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Symplectic geometry on symplectic knot spaces

Jae-Hyouk Lee

Abstract. Symplectic knot spaces are the spaces of symplectic subspaces
in a symplectic manifold M . We introduce a symplectic structure and show
that the structure can be also obtained by the symplectic quotient method.
We explain the correspondence between coisotropic submanifolds in M and
Lagrangians in the symplectic knot space. We also define an almost complex
structure on the symplectic knot space, and study the correspondence between
almost complex submanifolds in M and holomorphic curves in the symplectic
knot space.
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1. Introduction

Symplectic geometry on a symplectic manifold M is characterized by a nonde-
generate skew symmetric 2-tensor ω which is closed. This gives sharp contrasts
between symplectic geometry and Riemannian geometry, which is determined by
a nondegenerate symmetric 2-tensor. For example, there is no local invariant in
symplectic geometry such as curvatures in Riemannian geometry. Furthermore,
unlike Riemannian case, there are submanifolds in M determined by the sym-
plectic structure ω, Lagrangian submanifolds and holomorphic curves. Lagrangian
submanifolds are the maximal-dimensional (in fact, a half of the dimension of M)
ones among the submanifolds with ω vanishing, and holomorphic curves are the
minimal-dimensional (in fact, two) ones whose tangent spaces are preserved by an
almost complex structure compatible to ω. These two types of submanifolds are

Received October 9, 2006.
Mathematics Subject Classification. 53C38, 53D20, 53D30, 53D12, 54C99.
Key words and phrases. Symplectic knot space, symplectic reduction, coisotropic submanifold,

Lagrangian submanifold, almost complex submanifold, holomorphic curve.

ISSN 1076-9803/07

17

http://nyjm.albany.edu/j/2007/13-3.html
http://nyjm.albany.edu/j/2007/Vol13.htm
http://nyjm.albany.edu/nyjm.html


18 Jae-Hyouk Lee

playing key roles in the geometrical agenda including Floer homology, Gromov–
Witten invariants, and mirror symmetry corresponding to topological A-model in
topological string theory.

On the other hand, ω determines another type of submanifolds in M : the so-
called coisotropic submanifolds whose each tangent space contains a Lagrangian
subspace. It is natural to expect that the geometry of these is closely related to
that of Lagrangians. In [7], a correspondence is given between coisotropic subspaces
in a symplectic vector space and Lagrangians in a symplectic Grassmannian by N.C.
Leung and author. This correspondence is also explained in this paper (Section 4).
Note that coisotropic submanifolds are also suggested as the proper objects for
topological A-model [4].

In this paper, we consider a space K(Σ, M) := Map(Σ, M)/Diff(Σ) which con-
sists of submanifolds in M given by embeddings from a 2k-dimensional closed man-
ifold Σ to M . In this paper, M is a 2n-dimensional symplectic manifold with
symplectic structure ω. By applying the transgression method on ωk+1/ (k + 1)!,
we obtain a closed 2-form Ω on K(Σ, M), i.e.,

Ω :=
∫

Σ

ev∗ ωk+1

(k + 1)!
.

And it turns out Ω is nondegenerate only on symplectic submanifolds in K(Σ, M)
when k < n − 1. Therefrom we define a symplectic knot space as

KSp(Σ, M) := MapSp(Σ, M)/Diff(Σ),

namely the subspace of K(Σ, M) consisting of symplectic submanifolds in M . Note
if k = n−1, Ω is nondegenerate on K(Σ, M) and this is one of the higher dimensional
knot spaces on manifolds with vector cross products (see Remark 3 and [6]).

The symplectic knot space KSp(Σ, M) with the symplectic structure Ω can also
be constructed as a symplectic quotient. First we consider a space C with Diff (Σ)-
action containing MapSp(Σ, M) defined as

C := MapSp(Σ, M) × Ω1
cl (Σ)

where Ω1
cl(Σ) is the space of closed 1-forms on Σ. And we define a Diff(Σ)-invariant

symplectic structure 2-form Ω̂ (see Section 3) on C where Ω is the restriction of Ω̂ on
MapSp(Σ, M). We show that there is a moment map μ on C for the Diff(Σ)-action
defined as

μ (f, A) := f∗ (ωk/k!
)⊗ A ∈ Ω2k (Σ, T ∗

Σ)

where Ω2k (Σ, T ∗
Σ) is the dual space of Γ (Σ, TΣ), which is the Lie algebra of Diff(Σ).

Since μ−1 (0) is MapSp(Σ, M), we conclude that KSp (Σ, M) is the symplectic quo-
tient μ−1 (0) /Diff(Σ).

At last, we study the correspondence between coisotropic submanifolds in M
and Lagrangian subspaces in KSp(Σ, M) (see Section 4).

Theorem. Suppose C is a submanifold in M and the corresponding subknot space
KSp(Σ, C) is proper. Then C is an (n + k)-dimensional coisotropic submanifold in
M if and only if KSp(Σ, C) is a Lagrangian subknot space in KSp(Σ, M).

We also define an almost complex structure on KSp(Σ, M) and study the cor-
respondence between almost complex submanifolds in M and holomorphic curves
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in KSp(Σ, M). We consider a normal disk D in MapSp(Σ, M), which is an inte-
gral two-dimensional disk D in MapSp (Σ, M) for the horizontal distribution of a
canonical connection on the principal fibration

Diff(Σ) → MapSp(Σ, M) π→ KSp(Σ, M).

