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Endomorphism rings of almost full formal groups

David J. Schmitz

Abstract. Let oK be the integral closure of Zp in a finite field extension K
of Qp, and let F be a one-dimensional full formal group defined over oK . We
study certain finite subgroups C of F and prove a conjecture of Jonathan Lubin
concerning the absolute endomorphism ring of the quotient F/C when F has
height 2. We also investigate ways in which this result can be generalized to
p-adic formal groups of higher height.
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Introduction

In September, 2000, Jonathan Lubin conveyed to me the following two conjec-
tures of his describing the quotients of full and almost full height 2 p-adic formal
groups by certain finite subgroups:

Conjecture 1. Let F be a full p-adic formal group of height 2, and let C be a cyclic
subgroup of F having order pn. Assume that End(F ), the absolute endomorphism
ring of F , is isomorphic to the ring of integers oK in a quadratic p-adic number
field K; assume further that if K/Qp is totally ramified, then C does not contain
ker [π]F , where π is a uniformizer of oK . Then End(F/C) ∼= Zp + pn oK .

Conjecture 2. Suppose G is an almost full p-adic formal group of height 2 with
End(G) ∼= Zp + pno, where o is some p-adic integer ring. Then there is a cyclic
subgroup D of G of order pn, canonical somehow, such that G/D is full.
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We prove the first of these conjectures in this paper as Theorem 6.3. Further-
more, as we describe below, we are able to generalize this result in a couple of ways
to p-adic formal groups of arbitrary (finite) height. The proofs of Conjecture 2 and
some its generalizations are left for a subsequent paper. (See [S].)

If F is a p-adic formal group with End(F ) integrally closed, then c : g �→ g′(0)
defines an isomorphism from End(F ) onto a p-adic integer ring o. Via this asso-
ciation, we can view the torsion subgroup Λ(F ) of F as an o-module. For a finite
subgroup C of Λ(F ), we denote by I(C) the annihilator of C in o. We prove the
following as Theorem 4.3:

Theorem 1. Let F be a p-adic formal group such that End(F ) is integrally closed.
If C is a finite cyclic subgroup of Λ(F ), then c

(
End(F/C)

)
= Zp + I(C).

This generalizes Conjecture 1 since I(C) = pno for the finite subgroups described
there.

We are also able to say something about c
(
End(F/C)

)
when C is not necessarily

cyclic. We will say that a finite subgroup C of the torsion subgroup of a p-adic
formal group F is a deflated subgroup of F if there is no finite subgroup D of Λ(F )
having fewer elements than C such that F/D ∼= F/C. We show in Section 3 that if
F is full, then C is a deflated subgroup of F if and only if C does not contain the
kernel of any noninvertible F -endomorphism. Lubin proves in [Lu2] that if F is full,
then for any finite subgroup C of Λ(F ), c(End(F/C)) is a subring of c(End(F )).
More specifically, we prove as Theorem 4.4:

Theorem 2. Let F be a full p-adic formal group, and let C be a deflated subgroup
of F . The conductor of c

(
End(F )

)
with respect to c

(
End(F/C)

)
is I(C).

In Section 1, we review the basic theory of p-adic formal groups, paying particular
attention to the integer rings over which certain homomorphisms are defined; we
point out when some of the theorems from [Lu2] can be extended in this respect. In
Section 2, we use the Tate module of F to study the End(F )-module structure of the
torsion subgroup of F . After describing the basic properties of deflated subgroups
in Section 3, we prove in the final sections several theorems concerning almost full
p-adic formal groups, including Theorem 1, Theorem 2, and Conjecture 1. We also
see what other conclusions can be drawn in the height 2 case using our general
theorems.

1. p-adic formal groups and isogenies

Fix a prime p. Let Cp be the completion of a fixed algebraic closure Qp of Qp

with respect to the unique extension of the p-adic valuation v on Qp normalized
so that v(p) = 1. Then v extends uniquely to a rational valuation on Cp, and we
denote this valuation by v as well. Let Zp (resp., O) be the set of elements in Qp

(resp., in Cp) with nonnegative valuation, and let m (resp., M) be the maximal
ideal of Zp (resp., of O). For any subfield K of Cp, we denote by oK the integer
ring of K, i.e., oK = K ∩ O. Subfields of Cp which are finite extensions of Qp are
called p-adic number fields, and their integer rings are called p-adic integer rings.
We define a p-adic formal group to be a one-dimensional formal group of finite
height defined over a p-adic integer ring.

We will first review some of the basic results from the theory of p-adic formal
groups. Proofs and more detailed discussions of these facts can be found in [F],
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[Lu2], [Lu3], and [Laz]. Our purpose here is not merely to be expository. In many
of the published works on p-adic formal groups, the theorems refer only to homo-
morphisms defined over a p-adic integer ring. Our methods will sometimes involve
homomorphisms which are defined over the completion of a discretely-valued, in-
finite extension field of Qp. In this section, we will point out where the standard
results can be extended to cover these “nonalgebraic” cases.

If F and G are two p-adic formal groups, then we define Hom(F, G) to be the
abelian group of all homomorphisms from F to G defined over O. If there is some
g ∈ Hom(F, G) with invertible linear coefficient, then F is isomorphic to G, written
F ∼= G, and g is called an isomorphism from F to G. It is easily shown that the
compositional inverse g−1 of an isomorphism g : F → G belongs to Hom(G, F ).
If F = G, then we write End(F ) instead of Hom(F, F ), and we refer to it as
the absolute endomorphism ring of F . The automorphism group of F , denoted by
Aut(F ), is the group of units of End(F ).

For p-adic formal groups F and G, the map c : Hom(F, G) → O sending a homo-
morphism g : F → G to its linear coefficient is an injective group homomorphism
with closed image [Lu3, §2]. When F = G, c is a map of commutative Zp-algebras,
for if [n]F is the multiplication-by-n endomorphism of F , then c([n]F ) = n. Fol-
lowing Lubin, we denote by [a]F the element of End(F ) such that c([a]F ) = a,
provided such an endomorphism exists. Another consequence of the injectivity
of c is that if H is another p-adic formal group and if 0 �= g ∈ Hom(F, G) and
0 �= j ∈ Hom(G, H), then 0 �= j ◦ g ∈ Hom(F, H). Furthermore, if g ∈ Hom(F, G)
is an isomorphism, then j �→ g ◦ j ◦ g−1 defines a ring isomorphism from End(F )
onto End(G), and so c

(
End(F )

)
= c

(
End(G)

)
.

