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Canonical and filling subgroups of formal groups

David J. Schmitz

Abstract. Let F be a one-dimensional full or almost full p-adic formal group.
We look for finite subgroups C of F for which the quotient formal group F/C
is full. In particular, we investigate the connection between such groups and
the congruence-torsion subgroups of F described in Lubin, 1979. In doing so,
we prove a conjecture of Jonathan Lubin concerning this relationship when F
has height 2.

Contents

1. Introduction and notation 235
2. Filling subgroups 238
3. Canonical subgroups 239
4. Further results concerning canonical subgroups 245
References 246

1. Introduction and notation

Let p be a prime number, and let Qp be a fixed algebraic closure of the field
Qp of p-adic numbers. Let v denote the unique extension of the p-adic valuation
on Qp to a rational valuation on Qp, normalized so that v(p) = 1. If Cp is the
completion of Qp with respect to v, then v extends uniquely, by continuity, to a
rational valuation on Cp, and we denote this valuation by v as well. Furthermore,
we write O for the set {x ∈ Cp | v(x) ≥ 0} of v-integers, and M for the maximal
ideal {x ∈ O | v(x) > 0} of O. For any subfield K of Cp, we denote by oK the
integer ring of K, i.e., oK = K ∩ O.

If F (X, Y ) is a p-adic formal group, i.e., a one-dimensional formal group of finite
height defined over some oK with [K : Qp] < ∞, then F endows M with a group
structure, where, for α, β ∈ M, α +

F
β = F (α, β). This abelian group, called the

points of F , will be denoted F (O). The torsion subgroup of F (O) is

Λ(F ) =
⋃
n∈N

ker [pn]F ,
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where [pn]F denotes multiplication-by-pn on the group F (O) [Lu2, §1.0]. If G
is another p-adic formal group, then a homomorphism g : F → G (assumed to be
defined over O) induces a group homomorphism (via evaluation) g : F (O) → G(O),
and the set Hom(F, G) of all homomorphisms from F to G forms a group. The map
c : Hom(F, G) → O, which assigns to each homomorphism its linear coefficient, is
injective [Lu3, 2.1.1]. An easily-proved, yet very useful result is the following:

Proposition 1.1 ([S, 1.2]). If g : F → G is a homomorphism and α ∈ F (O), then
v
(
g(α)

) ≥ v(α), with equality if and only if either α = 0 or c(g) ∈ O×.

A homomorphism g : F → G for which c(g) ∈ O× is compositionally invertible
(over O) and is called an isomorphism from F to G. We say that g : F → G
is an isogeny if g is defined over a complete, discretely-valued subfield of Cp; it
is enough to check only that c(g) belongs to such a subfield of Cp [S, §1]. The
set Isog(F, G) of all isogenies from F to G is a group [S, 1.6], and we say that F
and G are isogenous if and only if Isog(F, G) �= 0. If 0 �= g ∈ Isog(F, G), then
ker(g) = {α ∈ F (O) | g(α) = 0} is a finite subgroup of F (O) and g maps Λ(F ) onto
Λ(G) [S, §1].

The absolute endomorphism ring of F , denoted End(F ), is the set Hom(F, F ).
If g ∈ End(F ) and c(g) = a, then instead of g we will sometimes write [a]F . The
notation [m]F for the multiplication-by-m endomorphism is consistent with this
convention since its linear coefficient is m. If F has height h, then [ΣF : Qp] divides
h, where ΣF (the endomorphism field of F ) is the fraction field of c

(
End(F )

)
in

Cp [Lu3, 2.3.2]. In particular, ΣF is algebraic over Qp, and so every endomorphism
of a p-adic formal group is an isogeny, and c

(
End(F )

)
is a Zp-order of ΣF . When

[ΣF : Qp] = h and c
(
End(F )

)
= oΣF

(the maximal order of ΣF ), then F is said to
be full. When [ΣF : Qp] = h but c

(
End(F )

) �= oΣF
, then F is said to be almost

full. Finally, we will call quasi-full any p-adic formal group F of height h where
End(F ) is integrally closed but [ΣF : Qp] < h. Lubin and Tate show in [LT] how
to construct a full p-adic formal group F over a given p-adic integer ring oK such
that c

(
End(F )

)
= oK . According to [Lu3, 4.3.2], two full p-adic formal groups are

isomorphic (via an isogeny) if and only if they have the same endomorphism field.
An analogous result holds for almost full p-adic formal groups of height 2.

Theorem 1.2 ([S, 6.4]). Two almost full p-adic formal groups F and G of height
2 are isomorphic via an isogeny if and only if c

(
End(F )

)
= c

(
End(G)

)
.