And we assume that a (2k + 2)-dimensional submanifold Z, defined as

Z :=
⋃

f∈D

f(Σ),

is an embedding in M . Therefrom, we obtain the following theorem.

Theorem. For a tame normal disk D in MapSp(Σ, M), D̂ := π (D) is a holomor-
phic disk in KSp(Σ, M) if and only if Z is a (2k + 2)-dimensional almost complex
submanifold in M and Z → D is a Riemannian submersion.

2. Symplectic knot spaces

In this section we define symplectic knot spaces and study symplectic structures
on them. The symplectic knot spaces are defined as the spaces of symplectic sub-
manifolds in a symplectic manifold M . To be precise, we consider the spaces of
embeddings from an even-dimensional manifold to M whose images are symplectic,
and these images form a symplectic knot space. Because the normal bundle of a
symplectic submanifold is also symplectic, it is natural to expect the symplectic
knot spaces to have symplectic structures and we define one with a symplectic
structure on M .

Let M be a 2n-dimensional symplectic manifold with a symplectic form ω, i.e., a
nondegenerate closed 2-form, and Σ be a 2k-dimensional oriented closed manifold
with k < n−1. We consider the space of embeddings (resp. symplectic embeddings)
from Σ to M ,

Map(Σ, M) := {f : Σ → M | f embedding}
(resp. MapSp(Σ, M)). Because the symplectic condition is open, MapSp(Σ, M) and
Map(Σ, M) have the same tangent spaces for each f ∈ MapSp (Σ, M), namely
Tf

(
MapSp(Σ, M)

)
= Γ (Σ, f∗ (TM )).

Let
ev : Σ × Map(Σ, M) → M

be the evaluation map ev(x, f) = f(x) and let

pr : Σ × Map(Σ, M) → Map(Σ, M)

be the projection map. We define a 2-form ΩMap on Map(Σ, M) by taking the
transgression of ωk+1/ (k + 1)!,

ΩMap := (pr∗) (ev)∗
ωk+1

(k + 1)!
=
∫

Σ

ev∗ ωk+1

(k + 1)!
.

To be explicit, this is

ΩMap (a, b) =
∫

Σ

ιa∧bω
k+1

(k + 1)!
for tangent vectors a and b to Map(Σ, M) at f , i.e., a, b ∈ Γ (Σ, f∗ (TM )).
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In the following, we consider the degeneracy of ΩMap and define a space from
Map(Σ, M) where a 2-form induced from ΩMap achieves nondegeneracy to be a
symplectic structure.

First, we observe that ΩMap degenerates along the tangent directions to Σ be-
cause (ιa∧bω

k+1)|Σ cannot be a volume form on Σ if a or b is tangential, namely
given by the natural action of Diff(Σ) on Map(Σ, M). Here Diff(Σ) is the space of
orientation preserving diffeomorphisms on Σ. As a matter of fact, this holds true
for any form on Map(Σ, M) obtained by transgression. Therefore we consider a
quotient space

K(Σ, M) := Map(Σ, M)/Diff(Σ),
that is the space of 2k-dimensional submanifolds in M , and ΩMap descends to a
2-form Ω on it. Note that the tangent space of [f ] in K(Σ, M) is Γ

(
Σ, NΣ/M

)
where

NΣ/M is the normal bundle of f(Σ) in M .
Second, in the following lemma we see that the 2-form Ω on K(Σ, M) is still

degenerate when the submanifolds are not symplectic in M , but it turns out that
these are all the possible cases for the degeneracy of Ω.

Lemma 1. For k < n − 1, the 2-form Ω on K(Σ, M) defined as above is nonde-
generate only for those [f ] in K(Σ, M) whose image in M is symplectic.

Proof. Consider a fixed [f ] in K (Σ, M) and a point x in Σ. Let a be a tangent
vector at [f ] such that Ω[f ](a, b) = 0 for any b in Γ

(
Σ, NΣ/M

)
. We apply the

localization lemma (see [6]) to this condition, as follows. For a fixed x in Σ, by
multiplying b with a sequence of functions on Σ approaching the delta function at
x, we obtain sections (b)ε which approach δ(x)b as ε → 0 where δ(x) is Dirac delta
function. Then

ιa(x)∧b(x)ω
k+1 |TxΣ

(k + 1)! volΣ,x
= Ω[f ],x (a(x), b(x))

= lim
ε→0

(∫
Σ

ev∗ ωk+1

(k + 1)!

)
(a, (b)ε) = 0.

Therefore, the nondegeneracy of Ω[f ] corresponds to that of

ωk+1 |TxΣ /{(k + 1)! volΣ,x}
for all x in Σ. Furthermore, one can show that for k < n−1, this 2-form on NΣ/M,x

is nondegenerate iff the tangent space of f(Σ) is symplectic at f(x) (or see [7]).
Thereby, a = 0 iff f(Σ) is symplectic in M . This proves the lemma. �

Now, we define the symplectic knot space KSp(Σ, M) as the space of symplectic
submanifolds in M , i.e.,

KSp(Σ, M) = MapSp(Σ, M)/Diff(Σ).

Note when k = 0, namely Σ is a point, the corresponding symplectic knot space
defined for M is M itself.