Lubin [Lu3, p 470] showed that if F is a p-adic formal group of height h, and if
K is a p-adic number field containing the coefficients of F and all p-adic number
fields of degree h over Qp, then End(F ) ⊂ oK [[T ]]. This is equivalent to stating
c
(
End(F )

)
⊆ oK because each coefficient of g ∈ Hom(F, G) is a polynomial function

of c(g) with coefficients in any field containing the coefficients of F and G [F, p 98].
We denote by ΣF the fraction field of c

(
End(F )

)
. Since Zp ⊆ c

(
End(F )

)
⊆ oΣF

,
we see that c

(
End(F )

)
is a Zp-order in ΣF ; moreover, [ΣF : Qp] is a divisor of h

[Lu3, 2.3.2].

Definition 1.1. A p-adic formal group F of height h is full if [ΣF : Qp] = h and
c
(
End(F )

)
= oΣF

. We say F is almost full if [ΣF : Qp] = h but c
(
End(F )

)
�= oΣF

.

For any p-adic number field K, Lubin and Tate [LT] give a way of constructing
full p-adic formal groups F defined over oK such that c

(
End(F )

)
= oK .

Whereas the endomorphisms of a p-adic formal group are all defined over a
single p-adic integer ring, the same cannot be said of the homomorphisms between
different p-adic formal groups. (See [Lu3, 4.3.2].) We will say that g : F → G is
an isogeny if g is defined over some oL (or, equivalently, if c(g) ∈ oL), where L is
a complete, discretely-valued subfield of Cp containing the coefficients of F and G.
We write Isog(F, G) for the set of all isogenies from F to G, and we say that F
is isogenous to G if Isog(F, G) �= 0. We show later that Isog(F, G) is a subgroup
of Hom(F, G). It is clear that every endomorphism of a p-adic formal group is an
isogeny. In [Lu2] and [F], for example, an isogeny is assumed to be defined over the
integers in a finite extension of the field over which the p-adic formal groups are
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defined. We will show that those homomorphisms which satisfy our more general
definition of isogeny share many of the properties exhibited by “p-adic isogenies”.

A p-adic formal group F can be used to define an abelian group law on M by
setting α +

F
β = F (α, β) for α, β ∈ M. We denote this group by F (O), and refer

to it as the points of F . From the definition of a p-adic formal group, we see that
for α, β ∈ F (O), v

(
α +

F
β
)
≥ min {v(α), v(β)}, with equality if v(α) �= v(β). For

any g ∈ Hom(F, G), the association α �→ g(α) defines a group homomorphism from
F (O) to G(O), which we also denote by g. In particular, if the integer m is prime to
p, then [m]F maps F (O) isomorphically onto itself, and so the order of an element
of F (O) of finite order is necessarily a power of p. Therefore the torsion subgroup
Λ(F ) of the points of F can be expressed as

Λ(F ) =
⋃
n∈N

ker [pn]F .

Proposition 1.2. If g ∈ Hom(F, G) and α ∈ F (O), then v
(
g(α)

)
≥ v(α), with

equality if and only if either α = 0 or c(g) ∈ O×.

Proof. Writing g(T ) = T · j(T ), where j(T ) ∈ O[[T ]], we see that v
(
g(α)

)
≥ v(α)

because j(α) ∈ O. Furthermore, if α �= 0, then v
(
g(α)

)
= v(α) if and only

if v
(
j(α)

)
= 0, which holds if and only if j(0) = c(g) is a unit in O because

v(α) > 0. �
If g is a nonzero isogeny defined over the complete discretely-valued subring

oL of O, then the Weierstrass Preparation Theorem [Lang, V.11.2] implies that
there is a monic polynomial P (T ) ≡ T d (mod mL) of degree d = wdeg (g), the
Weierstrass degree of g, and a power series U(T ) ∈ oL[[T ]] with U(0) /∈ mL such
that g = P · U . The elements of ker(g) are the roots of P (T ); they belong to
M and have multiplicity one [Lu2, §1.2]. Thus, the kernel of any nonzero isogeny
g : F → G is a finite subgroup of F (O) of order wdeg (g). In particular, ker [p]F
has order ph, where h is the height of F . The elements of Λ(F ) are all integral
over Zp: indeed, for every n ∈ N, [pn]F , is defined over any p-adic integer ring oK

containing the coefficients of F , and so the polynomial P (T ) ∈ oK [T ] arising from
the Weierstrass Preparation Theorem has roots in m.

If g ∈ Hom(F, G), then for every m ∈ Z, [m]G ◦ g = g ◦ [m]F , and therefore
g (Λ(F )) ⊆ Λ(G). A slight modification of the argument in [Lu2, §1.2] will show
that g : Λ(F ) → Λ(G) is surjective whenever g is a nonzero isogeny. Suppose that
g is defined over oL, where L is a complete, discretely-valued subfield of Cp. For
any α ∈ Λ(G), the power series g(T )−α is defined over the ring of integers in L(α)
(which is also a complete discretely-valued subfield of Cp because α is integral over
Zp), and wdeg

(
g(T ) − α

)
= wdeg (g) ≥ 1. The Weierstrass Preparation Theorem

implies that g(T ) − α has wdeg (g) zeros in F (O) all belonging to Λ(F ) since
α ∈ Λ(G) and g is a homomorphism of p-adic formal groups having a finite kernel.

If C is a finite subgroup of F (O), Lubin [Lu2, 1.4] proved that the power series

ϕC(T ) =
∏
γ∈C

F (T, γ)

is a p-adic isogeny from F to the p-adic formal group ϕC

(
F

(
ϕC
−1(X), ϕC

−1(Y )
))

,
which we denote by F/C and refer to as the quotient of F by C. It is clear that
ker(ϕC) = C. Lubin showed that any p-adic isogeny j : F → H vanishing on C
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factors uniquely through F/C. Using nearly the same proof, one can show that
this fact holds for any such isogeny j. One needs only to observe (as above) that if
K is a complete discretely-valued subfield of Cp and if C = {α1, . . . , αn} is a finite
subgroup of Λ(F ), then K(α1, . . . , αn) is also a complete discretely-valued subfield
of Cp. We record the precise result here.