Whereas there is essentially only one full p-adic formal group having a particular
endomorphism field, Lubin showed [Lu2] how to construct an almost full p-adic
formal group G for which c

(
End(G)

)
is isomorphic to a given nonmaximal Zp-

order R in a p-adic number field K. Starting with a full p-adic formal group F such
that c

(
End(F )

)
= oK , one can associate to R a finite subgroup C of Λ(F ) [Lu2,

2.2 and 3.2]. If ϕC(T ) is the power series

ϕC(T ) =
∏
γ∈C

F (T, γ),

then ϕC is an isogeny from F to the p-adic formal group F/C given by

(F/C)(X, Y ) = ϕC

(
F

(
ϕC

−1(X), ϕC
−1(Y )

))
,
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both of which are defined over any p-adic integer ring containing C and all the
coefficients of F [Lu2, 1.4]. We refer to F/C as the quotient of F by C and to
ϕC as the projection homomorphism from F to F/C. If we set G = F/C, then
c
(
End(G)

)
= R [Lu2, 3.2] and G is almost full because isogenous p-adic formal

groups have the same height [Lu3, 2.2.3 and 2.3.1].
Another approach is to ask about the structure of the quotient of a given full

or almost full p-adic formal group F by a finite subgroup C of Λ(F ). Since F and
F/C have the same height and the same endomorphism field [Lu2, 3.0], F/C is
either full or almost full as well. A more detailed description of F/C when F has
height two is the subject of a couple of recent conjectures of Lubin, one of which
is proved in [S]. We first recall that a finite subgroup D of Λ(F ) is said to be a
deflated subgroup of F if there is no subgroup C of Λ(F ) with fewer elements such
that F/C is isomorphic to F/D. We note that when F is full, then this is equivalent
to D not containing the kernel of any noninvertible F -endomorphism [S, 3.5].

Theorem 1.3 ([S, 6.3]: Lubin’s First Conjecture). Let F be a full p-adic formal
group of height 2 and C a deflated (cyclic) subgroup of F of order pn. Then
c
(
End(F/C)

)
= Zp + pn oΣF

.

In light of Theorem 1.2 and the fact that each Zp-order in a quadratic extension
K of Qp has the form Zp+pn oK for some integer n ≥ 0, Theorem 1.3 shows how an
arbitrary almost full p-adic formal group of height 2 can be realized as the quotient
of a full p-adic formal group by a cyclic subgroup of a particular order. This is a
special case of the fact that any p-adic formal group G is isomorphic to the quotient
of a full or quasi-full p-adic formal group by some finite subgroup. Indeed, Lubin
[Lu2, 3.2 and 1.6] proved that there exists a p-adic formal group F with End(F )
integrally closed and isogenies g : F → G and g̃ : G → F each defined over a
p-adic integer ring. If C = ker(g), then the following formal analogue of a standard
result from the theory of elliptic curves can be used to show that F/C and G are
isomorphic.

Theorem 1.4 ([Lu2, 1.5], [S, 1.3]). Let oK be the ring of integers of a complete,
discretely-valued subfield of Cp. If F , G, and H are p-adic formal groups defined
over oK , and if g1 : F → G, g1 �= 0, and g2 : F → H are isogenies defined over oK

with ker(g1) ⊆ ker(g2), then there is a unique isogeny j : G → H defined over oK

such that j ◦ g1 = g2. If ker(g1) = ker(g2), then j is an isomorphism.

Since C is the kernel of both g : F → G and ϕC : F → F/C, Theorem 1.4 implies
that G and F/C are isomorphic. The same reasoning shows that G/D is isomorphic
to F , where D = ker(g̃). In other words, every p-adic formal group possesses at least
one subgroup which yields a full or quasi-full quotient. Lubin’s second conjecture
deals with these special subgroups, which we call filling subgroups. He guessed
that the quotient of a given height 2 almost full p-adic formal group G by a cyclic
subgroup of Λ(G) of a certain order should be full, and that this subgroup should
be distinguishable in some (other) way from among all cyclic subgroups of Λ(G) of
that order. His precise statement is given below.

Conjecture 1.5 (Lubin’s Second Conjecture). Let G be a height 2 almost full p-
adic formal group with c

(
End(G)

)
= Zp + pno, where o is the integer ring in

a quadratic extension of Qp. Then Λ(G) has a cyclic subgroup D of order pn,
“canonical” somehow, where G/D is full.
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Proving this conjecture and some of its generalizations provides the focus for this
paper. We will prove that the subgroup D in the second conjecture is “canonical” in
the following sense: it consists of the pn elements in the kernel of [pn]G which have
the largest valuations. Furthermore, we will show that this subgroup is the smallest
filling subgroup of G. Finally, we will investigate the set of all filling subgroups of
an arbitrary almost full p-adic formal group G and explore how these subgroups
relate to the canonical subgroups of G.

2. Filling subgroups

We begin by investigating those finite subgroups D of the points of a full or
almost full p-adic formal group G which yield full quotients. We will calculate the
orders of all such subgroups of Λ(G) and prove that no two of them have the same
order.

Definition 2.1. Let G be a p-adic formal group. A finite subgroup D of Λ(G) is a
filling subgroup of G if End(G/D) is integrally closed, i.e., if c

(
End(G/D)

)
= oΣG

.

