary to
conclude that ξ is trivial, as a symplectic torus bundle. Thus, it admits a section.
But the existence of a section is independent of the group of the bundle. Therefore, ξ
has a section as a principal T 2 bundle, and, and therefore it is trivial as a principal
T 2 bundle, which implies the stated result. It remains to verify that E/T 2 is
orientable. But this follows from a standard fact about smooth fibre bundles that
are orientable, that is, for which the fibres can be given orientations that are locally
coherent over the base. For such a bundle — for example ξ — the orientability of
the base is equivalent to the orientability of the total space. �

APPENDICES
The main arguments of the paper make use of certain known classification re-

sults in order to pass from statements about smooth fibre bundles to statements
about group extensions. The following three appendices briefly explain these re-
sults, starting with facts about torus bundles, then passing to the classification of
K(A, 1)-fibrations, and ending with a comparison between that classification and
the classification of corresponding group extensions.
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Appendix A. T 2-bundles and T 2-fibrations

Let E(T 2) (resp., E+(T 2)) denote the monoid of self homotopy equivalences
(resp., orientation-preserving self homotopy equivalences) of T 2. These receive
the compact-open topology. Let Diff+(T 2) (resp.,Diff0(T 2)) denote the subgroup
of orientation-preserving diffeomorphisms of T 2 (resp., the identity component of
Diff(T 2)). Finally, let ω be any symplectic form on T 2, and let Symp(T 2, ω) be
the group of symplectomorphisms of (T 2, ω). These groups of diffeomorphisms are
usually given the Ck topology, for 1 ≤ k ≤ ∞. The choice of k does not make a
difference for our discussion. Regarding T 2 as acting on itself by translation, we
have T 2 ⊆ Diff0(T 2).

Proposition A.1. The following inclusions are homotopy equivalences:
(a) T 2 → Diff0(T 2).
(b) Diff(T 2) → E(T 2).
(c) Diff+(T 2) → E+(T 2).
(d) Symp(T 2, ω) → Diff+(T 2).

Proof. (a),(b): These are well-known results, due originally to Earle and Eells
(cf. Gramain [4]). (c) follows immediately from (b). (d): Given any orientation-
preserving diffeomorphism h, h∗(ω) is homologous to ω, since h has degree one.
Thus, Moser’s method ([8, pages 93-97]) may be applied to the family of symplectic
forms ωt = (1 − t)ω + th∗ω, producing an isotopy ψt between the identity and a
diffeomorphism ψ1 that satisfies ψ∗

1h
∗ω = ω. Therefore, ht = hψt is an isotopy

between h and a symplectomorphism h1. The isotopy can be constructed so as to
be continuous in h and remain in Symp if h is a symplectomorphism. It follows
that the map given by h �→ h1 is a homotopy inverse for the inclusion map. �

Since, as is well-known, BE+(T 2) classifies oriented T 2-fibrations, statements (c)
and (d) immediately give the following result:

Corollary A.2. Let B be a smooth, connected manifold. Equivalence classes of
symplectic torus bundles over B correspond bijectively to fibre-homotopy equivalence
classes of oriented T 2-fibrations over B.

Appendix B. K(A,1)-fibrations

Let A be an abelian group. Following C.A. Robinson [9], for any n ≥ 1, we let
K(A,n) be a CW complex which is a topological abelian group on which Aut(A)
acts by cellular automorphisms. Let Q be a CW complex of type K(Aut(A), 1) and
Q̃ its universal cover. Thus, there is a free, diagonal left-action of Aut(A) on the
cartesian product K(A, 2)×Q̃, with respect to which the projection K(A, 2)×Q̃→
Q̃ is equivariant. Therefore, it descends to a fibration p : K̂(A, 2) → Q with fibre
K(A, 2).

Robinson shows that K̂(A, 2) classifies Hurewicz fibrations with fibres of the
homotopy type of K(A, 1) and base spaces of the homotopy type of a CW com-
plex. Thus, over such a base space B, the fibre-homotopy equivalence classes
of K(A, 1)-fibrations correspond bijectively to homotopy classes of maps B →
K̂(A, 2). Throughout this paper, we use the ‘based’ convention for equivalences,
whereby each base space has a basepoint and each fibre has a fixed identification
with a given space. See [9] and [2, 16.7].
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Remark. By Proposition A.1, BDiff(T 2) classifies T 2-fibrations, which are the
same as K(Z2, 1)-fibrations. So BDiff(T 2) is homotopy equivalent to K̂(Z2, 2),
implying that it too fibres over K(GL(2,Z2), 1) with fibre K(Z2, 2). This fact is
well-known, but we mention it to connect the two constructions of classifying spaces.
It gives one way of seeing why, for a simply-connected base space, there is a bijective
correspondence between equivalence classes of torus bundles and equivalence classes
of principal torus bundles. A similar comment applies to BSymp(T 2, ω), which
fibres over K(SL(2,Z2), 1) with fibre K(Z2, 2).

As usual, each K(A, 1)-fibration admits a representation ρ : π1(B) → Aut(A) =
π0(E(K(A, 1))). We are interested in the finer classification that fixes such a ρ.
Robinson derives this from his construction as follows. The fibration p : K̂(A, 2) →
Q admits a canonical section s0 : Q → K̂(A, 2) defined by the rule s0[q] = [ϑ, q],
where here [ ] refers to the Aut(A)-orbit and ϑ denotes the identity element of the
abelian group K(A, 2) Clearly, representations ρ : π1(B) → Aut(A) correspond to
homotopy classes of maps r : B → Q, whereas K(A, 1)-fibrations over B with asso-
ciated representation ρ correspond to homotopy classes of maps f : B → K̂(A, 2)
for which pf induces ρ. In fact, as Robinson shows, if we fix ρ (and r inducing
ρ), the foregoing set of homotopy classes may be described as the set of homotopy
classes of lifts f of r to K̂(A, 2). Let f0 denote the lift s0r.