Theorem 1.3 ([Lu2, 1.5]). Let F, G, H be p-adic formal groups and let L be a
complete discretely-valued subfield of Cp containing the coefficients of F , G, and
H. If g1 : F → G, g1 �= 0, and g2 : F → H are isogenies defined over oL such that
ker(g1) ⊆ ker(g2), then there is a unique isogeny j : G → H defined over oL such
that j ◦ g1 = g2. If ker(g1) = ker(g2), then j is an isomorphism.

We can interpret Theorem 1.3 in terms of divisibility in the ring c
(
End(F )

)
.

Corollary 1.4. Let F be a p-adic formal group, and let ζ1, ζ2 ∈ c
(
End(F )

)
. Then

ζ1 divides ζ2 in c
(
End(F )

)
if and only if ker [ζ1]F ⊆ ker [ζ2]F . In particular, ζ1 and

ζ2 are associates in c
(
End(F )

)
if and only if ker [ζ1]F = ker [ζ2]F .

Proof. If there is an η ∈ c
(
End(F )

)
such that η · ζ1 = ζ2, then [η]F ◦ [ζ1]F = [ζ2]F ,

and so ker [ζ1]F is contained in ker [ζ2]F . Conversely, if ker [ζ1]F ⊆ ker [ζ2]F , then we
may apply Theorem 1.3 to find j ∈ End(F ) such that j ◦ [ζ1]F = [ζ2]F . Therefore,
c(j) · ζ1 = ζ2. �

The next result shows that, like endomorphisms of a p-adic formal group, all
homomorphisms between isogenous p-adic formal groups are defined over a single
complete discretely-valued subring of Cp.

Proposition 1.5. Let F and G be p-adic formal groups, and assume g : F → G
is a nonzero isogeny defined over the integers oL in a complete discretely-valued
subfield L of Cp containing ΣF and the coefficients of F and G. Then Isog(F, G) =
Hom(F, G) ⊂ oL[[T ]].

Proof. By [Lu2, §1.6], there exists a nonzero isogeny g̃ : G → F defined over oL.
Post-composition with g̃ defines an injective group homomorphism from Hom(F, G)
to End(F ). So, for any j ∈ Hom(F, G), c(g̃) · c(j) ∈ c

(
End(F )

)
⊂ L, whence

c(j) ∈ O ∩ L = oL. �
Corollary 1.6. For p-adic formal groups F and G, either Isog(F, G) = 0 or
Isog(F, G) = Hom(F, G). In either case, Isog(F, G) is a group.

The next corollary is essentially a generalization of a result in [Lu2, §3.2] which
states that an almost full p-adic formal group is isogenous to a full p-adic formal
group.

Corollary 1.7. Let {Gi} (i = 1, ..., n) be full or almost full p-adic formal groups
such that ΣG1

= · · · = ΣGn
= Σ. Then there is a complete discretely-valued subfield

L of Cp such that 0 �= Isog(Gi, Gj) = Hom(Gi, Gj) ⊂ oL[[T ]] for every 1 ≤ i, j ≤ n.

Proof. According to [Lu2, §3.2], for each i = 1, . . . n, there is a full p-adic formal
group Fi and nonzero p-adic isogenies gi : Fi → Gi and g̃i : Gi → Fi. Let K be a
p-adic number field containing Σ and the coefficients of all of these p-adic formal
groups and isogenies. For each 1 ≤ i, j ≤ n, ΣFi

= ΣGi
= ΣGj

= ΣFj
[Lu2, §3.0],

and so there is an isomorphism uij : Fi → Fj defined over oL, where L is the
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completion of the maximal unramified extension Knr of K [Lu3, 4.3.2]. Because
Knr is discretely-valued, so is L. Therefore,

0 �= gj ◦ uij ◦ g̃i ∈ Hom(Gi, Gj) ∩ oL[[T ]] ⊆ Isog(Gi, Gj).

The corollary now follows from Proposition 1.5. �

We conclude with our main tool for investigating almost full p-adic formal groups.

Corollary 1.8. Let G be an almost full p-adic formal group. Then there is a full
p-adic formal group F and a finite subgroup C of Λ(F ) such that G is isomorphic
to F/C over a p-adic integer ring.

Proof. As in the proof of Corollary 1.7, we can find a full p-adic formal group F
with ΣF = ΣG and a nonzero isogeny g : F → G defined over a p-adic integer ring.
If C = ker(g), then ker(g) = ker(ϕC), and so G and F/C are isomorphic over a
p-adic integer ring by Theorem 1.3. �

The main focus of the rest of this article will be to see how the structure of the
subgroup C influences that of the ring End(F/C).

2. Points of finite order of a full formal group

In this section, we investigate certain structures within and on the torsion
subgroup a full p-adic formal group F . We are primarily interested in the F -
endomorphism kernels and the cyclic subgroups contained in Λ(F ), two kinds of
subgroups mentioned in Conjecture 1. Furthermore, a study of the c

(
End(F )

)
-

module structure on Λ(F ) will provide the key to our proof of Conjecture 1. We
first review some facts concerning the Tate module of F .

For any p-adic formal group F of height h, the Tate module of F is defined to be

T (F ) = lim←− ker [pn]F

where the inverse limit is taken with respect to the surjective homomorphisms
[p]F : ker [pn+1]F → ker [pn]F . If G is another p-adic formal group, then any
homomorphism g : F → G defines a group homomorphism T (g) : T (F ) → T (G) by
T (g)

(
(a0, a1, . . . )

)
=

(
g(a0), g(a1), . . .

)
. If 0 �= g ∈ Isog(F, G), then ker(g) is finite,

and hence T (g) is injective. In particular, T (F ) is a torsion-free c
(
End(F )

)
-module

and a free Zp-module of rank h [F, IV §4]. If c
(
End(F )

)
is integrally closed (and

thus a PID) of rank d over Zp, then T (F ) is a free c
(
End(F )

)
-module of rank h

d .
Therefore, when F is full, T (F ) is free of rank 1 over c

(
End(F )

)
. In Proposition 5.1,

we derive a condition for determining when the Tate module of an almost full p-adic
formal group G is free of rank 1 over c

(
End(G)

)
.

