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Classifying higher rank analytic Toeplitz algebras

Stephen C. Power

Abstract. To a higher rank directed graph (Λ, d), in the sense of Kumjian
and Pask, 2000, one can associate natural noncommutative analytic Toeplitz
algebras, both weakly closed and norm closed. We introduce methods for the
classification of these algebras in the case of single vertex graphs.
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1. Introduction

Let F+
n be the free semigroup with n generators. Then the left regular represen-

tation of F+
n as isometries on the Fock Space Hn = �2(F+

n ) generates an operator
algebra whose closure in the weak operator topology is known as the free semigroup
algebra Ln. This algebra is the weakly closed noncommutative analytic (nonselfad-
joint) Toeplitz algebra for the semigroup F+

n . Together with their norm closed
subalgebras An, the noncommutative disc algebras, they have been found to have a
tractable and interesting analytic structure which extends in many ways the foun-
dational Toeplitz algebra theory for the Hardy space H1 = H2 of the unit circle.
See, for example, the survey of Davidson [3], and [1], [5], [6], [7], [19], [20], [21].
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Natural generalisations of the algebra Ln arise on considering the Fock Space
HG for the discrete semigroupoid formed by the finite paths of a countable di-
rected graph G. These free semigroupoid algebras LG were considered in Kribs and
Power [13] and in particular it was shown that unitarily equivalent algebras have
isomorphic directed graphs. Such uniqueness was subsequently extended to other
forms of isomorphism in [12] and [26]. Free semigroupoid algebras and their norm
closed counterparts also provide central examples in the more general construction
of H∞-algebras and tensor algebras associated with correspondences, as developed
by Muhly and Solel [17], [18]. Current themes in nonselfadjoint graph algebra anal-
ysis, embracing generalised interpolation theory, representations into nest algebras,
hyper-reflexivity, and ideal structure, can be found in [8], [4], [10], [11], [14], for
example.

Generalisations of the algebras LG to higher rank were introduced recently in
Kribs and Power [15]. Here the discrete path semigroupoid of a directed graph G is
replaced by the discrete semigroupoid that is implicit in a higher rank graph (Λ, d)
in the sense of Kumjian and Pask [16]. In [15] we extended the basic technique of
generalised Fourier series and determined invariant subspaces, reflexivity and the
graphs which yield semisimple algebras. The single vertex algebras are generated by
the isometric shift operators of the left regular representation and so the associated
algebras in this case are, once again, entirely natural generalised analytic Toeplitz
algebras. In [26], [27] Solel has recently considered the representation theory of
such higher rank analytic Toeplitz algebras and the Toeplitz algebras arising from
product systems of correspondences. In particular he obtains a dilation theorem
(of Ando type) for contractive representations of certain rank 2 algebras.

In the present article we introduce various methods for the classification of the
higher rank analytic Toeplitz algebras LΛ of higher rank graphs Λ. We confine
attention to the fundamental context of single vertex graphs and classification up
to isometric isomorphism. Along the way we consider the norm closed subalgebras
Aθ, being higher rank generalisations of Popescu’s noncommutative disc algebras
An, and the function algebras Aθ = Aθ/com(Aθ), being the higher rank variants of
Arveson’s d-shift algebras. Here θ denotes either a single permutation, sufficient to
encode the relations of a 2-graph, or a set of permutations in the case of a k-graph.
In fact it is convenient for us to identify a single vertex higher rank graph (Λ, d)
with a unital multi-graded semigroup F

+
θ as specified in Definition 2.1. In the 2-

graph case this is simply the semigroup with generators e1, . . . , en and f1, . . . , fm

subject only to the relations eifj = fj′ei′ where θ(i, j) = (i′, j′) for a permutation
θ of the nm pairs (i, j).

A useful isomorphism invariant is the Gelfand space of the quotient by the com-
mutator ideal and we show how this is determined in terms of a complex algebraic
variety Vθ associated with the set θ of relations for the semigroup F

+
θ . In contrast

to the case of free semigroup algebras the Gelfand space is not a complete invariant
and deeper methods are needed to determine the algebraic structure. Nevertheless,
the geometric-holomorphic structure of the Gelfand space is useful and we make
use of it to show that Z+-graded isomorphisms are multi-graded with respect to
a natural multi-grading. (See Proposition 6.3 and Theorem 7.1) Also the Gelfand
space plays a useful role in the differentiation of the 9 algebras LΛ for the case
(n, m) = (2, 2). (Theorem 7.4.)
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The relations for the generators can be chosen in a great many essentially dif-
ferent ways, as we see in Section 3. For the 2-graphs with generator multiplicity
(2, 3) there are 84 inequivalent choices leading to distinct semigroups. Of these we
identify explicitly the 14 semigroups which have relations determined by a cyclic
permutation. These are the relations which impose the most constraints and so
yield the smallest associated algebraic variety Vmin. In one of the main results,
Theorem 7.3, we show that in the minimal variety setting the operator algebras
of a single vertex graph can be classified up to isometric isomorphism in terms
of product unitary equivalence of the relation set θ. For the case (n, m) = (2, 3)
we go further and show that product unitary equivalence coincides with product
conjugacy and this leads to the fact that there are 14 such algebras.

In the Section 8 we classify algebras for the single vertex 2-graphs with (n, m) =
(n, 1). These operator algebras are identifiable with natural semicrossed products
Ln ×θ Z+ for a permutation action on the generators of Ln. In this case isometric
isomorphisms and automorphisms need not be multi-graded. However we are able
to reduce to the graded case. We do so by constructing a counterpart to the
unitary Möbius automorphism group of H∞ and Ln (see [7]). In our case these
automorphisms act transitively on a certain core subset of the Gelfand space.

In a recent article [22] the author and Solel have generalised this automorphism
group construction to the general single vertex 2-graph case. In fact we do so for a
class of operator algebras associated with more general commutation relations. As
a consequence it follows that in the rank 2 case the algebras Aθ (and the algebras
Lθ) are classified up to isometric isomorphism by the product unitary equivalence
class of their defining permutation.

I would like to thank Martin Cook and Gwion Evans for help in counting graphs.

2. Higher rank analytic Toeplitz algebras

Let e1, . . . , en and f1, . . . , fm be sets of generators for the unital free semigroups
F+

n and F+
m and let θ be a permutation of the set of formal products

{eifj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
Write (ef)op to denote the opposite product fe and define the unital semigroup
F+

n ×θ F+
m to be the universal semigroup with generators e1, . . . , en, f1, . . . , fm

subject to the relations
eifj =

(
θ(eifj)

)op
for 1 ≤ i ≤ n, 1 ≤ j ≤ m. These equations are commutation relations of the form
eifj = fkel. In particular, there are natural unital semigroup injections

F
+
n → F

+
n ×θ F

+
m, F

+
m → F

+
n ×θ F

+
m,

and any word λ in the generators admits a unique factorisation λ = w1w2 with w1

in F+
n and w2 in F+

m.
This semigroup is in fact the typical semigroup that underlies a finitely generated

2-graph with a single vertex. The additional structure possessed by a 2-graph is a
higher rank degree map

d : F
+
n ×θ F

+
m → Z

2
+

given by
d(w) =

(
d(w1), d(w2)

)
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where Z+ is the unital additive semigroup of nonnegative integers, and d(wi) is the
usual degree, or length, of the word wi. In particular if e is the unit element then
d(e) = (0, 0).

In a similar way we may define a class of multi-graded unital semigroups which
contain the graded semigroups of higher rank graphs. Let n = (n1, . . . , nr), |n| =
n1 + · · · + nr and let θ = {θij : 1 ≤ i < j ≤ r} be a family of permutations, where
θij , in the symmetric group Sninj , is viewed as a permutation of formal products

{eikejl : 1 ≤ k ≤ ni, 1 ≤ l ≤ nj} .

Definition 2.1. The unital semigroup (F+
θ , d) is the semigroup which is universal

with respect to the unital semigroup homomorphisms

φ : F
+
|n| → S

for which φ(ef) = φ(f ′e′) for all commutation relations ef = f ′e′ of the relation
set θ.

More concretely, F
+
θ is simply the semigroup, with unit added, comprised of

words in the generators, two words being equal if either can be obtained from
the other through a finite number of applications of the commutation relations.
Again, each element λ of F

+
θ admits a factorisation λ = w1w2 . . . wr, with wi in

the subsemigroup F
+
ni

although, for r ≥ 3, the factorisation need not be unique.
In view of the multi-homogeneous nature of the relations it is clear that there
is a natural well-defined higher rank degree map d : F

+
θ → Zr

+ associated with
an ordering of the subsets of freely noncommuting generators. If uniqueness of
factorisation w = w1w2 . . . wr holds, with the factors ordered so that wi is a word
in {eik : 1 ≤ k ≤ ni}, then (F+

θ , d) is equivalent to a typical finitely generated single
object higher rank graph in the sense of Kumjian and Pask [16]. Although we
shall not need k-graph structure theory we note the formal definition from [16] A
k-graph (Λ, d) consists of a countable small category Λ, with range and source maps
r and s respectively, together with a functor d : Λ → Zk

+ satisfying the factorization
property: for every λ ∈ Λ and m, n ∈ Zk

+ with d(λ) = m + n, there are unique
elements μ, ν ∈ Λ such that λ = μν and d(μ) = m and d(ν) = n.

