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Semisimple ring spectra

Mark Hovey and Keir Lockridge

Abstract. We define global dimension and weak dimension for the
structured ring spectra that arise in algebraic topology. We provide
a partial classification of ring spectra of global dimension zero, the
semisimple ring spectra of the title. These ring spectra are closely re-
lated to classical rings whose projective modules admit the structure of
a triangulated category. Applications to two analogues of the generating
hypothesis in algebraic topology are given.
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1. Introduction

Classical rings are often studied via their categories of modules or their
derived categories. Important invariants such as global and weak dimension
are defined in terms of resolutions (by either projective or flat modules)
in the module category; such resolutions are examples of exact sequences,
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which make sense in any abelian category. The ring analogues that arise
in algebraic topology, on the other hand, do not have abelian module cat-
egories. The derived category of modules over a symmetric ring spectrum
([15]) or S-algebra ([7]) is a triangulated category, and it therefore has more
in common with the derived category of an ordinary ring. Consequently,
we use derived categorical formulations of homological dimension that carry
over to more general triangulated categories. These ideas have much in com-
mon with the theory of projective classes presented in [4]. In this paper, we
will use the term ‘ring spectrum’ to mean either a symmetric ring spectrum
or an S-algebra. The categories of symmetric ring spectra and S-algebras
are Quillen equivalent ([21, 0.4], [20, 0.2]), and up to homotopy these ring
spectra are the A∞ ring spectra ([7, 3.4]).

Let E be a ring spectrum, and let DE denote the derived category of right
E-module spectra. Recall that thick〈E〉, the smallest full subcategory of DE

containing E and closed under suspension, retraction, and cofiber sequences,
is exactly the collection of compact E-modules. Call an E-module projective
if it is a retract of a coproduct of suspensions of E; note that the compact
projective modules are exactly the retracts of finite coproducts. Write 〈E〉0
for the class of projective modules, and inductively define a module M to
belong to 〈E〉i if there exists a cofiber sequence

P ��Y ��M̃ ��ΣP

with P projective, Y ∈ 〈E〉i−1, and M a retract of M̃ . This defines a filtra-
tion of DE that is not in general exhaustive. Define 〈E〉if similarly, where
〈E〉0f is the class of compact projective modules; this defines an exhaustive
filtration of thick〈E〉. The right global dimension of E, written r. gl.dim. E,
is the smallest integer n such that 〈E〉n = DE (or ∞ if no such n exists), and
the right weak dimension of E, written r.w.dim. E, is the smallest integer
n such that 〈E〉nf = thick〈E〉 (or ∞ if no such n exists). Call E semisimple
if it has global dimension zero, and call E von Neumann regular if it has
weak dimension zero (we prove in §2.1 that semisimplicity and von Neumann
regularity are right-left symmetric).

Remark 1.1. Our definitions are related to at least two others. By [4,
3.2], 〈E〉0 is part of a stable projective class with respect to the ideal of
ghosts (maps inducing the trivial map on homotopy groups). Hence, in the
terminology of [4], E has right global dimension at most n if and only if every
E-module has length at most n+ 1 with respect to this projective class. It
is shown in [4, §7] that the right (and left) global and weak dimensions of
the sphere spectrum S are both ∞. Note that 〈E〉0f does not form part of a
projective class in thick〈E〉 if there is any compact E-module M such that
π∗M is not finitely generated over π∗E. But, according to Rouquier ([25,
3.2]), a triangulated category T has dimension zero if there exists any object
M in T such that the smallest full subcategory of T containing M and closed
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under finite coproducts, retracts, and suspensions is T itself. Hence, if a ring
spectrum E is von Neumann regular, then thick〈E〉 is zero-dimensional in
this sense. We do not know whether the converse is true.

In Proposition 2.6 we observe that these definitions are consistent with
those in classical ring theory, in the sense that the Eilenberg–Mac Lane
spectrum HR is a semisimple (von Neumann regular) ring spectrum if and
only if R is a semisimple (von Neumann regular) ring. More generally, the
main result of [12, §1] shows that the right global dimension of a ring R
is equal to the right global dimension of the ring spectrum HR. The work
in [12, §2] shows that the weak dimension of R is at most the right weak
dimension of HR, with equality if R is right coherent. We do not know
whether the two are equal in general.

The following theorem summarizes the implications of Theorems 3.2, 4.1,
and 4.2 for the classification of semisimple and von Neumann regular ring
spectra.

Theorem 1.2. Let E be a ring spectrum. If π∗E is graded commutative,
then:

(1) If E is semisimple, then π∗E ∼= R1 × · · · × Rn, where Ri is either
a graded field k or an exterior algebra k[x]/(x2) over a graded field
containing a unit in degree 3|x|+1 (i.e., π∗E is a graded commutative
Δ1-ring).