We denote by V (F ) the set of sequences (a0, a1, . . . ) such that for all n ≥ 0,
an ∈ Λ(F ) and [p]F (an+1) = an. It is not difficult to see that V (F ) ∼= T (F )⊗Zp

Qp,
whence V (F ) is an h-dimensional Qp-vector space, called the Tate vector space of
F . If g ∈ Hom(F, G), the Zp-module homomorphism T (g) : T (F ) → T (G) extends
to a linear map V (g) : V (F ) → V (G) of Qp-vector spaces which is injective if g
is a nonzero isogeny. In fact, the existence of such a g implies that F and G have
equal heights [Lu3, 2.2.3 and 2.3.1], and therefore V (g) is an isomorphism. Since
ΣF = c

(
End(F )

)
⊗Zp

Qp, the c
(
End(F )

)
-module structure on T (F ) induces a ΣF -

vector space structure on V (F ). If [ΣF : Qp] = d, then V (F ) is an h
d -dimensional
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ΣF -vector space; in particular, when F is full or almost full, V (F ) is 1-dimensional
over ΣF . Finally, if 0 �= g ∈ Isog(F, G), then ΣF = ΣG and V (g) : V (F ) → V (G)
is a ΣF -isomorphism.

Proposition 2.1. If g, j ∈ Isog(F, G), then V (g) = V (j) if and only if g = j.

Proof. Indeed, if V (g) = V (j), then g(α) = j(α) for all α ∈ Λ(F ), which implies
that g − j is identically 0 on Λ(F ). Since Isog(F, G) is a group, g − j ∈ Isog(F, G),
and so its kernel is finite unless g − j = 0. �

Throughout the remainder of this section, we denote by F a p-adic formal group
of height h with End(F ) integrally closed, and we let π be a fixed uniformizer of
c
(
End(F )

)
. Moreover, we denote by e (resp., f) the ramification index (resp., the

residue field degree) of the extension ΣF /Qp.
The group Λ(F ) is the union of the kernels of the endomorphisms [pn]F (n ≥ 0).

If g is any nonzero endomorphism of F , then ker(g) is also a finite subgroup
of Λ(F ), not necessarily equal to the kernel of one of the multiplication-by-pn

endomorphisms. However, c(g) is an associate of πm in the ring c
(
End(F )

)
,

where m = e · v
(
c(g)

)
, and so by Corollary 1.4, ker(g) = ker [πm]F . Therefore,{

ker [πm]F
}

m≥0
is the set of kernels of the nonzero F -endomorphisms, and

Λ(F ) =
⋃
n≥0

ker [pn]F =
⋃

m≥0

ker [πm]F .

Moreover, because ker [πm−1]F ⊂ ker [πm]F , the family
{
ker [πm]F

}
m≥0

is a filtra-
tion of subgroups of Λ(F ), with ker [π]F being the smallest kernel of any noninvert-
ible F -endomorphism.

Proposition 2.2. The kernel of [πm]F has pm(h/e) elements. In particular, if F
is full, then

∣∣ ker [πm]F
∣∣ = pmf .

Proof. If
∣∣ ker [π]F

∣∣ = ps, then the surjectivity of [π]F : Λ(F ) → Λ(F ) implies
inductively that

∣∣ ker [πm]F
∣∣ = psm. Therefore ph =

∣∣ ker [p]F
∣∣ =

∣∣ ker [πe]F
∣∣ = pse,

and so s = h/e. Finally, when F is full, we note that h = [ΣF : Qp] = ef . �

We can interpret the endomorphism kernels in terms of annihilators.

Definition 2.3. The annihilator I(X) of a subset X of Λ(F ) is the set{
ζ ∈ c

(
End(F )

) ∣∣ ∀α ∈ X, [ζ]F (α) = 0}.

If γ ∈ Λ(F ), we will write I(γ) instead of I({γ}).

Remarks 2.4.

(i) Because o = c
(
End(F )

)
is a commutative ring, I(X) is an ideal of o. There-

fore I(X) = πmo for some integer m ≥ 0. In fact, for each m ∈ N,{
α ∈ Λ(F )

∣∣ I(α) = πmo
}

= ker [πm]F − ker [πm−1]F .

(ii) If C is the cyclic subgroup generated by γ ∈ Λ(F ), then I(C) = I(γ). More
generally, it follows from Lemma 2.5 below that if C is any finite subgroup of
Λ(F ), where F is a full p-adic formal group, then I(C) = I(γ), where γ ∈ C
is an element of minimal valuation.
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We have seen
(
Corollary 1.8

)
that any almost full p-adic formal group is isomor-

phic over a p-adic integer ring to the quotient of a full p-adic formal group F by
a finite subgroup C of Λ(F ). The quotient is much easier to study when the sub-
group C can be chosen to be cyclic; this is always possible in height 2 (see §6). In
Corollary 6.4, we will use this fact to prove that the isomorphism class of a height
2 almost full p-adic formal group depends only on its absolute endomorphism ring.
A key step in our proof is the result given below in Corollary 2.8, which describes
when two cyclic subgroups of Λ(F ) are isomorphic to each other via an automor-
phism of F . We begin, however, with the following lemma, the proof of which uses
the fact that T (F ) is free of rank 1 over c

(
End(F )

)
.

Lemma 2.5. Let F be a full p-adic formal group. For any pair γ, δ ∈ Λ(F ),
v(γ) ≤ v(δ) if and only if there exists some ζ ∈ c

(
End(F )

)
such that [ζ]F (γ) = δ.

Proof. Without loss of generality, we may assume that both γ and δ are nonzero.
The implication (⇐) follows from Proposition 1.2. Conversely, suppose v(γ) ≤ v(δ),
and choose n large enough so that γ, δ ∈ ker [pn]F . Then there exist c, d ∈ T (F )
such that cn = γ and dn = δ. If b = (b0, b1, . . . ) is any basis of T (F ) over
c
(
End(F )

)
, then there are (unique) elements η, θ ∈ c

(
End(F )

)
such that η · b = c

and θ · b = d. Assume v(η) ≤ v(θ). Then ζ = θ η−1 ∈ oΣF
= c

(
End(F )

)
and

δ = [θ]F (bn) = [θ η−1]F
(
[η]F (bn)

)
= [ζ]F (γ), which proves the lemma in this case.

If, on the other hand, v(η) > v(θ), then a similar calculation would show that
[η θ−1]F (δ) = γ, which contradicts Proposition 1.2 since η θ−1 is not a unit in
c
(
End(F )

)
. �

If C is any subgroup of F (O) and if λ ∈ R, then Cλ = {γ ∈ C| v(γ) ≥ λ} is a
subgroup of C. Using Lemma 2.5 and Proposition 1.2, we can obtain a description
of the cyclic End(F )-submodules of Λ(F ) when F is full. For any α ∈ Λ(F ),

End(F ) · α =
{
β ∈ Λ(F )

∣∣ v(β) ≥ v(α)
}

= Λ(F )v(α) .