It is readily seen that for r ≥ 3 the semigroup F
+
θ may fail to be cancelative and

therefore may fail to have the unique factorisation property.
For a general unital countable cancelative (left and right) semigroup S we let λ

be the isometry representation λ : S → B(HS), where each λ(v), v ∈ S, is the left
shift operator on the Hilbert space HS , with orthonormal basis {ξw : w ∈ S}. We
write Lv for λ(v) and so Lvξw = ξvw for all w ∈ S. Left cancelation in S ensures
that these operators are isometries. Define the operator algebras LS and AS as the
weak operator topology (WOT) closed and norm closed operator algebras on HS

generated by {λ(w) : w ∈ S}. We refer to the Hilbert space HS as the Fock space
of the semigroup and indeed, when S = F+

n this Hilbert space is identifiable with
the usual Fock space for Cn.

Definition 2.2. Let θ be a set of permutations for which F
+
θ is a cancelative (left

and right) semigroup. Then the associated analytic Toeplitz algebras Aθ and Lθ

are, respectively, the norm closed and WOT closed operator algebras generated by
the left regular Fock space representation of F

+
θ .
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In the sequel we shall be mainly concerned with the operator algebras of the
single vertex 2-graphs, identified with the bigraded semigroups (F+

θ , d) for a single
permutation θ. As we have remarked, these semigroups are cancelative and have
the unique factorisation property. In general the multi-graded semigroups F

+
θ are

naturally Z+-graded, by total degree (|w| = |d(w)|) of elements, and have the
further property of being generated by the unit and the elements of total degree 1.
We say that a graded semigroup is 1-generated in this case. In general, when S is
Z+-graded the Fock space admits an associated grading HS = H0 ⊕H1 ⊕H2⊕ . . . ,
where Hn is the closed span of the basis elements ξw for which w is of length n. The
proof of the following proposition makes use of the block matrix structure induced
by this decomposition of H and is similar to the proofs in [7], [13] for free semigroup
and free semigroupoid algebras.

Proposition 2.3. Let S be a unital countable graded cancelative semigroup which
is 1-generated. If A ∈ LS then A is the sot-limit of the Cesaro sums∑

|w|≤n

(
1 − |w|

n

)
awLw,

where aw = 〈Aξe, ξw〉 is the coefficient of ξw in Aξe, and where ξe is the vacuum
vector for the unit of S.

It follows that the nonunital WOT-closed ideal L0
θ generated by the Lw for

which |w| = 1 is the subspace of operators A whose first coefficient vanishes, that
is, L0

θ = {A : 〈Aξe, ξe〉 = 0}.
One can check that the fact that S is 1-generated implies that for |w| = 1 the

right shifts Rw, defined in the natural way, satisfy En+1Rw = RwEn where En is
the projection onto Hn. A consequence of this is that the proofs of the following
facts can be obtained using essentially the same proofs as in [7], [15]. We write RS

for the WOT closed operator algebra generated by the right representation on Fock
space.

Proposition 2.4. Let S be a countable graded cancelative semigroup which is 1-
generated. Then:

(i) The commutant of LS is RS.
(ii) The commutant of RS is LS.
(iii) RS is unitarily equivalent to LSop where Sop is the opposite semigroup of S.

Remark. The Fourier series representation of operators in AS and LS is analogous
to similar expansions which are well-known for operators in the free group von
Neumann algebra vN(Fn) and the reduced free group C*-algebra C∗

red(Fn). These
selfadjoint algebras are the operator algebras generated by the left regular unitary
representation λ of Fn on the big Fock space �2(Fn). We can define the subalgebras
L̃n and Ãn to be the associated nonselfadjoint operator subalgebras on this Fock
space generated by the generators of the semigroup F+

n of Fn. Observe however that
these algebras are generating subalgebras of the II1 factor vN(Fn) and the finite
simple C*-algebra C∗

red(Fn), while vN(Ln) = L(Hn) and C∗(An) is an extension of
On by the compact operators.



276 S. C. Power

3. k-graphs, cycle diagrams and algebraic varieties

A single vertex 2-graph is determined by a pair (n, m), indicating the generator
multiplicities, and a single permutation θ in Snm. We shall systematically identify
a 2-graph with its unital multi-graded semigroup F

+
θ . Let us say, if n 	= m, that

two such permutations θ and τ are product conjugate if θ = στσ−1 where σ lies in
the product subgroup Sn ×Sm. In this case the discrete semigroups F+

n ×θ F+
m and

F+
n ×τ F+

m are isomorphic and it is elementary that there is a unitary equivalence
between Lθ and Lτ . Thus, in considering the diversity of isomorphism types we
need only consider permutations up to product conjugacy.

The product conjugacy classes can be indicated by a list of representative per-
mutations {θ1, . . . , θr} each of which may be indicated by an n × m directed cycle
diagram which reveals the cycle structure relative to the product structure. For
example the permutation (((11), (12), (21)), ((13), (23))) in S6 is shown in the dia-
gram in Figure 1, where here we have chosen product coordinates (ij) for the cell in
the ith row and the jth column. Also, in the next section we obtain cycle diagrams
for the 14 product conjugacy classes of the pure cycle permutations.

Figure 1. Directed cycle diagram.

For (n, m) = (2, 2) examination reveals that there are nine such classes of permu-
tations which yield distinct semigroups (as ungraded semigroups). In the fourth di-
agram of Figure 2 the triangular cycle has anticlockwise and clockwise orientations,
θa
4 , θc

4 say, which, unlike the other 7 permutation, give nonisomorphic semigroups.
For 2-graphs with n 	= m the product conjugacy class of θ gives a complete

isomorphism invariant for the isomorphism type of the semigroup. The number of
such isomorphism types, O(n, m) say, may be computed using Frobenius’ formula
for the number of orbits of a group action, as we show below. Note that O(n, m)
increases rapidly with n, m; a convenient lower bound, for n 	= m, is nm!

(n!m!) . For
small values of n, m we can calculate (see below) the values summarised in the
following proposition.

Proposition 3.1. Let O(n, m) be the number of 2-graphs (Λ, d) with a single vertex,
where d−1((1, 0)) = n, d−1((0, 1)) = m. Then

O(2, 2) = 9, O(2, 3) = 84, and O(3, 4) = 3, 333, 212.

Let θ be a cancelative permutation set for n = (n1, . . . , nr). We now associate
with F

+
θ a complex algebraic variety which will feature in the description of the

Gelfand space of Aθ.
For 1 ≤ i ≤ r, let zi,1, . . . , zi,ni be the coordinate variables for C

ni so that there is
a natural bijective correspondence ei,k → zi,k between edges and variables. Define

Vθ ⊆ C
n1 × · · · × C

nr



Analytic Toeplitz algebras 277

Figure 2. Undirected diagrams for (n, m) = (2, 2)

to be the complex algebraic variety determined by the equation set

θ̂ =
{
zi,pzj,q − θ̂i,j(zi,pzj,q) : 1 ≤ p ≤ ni, 1 ≤ q ≤ nj , 1 ≤ i < j ≤ r

}
where θ̂i,j is the permutation induced by θi,j and the bijective correspondence.

Let us identify these varieties in the case of the 2-graphs with (n, m) = (2, 2). Let
θ1, θ2, θ3, θ

a
4 , θc

4, θ5, . . . , θ8 be the nine associated permutations and let z1, z2, w1, w2

be the coordinates for C
2 × C

2. The variety Vθ1 for the identity permutation θ1

is C2 × C2. The 4-cycles θ7 and θ8 have the same equation set, namely, z1w1 =
z1w2 = z2w1 = z2w2, and so have the same variety, namely

(C2 × {0}) ∪ ({0} × C
2) ∪ (E2 × E2)

where we write En ⊆ Cn for the 1-dimensional “diagonal variety” z1 = z2 = · · · =
zn. In fact, in the general rank 2 setting the variety Vθ for any element θ in Snm

contains the subset

Vmin = (Cn × {0}) ∪ ({0} × C
m) ∪ (En × Em).

Also from the irredundancy in each equation set θ it follows that Vθ = Vmin if and
only if θ is a pure cycle.

The variety Vθ2 for the second cycle diagram is determined by the equations
z1(w1 − w2) = 0 and so

Vθ2 = (C2 × E2) ∪ (({0} × C) × C
2),

whereas Vθ5 is determined by z1(w1 − w2) = 0 and z2(w1 − w2) = 0 and so

Vθ5 = (C2 × E2) ∪ ({0} × C
2).