(2) If E∗ is countable and E is von Neumann regular, then (π∗E)p is a
graded commutative local Δ1-ring for every prime ideal p of π∗E.

If E is commutative, then:
(3) E is semisimple if and only if π∗E is a graded commutative Δ1-ring

and for every factor ring of π∗E of the form k[x]/(x2), x · π∗C �= 0,
where C is the cofiber of x ·E.

(4) If π∗E is local or Noetherian, then E is semisimple if and only if E
is von Neumann regular.

Further, any graded commutative Δ1-ring is the homotopy of some (not
necessarily commutative) ring spectrum (see Remark 3.12). Hence, the ho-
motopy of a semisimple ring spectrum need not be a semisimple ring.

This paper is organized as follows. In §2 we present a few general facts
about semisimplicity and von Neumann regularity, some in a more general
context (triangulated categories) and others, such as Morita invariance, in
the context of ring spectra. Whenever E is semisimple, the functor π∗
induces a triangulation of the projective π∗E-modules, leading to the strictly
algebraic problem of classifying the rings for which the associated category
of projective modules admits a triangulation. This is addressed in §3 for
commutative rings. In §4, we apply the results in §3 to stable homotopy
categories; there is slightly more at issue than whether projective modules
admit triangulations. Finally, in §5, we consider two forms of the generating



222 Mark Hovey and Keir Lockridge

hypothesis. In the stable category of spectra, Freyd’s generating hypothesis
([9, §9]) is the conjecture that any map of finite spectra inducing the trivial
map of homotopy groups must itself be trivial. The global version of this
conjecture — that this is true for all maps of spectra — is easily seen to be
false. The present work was motivated in part by the following question:
what must be true about a triangulated category in order for it to support
a global version of the generating hypothesis?

We would like to thank Sunil Chebolu, who informed us of his work with
Benson, Christensen, and Mináč on the generating hypothesis in the stable
module category. It is his presentation of the material in [2] that led us to
consider certain questions raised in the present paper.

2. Semisimplicity and von Neumann regularity

Before turning to the classification of semisimple and von Neumann reg-
ular ring spectra, we record a few general facts. Certain results are more
usefully stated in a general setting; this framework is established in §2.1. In
§2.2, we compare ring spectra to classical rings and show that, up to homo-
topy, semisimple ring spectra E with E∗ local are wedges of suspensions of
a Morava K-theory K(n). We discuss Morita invariance in §2.3.

2.1. Triangulated categories. We assume that the reader is somewhat
familiar with triangulated categories. In brief, a triangulated category is an
additive category T together with an automorphism Σ of T called suspension
and a collection of diagrams called exact triangles of the form

A �� B �� C �� ΣA

satisfying several axioms (see [14, A.1.1] or [24] or [28]). Using the suspen-
sion functor, one can view the morphism sets in T as graded groups: define
[X,Y ]k = HomT (ΣkX,Y ) and

[X,Y ]∗ =
⊕
k∈Z

[X,Y ]k.

Let S be an object in T , and let π∗(−) = [S,−]∗; we will sometimes write
S∗ for π∗S. Recall that a π∗S-moduleN is realizable if there is an object X ∈
T such that π∗X = N . For any X ∈ T , the localizing subcategory generated
by X, written loc〈X〉, is the smallest full subcategory of T containing X
that is thick and closed under arbitrary coproducts. If T = loc〈X〉, then we
say that X generates T . A cohomology functor H on T is representable if
there is an object Y in T such that the functors H and [−, Y ]0 are naturally
isomorphic (see [14] for more details). T is cocomplete if arbitrary coproducts
exist in T . Call T a weak stable homotopy category if it is a cocomplete
triangulated category where every cohomology functor on T is representable.
This definition is ‘weak’ in the sense that it is obtained from the definition
of stable homotopy category given in [14, 1.1.4] by deleting conditions (b)
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and (c) concerning smash products and generators. Note that DE is a weak
stable homotopy category with compact generator E. Call any object S in
a triangulated category T semisimple if loc〈S〉 = 〈S〉0 and von Neumann
regular if thick〈S〉 = 〈S〉0f .

If T is cocomplete, then idempotents split in T ([3]), so every projective
right π∗S-module is realizable as π∗Y , where Y ∈ 〈S〉0. Hence, π∗ induces
an equivalence of categories

Φ : 〈S〉0 −→ P,
where P is the category of projective right π∗S-modules.

Proposition 2.1. Let T be a weak stable homotopy category with compact
generator S. The following are equivalent:

(1) S is semisimple.
(2) The functor π∗(−) is full and faithful.
(3) The functor π∗(−) is faithful.
(4) The realizable modules and the projective modules coincide.
(5) The realizable modules and the injective modules coincide.