The subsets Λ(F )v(α) are examples of congruence-torsion subgroups of F (see [Lu1]).
These turn out to be the so-called “canonical subgroups” mentioned in Conjecture 2.

Theorem 2.6. Let F be a full p-adic formal group. The following are equivalent
for elements γ, δ ∈ Λ(F ):

(i) v(γ) = v(δ).
(ii) There exists some u ∈ Aut(F ) such that u(γ) = δ.
(iii) I(γ) = I(δ).

Proof. (i) ⇒ (ii): This follows immediately from Lemma 2.5 and Proposition 1.2.
(ii) ⇒ (iii): If ε = c(u) ∈ c

(
End(F )

)×, then ζ �→ ζ · ε is a bijection from I(δ)
onto I(γ). Because these two sets are ideals of c

(
End(F )

)
, they are equal.

(iii) ⇒ (i): Without loss of generality, we may assume that v(γ) < v(δ). Choose
ζ ∈ c

(
End(F )

)
such that [ζ]F (γ) = δ and suppose πm (m ≥ 1) generates I(γ). Since

ζ is not a unit in c
(
End(F )

)
(Proposition 1.2), ζ = π η for some η ∈ c

(
End(F )

)
.

Then πm−1 ∈ I(δ) because [πm−1]F (δ) = [πm]F
(
[η]F (γ)

)
= [η]F

(
[πm]F (γ)

)
= 0.

Therefore, I(γ) �= I(δ). �
Corollary 2.7. Let F be a full p-adic formal group. For any m ∈ N, Aut(F ) acts
transitively on the set ker [πm]F − ker [πm−1]F .
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Proof. Using Remark 2.4(i) and Theorem 2.6 (iii) ⇒ (i), we see that all the
elements of ker [πm]F − ker [πm−1]F have the same valuation, which, in light of
Lemma 2.5, is less than the valuation of any of the elements of ker [πm−1]F . The
corollary now follows from Theorem 2.6 (i) ⇒ (ii). �

Corollary 2.8. Let F be a full p-adic formal group and let C1 and C2 be finite
cyclic subgroups of Λ(F ). Then there exists some u ∈ Aut(F ) such that C1 = u(C2)
if and only if I(C1) = I(C2).

Proof. This follows from Remark 2.4(ii) and Theorem 2.6. �

3. Deflated subgroups

When expressing a full or almost full p-adic formal group G as being isomorphic
to the quotient of a full p-adic formal group F by a finite subgroup C of Λ(F ), F is
uniquely determined up to isomorphism. Indeed, if F/C ∼= F ′/C ′, where F and F ′

are full, then ΣF = ΣF/C = ΣF ′/C′ = ΣF ′ (see the proof of Corollary 1.7), whence
F ∼= F ′ via an isogeny [Lu3, 4.3.2]. However, the subgroup C is by no means unique
(not even up to isomorphism).

Proposition 3.1. Let F be any p-adic formal group. If C is a finite subgroup of
Λ(F ) and 0 �= g ∈ End(F ), then F/g−1(C) ∼= F/C over a p-adic integer ring.

Proof. Since g−1(C) is the kernel of the p-adic isogenies ϕg−1(C) : F → F/g−1(C)
and ϕC ◦g : F → F/C, we can use Theorem 1.3. �

Taking g = [pn]F for various n ∈ N, we see that there are infinitely many
nonisomorphic finite subgroups of Λ(F ) which yield isomorphic quotients. This
prompts the following.

Definition 3.2. Let F be a p-adic formal group. For finite subgroups C1, C2 of
Λ(F ), we write C1 ∼ C2 if F/C1

∼= F/C2.

It is clear that ∼ is an equivalence relation on the set of finite subgroups of Λ(F ).
If C and D are two subgroups of Λ(F ) such that C ∼ D, then we will say that C
and D are equivalent. We now show that when F is a full p-adic formal group, then
the converse of Proposition 3.1 is true.

Proposition 3.3. Let F be a full p-adic formal group and let C, D be equivalent
finite subgroups of Λ(F ). If |C| ≥ |D|, then there exists 0 �= g ∈ End(F ) such that
C = g−1(D).

Proof. By assumption, there is an isomorphism u : F/C → F/D, and according
to Proposition 1.5, the homomorphism u ◦ ϕC is a nonzero isogeny (since ϕD is).
Thus, the maps V (u◦ϕC), V (ϕD) : V (F ) → V (F/D) are isomorphisms of ΣF -vector
spaces (see §2). Also, since F is full, F/D must be full or almost full [Lu2, 3.0], and
so V (F ) and V (F/D) are one-dimensional over ΣF . Consequently, V (u◦ϕC)

(
resp.,

V (ϕD)
)

is scalar multiplication by some nonzero element α (resp., β) of ΣF . Assume
now that β−1α ∈ c

(
End(F )

)
, and let g = [β−1α]F . Then V (g) operates on V (F )

via scalar multiplication by β−1α, and so V (u ◦ ϕC) = V (ϕD) ◦ V (g) = V (ϕD ◦g).
Therefore, u ◦ ϕC = ϕD ◦g by Proposition 2.1. Comparing kernels, we see that
C = g−1(D).



228 David J. Schmitz

We now show that β−1α must be in c
(
End(F )

)
. If β−1α /∈ c

(
End(F )

)
, then

because c
(
End(F )

)
is a valuation ring, it follows that α−1β ∈ c

(
End(F )

)
, but it

is not a unit. The same reasoning as above shows that ϕD = (u ◦ ϕC) ◦ g̃, where
g̃ = [α−1β]F . This implies that g̃−1(C) = D, and since ker

(
g̃
)
�= {0}, we arrive at

|D| > |C|, a contradiction. �
If F is a full p-adic formal group and C a finite subgroup of Λ(F ), then many

properties of Λ(F/C) and End(F/C) depend on the element(s) of minimal size in
the equivalence class of C. We now name these subgroups.

Definition 3.4. Let F be a p-adic formal group. A finite subgroup D of Λ(F ) is
a deflated subgroup of F if D ∼ C implies |D| ≤ |C|.