As explained in the introduction, every p-adic formal group has at least one
filling subgroup. In fact, if c

(
End(G)

)
= Zp, (such formal groups of all heights exist

according to [Lu3, 5.2.1]), then every finite subgroup D of Λ(G) is filling; indeed,
Zp ⊆ c

(
End(G/D)

) ⊆ oΣG
= Zp. On the other hand, only full or almost full p-adic

formal groups have filling subgroups that yield full quotients because isogenous p-
adic formal groups have the same endomorphism fields and equal heights. Lubin’s
second conjecture is concerned with a specific filling subgroup of an almost full
p-adic formal group of height 2, but we aim to classify all filling subgroups of any
full or almost full p-adic formal group. The next proposition is a first step in this
direction.

Proposition 2.2. Let D be any finite subgroup of the points of a p-adic formal
group G. Then G/D ∼= G if and only if D is the kernel of some nonzero G-endo-
morphism. In particular, the filling subgroups of a full p-adic formal group are the
kernels of its nonzero endomorphisms.

Proof. Assume first that D = ker(g), where 0 �= g ∈ End(G). As g : G → G
and ϕD : G → G/D have the same kernel, it follows from Theorem 1.4 that G is
isomorphic to G/D. Conversely, if u : G/D → G is an isomorphism, then u ◦ϕD is
a nonzero endomorphism of G with kernel D. The last statement in the proposition
follows from the fact that full p-adic formal groups with the same endomorphism
field are isomorphic [Lu3, 4.3.2]. �

The endomorphism kernels of a full or quasi-full formal group F are easy to
describe because End(F ) is a discrete valuation ring.

Proposition 2.3 ([S, §2]). Let F be a full or quasi-full p-adic formal group and
let π be a uniformizer of c

(
End(F )

)
. If g is any nonzero F -endomorphism, then

ker(g) = ker [πe·v(c(g))]F where e is the ramification index of ΣF /Qp. In particular,
for each integer m ≥ 0, ker [pm]F = ker [πme]F .

Suppose F is a full or quasi-full p-adic formal group and that π is a uniformizer
of c

(
End(F )

)
. If X is a finite subset of Λ(F ), we will write �(X) = k where k is the

smallest nonnegative integer such that X ⊆ ker [πk]F . Thus, � measures the depth
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of a subset of Λ(F ) in the filtration of subgroups
{
ker [πm]F

}
m≥0

. According to
[S, 2.2], ker [πm]F has pm(h/e) elements, where h is the height of F and e is the
ramification index of ΣF /Qp. Therefore, in light of Proposition 2.2, if F is full,
there is for each nonnegative integer m exactly one filling subgroup of F of order
pmf (where f is the residue field degree of ΣF /Qp), and F has no other filling
subgroups. We next prove similar results for an arbitrary p-adic formal group,
namely, that the orders of some of its filling subgroups form an arithmetic sequence
with common difference equal to h/e, and that no two of these filling subgroups
have the same order.

Theorem 2.4. Let D be a finite subgroup of the points of a full or quasi-full p-
adic formal group F with �(D) = n. For each m ≥ 0, let Cm = ϕD

(
ker [πm]F

)
,

where π is a uniformizer of c
(
End(F )

)
. Then {Cm}m≥n is the set of distinct filling

subgroups of F/D yielding a quotient isomorphic to F . Moreover, if |D| = pk,
then for each m ≥ n, |Cm| = pm(h/e)−k, where h is the height of F and e is the
ramification index of ΣF /Qp.

Proof. Let G = F/D. If u : G/C → F is an isomorphism, then u ◦ ϕC ◦ϕD is an
endomorphism g of F with D ⊆ ker(g) = ϕD

−1(C). According to Proposition 2.3,
ker(g) = ker [πm]F for some integer m ≥ �(D). Using the surjectivity of ϕD, it
follows that C = ϕD

(
ker [πm]F

)
= Cm. Conversely, if m ≥ �(D), then using

Theorem 1.4 and Proposition 2.2, we have

G/Cm
∼= F/(D +

F
ker [πm]F ) = F/ ker [πm]F ∼= F.

To compute the order of Cm (m ≥ n), we note that D = ker(ϕD) ⊆ ker [πm]F and
then refer to the discussion preceding the statement of the theorem. These orders
show that the Cm are distinct. �

Corollary 2.5. Let D be a finite subgroup of the points of a full p-adic formal
group F and let π be a uniformizer of c

(
End(F )

)
. Then

{
ϕD

(
ker [πm]F

)}
m≥�(D)

is the set of all filling subgroups of F/D.

Our second corollary follows from Theorem 2.4, plus the fact that {0} is a filling
subgroup of a full p-adic formal group.

Corollary 2.6. A full or almost full p-adic formal group has a unique deflated
filling subgroup.

By contrast, a full or almost full p-adic formal group can have several nonfilling
deflated subgroups which yield isomorphic quotients. For example, let F be a full
p-adic formal group of height 2, and assume that ΣF /Qp is unramified. Since
| ker [p]F | = p2, Λ(F ) has more than one (cyclic) subgroup of order p. If C and
D are two such subgroups, then c

(
End(F/C)

)
= c

(
End(F/D)

)
= Zp + p oK by

Theorem 1.3, whence F/C ∼= F/D by Theorem 1.2. Furthermore, C and D are
both deflated subgroups of F since they are not filling and since {0} is the only
subgroup of Λ(F ) with fewer elements.