If any one of the above conditions is satisfied, then π∗S is a quasi-Frobenius
ring.

A ring is quasi-Frobenius if it is right Noetherian and right self-injective.
This condition is right-left symmetric, and the quasi-Frobenius rings are
exactly the rings for which the collections of projective and injective modules
coincide. In fact, a ring is quasi-Frobenius if and only if every projective
module is injective, if and only if every injective module is projective. More
information on quasi-Frobenius rings may be found in [18, §15].

Proof. The implications (1) =⇒ (2) =⇒ (3) should be clear; we now
prove that (3) =⇒ (1). Assume π∗ is faithful. Using a generating set for
the π∗S-module π∗Y , construct a map f : X −→ Y such that X ∈ 〈S〉0 and
π∗f is surjective. This map fits into an exact triangle

X
f �� Y

g �� Z �� ΣX.

Since π∗f is surjective, π∗g = 0. Since π∗ is faithful, g = 0, forcing Y to be
a retract of X. Hence, T = 〈S〉0.

We next prove that (4) and (5) are equivalent. If I is an injective π∗S-
module, then the functor Hom0

Z(π∗(−), I) is a cohomology functor on T ,
hence representable by an object E(I) ∈ T . In this situation, π∗E(I) = I,
so every injective module is realizable. As already observed, every projective
module is realizable. If every realizable module is projective, then every
injective module is projective, and π∗S a quasi-Frobenius ring. If every
realizable module is injective, then every projective module is injective, and
again π∗S is a quasi-Frobenius ring. In either case, the projective, injective,
and realizable modules coincide.
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It is clear that (1) =⇒ (4), so it remains to prove that (4) =⇒ (1). For
any X ∈ loc〈S〉, π∗X = 0 if and only if X is trivial. Consequently, for any
map f in loc〈S〉, π∗f is an isomorphism if and only if f is an equivalence.
Now fix X ∈ loc〈S〉. Since π∗X is projective, there is a map f : Y −→ X
such that Y ∈ 〈S〉0 ⊆ loc〈S〉 and π∗f is an isomorphism. Hence, X is
equivalent to Y . Since T = loc〈S〉, the implication is established. �

We next prove a similar proposition characterizing von Neumann regu-
larity. As above, π∗ induces an equivalence of categories

Φf : 〈S〉0f −→ Pf ,
where Pf denotes the category of finitely generated projective right π∗S-
modules.

Proposition 2.2. Let T be a cocomplete triangulated category, and let S ∈
T be compact. The following are equivalent:

(1) S is von Neumann regular.
(2) For all X ∈ thick〈S〉, π∗X is projective.

If either condition is satisfied, then π∗S is a left and right IF-ring.

A ring is injective-flat (an IF-ring) if every injective module is flat. Ac-
cording to [6], this condition is not left-right symmetric, and a ring is a left
and right IF-ring if and only if it is right and left coherent and right and
left FP-injective. More information on IF-rings may be found in [8, §6].

Proof. If S is von Neumann regular, then (2) holds since Φf is an equiv-
alence of categories; the converse is also clear. Now suppose S is von Neu-
mann regular; to show that π∗S is a right IF-ring, it suffices to show that
every finitely presented module M embeds in a finitely generated projec-
tive module ([8, 6.8]). Since M is finitely presented, it is the cokernel of a
map f : A −→ B of finitely generated projective modules. There is a map
f̃ : Ã −→ B̃ in thick〈S〉 = 〈S〉0f such that f = π∗f̃ and an exact triangle

Ã
ef �� B̃ �� C̃ �� ΣÃ

with C̃ ∈ 〈S〉0f . Hence, M embeds in the finitely generated projective module
π∗C̃, completing the proof. Using a similar argument, one can show that
π∗S is also a left IF-ring; π∗(−) is replaced with the functor [−, S]∗, which
induces an equivalence of categories from 〈S〉0f to the category of projective
left π∗S-modules. �
Remark 2.3. Assume T is a monogenic stable homotopy category and
Brown category (see [14, 4.1.4]); then, S is von Neumann regular if and only
if the flat modules and realizable modules coincide. Indeed, for all X ∈ T ,
π∗X is the direct limit over a system of modules of the form π∗Xα, where
Xα ∈ thick〈S〉. Consequently, if S is von Neumann regular, then every
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realizable module is flat ([18, 4.4]), and every flat module is realizable (since
(−) ⊗π∗S F is representable for any flat module F ). On the other hand,
representability of cohomology functors implies that arbitrary products of
π∗S are realizable. If every realizable module is flat, this forces π∗S to be left
coherent ([18, 4.47]). Now, for all X ∈ thick〈S〉, π∗X is a finitely presented
flat module and therefore projective ([18, 4.30]). By Proposition 2.2, S is
von Neumann regular.