There may be multiple deflated subgroups of F belonging to the same equivalence
class. Indeed, if u ∈ Aut(F ) and if D is a deflated subgroup of F , then u−1(D) ∼ D
and u−1(D) is deflated since |u−1(D)| = |D|. On the other hand, if ker(g) ⊆ D
for some 0 �= g ∈ End(F ) − Aut(F ), then D is not deflated. To see this, we notice
that g(D) ∼ D because g−1

(
g(D)

)
= D, and |g(D)| < |D| because ker(g) �= {0}.

In the next theorem, we show that when F is full, this property characterizes the
nondeflated subgroups of F .

Theorem 3.5. Let F be a full p-adic formal group. A finite subgroup C of Λ(F )
is a deflated subgroup of F if and only if ker [π]F � C.

Proof. We have already shown why C is not a deflated subgroup of F if it contains
ker [π]F . Conversely, if C is not a deflated subgroup of F , then there is a finite
subgroup D of Λ(F ) such that D ∼ C and |D| < |C|. By Proposition 3.3, there
is some 0 �= g ∈ End(F ) such that C = g−1(D); in particular, ker(g) ⊆ C. Also,
ker(g) �= {0} because |C| �= |D|. The result now follows since the kernels of the
endomorphisms of F are totally ordered with respect to inclusion, with ker [π]F the
smallest nonzero subgroup among them. �

If F is a p-adic formal group of height 1, then c
(
End(F )

)
= Zp, and F is

necessarily full. We can take p to be a uniformizer of c
(
End(F )

)
, and ker [p]F

has order p. It follows that every nonzero finite subgroup C of Λ(F ) is cyclic
and contains ker [p]F ; therefore, by Theorem 3.5, C is not a deflated subgroup of
F . However, for full p-adic formal groups F of height h > 1, nondeflated cyclic
subgroups are more the exception than the rule. According to Theorem 3.5, F has
nondeflated cyclic subgroups if and only if ker [π]F is cyclic, where π is a uniformizer
of c

(
End(F )

)
. Using Proposition 2.2, plus the fact that ker [π]F ⊆ ker [p]F , we see

that ker [π]F is cyclic if and only if ΣF /Qp is totally ramified.
We can now restate Conjecture 1 more concisely using the terminology and

notation we have developed so far:

Conjecture 1. Let F be a full p-adic formal group of height 2, and let C be a
deflated cyclic subgroup of F of order pn. Then c

(
End(F/C)

)
= Zp + pno, where

o = c
(
End(F )

)
.

4. Generalizations of Conjecture 1

We now prove a couple of theorems which generalize Conjecture 1 to p-adic
formal groups of arbitrary height. First we look at the situation where the finite
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subgroup C is cyclic, but not necessarily deflated, and then where C is deflated,
but not necessarily cyclic. Our main tool is Lemma 4.1, which is a special case of
[Lu2, 3.1].

Lemma 4.1. Let F be a p-adic formal group such that End(F ) is integrally closed.
If C is a finite subgroup of Λ(F ), then

c
(
End(F/C)

)
=

{
ζ ∈ c

(
End(F )

) ∣∣ [ζ]F (C) ⊆ C
}
.

Proof. Let L be the lattice in V (F ) consisting of all elements (a0, a1, . . . ) with
a0 ∈ C. Then L is the lattice corresponding to ϕC : F → F/C as described in
[Lu2, §2.2]. Therefore, according to [Lu2, 3.1],

c
(
End(F/C)

)
=

{
ζ ∈ ΣF

∣∣ ζL ⊆ L
}
.

Because c
(
End(F/C)

)
is a Zp-order in ΣF , c

(
End(F/C)

)
⊆ oΣF

= c
(
End(F )

)
.

Thus

c
(
End(F/C)

)
=

{
ζ ∈ c

(
End(F )

) ∣∣ ζL ⊆ L
}
.

But for ζ ∈ c
(
End(F )

)
and a = (a0, a1, . . . ) ∈ V (F ), ζ ·a =

(
[ζ]F (a0), [ζ]F (a1), . . .

)
.

Hence ζL ⊆ L if and only if [ζ]F (C) ⊆ C. �

Remark 4.2. If G is a p-adic formal group where c
(
End(G)

)
is not integrally

closed, then there is some n ∈ N such that pn oΣG
⊆ c

(
End(G)

)
. In this case, recall

that for ζ ∈ oΣG
and a = (a0, a1, . . . ) ∈ V (G),

ζ · a =
(
[pnζ]G(an), [pnζ]G(an+1), . . .

)
.

A modification of the proof of Lemma 4.1 yields

c
(
End(G/C)

)
=

{
ζ ∈ oΣG

∣∣∣ [pnζ]G
(
[pn]−1

G (C)
)
⊆ C

}
.

When F is a full p-adic formal group and C is a cyclic subgroup of Λ(F ), then
the ring c

(
End(F/C)

)
has a rather simple description in terms of the annihilator of

C in o = c
(
End(F )

)
. We note that Theorem 4.3 is a generalization of Conjecture 1

since, as we will show, I(C) = pno for the subgroups C considered there.

Theorem 4.3. Let F be a p-adic formal group such that End(F ) is integrally
closed. If C is a finite cyclic subgroup of Λ(F ), then c

(
End(F/C)

)
= Zp + I(C).

Proof. Let γ be a generator of C. By Remark 2.4(ii), I(C) = I(γ). If ζ ∈ I(C),
then [ζ]F (C) = {0} ⊆ C, and so by Lemma 4.1, ζ ∈ c

(
End(F/C)

)
. It is now clear

that Zp + I(C) ⊆ c
(
End(F/C)

)
. Conversely, take any ζ ∈ c

(
End(F/C)

)
. Then by

Lemma 4.1, [ζ]F (γ) ∈ C, and so there is an m ∈ Z such that [ζ]F (γ) = [m]F (γ).
Hence, ζ − m ∈ I(γ) = I(C), i.e., ζ ∈ Zp + I(C). �

When C is a deflated (but not necessarily cyclic) subgroup of a full p-adic
formal group F , we can determine the conductor of c

(
End(F )

)
with respect to

c
(
End(F/C)

)
. Recall that if A ⊆ B are commutative unitary rings, then the con-

ductor of B with respect to A is the ideal c = {b ∈ B | bB ⊆ A}.