3. Canonical subgroups

Lubin’s second conjecture suggests that filling subgroups of an almost full p-
adic formal group can be distinguished somehow from other subgroups of the same
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order. Unlike with full p-adic formal groups, however, a filling subgroup of an
almost full p-adic formal group G cannot be the kernel of an endomorphism since
for any 0 �= g ∈ End(G), G/ ker(g) is isomorphic to G. We will show eventually
that filling subgroups of all full and almost full p-adic formal groups are “canonical”
in a sense first described in [Lu1]. We begin here with the basic definitions and
some preliminary results.

Definition 3.1. Let G be a p-adic formal group. A subgroup S of Λ(G) is called a
congruence-torsion subgroup of G if there exists a positive real number λ such that
S = Λ(G)λ = {α ∈ Λ(G) | v(α) ≥ λ}. We say S is a canonical subgroup of G if
S =

(
ker [pn]G

)
λ

for some λ ∈ R+, where |S| = pn.

Remarks 3.2.
(i) If λ ∈ R+ and C is a subgroup of G(O), then Cλ = {α ∈ C | v(α) ≥ λ}

is a subgroup of C. This follows from the fact that for any α, β ∈ G(O),
v
(
α +

G
β
) ≥ min

{
v(α), v(β)

}
, with equality if v(α) �= v(β) [Lu1, §2].

(ii) Every congruence-torsion subgroup of G is finite [Si, IV.6.1].
(iii) If C = 〈γ〉 is a cyclic congruence-torsion subgroup of G of order pn and if m

is any integer, then [m]G(γ) generates C if and only if m is prime to p, i.e.,
if and only if v(m) = 0. Then, according to Proposition 1.1, the generators
of C are those elements having the smallest valuation. It follows inductively
that every subgroup of C is also a congruence-torsion subgroup of G.

In the next proposition, we show that the congruence-torsion subgroups of G
and the canonical subgroups of G are actually the same. This generalizes a result
in [Lu1, §4], where C is assumed to be cyclic.

Proposition 3.3. Let G be a p-adic formal group, and let C be a subgroup of Λ(G)
of order pn. Then C is a congruence-torsion subgroup of G if and only if C is a
canonical subgroup of G.

Proof. Assume first that C is a congruence-torsion subgroup of G, say C = Λ(G)λ.
Because |C| = pn, we know that C ⊆ ker [pn]G. Clearly, C =

(
ker [pn]G

)
λ
.

Conversely, assume C is a canonical subgroup of G. Set λ = min {v(α) |α ∈ C},
so that C =

(
ker [pn]G

)
λ
. If C is not a congruence-torsion subgroup of G, then there

exists some β ∈ Λ(G)−C such that v(β) ≥ λ. Since β /∈ ker [pn]G, β has order
pm for some m > n. Then γ = [pm−n]G(β) has order pn and therefore belongs to
ker [pn]G. From Proposition 1.1 it follows that v(γ) > v(β) ≥ λ, and hence γ ∈ C.
But then γ is a generator of C since |C| = pn. Because the generators are the
elements of smallest valuation in a cyclic subgroup of Λ(G) (Remark 3.2(iii)), we
see that v(γ) = λ, a contradiction. �

In [Lu1] and [Kl], the term “canonical subgroup” is more restrictive than our
definition allows. There, a canonical subgroup of a p-adic formal group G is a
congruence-torsion subgroup of G which is the kernel of a homomorphism defined
on G that reduces to the frobenius homomorphism T → T p in characteristic p. For
a one-dimensional p-adic formal group G, the kernel of any lifting of T → T p has p
elements; thus, only canonical subgroups of order p are considered in [Lu1]. Here,
there is no assumed connection between canonical subgroups and lifts of frobenius
or any other homomorphism in characteristic p.
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The canonical subgroups of a full p-adic formal group F are easily determined
using an observation made in the proof of [S, 2.7]. There it is shown that if π
is a uniformizer of c

(
End(F )

)
, then the elements of ker [πm]F − ker [πm−1]F have

the same valuation, which is smaller than the valuation of any of the elements of
ker [πm−1]F . We thus obtain the following.

Proposition 3.4. Let F be a full p-adic formal group and let π be a uniformizer
of c

(
End(F )

)
. Then for each m ≥ 0, ker [πm]F is the canonical subgroup of F of

order pmf , where f is the residue field degree of ΣF /Qp. These account for all of
the canonical subgroups of F .

In light of Proposition 2.3, we see that the canonical subgroups of a full p-
adic formal group are precisely the kernels of its nonzero endomorphisms. This
fact, together with Proposition 2.2, provides the first clue of a connection between
canonical subgroups and filling subgroups.

Corollary 3.5. A subgroup of a full p-adic formal group is filling if and only if it
is canonical.