We next show that if π∗S is commutative and S is semisimple, then so
are its algebraic localizations. In a Brown category, the same is true of von
Neumann regularity. For any π∗S-module M , let Mp denote the localization
of M at the prime ideal p. Suppose T is a cocomplete triangulated category
with compact generator S. The proofs of [14, 2.3.17, 3.3.3, 3.3.7] show that
there exists a localization functor Lp on T such that π∗LpX ∼= (π∗X)p. We
mean ‘localization functor’ in the sense of definition [14, 3.1.1], omitting the
condition involving smash products, since T may not have a product struc-

ture. In particular, the natural map Y
ιY ��LpY induces an isomorphism

(2.1) [LpY,LpX]∗
∼= �� [Y,LpX]∗.

Call an object p-local if it lies in the image of Lp, and let Tp denote the
full subcategory of p-local objects. Since S is compact, Lp commutes with
coproducts, and LpS is compact in Tp = loc〈LpS〉.
Proposition 2.4. Suppose T is a cocomplete triangulated category with
compact generator S, and suppose π∗S is commutative. If S is semisimple,
then so is LpS for all prime ideals p in π∗S. If T is also a Brown category,
then LpS is von Neumann regular whenever S is von Neumann regular.

Proof. If S is semisimple, then the fact that Lp commutes with coproducts
implies that LpS is semisimple.

Suppose T is a Brown category. By [14, 4.2.2, 4.2.3], every object X
in T is the minimal weak colimit (see [14, 2.2.1]) of the diagram of com-
pact objects mapping to X. Now, let LpZ be a compact object in Tp.
Since localization preserves minimal weak colimits ([14, 3.5.1]), LpZ is a
minimal weak colimit of objects in Lp(thick〈S〉). By compactness, the
identity map of LpZ must factor through an object in Lp(thick〈S〉) ([14,
4.2.1]). Consequently, every small object in Tp is the retract of an object in
Lp(thick〈S〉). If S is von Neumann regular, then Lp(thick〈S〉) ⊆ 〈LpS〉0f ,
so 〈LpS〉0f = thick〈LpS〉. This completes the proof. �

Note that the proof of Proposition 2.4 is in fact valid for any smashing
localization functor (i.e., one that preserves coproducts; see [14, 3.3.2]), not
just the algebraic localizations.

2.2. Ring spectra. In this section we establish a few basic facts specific
to ring spectra. First, we address left-right symmetry.
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Proposition 2.5. Let E be a ring spectrum. E is right semisimple (von
Neumann regular) if and only if E is left semisimple (von Neumann regular).

Proof. Since the left E-modules are the same as the right Eop-modules, we
need to show that E is right semisimple (von Neumann regular) if and only
if Eop is right semisimple (von Neumann regular). As in [7, §III], we will use
the notation ME(−,−) to denote morphisms in the category ME of right
E-modules and FE(−,−) for function objects in ME. Further, we have two
duality functors

D(−) = FE(−, E) : ME −→ MEop

and

Dop(−) = FEop(−, E) : MEop −→ ME.

Now, let M be a right E-module. We have the following sequence of natural
bijections:

ME(M,DopDM) ∼=ME∧SEop(M∧SDM,E)
∼=MEop∧SE(DM∧SM,E)
∼=MEop(DM,DM).

The first and third bijections are applications of [7, III.6.5(i)]. The identity
map of DM therefore provides a natural transformation from the identity
functor to the functor

M �→ DopDM.

Since this natural transformation induces an isomorphism when M = E, it
is an isomorphism for all M in thick〈E〉.

Note that bothD andDop preserve compact projective modules. Hence, if
every compact right Eop-module is projective, then so is every compact right
E-module. This proves that E is von Neumann regular if and only if Eop is.
Now, if E is right semisimple, then it is right von Neumann regular, and so
Eop is right von Neumann regular. As in Remark 2.3, this means that every
realizable right π∗Eop-module is flat. However, since E is right semisimple,
π∗E is quasi-Frobenius by Proposition 2.1; hence, π∗Eop is quasi-Frobenius
and every flat module is projective. Therefore D(Eop) = 〈Eop〉0 and Eop is
semisimple. �

The following proposition gives the correspondence between our defini-
tions and the ones in classical ring theory, where the semisimple rings are
those of global dimension zero and the von Neumann regular rings are those
of weak dimension zero.