Besides the nondegeneracy, we need to see that Ω is closed in order to be a
symplectic form. This is easily obtained because ΩMap is closed,

dΩMap = d

∫
Σ

ev∗ ωk+1

(k + 1)!
=
∫

Σ

ev∗ dωk+1

(k + 1)!
= 0.
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As a summary of this section, we have the following theorem.

Theorem 2. Suppose M is a 2n-dimensional symplectic manifold and Σ is a 2k-
dimensional closed oriented manifold where k < n − 1. Then the symplectic knot
space KSp(Σ, M) has a symplectic form Ω defined as above.

Remark 3. When k = n− 1, the 2-form Ω is nondegenerate for all [f ] in K(Σ, M)
since ω(n−1)+1/n! is the volume form on M . Therefore, symplectic knot space
KSp(Σ, M) is K(Σ, M) itself. In fact, this space is one of the higher-dimensional
knot spaces studied in [6]. In that paper, N.C. Leung and author studied the knot
spaces defined for manifolds with vector cross products. The vector cross product
is the generalization of the cross product on a 3-dimensional Euclidean space. In
our case, the volume form ωn/n! is a (2n − 1)-fold vector cross product on the
2n-dimensional oriented Riemannian manifold M(see [6, 7]).

3. Symplectic knot spaces as symplectic quotients

In the previous section we have seen that the symplectic knot space KSp(Σ, M)
has a symplectic structure induced from a symplectic structure on M . In this
section we show KSp(Σ, M) and its symplectic structure Ω can be obtained as a
symplectic quotient. The key lines of this section are as follows. At first, we con-
sider a space with Diff(Σ)-action that contains MapSp(Σ, M), and define a Diff(Σ)-
invariant symplectic structure on it. Then we identify a moment map on it given by
the action of Diff(Σ). At last, KSp(Σ, M) is constructed as a symplectic quotient.

Let C be a space containing MapSp(Σ, M) defined as

C := MapSp(Σ, M) × Ω1
cl (Σ)

where Ω1
cl(Σ) is the space of closed 1-forms on Σ. The group Diff(Σ) acts on

MapSp(Σ, M) by composition and on Ω1
cl(Σ) by pullback. Note the Lie algebra of

Diff(Σ) is isomorphic to Ω1(Σ), but we define C with Ω1
cl(Σ) so that the following

2-form is symplectic on C.
Suppose (a1, B1) and (a2, B2) are tangent vectors of C at (f, A) i.e., (ai, Bi) ∈

Γ(Σ, f∗(TM )) × Ω1
cl(Σ), then we define a 2-form Ω̂ on C as

Ω̂(f,A) ((a1, B1) , (a2, B2)) :=
∫

Σ

ιa1∧a2ω
k+1

(k + 1)!
+
∫

Σ

ιa1ω
k ∧ B2

k!

−
∫

Σ

ιa2ω
k ∧ B1

k!
+
∫

Σ

ωk−1 ∧ B1 ∧ B2

(k − 1)!
.

Note that ω stands for f∗(ω) and we suppress f afterwards unless there is confusion.
It is easy to see Ω̂ is preserved by the action of Diff (Σ), and we show that it is

a closed and nondegenerate 2-form on C as follows.

Lemma 4. Ω̂ is a symplectic form on C.

Proof. First, we prove that Ω̂ is closed. Note that the first term of Ω̂ can be
obtained by pulling back the closed 2-form ΩMap on MapSp(Σ, M) to C. Therefore,
we only need to show that Ω̂ − ΩMap, denoted as Φ, is closed. And it suffices to
check that

3dΦ (X1, X2, X3) = X1Φ (X2, X3) − X2Φ (X1, X3) + X3Φ (X1, X2)

− Φ ([X1, X2] , X3) + Φ ([X1, X3] , X2) − Φ ([X2, X3] , X1)
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is zero for any tangent vector fields X1, X2 and X3 on C.
Consider a fixed point ([f ] , A) in C and denote tangent vector of X1, X2 and X3

at ([f ] , A) as (a1, A1), (a2, A2) and (a3, A3) respectively, where ai ∈ Γ (Σ, f∗TM )
and Ai ∈ Ω1

cl(Σ). Since C is the product space, [Xi, Xj] at ([f ] , A) is(
[ai, aj ] ,LaiAj − Laj Ai

)
where [ai, aj ] is the usual Lie bracket of vector fields, and [Ai, Aj ] = 0 on Ω1

cl (Σ).
To get [Ai, Aj ] = 0, we need to choose a vector field extended from the tangent
vector Ai to have constant coefficients, and this is possible because Ω1

cl (Σ) is a
vector space.

The followings are typical calculation in each terms of dΦ (X1, X2, X3). At the
point ([f ] , A) and for distinct i, j and m,

d

(∫
Σ

ιaiω
k ∧ Aj

)
((am, Am)) =

∫
Σ

Lam

(
ιaiω

k ∧ Aj

)
=
∫

Σ

(
ιamdιaiω

k ∧ Aj + ιaiω
k ∧ LamAj

)
,

d

(∫
Σ

ωk−1 ∧ Ai ∧ Aj

)
((am, Am)) =

∫
Σ

Lam

(
ωk−1 ∧ Ai ∧ Aj

)
=
∫

Σ

dιam

(
ωk−1 ∧ Ai ∧ Aj

)
= 0,

and

Φ([f ],A)

((
[ai, aj] ,LaiAj − Laj Ai

)
, (am, Am)

)
=

1
k!