The variety Vθ3 = V (z1w1 − z2w2) is irreducible, while θa
4 and θc

4 have the same
variety

Vθ2 ∩ Vθ3 = Vmin ∪ (Cz2 × Cw1).
Finally,

Vθ6 = V (z1w1 − z2w2, z1w2 − z2w1) = Vmin ∪ (V (z1 + z2) × V (w1 + w2)).
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There are similar such diagrams and identifications for small higher rank graphs
and semigroups F

+
θ defined by permutation sets. For example, in the rank 3 case

with multiplicities (n, m, l) = (2, 2, 2) one has generators e1, e2, f1, f2, g1, g2 with
three 2 × 2 cycle diagrams for three permutations θef , θfg, θeg in S4. Here, θ =
{θef , θfg, θeg}. The permutations define equations in the complex variables
z1, z2, w1, w2, u1, u2 giving in turn a complex algebraic variety in C6. Once again, in
the rank k case a minimal complex algebraic variety Vmin arises when the equation
set is maximal and this occurs when each of the k(k− 1)/2 permutations in the set
θ is a pure cycle of maximum order;

Vmin =
( ∪k

j=1 (Cnj × {0}) ∪ (En1 × · · · × Enk
).

There is a feature of the varieties Vθ that we will find useful in the proof of Propo-
sition 6.3 which follows from the homogeneity of the complex variable equations,
namely, the cylindrical property that if z = (z1, . . . , zk) is a point in Cn1 ×· · ·×Cnk

which lies in Vθ then so too does (λ1z1, . . . , λkzk) for all λi in C.

4. Small 2-graphs

For (n, m) = (2, 3) there are 84 classes of 2-graph semigroups F
+
θ = F

+
2 ×θ F

+
3 .

To see this requires computing the number of orbits for the action of H = Sn ×Sm

on Smn given by αh : g → hgh−1. If Fix(αh) denotes the fixed point set for αh

then by Frobenius’ formula the number of orbits is given by

O(n, m) =
1
|H |

∑
h∈H

|Fix(αh)| =
1
|H |

∑
h∈H

|CSmn(h)|

where CSmn(h) is the centraliser of h in Smn. Suppose that the permutation h
has cycles of distinct lengths a1, a2, . . . , at and that there are ni cycles of type
ai. Note that h is conjugate to h′ in Sn if and only if they have the same cycle
type and so the size of the conjugacy class of h is n!/(an1

1 an2
2 . . . ant

t n1!n2! · · ·nt!).
To see this consider a fixed partition of positions 1, . . . , n into intervals of the
specified cycle lengths. There are n! occupations of these positions and repetitions
of a particular permutation occur through permuting equal length intervals (which
gives n1!n2! · · ·nt! repetitions) and cycling within intervals (ai repetitions for each
cycle of length ai). We infer next that the centraliser of h has cardinality

|CSmn(h)| = an1
1 an2

2 . . . ant
t n1!n2! · · ·nt!

In the case of H = S2×S3 an examination of the 12 elements h shows that the cycle
types are 16, 61 (for two elements), 23 (for four elements), 32 (for two elements)
and 2212 (for three). Thus

O(2, 3) =
1

2!3!
(6! + 2.6 + 4.8.3! + 2.9.2! + 3.4.2!2!) = 84.

In a similar way, with some computer assistance, one can compute that O(3, 4) =
3, 333, 212.

We now determine the 2-graphs with (n, m) = (2, 3) which have minimal complex
variety Vmin. These are the 2-graphs which have cyclic relations, in the sense that
the relations are determined by a permutation θ which is a cycle of order 6. One
can use the Frobenius formula or computer checking to determine that there are
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14 such classes. However for these small 2-graphs we prefer to determine these
classes explicitly through their various properties as this reveals interesting detail
of symmetry and antisymmetry.

Proposition 4.1. There are 14 2-graphs of multiplicity type (2, 3) whose relations
are of cyclic type. Representative cycle diagrams for these classes are given in
Figures 3–7.

Proof. Label the cells of the 2 × 3 rectangle as

1 2 3
4 5 6

Replacing θ by an S2 × S3-conjugate we may assume that θ(1) = 2 or θ(1) = 5
or θ(1) = 4. Note that S2 × S3 conjugacy preserves the following properties of a
cell diagram and that these numerical quantities are useful invariants; the number
h(θ) of horizontal edges, the number r(θ) of right angles and the number of v(θ) of
vertical edges.

Suppose first that θ(1) = 5 and that h(θ) = 0. Then it is easy to see that there
are at most three possible product conjugacy classes; representative cycle diagrams
and permutations θ1, θ2 and θ3 are given in Figure 3. We remark that θ1 and θ2

have cyclic symmetry and that θi and θ−1
i are product conjugate for i = 1, 2, 3.

Suppose next that θ(1) = 2 and that there are no diagonal edges (that is,
h(θ) + v(θ) = 6). There are only two possible diagrams, namely the two oriented
rectangular cycles, and these are product conjugate, giving a single conjugacy class
with representative θ4 = (1 2 3 6 5 4).

Consider now the remaining classes. Their elements have diagrams which have
at least one horizontal and one diagonal edge. We consider first those that do not
contain, up to conjugacy, the directed “angular” subgraph, 1 → 2 → 4. Successive
examination of the graphs containing 1 → 2 → 5, 1 → 2 → 6 and 1 → 2 → 3
shows that, on discarding some obvious conjugates, that there are at most 4 such
classes with the representatives θ5, . . . , θ8 given below. Note that θ7 has horizontal
(up-down) symmetry and in fact of the 14 classes it can be seen that only θ1 and
θ7 have this property.

Finally one can check similarly that there are at most 6 classes with diagrams
that do contain the angular subgraph, with representatives θ9, . . . θ14.

That these 14 classes really are distinct can be confirmed by considering the
invariants for h(θ), r(θ), v(θ) in Table 1.

The table also helps in identifying the possibilities for the class of the inverse
permutation. The three permutations θ7, θ8, θ12 have the same invariants. However
θ7 and θ8 are not conjugate since the former has its horizontal edges in opposing
pairs whilst the latter does not and this property is plainly an S2 × S3 conjugacy
invariant. Also θ12 is conjugate to neither θ7 or θ8 by the angular subgraph dis-
tinction. We note that θ7 is self-conjugate while θ8 is conjugate to θ−1

12 . Finally,
the pair θ11 and θ13 have the same data but it is an elementary exercise to see that
they are not conjugate.

It follows that there are exactly 14 classes, ten of which are conjugate to their
inverses, while θ8 is conjugate to θ−1

12 and θ11 is conjugate to θ−1
13 . �
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Table 1. Invariants for h(θ), r(θ), v(θ)

h(θ) r(θ) v(θ)
θ1 0 0 0
θ2 0 0 3
θ3 0 0 2
θ4 4 4 2
θ5 2 4 3
θ6 2 2 2
θ7 4 0 0
θ8 4 0 0
θ9 2 0 1
θ10 4 2 1
θ11 2 1 1
θ12 4 0 0
θ13 2 1 1
θ14 2 0 0

Figure 3. θ1, θ2, θ3.

Figure 4. θ4 and θ5 .

Figure 5. θ6, θ7 and θ8.

Product equivalence. We shall meet product unitary equivalence of permuta-
tions in Theorem 5.1. Here we show how in a special case product unitary equiva-
lence is the same relation as product conjugacy.

Consider the natural representations π : Sn → Mn(C) for which π(σ)(ei) = eσ(i)

with respect to the standard basis. Identifying Mnm(C) with Mn(C) ⊗ Mm(C) we
realise Sn × Sm as a permutation group of unitaries forming a unitary subgroup of
Snm. Here a permutation is viewed as a permutation of the product set

{(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
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Figure 6. θ9, θ10 and θ11.

Figure 7. θ12, θ13 and θ14.

and π(θ)eij = eθ(ij). We say that θ1, θ2 in Snm are product similar (resp. product
equivalent) if in Mn(C) ⊗ Mm(C) the operators π(θ1) and π(θ2) are similar by an
invertible (resp. unitary) elementary tensor A ⊗ B. On the other hand recall that
if n 	= m then θ1 and θ2 are product conjugate if σθ1σ

−1 = θ2 for some element σ
in Sm × Sn.

We now show for (n, m) = (2, 3) that two cyclic permutations of order 6 are
product unitarily equivalent, relative to S2 × S3, if and only if they are product
conjugate.

For θ ∈ S6 and the 2 × 3 complex matrix

C =
[

c1 c2 c3

c4 c5 c6

]
define θ[C] to be the permuted 2 × 3 matrix

θ[C] =
[

cθ(1) cθ(2) cθ(3)

cθ(4) cθ(5) cθ(6)

]
.

Note that if θ ∈ S2 × S3 and C has rank 1 then θk[C] has rank 1 for each k.

Lemma 4.2. Let C be a 2 × 3 matrix of rank 1 such that at least two of the
entries are nonzero and not all entries are equal. Suppose that θ ∈ S6 is a cyclic
permutation of order 6 such that θk[C] has rank 1 for k = 1, . . . , 5. Then one of
the following four possibilities holds:

(i) θ is product conjugate to θ1, in which case C can be arbitrary.
(ii) θ is product conjugate to one of the (up-down alternating) permutations θ2,

θ3, in which case C either has a zero row or the rows of C each have 3 equal
entries.

(iii) θ is product conjugate to the rectangular permutation θ4, in which case C has
exactly two nonzero entries in consecutive locations for the cycle θ.

(iv) θ is product conjugate to θ7, in which case the two rows of C are equal.