Proposition 2.6. Let HR denote the Eilenberg–Mac Lane spectrum asso-
ciated to the ring R. HR is semisimple if and only if R is semisimple, and
HR is von Neumann regular if and only if R is von Neumann regular.
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Proof. It is well-known (see, for example, [7, IV.2.4]) that the derived cat-
egory of HR-module spectra is equivalent to the derived category of R-
modules, D(R). In [19, §4] it is shown that π∗ is faithful on D(R) if and
only if R is semisimple, and in [13, 1.3, 1.5] it is shown that thick〈R〉 = 〈R〉0f
if and only if R is von Neumann regular. �

Semisimple ring spectra are also related to field spectra, as defined in [11,
1.7]. A noncontractible ring spectrum E is a field if E∗X = π∗E∧X is a
free E∗-module for all spectra X. According to [11, 1.9], every field has the
homotopy type of a wedge of suspensions of the Morava K-theory K(n), for
some fixed n (0 ≤ n ≤ ∞) and prime p. If E is semisimple and E∗ is a ring
over which every projective module is free, then E is a field. Note, however,
that since E∗ is quasi-Frobenius by Proposition 2.1, E∗ must in fact be local
in this case (see [17, 23.6]). We now have

Proposition 2.7. If E is a semisimple ring spectrum and E∗ is local, then
E has the homotopy type of a wedge of suspensions of K(n) for some fixed
n and prime p.

Even if E∗ is not local, some K(n) is a summand of E. Note that a field
spectrum is not necessarily semisimple: for example, consider E = HQ[x],
the polynomial algebra over HQ generated by x in degree 2. Since E is flat
over HQ, E∗X ∼= E∗ ⊗Q HQ∗X is always a free E∗-module, hence E is a
field. But, the homotopy of the cofiber of multiplication by x on E is Q, a
neither free nor projective E∗-module, so E is not semisimple. We obtain a
better correspondence between semisimplicity and the notion of a skew field
object given in [14, 3.7.1(d)]. A skew field object in a homotopy category
is a ring object R such that every R-module is isomorphic to a coproduct
of suspensions of R. Consequently, a ring spectrum E that is a skew field
object in DE is semisimple if and only if E is a semisimple ring spectrum
and E∗ is local.

2.3. Morita invariance. We should begin by emphasizing that our gen-
eral definitions of semisimplicity and von Neumann regularity depend on
the ambient triangulated category, not just on the object S. For example,
the Morava K-theory ring spectrum K(n) is semisimple as an object in the
derived category DK(n), but it is not von Neumann regular as an object in
the stable category of spectra S. For example, the spectrum LK(n)F , where
F is a finite type n spectrum, is in thick〈K(n)〉 ⊆ S ([16, 8.12]), but it is
not a wedge of suspensions of K(n). The following proposition summarizes
how the general definitions of semisimplicity and von Neumann regularity
relate to the particular definitions for ring spectra.

Proposition 2.8. A right E-module M is von Neumann regular as an ob-
ject in DE if and only if the endomorphism ring spectrum EndE(M) is von
Neumann regular as a ring spectrum. If M is compact in DE, then the same
is true of semisimplicity.
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This proposition follows easily from the following more general one. Recall
that for any object S in a triangulated category T , thick〈S〉 is filtered by the
subcategories 〈S〉if and loc〈S〉 is filtered by the subcategories 〈S〉i. If T is a
triangulated category with filtration Fi and U is a triangulated category with
filtration Gi, then call an equivalence of triangulated categories Φ : T −→ U
a filtered equivalence if the restriction of Φ to Fi induces an equivalence

Fi
∼= ��Gi for all i.

Proposition 2.9. Let E be a ring spectrum, let M be a right E-module,
and let K = EndE(M). There is a filtered equivalence of thick〈M〉 in DE

with thick〈K〉 in DK . If M is compact, then there is a filtered equivalence
of loc〈M〉 with loc〈K〉 = DK .

Proof. We continue to use the notation in the proof of Proposition 2.5. Let

K = EndE(M) = FE(M,M).

Note that M is a K-E-bimodule. Consider the adjoint functor pair

DE

FE(M,−)

��DK .

(−)∧KM

��

Adjointness induces two natural transformations

η : 1DE
��FE(M,−)∧KM

and
ζ : FE(M, (−)∧KM) ��1DK

.

Since ηM is an isomorphism, η induces an isomorphism on thick〈M〉. Simi-
larly, ζ induces an isomorphism on thick〈K〉. Our adjoint functors therefore
induce an equivalence between thick〈M〉 and thick〈K〉. If M is compact
in DE, then FE(M,−) commutes with coproducts, so η induces an isomor-
phism on loc〈M〉 and ζ induces an isomorphism on loc〈K〉 = DK . In this
situation, we have an equivalence of loc〈M〉 with DK .