We can use this characterization of the canonical subgroups of a full p-adic formal
group in order to explore the connection between canonical and filling subgroups
of almost full p-adic formal groups. In particular, we will determine the extent to
which Corollary 3.5 is true for such formal groups and also prove Lubin’s second
conjecture concerning almost full p-adic formal groups of height 2.

If G is an arbitrary almost full p-adic formal group, then G is isomorphic to the
quotient of a full p-adic formal group F by a finite subgroup D of Λ(F ). Since iso-
morphisms map canonical subgroups to canonical subgroups (Proposition 1.1) and
filling subgroups to filling subgroups (Theorem 1.4), we may assume without loss
of generality that G = F/D. We will use the homomorphism ϕD : F → G to study
the valuations of the elements of Λ(G). (We note here that the following discussion
applies to any p-adic formal group F .) According to the explicit definition of ϕD,
we see that for any α ∈ Λ(F ),

v
(
ϕD(α)

)
=

∑
γ∈D

v(α +
F

γ) =
∑

β ∈ α +
F

D

v(β) .(1)

In order to more easily compare the valuations of the images under ϕD of different
elements of Λ(F ), we introduce the following notation: if α ∈ Λ(F ), then α̃ will
denote an element in the coset α +

F
D having maximum valuation. If γ ∈ D

and v(γ) < v(α̃), then v(α̃ +
F

γ) = v(γ); on the other hand, if v(γ) ≥ v(α̃),
then v(α̃ +

F
γ) = v(α̃) according to how α̃ is defined. These observations follow

immediately from Remark 3.2(i). As ϕD(α) = ϕD(α̃), we infer from Equation (1)
that

v
(
ϕD(α)

)
=

∑
γ∈D

v(α̃ +
F

γ) =
∑
γ∈D

v(γ)<v(α̃)

v(γ) +
∑
γ∈D

v(γ)≥v(α̃)

v(α̃) .(2)

If α̃ = 0, then both sides of (2) are infinite; otherwise, both sides are finite since
ϕD(α) = 0 if and only if α̃ = 0.
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Lemma 3.6. Let D be a finite subgroup of the points of a p-adic formal group F . If
α, β ∈ Λ(F ), then v

(
ϕD(β)

) ≥ v
(
ϕD(α)

)
if and only if v(β̃) ≥ v(α̃). In particular,

v
(
ϕD(α)

)
= v

(
ϕD(β)

)
if and only if v(α̃) = v(β̃).

Proof. We may assume without loss of generality that β̃ �= 0. If v(α̃) = v(β̃), then
it is clear from Equation (2) that v

(
ϕD(α̃)

)
= v

(
ϕD(β̃)

)
. If v(β̃) > v(α̃), then

v
(
ϕD(β̃)

)
=

∑
γ∈D

v(γ)<v(β̃)

v(γ) +
∑
γ∈D

v(γ)≥v(β̃)

v(β̃)

=
∑
γ∈D

v(γ)<v(α̃)

v(γ) +
∑
γ∈D

v(α̃)≤v(γ)<v(β̃)

v(γ) +
∑
γ∈D

v(γ)≥v(β̃)

v(β̃)

≥
∑
γ∈D

v(γ)<v(α̃)

v(γ) +
∑
γ∈D

v(α̃)≤v(γ)<v(β̃)

v(α̃) +
∑
γ∈D

v(γ)≥v(β̃)

v(β̃)

>
∑
γ∈D

v(γ)<v(α̃)

v(γ) +
∑
γ∈D

v(γ)≥v(α̃)

v(α̃)

= v
(
ϕD(α̃)

)
.

We note that the second inequality is strict because D always contains an element
(e.g., 0) of valuation larger than v(β̃). The lemma now follows easily. �

We are now in a position to identify the canonical subgroups of any almost full
p-adic formal group G. We do so in the next theorem, which is stated in more
generality than we need now so as also to be of use in the next section.

Theorem 3.7. Let F be a full or quasi-full p-adic formal group, and let π be a
uniformizer of c

(
End(F )

)
. Assume that

{
ker [πm]F

}
m≥0

is the set of canonical
subgroups of F . If D is any finite subgroup of Λ(F ), then

{
ϕD

(
ker [πm]F

)}
m≥0

is
the set of canonical subgroups of F/D.

Proof. Let G = F/D and Cm = ϕD

(
ker [πm]F

)
= ϕD(D +

F
ker [πm]F ). We first

show that for every m ≥ 1, Cm is a canonical subgroup of G (the case m = 0 is
trivial). For any γ ∈ Cm and any δ ∈ Λ(F/D)−Cm, there exists α ∈ ker [πm]F
and β ∈ Λ(F )−(D +

F
ker [πm]F ) such that γ = ϕD(α) and δ = ϕD(β). Since

α̃ ∈ ker [πm]F (because ker [πm]F is a congruence-torsion subgroup of F ) and since
β̃ /∈ ker [πm]F , it follows that v

(
α̃
)

> v
(
β̃
)
. Therefore by Lemma 3.6, v(γ) > v(δ),

and so Cm is a congruence-torsion (i.e., canonical) subgroup of G.
We now show G has no other canonical subgroups. Suppose Cm �= Cm+1. For

any γ ∈ Cm+1−Cm, take α ∈ ker [πm+1]F −(
D +

F
ker [πm]F

)
such that γ = ϕD(α).