∫
Σ

ι[ai,aj ]ω
k ∧ Am − 1

k!

∫
Σ

ιamωk ∧ (LaiAj − Laj Ai

)
.

Note these are obtained by using Stokes’ theorem and the fact that LaiAj −Laj Ai

is exact.
By applying above three identities to 3dΦ (X1, X2, X3) at ([f ] , A),

k! 3dΦ([f ],A) ((a1, A1) , (a2, A2) , (a3, A3))

=
∫

Σ

(
ιa1dιa2ω

k ∧ A3 + ιa2ω
k ∧ La1A3 − ιa1dιa3ω

k ∧ A2 − ιa3ω
k ∧ La1A2

)
−
∫

Σ

(ιa2dιa1ω
k ∧ A3 + ιa1ω

k ∧ La2A3 − ιa2dιa3ω
k ∧ A1 − ιa3ω

k ∧ La2A1)

+
∫

Σ

(
ιa3dιa1ω

k ∧ A2 + ιa1ω
k ∧ La3A2 − ιa3dιa2ω

k ∧ A1 − ιa2ω
k ∧ La3A1

)
−
∫

Σ

{ι[a1,a2]ω
k ∧ A3 − ιa3ω

k ∧ (La1A2 − La2A1)}

+
∫

Σ

{ι[a1,a3]ω
k ∧ A2 − ιa2ω

k ∧ (La1A3 − La3A1)}

−
∫

Σ

{ι[a2,a3]ω
k ∧ A1 − ιa1ω

k ∧ (La2A3 − La3A2)}
= 0.
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The last equality is obtained from∫
Σ

ιaidιaj ω
k ∧ Am − ιaj dιaiω

k ∧ Am =
∫

Σ

ι[ai,aj]ω
k ∧ Am.

Hence this shows that Ω̂ is closed.
Second, we show that Ω̂ is nondegenerate at C. Let (b1, B1) be a nonzero vector

at ([f ] , A). We separate cases with respect to the vector field b1.

Case 1. b1 is a nonzero vector field on Σ and B1 is any closed 1-form on Σ.

Since Σ is symplectic for f∗ω, there is a pair of vector fields

(aT , aS) ∈ Γ (Σ, TΣ) × Γ
(
Σ, f∗TM ∩ T f∗ω

Σ

)
with b1 = aT + aS . Here, T f∗ω

Σ is the f∗ω-orthogonal complement of TΣ in f∗TM .

(i) If aT is zero, i.e., b1 is in Γ
(
Σ, f∗TM ∩ T f∗ω

Σ

)
, then there is a vector (b2, 0)

at ([f ] , A) such that b2 is in Γ
(
Σ, f∗TM ∩ T f∗ω

Σ

)
with ω (b1, b2) > 0. And

we have

Ω̂(f,A) ((b1, B1) , (b2, 0)) =
1

(k + 1)!

∫
Σ

ιb1∧b2ω
k+1 − 1

k!

∫
Σ

ιb2ω
k ∧ B1

=
∫

Σ

ω (b1, b2)
ωk

k!
> 0 .

Note the second equality uses the vanishing of ιb2ω on TΣ.
(ii) If aT is nonzero, there is an exact form B2 on Σ such that B2 (aT ) ≤ 0 but

B2 (aT ) is not a zero function on Σ. As a local question, such an exact form
always exists. Therefrom we have

k!Ω̂(f,A) ((b1, B1) , (0, B2)) =
∫

Σ

ιb1ω
k ∧ B2 + k

∫
Σ

ωk−1 ∧ B1 ∧ B2

=
∫

Σ

ιaT ωk ∧ B2 = −
∫

Σ

B2 (aT ) ωk > 0 .

Note the second equality uses the vanishing of ιaS ω on TΣ and Stokes’ the-
orem.

Case 2. b1 = 0.

Therefore B1 must be nonzero and there is a tangent vector field v1 on Σ where
ιv1f

∗ω = B1 because Ω1
cl(Σ) be identified with the space of tangent vector fields

preserving f∗ω. Moreover one can find a tangent vector field v2 on Σ such that
ω (v1, v2) > 0, since Σ is symplectic for f∗ω. By using (v2, 0) at ([f ] , A), we obtain

k!Ω̂(f,A) ((0, B1) , (v2, 0)) = −
∫

Σ

ιv2ω
k ∧ B1 = −

∫
Σ

ιv2ω
k ∧ ιv1ω

=
∫

Σ

ωkιv2ιv1ω > 0 .

From above two cases, we have the nondegeneracy of Ω̂ on C. �
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Remark. Since Σ is a symplectic subspace in M , the space Ω1
cl(Σ) can be identified

with the space of vector fields preserving the induced symplectic form; called sym-
plectic vector fields; and there is another Lie algebra structure on Ω1

cl (Σ) defined
by identifying the Lie bracket on the vector fields on Σ. Furthermore, it is easy to
show that Lie bracket of two symplectic vector fields induces an exact 1-form in
Ω1

cl (Σ). But with this Lie algebra structure, the 2-form Ω̂ is not closed.