We next show that these inverse equivalences are filtration preserving.
The functor Φ = (−)∧KM preserves coproducts, so Φ(〈K〉0f ) ⊆ 〈M〉0f and
Φ(〈K〉0) ⊆ 〈M〉0. Since Φ preserves cofiber sequences, Φ(〈K〉if ) ⊆ 〈M〉if
and Φ(〈K〉i) ⊆ 〈M〉i for all i ≥ 0, by induction on i. The same is true of the
functor FE(M,−) for the filtration on thick〈M〉, and also for the filtration
on loc〈M〉 when M is compact. This completes the proof. �

In the Morita theory of classical rings, two rings R and S are Morita
equivalent if and only if S ∼= EndR(P ) for some progenerator P in the
category of R-modules Mod(R) ([18, 18.33]). A right R-module P is a
progenerator if and only if it is a finitely generated projective module such
that R is a retract of a finite sum of copies of P ([18, 18.8]). If E is a
ring spectrum, then P∗ is a progenerator of Mod(E∗) if and only if it is
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realizable as the homotopy of an E-module P such that 〈P 〉0f = 〈E〉0f . As
a consequence of the last proposition, we have the following result on the
‘classical’ Morita invariance of global and weak dimension.

Proposition 2.10. Let E be a ring spectrum, and let P be a right E-module
such that 〈P 〉0f = 〈E〉0f . Then

r. gl.dim. E = r. gl.dim.EndE(P ) and r.w.dim. E = r.w.dim.EndE(P ).

Proof. This follows from Proposition 2.9 with M = P . �

If P is an arbitrary compact generator of DE , then we do not know
whether global and weak dimension are preserved in the sense of this propo-
sition. For example, suppose r. gl.dim. E = n. If P is a compact generator,
then E ∈ 〈P 〉kf for some k, and the global dimension of EndE(P ) is at most
k+n, but we do not know of an example where the dimension of EndE(P ) is
actually larger than n. Put another way, we do not know whether concepts
such as semisimplicity and von Neumann regularity are Morita invariant
in the more general sense of [26]. Following [26, 4.20], call a pair of ring
spectra E and F Morita equivalent if there is a chain of spectral Quillen
equivalences between the model categories ME and MF of right modules.
Semisimplicity is Morita invariant in the following sense.

Proposition 2.11. Suppose E and K are Morita equivalent symmetric ring
spectra with π∗E commutative. If E is semisimple, then K is semisimple.

Our proof requires an understanding of the relationship between gener-
ators in the derived category DE and generators in the category of right
E∗-modules. The next two propositions address this relationship, but our
analysis is far from complete when E∗ is noncommutative. We do not know
whether von Neumann regularity is also Morita invariant.

Proposition 2.12. Let E be a ring spectrum, and let M be a compact
projective E-module. Then, M is a generator of DE if and only if

HomE∗(M∗, N) �= 0

for every nontrivial realizable E∗-module N .

Proof. Throughout the proof, we use the fact that

DE(X,Y )∗ ∼= HomE∗(X∗, Y∗)

whenever X is a projective E-module.
Suppose M is a generator of DE , and let N = X∗ �= 0 be a realizable

E∗-module. The functor DE(−,X)∗ vanishes on a localizing subcategory of
DE. If it vanishes on M , then it also vanishes on X, forcing X to be trivial.
Consequently, since X is nontrival, DE(M,X)∗ = HomE∗(M∗, N) �= 0.

Conversely, suppose HomE∗(M∗, N) �= 0 for all nontrivial realizable mod-
ules N . Then, DE(M,X)∗ must be nontrivial whenever X is nontrivial.
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There exists a localization functor L whose kernel is the localizing subcate-
gory generated by the compact object M . Now, since DE(M,LX)∗ = 0 for
all X, the only local object is the trivial object. Hence, the kernel of L must
be all of DE ; i.e., M generates DE . �

We do not know whether the commutativity assumption in the following
proposition may be dropped. If semisimplicity is indeed a Morita invari-
ant notion, then the proposition must be true without it (provided E is
semisimple). Note that any right (or left) Artinian ring — and hence any
quasi-Frobenius ring — is semiperfect ([1, p. 303]).

Proposition 2.13. Let E be a ring spectrum, and let M be a compact
projective E-module. Then:

(1) If M∗ is a generator of Mod(E∗), then M is a generator of DE.
(2) Suppose π∗E is commutative and semiperfect. If M is a generator of

DE, then M∗ is a generator of Mod(E∗).

Proof. Suppose M∗ is a generator of Mod(E∗). By definition of generator,
HomE∗(M∗,−) acts faithfully on Mod(E∗); by Proposition 2.12, M is a
generator of DE. This establishes (1).