Proof. It is clear that each of the four possibilities can occur. Since we have
determined all the conjugacy classes we can complete the proof by checking that if
C is any nontrivial rank one matrix, as specified, then each of the permutations θ5,
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θ6, θ8, θ9, θ10, θ11, θ12, θ13, θ14 fails to create an orbit θk[C], k = 1, . . . , 5 consisting
of rank 1 matrices.

One can assume that the matrix C has the form[
1 x y
a ax ay

]
.

Also, for each of the 9 permutations one can quickly see that there are no solutions
for which C has only two nonzero entries, since these entries are put into off-diagonal
position by some matrix θk[C]. Also there is no solution with a = 0 for any such θ.
It is then a routine matter to check that for each of the 9 only the excluded case
x = y = a = 1 is possible, completing the proof. �

Proposition 4.3. Let θ = θi, τ = θj, with i 	= j, 1 ≤ i, j ≤ 16. Then θ and τ are
not product unitary equivalent.

Proof. Let A ∈ M2(C), B ∈ M3(C) be unitary matrices with

A ⊗ B =
(

a b
c d

)
⊗
⎛⎝ r s t

u v w
x y z

⎞⎠ =

⎡⎢⎢⎢⎢⎢⎢⎣

ar as at br bs bt
au av aw bu bv bw
ax ay az bx by bz
cr cs ct dr ds dt
cu cv cw du dv dw
cx cy cz dx dy dz

⎤⎥⎥⎥⎥⎥⎥⎦ .

Suppose that, writing τ for π(τ) etc., we have the intertwining relation, τ(A⊗B) =
(A ⊗ B)θ. We may assume that θ is not conjugate to θ1. Note that the product
X = τ(A⊗B), like A⊗B, has the following rank 1 row property, namely, for each
row (xi1, xi2, . . . , xi6) the associated 2 × 3 matrix[

xi1 xi2 xi3

xi4 xi5 xi6

]
is of rank 1. Thus the matrix equation entails that (A ⊗ B)θ has the rank 1 row
property, which is to say, in particular, that if C is the rank one matrix

C =
[

ar as at
br bs bt

]
obtained from the first row of A ⊗ B then θ[C] is of rank 1. Similarly, from the
intertwining equations τk(A ⊗ B) = (A ⊗ B)θk we see that θk[C] has rank 1 for
k = 1, . . . , 5.

Since A and B are unitary we may choose a row of A⊗B, instead of the first row
as above, to arrange that a 	= b and that r, s, t are not equal. So we may assume
that these conditions hold. If a 	= 0 and b 	= 0 then the lemma applies and θ is
conjugate to θ1, contrary to our assumption. If a 	= 0 and b = 0 and two of r, s, t
are nonzero then the lemma applies and θ is conjugate to θ2 or to θ3. We return
to this situation in a moment. First note that the remaining cases not covered are
where A and B each have one nonzero unimodular entry in each row, which is to
say that apart from a diagonal matrix multiplier, A ⊗ B is a permutation matrix
in S2 × S3. This entails that τ is actually product conjugate to θ1, contrary to our
assumption.

It remains then to show that no two of θ1, θ2, θ3 are unitarily equivalent by
an elementary tensor of the form D ⊗ B where D, B are unitary and D has two
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zero entries. Note that θ1 = σ−1
1 θ3σ1 where σ1 = (13) and θ2 = σ−1

1 θ3σ2 where
σ2 = (23). Suppose that θ1(D⊗B) = (D⊗B)θ3. Then θ3σ1(D⊗B) = σ1(D⊗B)θ3.
However the commutant of θ3 is the algebra generated by

θ3 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
which consists of matrices of the form

z =

⎡⎢⎢⎢⎢⎢⎢⎣

a b c e f d
c a b f d e
b c a d e f
f e d a c b
e d f b a c
d f e c b a

⎤⎥⎥⎥⎥⎥⎥⎦ .

On the other hand σ1(D ⊗ B) has one of the forms[
σX 0
0 λX

] [
0 σX

λX 0

]
where X is a unitary in M3(C), |λ| = 1 and σ ∈ S3 is the unitary permutation
matrix for σ = (13). The equation Z = σ1(D ⊗ B), in the former case, entails⎡⎣ b c a

c a b
a b c

⎤⎦ = λ

⎡⎣ a c b
b a c
c b a

⎤⎦ .

It follows that λ = 1 and a = b = c, which is a contradiction. The other cases are
similar. �

5. Graded isomorphisms

We now consider some purely algebraic aspects of graded isomorphisms between
higher rank graded semigroup algebras. The equivalences given here play an im-
portant role in the classifications of Section 7 and provide a bridge between the
operator algebra level and the k-graph level.

Let C[F+
n ×θ F

+
m] be the complex semigroup algebra for the discrete semigroup

F+
n ×θ F+

m given earlier, where θ ∈ Snm. We say that an algebra homomorphism
Φ : C[F+

n ×θ F+
m] → C[F+

n ×τ F+
m] is bigraded if it is determined by linear equations

Φ(ei) =
n∑

j=1

aijej , Φ(fk) =
n∑

l=1

bklfl,

where {ej}, {fk} denote generators, as before, in both the domain and codomain.
Furthermore we say that Φ = ΦA,B is a bigraded isomorphism if A = (aij) and
B = (bkl) are invertible matrices and that Φ is a bigraded unitary equivalence if A
and B can be chosen to be unitary matrices. For definiteness we take a strict form
of definition in that we assume an order for the two sets of generators is given.
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Let us also specify some natural companion algebras which are quotients of the
higher rank complex semigroup algebras corresponding to partial abelianisation.
Let C[z], C[w] be complex multivariable commutative polynomial algebras, where
z = (z1, . . . , zn) and w = (w1, . . . , wm), and let θ be a permutation in Snm viewed
also as a permutation of the formal products

{ziwj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
Thus, if θ((i, j)) = (k, l) then θ(ziwj) = zkwl. Define C[z, w; θ] to be the complex
algebra with these commuting generators {zi}, {wk} subject to the relations

ziwj =
(
θ(ziwj)

)op
for all i, j. This noncommutative algebra is the quotient of C[F+

n ×θF+
m] by the ideal

which is generated by the commutators of the generators of F+
n and the commutators

of the generators of F+
m.

It is convenient now to identify C[F+
n ] with the tensor algebra for Cn by means

of the identification of words w1(e) = ei1ei2 . . . eip in the generators with basis
elements ei1 ⊗ei2 ⊗· · ·⊗eip of (Cn)⊗p. Similarly we identify words w = w1(e)w2(f)
of degree (p, q) in F+

n ×θ F+
m, in their standard factored form, with basis elements

(ei1 ⊗ ei2 ⊗ · · · ⊗ eip) ⊗ (fj1 ⊗ fj2 ⊗ · · · ⊗ fjq)

in (Cn)⊗p ⊗ (Cm)⊗q. A bigraded isomorphism ΦA,B now takes the explicit form

ΦA,B =
∑

(p,q)∈Z
2
+

(A⊗p) ⊗ (B⊗q).

Likewise, the symmetrised semigroup algebras C[z, w; θ] and their bigraded iso-
morphisms admit symmetric joint tensor algebra presentations.

Theorem 5.1. The following assertions are equivalent for permutations θ1, θ2 in
Snm:

(i) The complex semigroup algebras C[F+
n ×θ1 F+

m] and C[F+
n ×θ2 F+

m] are bigrad-
edly isomorphic (resp. bigradedly unitarily equivalent).

(ii) The complex algebras C[z, w; θ1] and C[z, w; θ2] are bigradedly isomorphic
(resp. bigradedly unitarily equivalent).

(iii) The permutations θ1 and θ2 are product similar (resp. product unitarily equiv-
alent), that is, there exist matrices A, B such that

π(θ1)(A ⊗ B) = (A ⊗ B)π(θ2)

where A ∈ Mn(C), B ∈ Mm(C) are invertible (resp. unitary).

Proof. Let us show first that (ii) implies (iii). Let

Φ : C[z, w; θ1] → C[z, w, ; θ2]

be a bigraded isomorphism determined by invertible matrices

A = (aij), B = (bkl).

Introduce the notation

θ1(ziwk) = zσwτ , θ2(ziwk) = zλwμ

where
σ = σ(ik), τ = τ(ik), λ = λ(ik), μ = μ(ik)
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are the functions from {ik} to {i} and to {k} which are determined by θ1 and θ2.
That is

θ1((i, k)) = (σ(ik), τ(ik)), θ2((i, k) = (λ(ik), μ(ik)).

Since Φ is an algebra homomorphism we have

Φ(ziwk) = Φ(zi)Φ(wk) =

(
n∑

j=1

aijzj

)(
m∑

l=1

bkl wl

)
=

n∑
j=1

m∑
l=1

aijbkl zj wl

and, similarly,

Φ(wτzσ) = Φ(wτ )Φ(zσ) =

(
m∑

j=1

bτlwl

)(
n∑

j=1

aσ,jzj

)
=

n∑
j=1

m∑
l=1

aσ,jbτlwl zj .