Recall that the infinite-dimensional Lie group Diff(Σ) acts naturally on C and
preserves its symplectic structure Ω̂. Therefrom we define a Diff(Σ)-equivariant
map

μ : C → Ω2k (Σ, T ∗
Σ)

μ (f, A) := f∗ (ωk/k!
)⊗ A,

where Ω2k (Σ, T ∗
Σ) is equivalent to the dual space of Γ (Σ, TΣ) which is the Lie

algebra of Diff(Σ). By the following lemma, μ is actually a moment map.

Lemma 5. μ is a moment map.

Proof. For each tangent vector field X on Σ, (X,LXA) is the corresponding fun-
damental vector on C at (f, A) induced from the action of Diff(Σ) and a map
μX : C → R is defined as

μX (f, A) =
∫

Σ

(ιXA) f∗ (ωk/k!
)
.

For any tangent vector (a, B) and a fixed fundamental vector (X, dιXA) at (f, A),
we have

hatΩ(f,A) ((X, dιXA) , (a, B))

=
1

(k + 1)!

∫
Σ

ιX∧aωk+1 +
1

(k − 1)!

∫
Σ

ωk−1 ∧ dιXA ∧ B

+
1
k!

∫
Σ

(
ιXωk ∧ B − ιaωk ∧ dιXA

)
= 0 − 1

k!

∫
Σ

{(ιXB)ωk + (ιXA)Laωk} + 0

= −dμX (a, B) .

In the second equality, we use the fact that ιX∧aωk+1 can not be a volume form on
Σ and Stokes’ theorem. �

Since f∗ (ωk/k!
) �= 0 for each f in MapSp(Σ, M), μ−1 (0) is MapSp(Σ, M)×{0},

and the symplectic quotient μ−1 (0) /Diff(Σ) is KSp(Σ, M). Therefore KSp(Σ, M)
is a symplectic space with a induced symplectic structure Ω. This section is sum-
marized in the following theorem.

Theorem 6. Let M be a symplectic manifold and let Σ be an even-dimensional
closed oriented manifold with dim Σ + 2 < dim M . Then the symplectic space
KSp(Σ, M) can be constructed as a symplectic quotient.

Remark 7. The assumption dim Σ + 2 < dimM is necessary since the above
argument does not work when dim Σ + 2 = dim M = 2n. For this case, KSp(Σ, M)
is the same with K (Σ, M), therefore C is defined as Map (Σ, M)×Ω1

cl(Σ). But Ω̂ is
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degenerate on Map(Σ, M) × Ω1
cl(Σ). For example, consider (f, 0) in Map(Σ, M) ×

Ω1
cl(Σ) where the image of f in M is coisotropic. Let (v, 0) be a tangent vector on

C at (f, 0) where v is tangent vector field on Σ. Then for any tangent vector (a, A)
on C at (f, 0), we have

Ω̂(f,0) ((v, 0) , (a, A)) =
∫

Σ

ιv∧aωn

n!
+
∫

Σ

ιvω
n−1 ∧ A

(n − 1)!
= 0 −

∫
Σ

ωn−1ιvA

(n − 1)!
= 0.

The last equality is given by f(Σ) being coisotropic in M .

4. Symplectic geometry of symplectic knot spaces

In a 2n-dimensional manifold M with a symplectic structure ω, the most im-
portant features characterized by ω are Lagrangian submanifolds and holomorphic
curves. These are submanifolds calibrated by ω; equivalently preserved by a corre-
sponding almost complex structure, and those are n-dimensional submanifolds with
vanishing ω. These two types of submanifolds are playing key roles in the study of
Mirror symmetry, Gromov–Witten invariants, and Floer homology. In particular,
sigma A-model in the mirror symmetry is modeled with Lagrangian submanifolds
equipped with flat unitary bundles. On the other hand, there are suggestions (see
[4]) that A-model is rather properly modeled with coisotropic submanifolds. Since
the tangent space at each point in a coisotropic submanifold contains Lagrangian
subspaces, it is natural that the geometry of coisotropic submanifolds is consistent
with Lagrangian geometry. In the paper [7], a correspondence is given between
Lagrangian subgrassmannians in a symplectic Grassmannian space and coisotropic
subspaces in a symplectic vector space. In this section we show that this correspon-
dence holds true for the symplectic knot spaces. We also define an almost complex
structure and study the correspondence between the almost complex submanifolds
and the holomorphic curves in the symplectic knot spaces.

Suppose X is a submanifold in M and Σ is a 2k-dimensional oriented closed
manifold with k < n − 1 as before, the symplectic subknot space corresponding to
X is defined as

KSp(Σ, X) := {MapSp(Σ, M) ∩ Map(Σ, X)}/Diff(Σ).

The Ω-orthogonal space of KSp(Σ, X) at [f ] is defined as

NΩ
[f ](Σ, X) :=

{
a ∈ Γ

(
Σ, NΣ/M

)
: Ω[f ] (a, b) = 0 for all b ∈ Γ

(
Σ, NΣ/X

)}
,

and a symplectic subknot space is Lagrangian if the symplectic structure Ω vanishes
on it and its Ω-orthogonal space is the same as its tangent space.

A submanifold C in M is called coisotropic if for each point x in C, the tangent
space TxC is contained in its ω-orthogonal space, i.e., (TxC)ω ⊂ TxC. In fact,
one can show that a (n + k)-dimensional submanifold C is coisotropic iff ωk never
vanishes but ωk+1 does on C (see [7, 8] for details).