Assume E∗ is commutative and semiperfect, and supposeM is a generator
of DE. Since E∗ is semiperfect, it admits a decomposition as a product of
rings E∗ = (e1E∗) × · · · × (enE∗), where the ei form a complete set of
orthogonal local idempotents ([1, 27.6]). Since M∗ is projective, it is a
product of copies of these factors ([1, 27.11]); we will show that each factor
appears at least once, implying that M∗ is a generator of Mod(E∗) ([18,
18.8]). Since M is a generator of D(E), HomE∗(M∗, eiE∗) �= 0 for all i by
Proposition 2.12. This forces eiE∗ to be a factor of M∗, as there are no maps
from ejE∗ to eiE∗ when i �= j (this uses commutativity). This establishes
(2). �

We now give the proof of Proposition 2.11.

Proof of Proposition 2.11. Assume E is semisimple. By [26, 4.20], there
exists a K-E-bimodule M such that M is a compact generator of DE and
K ∼= FE(M,M). Consider the E-K-bimodule Q = FE(M,E). Since E is
semisimple, M is projective, andQ∗ = HomE∗(M∗, E∗). By Proposition 2.13
(2), M∗ is a finitely generated projective generator of Mod(E∗), so Q∗ is
a finitely generated projective generator of Mod(K∗) by [18, 18.22]. By
Proposition 2.13 (1), Q must be a compact projective generator of DK .

The map
E ��FK(Q,Q) ,

adjoint to the identity map of Q as a K-module ([7, III.6.2]), is an equiva-
lence since

FK(Q,Q)∗ ∼= HomK∗(Q∗, Q∗) ∼= E∗
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(the first isomorphism by projectivity of Q, the second by [18, 18.17(c)]).
If either E or K is flat (a ring spectrum E is flat if E∧− preserves stable
equivalences of symmetric spectra), then by the proof of [26, 4.20], there
exists an E-K-bimodule Q′ derived equivalent to Q such that the derived
smash product

−∧LEQ
′ : DE −→ DK

is an equivalence of categories. Now every object of DK is a retract of a co-
product of suspensions of the projective K-module Q′, and K is semisimple.

If neither E nor F is flat, take a cofibrant replacement QE of E. Since
QE is flat and Morita equivalent to both E and F , two applications of the
above argument complete the proof. �

3. Projective modules

In section §2.1, we proved that if E is semisimple, then the derived cate-
gory of E-module spectra is equivalent to the category P of projective right
E∗-modules. This equivalence endows P with a triangulation. Similarly, if
E is von Neumann regular, then the category Pf of finitely generated pro-
jective right E∗-modules admits a triangulation. For any graded module M ,
write M [n] for the shifted module with M [n]i = Mi−n. In the induced trian-
gulation on either P or Pf , the shift functor is determined by the suspension
of spectra: π∗ΣX = π∗−1X = π∗X[1]. We have proved:

Proposition 3.1. Let T be a cocomplete triangulated category with compact
generator S. If S is semisimple (von Neumann regular), then the category
P (or Pf ) admits a triangulation with shift functor Σ = (−)[1].

This proposition implies that if S is semisimple, then π∗S must be a
product of fields and exterior algebras on one generator by Theorem 3.2 (see
§3.1). However, the converse of this statement if false; the triangulation on
P may not be induced by π∗ (a counter-example is provided in Remark 5.2).
The relevant condition is included in Theorem 4.1, presented in §4.

We now characterize the local rings and the commutative rings for which
the associated category of projective modules admits a triangulation. Our
two main results are Theorems 3.2 and 3.3, stated in the next section.

3.1. Notation and overview. Let R be a graded ring. By a module we
mean a graded right R-module. Let Mod(R) be the category of all R-
modules, let P be the category of projective R-modules, and let Pf denote
the category of finitely generated projective R-modules. For any R-module
M , write M [n] for the shifted module with M [n]i = Mi−n. For any element
m ∈ M , denote by |m| the degree of m. Write Homk(M,N) for degree k
module maps from M to N ; observe that Homk(M,N) = Hom0(M [k], N).
If M is an R-R-bimodule (or, if R is graded commutative), then, for any
element x ∈ R of degree i, let x ·M denote the right module map from M [i]
to M induced by left multiplication by x.
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In considering triangulations of P or Pf , it seems natural to consider one
of two possibilities for Σ. If Σ(−) = (−)[1], then [M,N ]∗ is the graded group
of graded module maps from M to N ; this shift functor already appeared in
Proposition 3.1. Alternatively, we could consider Σ = 1, the identity functor.
When R is concentrated in degree zero, one then obtains a triangulation of
the category of ungraded projective (or finitely generated projective) R-
modules by identifying this category with the thick subcategory of P (or
Pf ) generated by the modules concentrated in degree zero. Usually, we will
assume that the suspension functor is of the form Σ = (−)[n] for some n.