Theorem 4.4. Let F be a full p-adic formal group, and let C be a deflated subgroup
of F . The conductor c of c

(
End(F )

)
with respect to c

(
End(F/C)

)
is I(C).
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Proof. Let π be a uniformizer of o = c
(
End(F )

)
. As the result is trivial if C = {0},

we may assume that I(C) = πmo for some m ≥ 1. Then c = πko, where k is the
smallest nonnegative integer for which πko ⊆ c

(
End(F/C)

)
. Now, if ζ ∈ o, then

[πmζ]F (C) = [ζ]F
(
[πm]F (C)

)
= {0} ⊆ C. By Lemma 4.1, πmζ ∈ c

(
End(F/C)

)
,

and so k ≤ m. Suppose that πm−1o ⊆ c
(
End(F/C)

)
. Then for every ε ∈ o×,

[ε]F
(
[πm−1]F (C)

)
⊆ C. Since {0} �= [πm−1]F (C) ⊆ ker [π]F , Corollary 2.7 implies

that ⋃
u∈Aut(F )

u
(
[πm−1]F (C)

)
= ker [π]F ,

whence ker [π]F ⊆ C. According to Theorem 3.5, this contradicts the assumption
that C is a deflated subgroup of F , and so k = m. Therefore, c = I(C). �

5. Free Tate modules of rank 1

Lubin [Lu2, §3.2] showed that if R is a Zp-order in a finite extension K of
Qp with R �= oK , then there exists an almost full p-adic formal group G with
c
(
End(G)

)
= R. However, unlike the situation for full p-adic formal groups, there

do exist nonisomorphic almost full p-adic formal groups which have isomorphic
absolute endomorphism rings. (We show in §6, however, that such formal groups
cannot have height 2.) Waterhouse [W] proves that two almost full p-adic formal
groups G1 and G2 are isomorphic if and only if c

(
End(G1)

)
= c

(
End(G2)

)
= R and

T (G1) ∼= T (G2) as R-modules. A key lemma in his proof asserts that there is an
almost full p-adic formal group H with c

(
End(H)

)
= R such that T (H) is free of

rank 1 over R. In our next proposition, we use our results to derive a necessary and
sufficient condition on a finite subgroup C of the points of a full p-adic formal group
F which guarantees that T (F/C) is free of rank 1 over c

(
End(F/C)

)
. In the proof,

we use the fact that if G is a p-adic formal group, then an element (a0, a1, a2, . . . )
of V (G) belongs to T (G) if and only if a0 = 0.

Proposition 5.1. Let F be a full p-adic formal group and let C be a finite nonzero
subgroup of Λ(F ). Then T (F/C) is free of rank one over c

(
End(F/C)

)
if and only

if there exists a γ ∈ C satisfying the following two properties:
(P1) γ has minimal valuation among the elements of C.
(P2) If g ∈ End(F ) and g(γ) ∈ C, then g(C) ⊆ C.

Proof. Assume that γ ∈ C satisfies (P1) and (P2); note that γ �= 0 because
C �= {0}. Choose any b ∈ V (F ) such that b0 = γ, and define b′ = V (ϕC)(b). We
will show that T (F/C) = c

(
End(F/C)

)
·b′. If ζ ∈ c

(
End(F/C)

)
, then [ζ]F (C) ⊆ C

by Lemma 4.1, and hence

ζ · b′ = ζ · V (ϕC)(b)

=
(
[ζ]F/C(ϕC(b0)), [ζ]F/C(ϕC(b1)), . . .

)
=

(
ϕC([ζ]F (γ)), ϕC([ζ]F (b1)), . . .

)
= (0, . . . ) ∈ T (F/C).

Therefore, c
(
End(F/C)

)
·b′ ⊆ T (F/C). Conversely, take any a ∈ T (F/C), and let

ζ be the unique element of ΣF such that a = ζ · b′. Choose an integer n large
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enough so that pnζ ∈ c
(
End(F )

)
. Then

a = V (ϕC)(ζ · b)
= V (ϕC)(p−n · pnζ · b)
=

(
ϕC([pnζ]F (bn)), ϕC([pnζ]F (bn+1)), . . .

)
,

which implies that [pnζ]F (bn) ∈ C since a0 = 0. By (P1), v(γ) ≤ v
(
[pnζ]F (bn)

)
,

and so by Lemma 2.5 there is an η ∈ c
(
End(F )

)
such that [η]F (γ) = [pnζ]F (bn).

Therefore, because γ = [pn]F (bn), we know that pn(ζ − η) ∈ I(bn). However,
pn /∈ I(bn) (since γ �= 0) and so v

(
pn(ζ − η)

)
> v(pn). This in turn implies that

v(ζ − η) > 0, which proves that ζ ∈ c
(
End(F )

)
. We see now that

a = ζ · V (ϕC)(b) =⇒ ϕC

(
[ζ]F (γ)

)
= 0

=⇒ [ζ]F (γ) ∈ C
=⇒ [ζ]F (C) ⊆ C

(
from (P2)

)
which shows that ζ ∈ c

(
End(F/C)

)
according to Lemma 4.1.

Now, suppose that T (F/C) is free of rank 1 over c
(
End(F/C)

)
and choose any

b ∈ V (F ) such that
{
V (ϕC)(b)

}
is a c

(
End(F/C)

)
-basis for T (F/C). Because

V (ϕC)(b) ∈ T (F/C), it follows that ϕC(b0) = 0, i.e., b0 ∈ C. We will show that
γ = b0 satisfies (P1) and (P2). Take any δ ∈ C and d ∈ V (F ) with d0 = δ.
As V (ϕC)(d) ∈ T (F/C), there is a unique ζ ∈ c

(
End(F/C)

)
⊆ c

(
End(F )

)
such

that V (ϕC)(d) = ζ · V (ϕC)(b) = V (ϕC)(ζ · b). Because V (ϕC) is an isomorphism,
ζ · b = d, and so [ζ]F (γ) = δ. Proposition 1.2 shows that v(δ) ≥ v(γ), which
establishes (P1). Finally, if g ∈ End(F ) and g(γ) ∈ C, then

c(g) · V (ϕC)(b) = V (ϕC ◦g)(b) =
(
ϕC(g(γ)), . . .

)
= (0, . . . ) ∈ T (F/C).

This implies that c(g) ∈ c
(
End(F/C)

)
, i.e., g(C) ⊆ C, and so (P2) holds as well. �

Corollary 5.2. If F is a full p-adic formal group and if C is a finite cyclic subgroup
of Λ(F ), then T (F/C) is free of rank 1 over c

(
End(F/C)

)
.