Since
ziwk = (θ1(ziwk))op = (zσwτ )op = wτzσ

it follows that the left-hand sides of these expressions are equal. The set {zjwl} is
linearly independent and so aij bkl, the coefficient of zjwl in the first expression, is
equal to the coefficient of zjwl in the second expression. Since

zjwl = (θ2(zjwl))op = (zλwμ)op = wμzλ

we have
aij bkl = aσ(ik),λ(jl)bτ(ik),μ(jl)

for all appropriate i, j, k, l. This set of equations is expressible in matrix terms as

A ⊗ B = π(θ−1
1 )(A ⊗ B)π(θ2)

and so A ⊗ B gives the desired product similarity between π(θ1) and π(θ2). The
unitary equivalence case is identical.

We show next that the single tensor condition of (iii) is enough to ensure that
the linear map Φ = ΦA,B, when defined by the multiple tensor formula is indeed
an algebra homomorphism.

Note first that the equality Φ(w1(e)aw2(f)) = Φ(w1(e))Φ(a)Φ(w2(f)) is ele-
mentary. It will suffice therefore to show that Φ(w1(f)w2(e)) = Φ(w1(f))Φ(w2(e)).
However the calculation above shows that the equality follows from the single tensor
condition when w1 and w2 are single letter words. Combining these two principles
we obtain the equality in general. Thus Φ(fiejek) = Φ(epfqek) = Φ(ep)Φ(fqek) =
Φ(ep)Φ(fq)Φ(ek) = Φ(epfq)Φ(ek) = Φ(fiej)Φ(et) and in this manner we obtain the
equality when the total word length is three, and simple induction completes the
proof. �

The arguments above apply to the higher rank setting, with only notational
accommodation, to yield the following.

Theorem 5.2. Let θ = {θi,j ; 1 ≤ i < j ≤ r}, τ = {τi,j ; 1 ≤ i < j ≤ r} be
cancelative permutation sets for the r-tuple n = (n1, . . . , nr). Then the following
statements are equivalent:
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(i) There are unitary matrices Ai =
(
a
(i)
pq

)
in Mni(C), 1 ≤ i ≤ r, and a graded

algebra isomorphism Φ : C[F+
θ ] → C[F+

τ ] for which, for each i,

Φ(eip) =
ni∑

q=1

a(i)
pq eiq.

(ii) There are unitary matrices as in (i) that implement the product unitary equiv-
alences

π(θij) = (Ai ⊗ Aj)π(τij)(Ai ⊗ Aj)−1.

6. Gelfand spaces

Let θ be a permutation set for which F
+
θ is cancelative. In the rank one free

semigroup case the noncommutative polynomial ring C[F+
n ] has abelian quotient

equal to the polynomial ring C[z1, . . . , zn]. Similarly the semigroup ring C[F+
θ ] has

abelianisation

C[z1,1, . . . , z1,n1 , z2,1, . . . . . . , zk,nk
]/Iθ

where Iθ is the ideal determined by the associated equation set θ̂. It follows that
each point α of Vθ gives rise to a complex algebra homomorphism α̂ : C[F+

θ ] → C

and all such homomorphisms arise this way. In particular, for each word w in F
+
θ

with arbitrary factorisation w1 . . . wr the product α̂(w1) . . . α̂(ws) agrees with α̂(w).
We now identify the set of complex homomorphisms for the nonselfadjoint Toe-

plitz algebra Aθ and hence the Gelfand spaces of the abelian quotients.
Let us first recall the function algebra implicit in Arveson’s analysis of row

contractions and the d-shift [2]. This is a function algebra on the unit ball Bd

obtained by completing the algebra of polynomials p(z) with respect to the large
norm

‖p(z)‖a = ‖p(S1, . . . , Sd)‖
where [S1, . . . , Sd] is the d-shift, the row contraction arising from the coordinate
shift operators on the symmetric Fock space of Cd. These coordinate shifts are
weighted shifts for which S1S

∗
1 + · · · + SdS

∗
d is the projection onto the constant

functions. Let us simply write Ad for this algebra which we refer to as the d-shift
algebra. It can be shown readily that Ad is naturally isometrically isomorphic to
the quotient algebra Ad/com(Ad) where Ad is the noncommutative disc algebra for
F

+
d and for our present purposes we take this perspective.

Definition 6.1. Let θ be a cancelative permutation set for n = (n1, . . . , nk) with
norm closed analytic Toeplitz algebra Aθ. Then the higher rank d-shift algebra,
or Arveson algebra, for θ is the commutative Banach algebra Aθ = Aθ/com(Aθ),
viewed as a function algebra on Ωθ.

Let S = F
+
θ and let α ∈ Vθ ∩ Bn where Bn = Bn1 × · · · × Bnk

is the product of
open unit balls in C

ni , 1 ≤ i ≤ k. If w ∈ S then w(α) denotes the well-defined
evaluation of w at α as indicated above. Define the vectors

ωα =
∑
w∈S

w(α)ξw , να = ωα/‖ωα‖2
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in the Fock space HS , noting that ‖ωα‖ is finite, since with α = (α(1), . . . , α(k)) we
have

||ωα||22 =
∑
w∈S

|w(α)|2

=
∑

w1∈F
+
n1

· · ·
∑

wk∈F
+
nk

|w1(α(1))|2 . . . |wk(α(k))|2

=
k∏

i=1

(
1 − ||α(i)||22

)−1
.

Note that (eijw)(α) = α̂(eijw) = α̂(eij)α̂(w) = α
(i)
j w(α). From this we see that

L∗
eij

ωα = α
(i)
j ωα. Indeed, write e for eij and note that for all w,〈

L∗
eωα, ξw

〉
=
〈
ωα, ξew

〉
= (ew)(α)

= α
(i)
j w(α) = α

(i)
j

〈
ωα, ξw

〉
=
〈
α

(i)
j ωα, ξw

〉
.

It follows that the unit vector να defines a vector functional

ρ(A) = 〈Aνα, να〉
which in turn gives a character ρ in M(Aθ) for which ρ(Leij ) = α

(i)
j . These

characters and their boundary limits in Vθ ∩ Bn in fact determine the Gelfand
space, as in the following characterisation from [15]. Here we write Ωθ for the
closed set Vθ ∩ Bn, carrying the relative topology from C|n|.

Theorem 6.2. Let Lθ and Aθ be the operator algebras associated with a cancelative
unital semigroup F

+
θ . Then:

(i) Each invariant subspace of Lθ of codimension one has the form {ωα}⊥ for
some α in Bn ∩ Vθ.

(ii) The character space M(Aθ) is homeomorphic to Ωθ under the map ϕ given
by

ϕ(ρ) =
(
ρ
(
L

e
(1)
1

)
, . . . , ρ

(
L

e
(k)
nk

))
, for ρ ∈ Ωθ.

The identification of the Gelfand spaces for the 2-graphs with (n, m) = (2, 2)
now follows from our earlier descriptions in Section 3. In particular there are two
algebras with Gelfand space of minimal type corresponding to the two permutations
of order 4 indicated in Figure 2. Likewise, algebras for the fourteen 2-graphs with
(n, m) = (2, 3) and relations of cyclic type have the “minimal” Gelfand space

Ωθ = (B2 × {0}) ∪ ({0} × B3) ∪ ((B2 × B3) ∩ (E2 × E3)).

The 2-graphs with (n, m) = (n, 1) are readily seen to be in bijective correspon-
dence with the conjugacy classes in Sn and so O(n, 1) coincides with the number
of possible cycle types for permutations τ in Sn. In this case the variety Vτ for τ in
Sn is simply given; write τ(z) for the permuted vector (zτ(1), zτ(2), . . . , zτ(n)) and
we have

Vτ = (Cn × {0}) ∪ (Uτ × C)

where Uτ = {z ∈ Cn : z = τ(z)}. This variety does not determine the cycle type of
τ but we see below that the geometric structure of (Bn ×B1)∩ Vτ determines τ up
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to conjugacy, as does biholomorphic type of (Bn × B1) ∩ Vτ . In particular for each
n there is one 2-graph algebra with minimal Gelfand space

Vmin = (Bn × {0}) ∪ ((Bn ∩ En) × B1).

The Gelfand space Ωθ = Vθ ∩ Bn of the generalised Arveson algebra Aθ splits
naturally into (overlapping) parts determined by the algebraic components of Vθ.
In particular the “interior” Vθ ∩ Bn is generally a union of domains of various
dimensions and Aθ is realised as an algebra of holomorphic functions in the sense
that restrictions to these domains are holomorphic. In view of the homogeneous
nature of the relations θ it follows that if z ∈ Ωθ then ξz ∈ Ωθ for all complex
numbers ξ with |ξ| < 1. Moreover ξ → f(ξz) is holomorphic for each f ∈ Aθ.
Using this we can obtain a generalised Schwarz principal for maps between these
spaces sufficient for the proof of the following proposition. The proposition will
be useful in determining the multi-graded nature of graded isometric isomorphisms
between higher rank analytic Toeplitz algebras.