In the following theorem, we need an assumption that for each point x in X
there is an element in MapSp(Σ, X) whose image contains x, and the corresponding
symplectic subknot space KSp(Σ, X) is called proper. The author suspects that the
properness condition on KSp(Σ, X) is unnecessary if X is a (n + k)-dimensional
coisotropic submanifold in M . But it is not clear whether the following theorem
holds true without this condition.
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Theorem 8. Let M be a 2n-dimensional symplectic submanifold and Σ be a 2k-
dimensional closed oriented manifold where k < n− 1. Suppose C is a submanifold
in M and the corresponding subknot space KSp(Σ, C) is proper, then the following
statements are equivalent:

(1) C is a (n + k)-dimensional coisotropic submanifold in M .
(2) The subknot space KSp(Σ, C) is Lagrangian in KSp(Σ, M).

Proof. ((1) ⇐ (2)) Assume KSp(Σ, C) is Lagrangian in KSp(Σ, M). As KSp(Σ, C)
is proper, ωk never vanishes on TxC for each x in C. But ωk+1 vanishes on C
because of the vanishing condition of Ω on KSp(Σ, C) and the localization lemma
in [6] (or see Lemma 1 in Section 2). Therefore we have dim C ≤ n + k. If
dimC < n + k, one can show that KSp(Σ, C) is isotropic in KSp(Σ, M) but can
not be Lagrangian since NΩ

[f ](Σ, X) is bigger than T[f ]KSp(Σ, X). Therefore C is a
(n + k)-dimensional submanifold with ωk �= 0 but ωk+1 = 0 on TxC for each x in
C, namely a coisotropic submanifold.

((1) ⇒ (2)) Assume C is a (n + k)-dimensional coisotropic submanifold in M .
Then it is obvious that Ω vanishes on KSp(Σ, C) since ωk+1 vanishes on C. This
implies KSp(Σ, C) is isotropic in KSp(Σ, M). Suppose NΩ

[f ](Σ, X) is greater than
T[f ]KSp(Σ, X) for some [f ] in KSp(Σ, X), there is v contained in the complement
of T[f ]KSp(Σ, X) in NΩ

[f ](Σ, X). By choosing a proper point x in Σ and using the
localization lemma, we have

Ω[f ],x (v, b) = 0 for all b ∈ Γ
(
Σ, NΣ/X

)
,

and this implies ωk+1 vanishes on Tf(x)C +
〈
vf(x)

〉
. But this is a contradiction be-

cause ωk+1 �= 0 on Tf(x)C +
〈
vf(x)

〉
, which is a (n + k + 1)-dimensional coisotropic

subspace in Tf(x)M . Therefore KSp(Σ, C) is Lagrangian in KSp(Σ, M). �

In the remaining section, we discuss the holomorphic curves in KSp(Σ, M) and
their correspondence to almost complex submanifolds in M . At first we define an
almost complex structure on KSp(Σ, M) compatible to the symplectic structure Ω.
Recall that there is an L2-metric gK on KSp(Σ, M) defined as

gK[f ] (a, b) :=
∫

f(Σ)

g (a, b) volΣ,

where a and b in Γ
(
Σ, NΣ/M

)
for each [f ] in KSp(Σ, M) and g is a Riemannian

metric on M . Since Ω is a symplectic structure, there is an endomorphism compat-
ible to gK and Ω, but the endomorphism may not be an almost complex structure.
To get an almost complex structure corresponding to Ω, it is necessary to modify
the metric on KSp(Σ, M). For each [f ] in KSp(Σ, M) and x in Σ, the symplectic
structure Ω can be localized as

ι(ax∧bx)ω
k+1 |TxΣ

(k + 1)!volΣ,x
,

where volΣ is given by induced metric on f(Σ). Therefore by performing the follow-
ing linear algebra method to the normal bundle of f(Σ) for each [f ] in KSp(Σ, M),
one can obtain new metric g̃K[f ] on M where the corresponding endomorphism J[f ]

is a complex structure.



Symplectic geometry on symplectic knot spaces 27

Let S be a 2k-dimensional symplectic subspace in a 2n-dimensional vector space
V with a symplectic structure ω compatible to a metric g and a complex structure
J . We consider a 2-form φ defined on S⊥ as

φ (a, b) :=
ι(a∧b)ω

k+1 |S
(k + 1)!volS

,

for any vectors a and b in S⊥. Note that φ is nondegenerate on S⊥ since S is
symplectic. Therefore there is an endomorphism K on S⊥ satisfying

φ (a, b) = g |S⊥ (Ka, b) ,

but K may not be a complex structure on S⊥. Notice that K2 is self adjoint
and negative definite, and there is unique self-adjoint positive operator B with
B2 = −K2. Note that B and K share the same eigenspaces. Now, we define a
metric g̃ on S⊥ as

g̃ (a, b) := g |S⊥

(√
Ba,

√
Bb
)

,

and an endomorphism J̃ as J̃ := K B−1. One can show J̃ is compatible with
φ and g̃, furthermore it satisfies J̃2 = −id on S⊥. Note that g |S⊥and g̃ are
equal on the 1-eigenspace of −K2. We call a subspace W in S⊥ φ-tame if it is a
K-invariant subspace in the 1-eigenspace of −K2. One can obtain the following
characterizations of φ-tame.