Using reasoning similar to that above, we see that α̃ ∈ ker [πm+1]F − ker [πm]F .
This, in light of Lemma 3.6 plus the fact that

{
ker [πm]F

}
m≥0

is the set of canonical
subgroups of F , implies that all elements of Cm+1 − Cm have the same valuation,
and so there can be no canonical subgroups between Cm and Cm+1. �

The following corollary is immediate.
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Corollary 3.8. If G is an almost full p-adic formal group, then every filling sub-
group of G is canonical. Furthermore, every canonical subgroup of G containing
the deflated filling subgroup of G is itself filling.

Remark 3.9. In the proof of Theorem 3.7, it is possible for Cm and Cm+1 to be
equal, even if D is deflated. (However, according to Corollaries 2.5 and 3.8, this
cannot happen if Cm+1 is filling.) For example, when F is full, ΣF /Qp is totally
ramified of degree at least 2, and D is the (deflated) cyclic subgroup of Λ(F ) of order
p generated by an element δ0 ∈ ker [π2]F − ker [π]F , then, by considering orders, we
see that D +

F
ker [π]F = ker [π2]F since D ∩ ker [π]F = {0}. Thus ϕD

(
ker [π ]F

)
=

ϕD

(
ker [π2]F

)
. On the other hand, when F is full, ΣF /Qp is unramified of any de-

gree greater than 1, and D is any deflated subgroup of F , then Cm is always a proper
subset of Cm+1. Indeed, Cm = Cm+1 if and only if ker [pm+1]F ⊆ D +

F
ker [pm]F ,

in which case we would have ker [p]F = [pm]F
(
ker [pm+1]F

) ⊆ [pm]F (D) ⊆ D,
contradicting the assumption that D is deflated.

We now prove Lubin’s Second Conjecture, which we restate as:

Theorem 3.10. Let G be an almost full p-adic formal group with height 2 and
c
(
End(G)

)
= Zp + pno, where o is the integer ring in a quadratic extension of Qp.

Then the deflated filling subgroup of G is cyclic of order pn and canonical.

Proof. Using Theorems 1.2 and 1.3, we may assume that G = F/D where F is a
full p-adic formal group with oΣF

= o and where D is a deflated cyclic subgroup
of F of order pn. The deflated filling subgroup C of F/D is cyclic [S, 6.1] and
canonical (Corollary 3.8), and so we have only to determine its order. If ΣF /Qp is
unramified, then �(D) = n. If ΣF /Qp is totally ramified and π is a uniformizer of
c
(
End(F )

)
, then �(D) = 2n, for if �(D) = 2n − 1 then ker [π]F = [pn−1]F (D) ⊂ D,

which contradicts our assumption that D is deflated. In either case, Corollary 2.5
says that C = ϕD (ker [pn]F ). Therefore, |C| = | ker [pn]F |/ |D| = p2n/pn = pn. �

Corollary 2.5 and Theorem 3.7 together show that, unlike full p-adic formal
groups, almost full p-adic formal groups may have nonfilling canonical subgroups,
namely (using the notation of Corollary 2.5) the subgroups ϕD

(
ker [πm]F

)
where

m < �(D). However, as long as D is deflated, all of these subgroups (except for
{0}) are at least “almost filling” as described in the next proposition.

Proposition 3.11. Let F be a full p-adic formal group and D a deflated subgroup
of F with �(D) = n > 1. If G = F/D and Cm = ϕD

(
ker [πm]F

)
where π is a

uniformizer of c
(
End(F )

)
, then for every 1 ≤ m < n,

c
(
End(G)

)
� c

(
End(G/Cm)

)
� c

(
End(F )

)
.

Proof. The second strict containment follows from the fact that F is full and Cm

is a nonfilling subgroup of G. To derive the first containment, we first note that
the kernel of ϕCm

◦ϕD is D +
F

ker [πm]F , and so G/Cm
∼= F/(D +

F
ker [πm]F ) by

Theorem 1.4. Then, according to [S, 4.1],

c
(
End(G)

)
=

{
ζ ∈ oΣF

∣∣ [ζ]F (D) ⊆ D
}

and

c
(
End(G/Cm)

)
=

{
ζ ∈ oΣF

∣∣ [ζ]F
(
D +

F
ker [πm]F

) ⊆ D +
F

ker [πm]F
}
.
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It is now clear that c
(
End(G)

) ⊆ c
(
End(G/Cm)

)
. To show the containment is

strict, we use the fact that D is deflated to find an α ∈ ker [π]F −D. If β ∈ D is an
element of minimum valuation, then v(β) < v(α) since �(D) > 1, and so by [S, 2.5]
there is some ζ ∈ c

(
End(F )

)
such that [ζ]F (β) = α /∈ D. Thus ζ /∈ c

(
End(G)

)
. On

the other hand, the fact that �(D) = n > 1 implies that β ∈ ker [πn]F − ker [πn−1]F ,
whence ζ = επn−1 where ε is a unit in oΣF

(since α is a nonzero element of ker [π]F ).
Therefore, for any 1 ≤ m < n,

[ζ]F
(
D +

F
ker [πm]F

) ⊆ [ζ]F
(
ker [πn]F

) ⊆ [ε]F
(
ker [π]F

) ⊆ D +
F

ker [πm]F .