Proposition 6.3. Let θ, τ be permutation sets determining the spaces

Ωθ ⊆ C
n = C

n1 × · · · × C
ns , Ωτ ⊆ C

m = C
m1 × · · · × C

mt

and let γ be a biholomorphic automorphism from Ωθ to Ωτ with γ(0) = 0. Then
n = m and there is a unitary matrix X such that γ(z) = Xz. Moreover, up to a
permutation, (n1, . . . , ns) = (m1, . . . , mt) and with respect to this identification X
is a block diagonal unitary matrix.

Proof. Let γ(z) = (γ1(z), . . . , γt(z)) with z = (z1, . . . , zs) and zi = (zi,1, . . . , zi,ni),
1 ≤ i ≤ s, and where γj : Ωθ −→ Vτ ∩ Bmj , 1 ≤ j ≤ t. Fix j and let γj(z) =
(γj,1(z), . . . , γj,mj(z)) where γj,q : Ωθ −→ D are coordinate functions. Our hy-
potheses imply γj,q(0) = 0. Let β be a vector in Ωθ. Also let ξ ∈ D and note that
ξβ is in Ωθ. Let α ∈ Cmj and consider the scalar holomorphic function h(ξ) given
by

h(ξ) = α1γj,1(ξβ) + · · · + αmj γj,mj (ξβ).

If α is a unit vector then by the Cauchy–Schwarz inequality we have |h(z)| ≤ 1
since γj(ξβ) ∈ Bmj . It follows now from Schwarz’ inequality that |h(ξ)| ≤ |ξ|. This
is true for all α and so ‖γj(ξβ)‖2 ≤ |ξ|.

Let ‖z‖m = max{‖z1‖2 , . . . , ‖zs‖2} be the usual polyball norm. We have shown
that ‖γ(ξβ)‖m ≤ |ξ| if β ∈ Ωθ. If w ∈ Ωθ then w = ξβ with ‖β‖m = 1, |ξ| ≤
1, ‖w‖m = |ξ| and so it follows that ‖γ(w)‖m ≤ ‖w‖m for w ∈ Ωθ. In view of the
hypothesis γ is isometric with respect to polyball norms.

For notational convenience we assume that in the remainder of the proof that
s = t = 2. Changing notation we have, for (z, w) ∈ Ωθ ⊆ Bn1 × Bn2 ,

γ(z, w) = (γ1(z, w), γ2(z, w)) ,

where, for l = 1, 2,

γl(z, w) = (γl,1(z, w), . . . , γl,ml
(z, w)).

Since γ(0, 0) = (0, 0) the Taylor expansion takes the form

γl,i(z, w) =
∑

p

al
ipzp +

∑
q

bl
iqwq + δl,i(z, w)
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where δl,i(tz, tw) = O
(
t2
)
. The isometric nature of γ with respect to ‖ ‖m to now

implies that for all z in Bn1 we have

‖z‖2
2 = max

(
‖γ1(z, 0)‖2

2 , ‖γ2(z, 0)‖2
2

)
= max

l=1,2

(∑
i

∣∣∣∣∑
p

al
ipzp

∣∣∣∣2
)

= max
(∥∥A(1)z

∥∥2

2
,
∥∥A(2)z

∥∥2

2

)
where A(l) is the n1 ×ml matrix

(
al

ip

)
. It follows readily that one of these matrices

is isometric and hence unitary while the other matrix is zero. Thus N1 = m1 or m2

and, considering ‖w‖2
2 in a similar way the block unitary nature of γ follows. �

7. Isomorphism

The canonical generators for the analytic Toeplitz algebra of a single vertex k-
graph, or semigroup F

+
θ , gives an associated Z+-grading and multi-grading. Let

us say that an algebra homomorphism between such algebras is graded if it maps
each generating isometry Le, of total degree one, to a linear combination of such
generators. Also, let us say that a graded homomorphism is multi-graded if it
respects the given multi-gradings, up to reorderings of the k sets of generators, so
that the image of each generator of total degree one and multi-degree δi is a linear
combination of generators of a fixed multi-degree δj .

We now characterise isometric graded isomorphisms and see that they are uni-
tarily implemented. In particular graded isometric automorphisms take a natural
unitary form extending the notion of gauge automorphisms familiar in the free
semigroup case.

First we make explicit the nature of bigraded unitary isomorphisms. Let
Fn ×θ1 Fm, Fn ×θ2 Fm be as in the last section. Then we have natural identifi-
cations for the Fock spaces for θ1 and θ2, namely,

Hθi = �2(Fn ×θi Fm) =
∑

(p,q)∈Z
2
+

⊕Hp,q

where Hp,q = (Cn)⊗p ⊗ (Cm)⊗q. Let A ∈ Mn(C), B ∈ Mn(C) be unitary matrices.
Define U : Hθ1 → Hθ2 by the same formula as given in Section 5 for the map ΦA,B,
that is,

U = UA,B =
∑

(p,q)∈Z
2
+

(A⊗p) ⊗ (B⊗q).

Assume now that we have the product unitary equivalence

π(θ1) = (A ⊗ B)π(θ2)(A ⊗ B)∗.

By Theorem 5.1 and its proof we have the commuting diagram
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C[F+
n ×θ1 F

+
m] Hθ1

C[F+
n ×θ2 F

+
m] Hθ2

�
ΦA,B

�

�
U

�

where the horizontal maps are the natural linear space inclusions. It follows that
the map X → UXU∗ defines a unitarily implemented isomorphism Lθ1 → Lθ2 .
The higher rank multi-graded unitary isomorphisms are described in the same way,
via Theorem 5.2, and are implemented by unitary operators of the form

U = UA1,...,Ar =
∑

p∈Z
r
+

(A⊗p1
1 ) ⊗ · · · ⊗ (A⊗pr

r ).

Theorem 7.1. Let Lθ, Lτ , Aθ, Aτ be the weakly closed and norm closed analytic
Toeplitz algebras associated with the semigroups of cancelative permutation sets θ, τ .
Then the following assertions are equivalent:

(i) The algebras Aθ and Aτ are gradedly isometrically isomorphic.
(i′) The algebras Aθ and Aτ are multi-gradedly isometrically isomorphic.
(ii) The algebras Lθ and Lτ are gradedly isometrically isomorphic.
(ii′) The algebras Lθ and Lτ are multi-gradedly gradedly isometrically isomorphic.
(iii) The permutation sets are product unitarily equivalent (after a possible relabel-

ing) and the algebras Lθ and Lτ are unitarily equivalent by an isomorphism
of the form X → UXU∗ where U = UA1,...,Ar .

Proof. To see that (iii) implies (i) and (ii) recall that the weakly closed subalgebra
L0

θ generated by {Lw : |w| = 1} is equal to the set of operators A with 〈Aξ, ξ〉 = 0.
Since Uξ′ = ξ it follows that UL0

θU
∗ = L0

τ . Let M = {ξ}⊥ and let W be the
(wandering) subspace M� (L0

θM)− with M′, W ′ similarly defined for Lτ . Then
UW ′ = W . However, W is the linear span of ξw for |w| = 1 and so U gives a linear
bijection W ′ → W effected by a unitary matrix, V say. Since ξ is a separating
vector for Lθ it follows that for |w′| = 1, we have U∗Lw′U ∈ span {Lw : |w| = 1}.
Hence the map A → UAU∗ gives a graded isomorphism Lθ → Lτ which restricts
to a graded isomorphism Aθ → Aτ .

Plainly (ii) implies (i). Suppose that (i) holds. We show that (iii) holds, which
will complete the proof. The given isomorphism, Φ say, induces an isometric algebra
isomorphism Aθ → Aτ and hence a homeomorphism γ : Ωθ → Ωτ of their Gelfand
spaces. These spaces have canonical realisations in CN arising from the generators,
as given in the last section, and it follows from elementary Banach algebra that γ
is biholomorphic in the sense given in Section 6. Furthermore, since Φ is graded it
follows that γ maps the origin to the origin. Proposition 6.3 applies and it follows
that γ is implemented by a unitary matrix, X say, and that, after a permutation
of coordinates, we may assume that θ and τ are permutation sets associated with
n = m = (n1, . . . , nr) and that X has the form A1 ⊕ · · · ⊕ Ar. We now see that
γ is multi-graded and since Φ is graded, by assumption, it follows that Φ is multi-
graded. In particular, with the usual notational convention, for each generator eip

we have Φ(Leip) = LAieip . Since Φ is an algebra isomorphism it follows readily that
Φ = ΦA1,...,Ar and that Φ is implemented by the unitary UA1,...,Ar . �
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Theorem 7.2. Let Aθ, Aτ be as in the statement of the last theorem. Let Iθ,
Iτ be the ideals of operators with vanishing constant term (so that, Iθ = Aθ ∩ L0

θ)
and let Φ : Aθ → Aτ be an isometric isomorphism with Φ(Iθ) = Iτ . Then Φ is
a multi-graded unitarily implemented isomorphism and θ, τ are product unitarily
equivalent.