Given two lifts f and g of r, classical obstruction theory produces a so-called pri-
mary obstruction class d(f, g) ∈ H2(B;π2(K(A, 2))) = H2(B;Aρ) whose vanishing
is a necessary condition for the existence of a homotopy of lifts between f and g.
In this context, the condition is also sufficient. Moreover, given any g and any class
d ∈ H2(B;Aρ), there is a unique homotopy class of lifts f such that d(f, g) = d. We
now set d(f, f0) = c(f), where f0 is the lift described above. A standard additivity
formula yields d(f, g) = c(f) − c(g). If f classifies a K(A, 1)-fibration η, we may
write c(f) = c(η). This is the so-called characteristic class of η that we have been
using. It follows that the rule η �→ c(η) gives a bijection between equivalence classes
of fibrations and H2(B,Aρ), as stated earlier.

There remains one further observation about the classes c(η) which we have used
in an important way. Start by considering a homotopy ht between the lifts f and
f0 of r as above. Then, for any b ∈ B, ht(b) is a path from f(b) to f0(b) lying
completely in a fibre of p : K̂(A, 2) → Q. This motivates the following construction
given by Robinson: let P denote the space of all paths γ in K̂(A, 2) that begin
in s0(Q) and lie completely in a fibre of p. The rule γ �→ γ(1) defines a fibration
P → K̂(A, 2) with fibre of type K(A, 1). Clearly the partial homotopies between
any lift f of r and the lift f0 correspond to partial lifts of f to P . It follows easily
that we can interpret c(f) as the primary obstruction to lifting f to P .

Now, Robinson shows that P is, in fact, a universal K(A, 1)-fibration over
K̂(A, 2), so that f∗(P ) is equivalent to η. This implies that c(η) may be interpreted
directly as the primary obstruction to a section of η, which is the interpretation we
have used.

Appendix C. Extensions by an abelian group

Let S : A � G � π be an extension of a group π by the abelian group A. There
is a corresponding K(A, 1)-fibration, written η : K(A, 1) i→ K(G, 1)

p→ K(π, 1). Of
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course, the homotopy exact sequence of η collapses to S. We use i∗ and p∗ to denote
the corresponding homomorphisms in S. The representation ρ corresponding to η
is the same as that induced by inner automorphisms of G in S. Let us hold this
fixed.

Let f : π×π → A be the normalized 2-cocycle of S. In terms of the bar resolution
of π, we may write f as the (possibly infinite) formal sum Σf(x, y)[x|y], where x, y
range over π. In this appendix we show how this sum can be recognized as the
primary obstruction to sectioning η. This establishes the identification c(S) = c(η),
which we have been using throughout the paper. This fact is certainly part of the
classical folklore of the subject, but I have been unable to find an explicit reference.

The description of the primary obstruction can be conveniently simplified in this
case by using the following observation, which follows almost immediately from
definitions.

Lemma 12. Let ζ : F i→ E
p→ B be a fibration, with F connected and B a

connected CW complex, and assume that i∗ : πm−1(F ) → πm−1(E) is injective.
Let σ : Bm−1 → E be a section of ζ over the (m − 1)-skeleton of B, and let
o(σ) denote the obstruction cocycle to extending σ over the m-skeleton. Finally,
suppose that if χ : Dm → B is the characteristic map of an m-cell e of B, then
σ ◦ χ|∂Dm : ∂Dm → E represents i∗(α) ∈ πm−1(E). Then

o(σ)(e) = α.

The best framework for recognizing Σf(x, y)[x|y] as the desired obstruction cocy-
cle is that of semisimplicial topology, as in ([7, Chapters 1–3]). Thus, for example,
we can describe K(π, 1) semisimplicially as consisting of one 0-simplex, denoted
[ ], and a k-simplex for each integer k ≥ 1 and each symbol [x1| . . . |xk], where
x1, . . . , xk range over π, with the well-known face and degeneracy maps. Simi-
larly for K(G, 1). The surjection p∗ : G � π shows how to map K(G, 1) onto
K(π, 1). This map is a minimal Kan fibration, say κ [7, page 64]. We shall define
an obstruction to sectioning κ.

Let s : π → G be a function that is a right inverse of p∗ and is related to the
2-cocycle f : π × π → G by Equation (14). Use s to define a (semisimplicial)
section σ of κ over the 1-skeleton of K(π, 1): this is determined by σ[ ] = [ ]
and σ[x] = [s(x)]. Note that each 1-simplex [s(x)] determines a directed loop in
K(G, 1), say 〈s(x)〉; these may be concatenated. Now consider any 2-simplex [x|y] of
K(π, 1). Its boundary consists of the 1-simplexes ∂0[x|y] = [y], ∂1[x|y] = [xy], and
∂2[x|y] = [x], with corresponding loops concatenated as 〈x〉〈y〉〈xy〉−1. Therefore,
the loop obtained by applying σ to the boundary is 〈s(x)〉〈s(y)〉〈s(xy)〉−1. Using the
semisimplicial homotopy relation in K(G, 1) and the definition of f(x, y), this loop
is easily shown to be homotopic to 〈i∗(f(x, y))〉 in K(G, 1). Thus, it represents
i∗(f(x, y)). It now follows from the semisimplicial analog of the above lemma
that the obstruction to extending σ over the 2-skeleton is precisely the cocycle
Σf(x, y)[x|y], as desired.

The foregoing can be translated to the more conventional topological obstruction
theory by applying the geometric realization functor. This transforms κ into a
topological fibration equivalent to η and σ into a partial section producing the
same obstruction. Thus c(η) = c(S).
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