We conclude that ζ ∈ c
(
End(G/Cm)

)− c
(
End(G)

)
. �

To illustrate this result, let G = F/D where F is a full height 2 p-adic formal
group and D is a deflated (cyclic) subgroup of F of order pn. Then c

(
End(F/D)

)
=

Zp + pno, where o = oΣF
. The deflated filling subgroup of G, C = ϕD (ker [pn]F ),

is cyclic of order pn (see the proof of Theorem 3.10), and therefore, in light of
Remark 3.2(iii), G has a nonfilling canonical (cyclic) subgroup Cm of order pm

for every 0 ≤ m < n. In particular, Cm = [pn−m]G(C) = ϕD (ker [pm]F ). To
determine the absolute endomorphism ring of G/Cm

∼= F/(D +
F

ker [pm]F ), we
first note that D +

F
ker [pm]F = [pm]−1

F

(
[pm]F (D)

)
, and so G/Cm

∼= F/ [pm]F (D)
[S, 3.1]. But [pm]F (D) is a deflated (cyclic) subgroup of F of order pn−m, whence
c
(
End(G/Cm)

)
= Zp + pn−mo by Theorem 1.3.

Our results provide an easy algebraic method for counting the number of ele-
ments in the congruence-torsion subgroups of any almost full p-adic formal group.
Furthermore, the fundamental relationship in Corollary 3.8 is useful in establishing
results such as the following.

Proposition 3.12. Let C be a canonical subgroup of a full or almost full p-adic
formal group G, and let 0 �= g ∈ End(G). Then

(i) g(C) is a canonical subgroup of G;
(ii) g−1(C) is canonical subgroup of G if C is filling.

Proof. (i): As before, we may assume that G = F/D where F is a full p-adic formal
group and D is a finite subgroup of Λ(F ). Then C = ϕD

(
ker [πm]F

)
for some m ≥ 0,

where π is a uniformizer of c
(
End(F )

)
(Theorem 3.7). If j = [c(g)]F ∈ End(F ),

then g ◦ϕD = ϕD ◦j by the injectivity of c. Thus, g(C) = ϕD

(
j(ker [πm]F )

)
. Write

j = [επk]F where ε is a unit in oΣF
and k ≥ 0. If k ≥ m, then g(C) = {0}, while if

k < m, then g(C) = ϕD

(
ker [πm−k]F

)
. In either case, g(C) is a canonical subgroup

of G by Theorem 3.7.
(ii): This follows from Corollary 3.8 since G/g−1(C) ∼= G/C by [S, 3.1]. �

Remark 3.13. We note that the preimage of a canonical subgroup under an endo-
morphism may be noncanonical. For example, if G is a height 2 almost full p-adic
formal group with ΣG /Qp unramified and End(G) ∼= Zp + p2 oΣG

, then G has a
nonfilling canonical subgroup C of order p, but no canonical subgroup of order p3.
Therefore [p]−1

G (C), which has p3 elements, cannot be canonical.
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4. Further results concerning canonical subgroups

If G is a p-adic formal group which is neither full nor almost full, it is natural
to ask whether there is some relationship between the filling subgroups and the
canonical subgroups of G. Unfortunately, the situation is not as simple as that
described in the previous section. We can show without much difficulty that it
is not true in general that all filling subgroups are canonical. For example, if G
has height h > 1 and c

(
End(G)

)
= Zp, then we’ve already seen that every finite

subgroup of Λ(G) is filling. However, not every finite subgroup of Λ(G) is canonical
since | ker [p]G | > p and there can be at most one canonical subgroup of G of any
order.

On the other hand, the canonical subgroups of some p-adic formal groups which
are neither full nor almost full do behave in part like the canonical subgroups
of full or almost full p-adic formal groups. For example, suppose F is a quasi-
full p-adic formal group of height h > 1 defined over oK , where K is a finite
unramified extension of ΣF ; this happens, in particular, when F is a nonfull p-
adic formal group defined over an unramified extension of Qp [Lu2, 3.3]. If π is a
uniformizer of c

(
End(F )

)
, then

{
ker [πm]F

}
m≥0

is the set of kernels of all nonzero
F -endomorphisms, and [π]F is defined over oK , a complete discrete valuation ring
in which π is a uniformizer. Therefore, P (T ), the distinguished polynomial factor
of [π]F (T )/T coming from the Weierstrass Preparation Theorem, is irreducible over
oK by Eisenstein’s criterion. This implies that the nonzero elements of ker [π]F ,
i.e., the roots of P (T ), are conjugate over K, whence they have the same valuation
λ. For any α ∈ ker [πm+1]F − ker [πm]F (m ≥ 1), v(α) < λ by Proposition 1.1, and
so

v
(
[π]F (α)