Proof. As in the last proof the isomorphism induces a homeomorphism γ : Ωθ →
Ωτ and in view of the stated ideal preservation γ preserves the origin ; γ(0) = 0.
By Proposition 6.3 γ is given by a unitary matrix X which we may assume is
in block diagonal form. Suppose that a generator e for F

+
θ corresponds to basis

element in Cni , also denoted e. Write LXe for the linear combination of generators
arising from the sum Xe. We now want to show that Φ is multi-graded and we
have Φ(Le) = LXe + c where c =

∑
w βwLw where the summation extends over

elements w of total degree at least 2. Since Φ is an isometry ‖LXe + c‖ = 1. Since
X is a block diagonal unitary it follows that LXe is an isometry. Recall that the
Fock space admits a graded decomposition H0⊕H1⊕· · · . The isometry LXe has a
subdiagonal block matrix structure which is disjoint from the block matrix support
of c. It follows readily that c = 0. Thus Φ is a multi-graded isomorphism and the
previous theorem completes the proof. �

Up to this point we have not examined the local structure of the Gelfand spaces
but it is clear that this information as well as general decomposition theory for
algebraic varieties provides useful invariants, particularly for the analysis of auto-
morphisms. We now appeal to the local structure of the minimal varieties Vmin to
see that in this case biholomorphic maps between the Gelfand spaces necessarily
map 0 to 0.

Let Ω be the minimal Gelfand space associated with the multiplicities (n1, . . . , nk)
and realised as the subset of Cn1 × · · · × Cnk given by

Ω =
( ∪k

j=1 (Bnj × {0})) ∪ ((Bn1 ∩ En1) × · · · × (Bnk
∩ Enk

)),

with relative Euclidean topology. Let z = (z1, . . . , zk) be a point of Ω with zi 	= 0.
If zi /∈ Eni then necessarily zj = 0 for all j 	= i and every open neighbourhood of z
contains a basic open neighbourhood of the form

U1(z, r) = (B(zi, r)) × {0}
where B(zi, r) is the intersection of Bni with the open ball in Cni centred at zi with
radius r. Let us say that such a point is of type 1.

On the other hand, suppose that zi 	= 0 and zi ∈ Eni . If zj 	= 0 for some j 	= i
then z ∈ En1 × · · · × Enk

and z has a basic open neighbourhood of the form

U2(z, r) = (B(z1, r) ∩ En1) × · · · × (B(zk, r) ∩ Enk
)),

whereas if zj = 0 for all j 	= i then z has the larger basic neighbourhood of the
form

U3(z, r) = U1(z, r) ∪ U2(z, r).
Let us say that the points in these two cases are of types 2 and 3 respectively.
Finally, if z = 0 then z has basic neighbourhoods of the form

rΩo :=
( ∪k

j=1 (rBnj × {0})) ∪ ((rBn1 ∩ En1) × · · · × (rBnk
∩ Enk

)).

We shall show that in fact any homeomorphism γ : Ω → Ω maps the origin to the
origin. There is a prima facie suggestion of this in the detail above, although basic
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open neighbourhoods and coordinates are not topologically determined. However
we have the following connectivity argument.

Let
C = ∪k

j=1(Bnj × {0}) ∩ (Enj × {0})
and note that C is the union of k closed discs, where, by a disc we mean a homeo-
morphic image of the set {(x, y) : x2 + y2 ≤ 0} in R2. These discs become disjoint
on removal of the origin. Furthermore, the set Ω\C is the disjoint union

(∪k
j=1(Bnj × {0})\(Enj × {0})) ∪ ((B(z1, r) ∩ En1) × · · · × (B(zk) ∩ Enk

)\C).

Suppose first that ni ≥ 2 for all i. Then this set has k + 1 pathwise connected
components. Moreover, every open neighbourhood U of 0 has the property that
U\C has k + 1 pathwise connected components. It remains to check that for each
of the points of type 1, 2 and 3 the basic open neighbourhoods fail to have such a
degree of disconnection on the removal of a homeomorph of C. In general, if ni = 1
for some or several i, there are fewer disconnected components but the distinction
of the origin persists.

In view of Theorem 7.2 we may now deduce the following result which applies
in particular to the analytic Toeplitz algebras of k-graphs with cyclic relations.

Theorem 7.3. Let Aθ and Aτ be the analytic Toeplitz algebras associated with the
cancelative rank k semigroups F

+
θ , F+

τ with generator multiplicities (n1, . . . , nk), and
assume that the Gelfand spaces are of minimal type. Then the following statements
are equivalent:

(i) Aθ and Aτ are isometrically isomorphic.
(ii) Lθ and Lτ are isometrically isomorphic.
(iii) θ and τ are product unitarily equivalent.

Furthermore the unitary automorphisms of Aθ are implemented by the unitaries
UA1,...,Ak

where
π(θij)(Ai ⊗ Aj) = (Ai ⊗ Aj)π(θij)

for all 1 ≤ i < j ≤ k.

We now focus attention on the rank 2 case. The next theorem shows that
there are nine algebras AG arising from single vertex 2-graphs with 1-skeleton
(corresponding to the generators) consisting of two blue edges and two red edges.

Theorem 7.4. Let Λ1 and Λ2 be single vertex 2-graphs with generating edge mul-
tiplicities 2, 2. Then the norm closed Toeplitz algebras AΛ1 ,AΛ2 are isometrically
isomorphic if and only if their 2-graphs are isomorphic.

Proof. By Theorem 6.1 and the descriptions of the varieties in Section 3 the
Gelfand spaces of the quotient function algebras are all distinct up to homeo-
morphism except for the pair θa

4 = (142), θc
4 = (124) and the pair θ7 = (1243),

θ8 = (1234).
Suppose by way of contradiction that Aθ7 and Aθ8 are isometrically isomorphic

and let γ : Ωθ7 → Ωθ8 be the induced biholomorphic homeomorphism. These
Gelfand spaces are of minimal type and from the local structure it follows as before
that γ(0) = 0. By Theorem 7.2, θ7 and θ8 are product unitarily equivalent. How-
ever, this is not the case as can be seen in a similar but simpler way to our earlier
arguments for (n, m) = (2, 3). Suppose, by way of contradiction, that X ⊗ Y is a
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tensor product of unitary matrices in M2 ⊗ M2 and (X ⊗ Y )θ7 = θ8(X ⊗ Y ). We
have θ7 = σθ8σ where σ = σ−1 = (34) and so [(X ⊗ Y )σ]θ8 = θ8[(X ⊗ Y )σ]. In
view of the matrix form of matrices that commute with the shift θ8 this entails

(X ⊗ Y )σ =

⎛⎜⎜⎝
a d c b
b a d c
c b a d
d c b a

⎞⎟⎟⎠
and hence

X ⊗ Y =

⎛⎜⎜⎝
a d b c
b a c d
c b d a
d c a b

⎞⎟⎟⎠ =
(

A B
C D

)
.

On the other hand the matrix form of an elementary tensor entails that the 2×2
submatrices A, B, C, D are scalar multiples of each other. In our case these must
be nonzero scalar multiples or else all but one of a, b, c, d is nonzero and the matrix
fails then fails to have the form X ⊗ Y . Similarly it follows now that a, b, c, d are
nonzero. With c = λ we have d = λb = λ2d and λ is +1 or −1. If +1 then d = b
and b = +a or −a. However, in all cases all solutions X ⊗ Y fail to be invertible.
The same is true when λ = −1, completing the contradiction.

The argument for the pair θa
4 = (142), θc

4 = (124) is similar; the Gelfand space
has four components and the origin is distinguished, as before. So it suffices to
show that there is no unitary tensor with X ⊗ Y (142) = (124)X ⊗ Y .

To this end let

X =
(

w x
y z

)
, Y =

(
a b
c d

)
.

The matrix equation implies

wa = yc wb = ya xa = zc xb = zd
wc = wa wd = wb xc = xa xd = xb
yc = wc ya = wd zc = xc zd = xd

Now if w 	= 0 then a = c, d = b and Y is not unitary. However, if w = 0 then x
must be nonzero, since X is unitary, and we see once again that a = c, d = b and Y
is not unitary. Thus θc

4 and θa
4 are not product unitary equivalent, as required. �

Theorem 7.5. Let Λ1 and Λ2 be single vertex 2-graphs with generating edge multi-
plicites 2, 3 and suppose that the relations for these 2-graphs are of cyclic type (or,
equivalently, that each AΛi has Gelfand space of minimal type). Then the norm
closed Toeplitz algebras AΛ1 ,AΛ2 are isometrically isomorphic if and only if the
2-graphs Λ1 and Λ2 are isomorphic. Moreover there are exactly 14 isomorphism
classes and these are in correspondence with the permutations of Figures 3–7.

Proof. The proof has the same structure as the previous proof and so the relations
θ, τ underlying Λ1, Λ2 are product unitarily equivalent. By Proposition 4.3, θ and
τ are product conjugate and so Λ1 and Λ2 are isomorphic 2-graphs. �

The following corollary shows that in the higher rank case the commutant algebra
need not be isomorphic to the original algebra. Theorem 7.4 shows that this also
occurs when (n, m) = (2, 2) for the algebra Aθa

4
whose commutant is isomorphic to

Aθc
4
.
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Corollary 7.6. Let (n, m) = (2, 3) and let θ ∈ S6 be the permutation (124653)
defining the 2-graph Λ. Then the algebra LΛ is not isometrically isomorphic to its
commutant.