Proof. The result is clear if C = {0}. Otherwise, if C = 〈γ〉 �= {0}, then the pair
(C, γ) satisfies (P1) (use Proposition 1.2) and (P2) of Proposition 5.1. �

The converse of Corollary 5.2 is not true in general, even if we require the
subgroup to be deflated. Let F be a full p-adic formal group and let π be a
uniformizer of o = c

(
End(F )

)
. Fix any 0 �= γ ∈ Λ(F ) and let C be a finite subgroup

of Λ(F ) containing γ as an element of minimal valuation. By Remark 2.4(ii),
I(C) = I(γ) = πko for some k ∈ N. The set

SC =
{
ζ ∈ o

∣∣ [ζ]F (C) ⊆ C
}

= c
(
End(F/C)

)
is a subring of o containing I(γ), and the set

TC,γ =
{
ζ ∈ o

∣∣ [ζ]F (γ) ∈ C
}

is a subgroup of o containing SC . Moreover, the evaluation map ζ �→ [ζ]F (γ) induces
a group isomorphism TC,γ/I(γ) → C (see Lemma 2.5). Therefore the pair (C, γ)
satisfies (P1) and (P2) if and only if SC = TC,γ , i.e., if and only if SC = SC/πko
and C have the same order. Conversely, if S is any subring of o which contains
I(γ), then we can consider the submodule CS = S · γ =

{
[ζ]F (γ)

∣∣ ζ ∈ S
}

of the
finite S-module ker [πk]F . According to Proposition 1.2, the pair (CS , γ) satisfies
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(P1). Furthermore, S ⊆ SCS ⊆ TCS ,γ ⊆ S, which shows that (CS , γ) satisfies (P2)
as well. We note also that if (C, γ) satisfies (P1) and (P2), then CSC

= C. Indeed,
it is clear that CSC

⊆ C, and C ⊆ CSC
according to Lemma 2.5 plus the fact that

SC = TC,γ . This proves the following.

Corollary 5.3. Let F be a full p-adic formal group. For each 0 �= γ ∈ Λ(F ),
the association C �→ SC defines a one-to-one correspondence between finite sub-
groups C of Λ(F ) for which the pair (C, γ) satisfies properties (P1) and (P2) of
Proposition 5.1 and subrings of oΣF

containing the ideal I(γ).

In the special case where I(γ) = πo, for any subgroup C of ker [π]F containing
γ, SC is a subfield of the residue field o/πo = Fpf . For each divisor r of f , one can
use Corollary 5.3 to construct a (unique) subgroup Cr of ker [π]F of order pr such
that (Cr, γ) satisfies (P1) and (P2); more specifically, SCr is the subfield of Fpf of
order pr. If f is composite and r �= 1 or f , then Cr is a noncyclic deflated subgroup
of F such that T (F/Cr) is a free c

(
End(F/Cr)

)
-module of rank 1.

6. Special results for height 2 formal groups

Our general results from §4 and §5 yield a wealth of information about p-adic
formal groups of height 2 because of the following.

Proposition 6.1. If F is a p-adic formal group of height 2, then every deflated
subgroup of F is cyclic.

Proof. Because ker [p]F has p2 elements, C is a product of at most two cyclic
subgroups. But as C is deflated, ker [p]F � C. Hence C ∩ ker [p]F has at most p
elements which proves that C is cyclic. �

The discussion after Theorem 3.5 shows that the converse of Proposition 6.1 is
not true.

Corollary 6.2. If G is an almost full p-adic formal group of height 2, then T (G)
is a free End(G)-module of rank 1.

We now give a proof of Conjecture 1.

Theorem 6.3. Let F be a full p-adic formal group of height 2, and let C be a
deflated (and hence cyclic) subgroup of F of order pn. If o = c

(
End(F )

)
, then

c
(
End(F/C)

)
= Zp + pno.

Proof. The result is obvious if C = {0}, so we may assume that n ≥ 1. By
Theorem 4.3 and Remark 2.4(ii), it suffices to show that I(γ) = pno, where γ is a
generator of C. Clearly, [pn]F (γ) = 0 and [pn−1]F (γ) �= 0. If ΣF /Qp is unramified,
then p is a uniformizer of oΣF

, which shows that I(γ) = pno in this case. On
the other hand, if ΣF /Qp is totally ramified and if π is a uniformizer of o, then
either pn or πpn−1 generates I(γ). If [πpn−1]F (γ) = 0, then [pn−1]F (γ) would be
a nonzero element of ker [π]F ∩C, which would imply that ker [π]F ⊆ C because
ker [π]F is cyclic. This contradicts the assumption that C is a deflated subgroup of
F , and so I(γ) = pno in this case as well. �

Finally, as an application, we use our results to show that the isomorphism
class of an almost full p-adic formal group of height 2 depends only on its absolute
endomorphism ring. This is a generalization in height 2 of [Lu3, 4.3.2].
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Corollary 6.4. Let G1 and G2 be almost full p-adic formal groups of height 2 such
that c

(
End(G1)

)
= c

(
End(G2)

)
. Then G1 and G2 are isomorphic via an isogeny.

Proof. Using Corollary 1.8 and the results in §3, we can find full p-adic formal
groups F1 and F2 and deflated subgroups C1 and C2 of F1 and F2 respectively
such that F1/C1

∼= G1 and F2/C2
∼= G2. Since ΣF1

= ΣG1
= ΣG2

= ΣF2
, we may

assume without loss of generality that F1 = F2 = F [Lu3, 4.3.2]. Then, according to
Theorem 4.4, the fact that c

(
End(G1)

)
= c

(
End(G2)

)
implies that I(C1) = I(C2).

Since C1 and C2 are cyclic, it follows from Corollary 2.8 that there exists some
u ∈ Aut(F ) such that C1 = u(C2). Therefore, C1 ∼ C2 by Proposition 3.1,
whence G1

∼= G2 by definition. That this isomorphism is an isogeny follows from
Corollary 1.7. �
Remark 6.5. We could have instead used the main theorem in [W] to prove Corol-
lary 6.4. Indeed, for i = 1, 2, Ci is cyclic, and therefore the Tate module T (Gi)
is free of rank 1 over R = c

(
End(Gi)

)
, according to Corollary 5.2. So, certainly

T (G1) and T (G2) are isomorphic as R-modules.
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