Lemma 9. With above setup, the followings are equivalent.
(1) W is φ-tame.
(2) W is a subspace where K serves as a complex structure and g |S⊥= g̃.
(3) For any a and b in W , we have φ (a, b) = |a ∧ b| where |..| is induced from

g |S⊥ .

Remark. The equivalence of (3) to (1) is essentially Wirtinger’s inequality, and
the remaining equivalences are straight-forward from the definition of φ-tame.

The following lemma will be used when we explain the correspondence between
holomorphic curves in KSp(Σ, M) and almost complex submanifolds in M .

Lemma 10. Let S be a 2k-dimensional symplectic subspace in a Hermitian vector
space (V, g, ω, J) and φ be a symplectic structure on S⊥ as above. If

dim
(
(S + JS) ∩ S⊥) = 2,

then (S + JS) ∩ S⊥ is φ-tame. And if S is complex subspace, then any complex
subspace in S⊥ is φ-tame, in particular S⊥ is φ-tame.

Proof. Let e1, ..., e2k be an oriented orthonormal basis of S. Suppose

dim
(
(S + JS) ∩ S⊥) = 2,

then S+JS is a (2k + 2)-dimensional complex subspace in V . Therefore vol(S+JS) =
ωk+1/ (k + 1)! |(S+JS), and we have

φ (a, b) =
ι(a∧b)ω

k+1 |S
(k + 1)!volS

= ι(a∧b∧e1∧...∧e2k)
ωk+1

(k + 1)!
= ι(a∧b..e1,...,e2k)vol(S+JS) = |a ∧ b|

for any a and b in (S + JS) ∩ S⊥. This implies (S + JS) ∩ S⊥ is φ-tame.
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Suppose S is complex and W is any complex subspace in S⊥, then W is in the
symplectic orthogonal space of S. Therefore, for any a and b in W , we have

φ (a, b) =
ι(a∧b)ω

k+1|S
(k + 1)! volS

=
ω (a, b)ωk|S

k! volS
= ω (a, b) = |a ∧ b| .

Note that the last two equalities are obtained from S and W being complex sub-
spaces. This shows W is φ-tame. �

From above process, we obtain a new metric g̃K and compatible complex struc-
ture J . With the metric g̃K, the symplectic 2-form Ω serves as a calibration and
the corresponding calibrated submanifolds in KSp (Σ, M) are called J -holomorphic
curves.

We consider a normal disk D in MapSp(Σ, M), which is a two-dimensional disk
D in MapSp(Σ, M) such that for each tangent vector v ∈ TfD, the corresponding
vector field in Γ (Σ, f∗TM ) is normal to Σ. Note that D being a normal disk is
equivalent to it being an integral submanifold for the horizontal distribution of a
canonical connection (see [1]) on the principal fibration

Diff(Σ) → MapSp(Σ, M) π→ KSp(Σ, M).

We denote the corresponding disk in KSp(Σ, M) as D̂ := π (D). Furthermore the
normal disk D is called tame if the tangent vector space T[f ]D̂ is Ω[f ]-tame in Σ.
Note that normal disks in other types of knot spaces are introduced and studied in
[6].

For simplicity we assume that the (2k + 2)-dimensional submanifold Z defined
as

Z :=
⋃

f∈D

f(Σ),

is an embedding in M . For the small enough D, this is always the case. Note that
Z is diffeomorphic to D × Σ.

In the following theorem, we describe the relationship between a disk D̂ in
KSp(Σ, M) defined above and the corresponding (2k + 2)-dimensional submanifold
Z in M . The proof of the following theorem is adapted from [6].

Theorem 11. Suppose that M is a 2n-dimensional Hermitian manifold with the
compatible symplectic structure ω and KSp(Σ, M) is its symplectic knot space for a
2k-dimensional oriented closed manifold Σ as before. For a tame normal disk D in
MapSp(Σ, M), D̂ := π (D) is a J -holomorphic disk in KSp(Σ, M), i.e., calibrated
by Ω, if and only if Z is a (2k + 2)-dimensional almost complex submanifold in M
and Z → D is a Riemannian submersion.

Proof. For a fixed [f ] ∈ D̂, we consider ν, μ ∈ T[f ](D̂) ⊂ Γ(Σ, NΣ/Z). Since
ωk+1/ (k + 1)! is a calibrating form, we have,

ωk+1/ (k + 1)!(ν, μ, e1, ..., e2k) ≤ VolZ(ν, μ, e1, ..., e2k) = |ν ∧ μ|
where e1, ..., e2k is any orthonormal frame on f(Σ). In particular we have∫

f(Σ)

ιν∧μev∗ωk+1

(k + 1)!
≤
∫

f(Σ)

|ν ∧ μ| volΣ,
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and the equality sign holds for every [f ] ∈ D̂ if and only if Z is an almost complex

submanifold in M .
∫

f(Σ)

will be simply denoted by
∫

Σ

. Notice that the symplectic

form Ω on KSp(Σ, M) is defined as,

Ω[f ](ν, μ) =
∫

Σ

ιν∧μev∗ωk+1

(k + 1)!
.

Since Ω is a calibration on KSp(Σ, M), we have

Ω[f ](ν, μ) ≤
(
|ν|2K |μ|2K − 〈ν, μ〉2K

)1/2

where 〈ν, μ〉K := g̃K (ν, μ) and |ν|2K := g̃K (ν, ν). Furthermore the equality sign
holds when D̂ is a J -holomorphic disk in KSp(Σ, M).