Proof. The permutation is θ12 in the list given in Section 4 and we have seen in
Proposition 4.1 that this permutation is not product conjugate to its inverse. The
associated 2-graphs are therefore not isomorphic. By the previous theorem the
algebras LΛ and LΛop are not isometrically isomorphic, and so the corollary follows
from Proposition 2.3. �

We expect that algebra isomorphism corresponds to graph isomorphism, or gen-
erator exchange graph isomorphism. There are two main issues to resolve in order
to establish this.

Firstly it seems plausible that in general product unitary equivalence gives the
same equivalence relation as product conjugacy. If this is true then, for example,
we obtain from the last theorem a more definitive classification, akin to the (2,3)
case, of the single vertex k-graph algebras with character space of minimal type.

Secondly, it seems likely that for general finitely generated single vertex k-graph
one can reduce to graded isomorphisms by means of composition with a unitary
automorphism. For general (multi-vertex) 1-graphs this was shown in [13]. In the
next section we show how this may be done for a special class of 2-graphs. As
we have remarked in the introduction, in [22] it has now been proven for general
2-graphs.

8. The 2-graph algebras An ×θ Z+

Consider the algebras associated with single vertex 2-graphs with (n, m) = (n, 1).
Such a 2-graph is specified by a permutation τ in Sn and we may consider the
relations to be eif = feτ(i), i = 1, . . . , n. As usual we write Aτ , Lτ for the
corresponding nonselfadjoint Toeplitz algebras. We remark that Aτ is identifiable
with a crossed product algebra An ×θ Z+ which in turn may be identified with a
subalgebra of the full crossed product On ×θ Z of the Cuntz algebra On.

Isometric isomorphisms Aτ → Aσ need not be graded. However we shall identify
explicit unitary automorphisms of Aτ (and also Lτ ) which allow us to reduce to
the graded case.

Suppose that τ has cycle type r1r2 . . . rt, that is, t distinct cycles of length
ri, i = 1, . . . , t. Then the Gelfand space Ωτ is identifiable with the subset

(Bn × {0}) ∪ ((U ∩ Bn) × B1

) ⊆ C
n × C

where U is the variety of points z in C
n with τ(z) = z. Functions in the Arveson

algebra Aτ = Aτ/ comAτ have holomorphic restrictions to (Bn × {0}) and to
(U∩Bn)×B1 and we shall simply say that Aτ is an algebra of holomorphic functions
with this sense understood. Likewise, a holomorphic function φ : Ωτ → Ωσ is
biholomorphic if both φ and φ−1 have coordinate functions which are holomorphic
in this sense.

Define the subset (U ∩ Bn) × {0} to be the open core of Ωτ . If ϕ : Ωτ → Ωσ is
a biholomorphic map then it is clear that such a map respects the open core. We
show that the biholomorphic automorphisms of Ωτ act transitively on the open core.
Furthermore the automorphisms of Ωτ that derive from unitary automorphisms of
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Aτ also act transitively on the open core. To construct these automorphisms we
make use of the explicit automorphisms of Cuntz algebras obtained by Voiculescu
[28]. Our account below relies on Voiculescu’s automorphisms but is otherwise self-
contained, and uses notation similar to that of the discussion in Davidson and Pitts
[6]. For an alternative discussion of Voiculescu’s construction see also [22].

Proposition 8.1. Let α be a real vector in Bn. Then there is biholomorphic auto-
morphism θ : Bn → Bn with θ(0) = α. Furthermore θ may be defined by

θ(λ) =
X1λ + η

x0 + 〈λ, η〉 ,

where x0 = (1 − |α|2)− 1
2 , η = x0α, and X1 is the positive square root of In + ηη∗.

Proof. We have X1η = X∗
1η = x0η. Using this and the equation X∗

1X1 = In +ηη∗
we obtain

|x0+〈λ, η〉|2 − ‖(X1λ + η)‖2

= |x0|2 + 2Re〈x0η, λ〉 + |〈λ, η〉|2 − ‖X1λ‖2 − 2Re〈λ, X∗
1η〉 − ‖η‖2

= |x0|2 − ‖η‖2 + |〈λ, η〉|2 − |λ|2 − 〈ηη∗λ, λ〉
= 1 − |λ|2.

Thus θX maps Bn into Bn and maps 0 to η/x0 = α. Let θ′ : Bn → Bn be defined
by

θ′(λ) =
X1λ − η

x0 − 〈λ, η〉 .

Then θ ◦ θ′(x) = λ for all λ in Bn. Indeed

θ(θ′(λ)) =
X1

(
X1λ−η

x0−〈λ,η〉
)

+ η

x0 +
〈

X1λ−η
x0−〈λ,η〉 , η

〉
=

X2
1λ − X1η + η(x0 − 〈λ, η〉)

x0(x0 − 〈λ, η〉) + 〈X1λ, η〉 − 〈η, η〉
=

λ + ηη∗(λ) − x0η + ηx0 − η〈λ, η〉
|x0|2 − x0〈λ, η〉 + x0〈λ, η〉 − |η|2

= λ.

It follows that θ′, and similarly θ, is injective on Bn, and that θ, and similarly θ′,
is onto Bn, as required. �

Proposition 8.2. Let Aτ be the 2-graph algebra for the permutation τ ∈ Sn and
let α ∈ E where E × {0} is the open core of the Gelfand space Ωτ of Aτ .

(i) There is a biholomorphic automorphism θ : Bn → Bn with θ(E) = E,
θ(0) = α and with θ = τ−1θτ , where τ also denotes the coordinate shift
automorphism.

(ii) There is an isometric operator algebra automorphism Θ : An → An which
extends the ball automorphism θ in (i) and which satisfies Θ = T−1ΘT where
T : An → An is the coordinate shift automorphism such that T (Lei) = Leτ(i) .
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Proof. (i) Since τ commutes with diagonal gauge automorphisms

γ : z → (d1z1, d2z2, . . . , dnzn)

when the coefficient sequence d satisfies d = τ(d) it is clear that we may assume
that α is a real vector in E. Consider now the automorphism θ of Proposition 8.1
associated with α. We claim that θ satisfies the desired requirements. Indeed,
η is a scalar multiple of α and so τ(η) = η. Since η is a fixed vector for τ the
matrix In + ηη∗ is diagonalised by a complete set of eigenvectors for τ , where τ is
considered as a unitary permutation matrix as before. It follows that the square
root matrix X1 is similarly diagonalised and so commutes with τ . It follows now
from the formula for θ that θ(τ(x)) = τ(θ(x)) for λ in Bn.

(ii) Following Voiculescu [28], for ξ ∈ Cn define

Θ(Lξ) = (x0I − Lη)−1(LX1ξ − 〈ξ, η〉I)

where x0, η, X1 are as in Proposition 8.1. That Θ determines an automorphism of
An follows from Theorem 2.10 of [28].

In the semigroup ring generated by the ei and f we have, writing X1 = (xij),

(X1ei)f =
(∑

t

xtiet

)
f

= f
∑

t

xtieτ(t)

= f
∑

s

xτ−1(s),ies

= f(π(τ)X1ei)

= fπ(τ)X1π(τ−1)eτ(i)

= fX1eτ(i),

since X1 commutes with π(τ). It follows that LX1eiLf = LfLX1eτ(i) for each i.
Since τ(η) = η it now follows that

Θ(Lei)Lf = LfΘ(Leτ(i))

L∗
fΘ(Lei)Lf = Θ(L∗

fLeiLf).

Since A → L∗
fALf , is an implementation of the automorphism T we have T ◦ Θ =

Θ ◦ T and the proof of (ii) is complete. �

Theorem 8.3. Let Λ1, Λ2 be single vertex 2-graphs with generating graphs having
a single red edge and finitely many blue edges. Then the following statements are
equivalent:

(i) Λ1 and Λ2 are isomorphic 2-graphs.
(ii) AΛ1 and AΛ2 are isometrically isomorphic.
(iii) LΛ1 and LΛ2 are unitarily equivalent.

Proof. Let Φ : LΛ1 → LΛ2 be a unitary equivalence. Let M∗(LΛi ) be the space
of weak star continuous multiplicative linear functionals on LΛi , i = 1, 2 with
the weak star topology. These spaces are identifiable with the Euclidean space
Ωo

Λi
= ΩΛi ∩ (Bni × B1). The map Φ induces a weak star continuous map γ :

M∗(LΛ1 ) → M∗(LΛ2 ) and hence a homeomorphism γ : Ωo
Λ1

→ Ω0
Λ2

. This map
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respects the open core and so γ(0) = α lies in {(z, 0) : θ2(z) = z} where, for
i = 1, 2, θi is the permutation in Sni determining Λi. Composing Φ with a unitary
automorphism of LΛ2 mapping α to 0 we may assume, without loss of generality,
that γ(0) = 0. Theorem 7.2 now applies and it follow that n1 = n2 and θ1 and
θ2 are unitarily equivalent permutation matrices in π(Sn). It follows from spectral
theory that θ1 and θ2 are conjugate in Sn from which (i) follows.

The direction (i) ⇒ (iii) is elementary while the equivalence of (i) and (ii) follows
as above. �
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