)
= v

(
α · P (α)

)
=

∑
ξ∈ ker [π]F

v(α − ξ) = psv(α),

where ps = | ker [π]F |. By induction, we now see that v(α) = p−msλ. Therefore,
the kernels of the nonzero F -endomorphisms are the canonical subgroups of F .
Since the kernels of the nonzero endomorphisms of a quasi-full p-adic formal group
are filling by Proposition 2.2, we see that every canonical subgroup of F is filling.
Furthermore, if D is any deflated subgroup of F , then according to Theorem 3.7, the
set of canonical subgroups of F/D is

{
ϕD

(
ker [πm]F

)}
m≥0

. When m ≥ �(D), The-
orem 2.4 shows that ϕD

(
ker [πm]F

)
is also filling. Thus, every canonical subgroup

of F/D of large enough order is filling.
We can establish other results, weaker than their analogues in the previous sec-

tion, describing properties of canonical subgroups of arbitrary p-adic formal groups.

Proposition 4.1. If G is any p-adic formal group and C is any canonical subgroup
of G, then c

(
End(G)

) ⊆ c
(
End(G/C)

)
.

Proof. According to [S, 4.2],

c
(
End(G/C)

)
=

{
ζ ∈ oΣG

∣∣∣ [pnζ]G
(
[pn]−1

G (C)
) ⊆ C

}
,

where n is an integer large enough so that pn oΣG
⊆ c

(
End(G)

)
. Therefore, for

any ζ ∈ c
(
End(G)

)
, we see that [pnζ]G

(
[pn]−1

G (C)
)

= [ζ]G
(
[pn]G([pn]−1

G (C))
)

=
[ζ]G(C). But as C is a canonical subgroup of G, [ζ]G(C) ⊆ C by Proposition 1.1.
Thus ζ ∈ c

(
End(G/C)

)
. �
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Proposition 4.2. Let C be a canonical subgroup of a p-adic formal group G. If C
contains the kernel of some 0 �= g ∈ End(G), then D = g−1(C) is also a canonical
subgroup of G.

Proof. Let γ0 be an element having the smallest valuation among the elements of
C. Because C is a canonical subgroup of G, we know that C = Λ(G)v(γ0)

. Since
v
(
g(x)

) ≥ v(x) for all x ∈ Λ(G), it follows that C ⊆ D, with equality if and only if
g ∈ Aut(G). Therefore, we may assume that g /∈ Aut(G), i.e., that ker(g) �= {0}.
If κ = min{v(ξ) | ξ ∈ ker(g)}, then v(γ0) ≤ κ because ker(g) ⊆ C. If we use the
Weierstrass Preparation Theorem to factor

g(T ) = U(T )
∏

ξ∈ ker(g)

(T − ξ)

where the constant term of U(T ) ∈ O[[T ]] is a unit, then we see that for any
x ∈ Λ(G) with v(x) < κ,

v
(
g(x)

)
= v

(
U(x)

)
+

∑
ξ∈ ker(g)

v(x − ξ) = pmv(x)

where pm = | ker(g)|.
Now choose any α0 ∈ Λ(G) with g(α0) = γ0. Since g is not an automorphism

of G, v(α0) < v
(
g(α0)

)
= v(γ0) ≤ κ, whence v(α0) = p−mv(γ0). Furthermore,

α0 has the minimum valuation among the elements of D. Indeed, if there were
some δ ∈ D such that v(δ) < v(α0) < κ, then v

(
g(δ)

)
= pmv(δ) < pmv(α0) =

v(γ0), which would contradict our choice of γ0. Therefore, we need to show that
D = Λ(G)v(α0)

. If not, then there would exist some β ∈ Λ(G)−D such that
v(β) ≥ v(α0). We note that β /∈ C (because C ⊂ D), and so v(β) < v(γ0) ≤ κ.
Hence, v

(
g(β)

)
= pmv(β) ≥ pmv(α0) = v(γ0), which implies that g(β) ∈ C. This,

contradicts the fact that β /∈ D. Therefore, D is a canonical subgroup of G. �

We are less likely to find a simple characterization of the filling subgroups of
p-adic formal groups which are neither full nor almost full because they are more
“plentiful” than are the filling subgroups of full and almost full p-adic formal groups.
This stems primarily from the fact that [Lu3, 4.3.2] does not hold for quasi-full p-
adic formal groups. In other words, if F is a quasi-full p-adic formal group, then
there may be nonisomorphic quasi-full p-adic formal groups G such that ΣF = ΣG.
As the evidence presented earlier in this section could suggest, perhaps those filling
subgroups which are canonical yield quasi-full quotients which possess some special
property, such as having their coefficients (or those of an isomorphic formal group)
belonging to “nice” (e.g., unramified) extension fields of their endomorphism fields.
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