(⇒) We suppose that D̂ is a J -holomorphic disk in KSp(Σ, M). From above
discussions, we have∫

Σ

|ν ∧ μ| ≥
∫

Σ

ιν∧μev∗ωk+1/ (k + 1)! =
(
|ν|2K |μ|2K − 〈ν, μ〉2K

)1/2

=

(∫
Σ

|ν|2
∫

Σ

|μ|2 −
(∫

Σ

〈ν, μ〉
)2
)1/2

,

where 〈ν, μ〉 := gK (ν, μ) and |ν|2 := gK (ν, ν). Note that the second equality is
obtained from tame condition. We also have the Hölder inequality,(∫

Σ

|ν ∧ μ|
)2

+
(∫

Σ

〈ν, μ〉
)2

≤
(∫

Σ

|sin θxν| |μ|
)2

+
(∫

Σ

|cos θxν| |μ|
)2

≤
∫

Σ

|sin θxν|2
∫

Σ

|μ|2 +
∫

Σ

|cos θxν|2
∫

Σ

|μ|2

=
∫

Σ

|ν|2
∫

Σ

|μ|2 ,

where θx is ∠ (ν(x), μ (x)) for each x in Σ. By combining these two inequalities, we
obtain ∫

Σ

ιν∧μev∗ωk+1/ (k + 1)! =
∫

Σ

|ν ∧ μ| volΣ and(i) (∫
Σ

|ν ∧ μ|
)2

+
(∫

Σ

〈ν, μ〉
)2

=
∫

Σ

|ν|2
∫

Σ

|μ|2 .(ii)

Condition (i) says that Z is a ωk+1/ (k + 1)!-calibrated submanifold, i.e., an
almost complex submanifold in M . Condition (ii) implies that given any [f ], there
exists constant C1 and C2 such that for any x ∈ Σ,

|ν(x)| = C1 |μ (x)| , ∠ (ν(x), μ (x)) = C2.

Therefore, once we fix a tangent vector μ ∈ T[f ](D̂), ν(x) for any x ∈ Σ is completely
determined by 〈ν, μ〉 and |ν| / |μ|. This implies that Z → D is a Riemannian
submersion.
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(⇐) We notice that Z being an almost complex submanifold in M implies that
D is a tame normal disk by Lemma 10. Therefrom, we obtain∫

Σ

|ν ∧ μ| =
∫

Σ

ιν∧μev∗ωk+1

(k + 1)!
= ΩK

[f ](ν, μ) ≤
(
|ν|2K |μ|2K − 〈ν, μ〉2K

)1/2

=

(∫
Σ

|ν|2
∫

Σ

|μ|2 −
(∫

Σ

〈ν, μ〉
)2
)1/2

.

Note that the last equality is obtained from tame condition. Recall that the Rie-
mannian submersion condition implies that |ν| , |μ| and 〈ν, μ〉 determine the norms
and inner product of ν(x) and μ(x) for any x ∈ Σ. Therefrom, we have an equality,(∫

Σ

|ν ∧ μ|
)2

+
(∫

Σ

〈ν, μ〉
)2

=
∫

Σ

|ν|2
∫

Σ

|μ|2

so the above inequality is turned into an equality so that it gives

Ω[f ](ν, μ) =
∫

Σ

ιν∧μev∗ωk+1

(k + 1)!
=
(
|ν|2K |μ|2K − 〈ν, μ〉2K

)1/2

i.e., D̂ is J -holomorphic in KSp(Σ, M). �

Remark 12. Recall the symplectic knot space of the case k = n − 1 is a higher-
dimensional knot space (see Remark 3). For this case, this section was explained
in [6] as the correspondence between branes (resp. instantons) in the symplectic
manifold M and Lagrangians (resp. holomorphic normal disks) in the knot space.
Here, branes and instantons in M are hypersurfaces (therefore coisotropic) and
open subsets, respectively.

5. Further remarks

In this paper, symplectic knot space KSp(Σ, M) is introduced as a space of
symplectically embedded submanifolds from an even-dimensional oriented closed
manifold Σ to a symplectic manifold M . The space KSp(Σ, M) has a symplectic
structure induced from a symplectic structure on M , and we study the symplectic
geometry on KSp(Σ, M). When Σ is a Riemann surface, one can consider a subspace
of KSp(Σ, M) consists of pseudo-holomorphic maps. The geometry and topology
of this subspace has been studied corresponding to Gromov–Witten invariants (see
[2]). It is interesting to explore the geometry and topology of KSp(Σ, M) along the
development of the pseudo-holomorphic curves.

In Section 4, we explain the correspondence between coisotropic submanifolds in
M and Lagrangians in KSp (Σ, M). The deformation theory of coisotropic subman-
ifolds is studied in [9] and [10]. And it is natural to study the relationships between
the deformation theory of coisotropic submanifolds and that of the corresponding
Lagrangians in KSp (Σ, M). Furthermore, we also ask similar questions for the
intersection theories on coisotropic submanifolds in M and those on Lagrangians
in KSp(Σ, M). Note that another approach to the coisotropic intersections with
respect to Lagrangian geometry is introduced in [3].
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