For convenience, we will use the term Δn-ring to refer to any ring for
which P admits a triangulation with suspension Σ = (−)[n] and the term
Δn
f -ring for any ring for which Pf admits a triangulation with suspension

Σ = (−)[n]. Our goal is to characterize the graded commutative rings R for
which the categories P and Pf admit triangulations. In §3.2, we prove:

Theorem 3.2. Let P be the category of projective modules over a graded
commutative ring R. P admits a triangulation with suspension Σ = (−)[1]
if and only if R ∼= R1×· · ·×Rn, where each factor ring Ri is either a graded
field k or an exterior algebra k[x]/(x2) over a graded field k containing a
unit of degree 3|x| + 1.

In the ungraded case, we have:

Theorem 3.3. Let P be the category of projective modules over a commu-
tative ring R. P admits a triangulation with suspension Σ = 1 if and only if
R ∼= R1 × · · · ×Rn, where each factor ring Ri is either a field k, an exterior
algebra k[x]/(x2) over a field k of characteristic 2, or T/(4), where T is a
complete 2-ring.

A complete 2-ring is a complete local discrete valuation ring of character-
istic zero whose maximal ideal is generated by 2 (see [22, p. 223]). In [23],
it is shown that the category of finitely generated projective T/(4)-modules
admits a unique triangulation, and we use their methods to construct trian-
gulations for the rings appearing in the above two theorems.

3.2. Triangulations of projective modules. It is in this section that we
prove Theorems 3.2 and 3.3. Before we begin, we make a simple observation
that we will use frequently. Suppose P (or Pf ) is triangulated. If we apply
the functor [R,−]0 to an exact triangle

A
f �� B

g �� C
h �� ΣA,

then we must obtain a long exact sequence of R-modules. Hence, any ex-
act triangle is exact as a sequence of R-modules. (‘Exact’ at ΣA means
ker(−Σf) = imh.)

First we show that if P admits a triangulation, then R must be a quasi-
Frobenius ring, and if Pf admits a triangulation, then R must be an IF-ring
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(cf. Propositions 2.1 and 2.2). Note that IF-rings are coherent ([8, 6.9]), so
all Δn-rings and Δn

f -rings are coherent.

Proposition 3.4. If P admits a triangulation, then R is quasi-Frobenius.

Proof. Let M be an R-module. There is a map f : A −→ B of projective
modules whose cokernel is M . This map must lie in an exact triangle in P,

A
f �� B �� C �� ΣA.

Exactness at B implies that M is isomorphic to a submodule of the pro-
jective module C. If M is injective, then it must be a summand of C and
therefore projective. Hence, every injective R-module is projective, and R
is quasi-Frobenius. �

Proposition 3.5. If Pf admits a triangulation, then R is a left and right
IF-ring.

Proof. In light of the proof of Proposition 3.4, we see that every finitely
presented right R-module embeds in a finitely generated projective module.
By [8, 6.8], R is a right IF-ring. To show that R is also a left IF-ring, use the
functor [−, R]0 to show that every finitely presented left R-module embeds
in a finitely generated projective module. �

Remark 3.6. When R is quasi-Frobenius, one can form StMod(R), the
stable module category of R. The objects of StMod(R) are R-modules and
the morphisms are R-module maps modulo an equivalence relation: two
maps are equivalent if their difference factors through a projective module.
StMod(R) is a triangulated category. If M is an R module, then the Heller
shift of M , written ΩM , is the kernel of a projective cover P (M) ��M .
This descends to a well-defined, invertible endomorphism of the stable mod-
ule category, and Ω−1 is the suspension functor for the triangulation of
StMod(R). In Proposition 3.4, the exact triangle gives rise to three short
exact sequences:

0 �� M �� C �� Σ ker f �� 0

0 �� ker f �� A �� im f �� 0

0 �� im f �� B �� M �� 0.

Together they imply that, if P admits a triangulation, then Ω3ΣM ∼= M .
This observation was made by Heller in [10].

The following proposition shows that a triangulation imposes a severe
restriction on the local rings that may occur.
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Proposition 3.7. Suppose P admits a triangulation. If R is a local ring
with maximal right ideal m, then m is principal and contains no nontrivial
proper ideals.

Proof. Let m be the maximal right ideal of R; since the proposition is
clearly true if m = (0), assume m is nontrivial. Let S be the socle of R.
Note that R must be quasi-Frobenius by Proposition 3.4; consequently, S is
simple and is the minimal nontrivial right (and left) ideal of R ([18, 15.7]).
We will argue that S and m are equal by showing that they have the same
composition length, an analogue of dimension for Artinian rings.

Since R is local, we must in fact have S ∼= R/m; hence, there is a map
f : R −→ R whose image is S and whose kernel is m. Since f must lie in an
exact triangle, there is a free (since R is local) module F and a short exact
sequence

(3.1) 0 �� R/S �� F �� Σm �� 0.

For any R-module M , let c(M) denote its composition length (see [1, pp.
134–138]). Note that c(M) = 0 if and only if M = 0 and c(M) = 1 if and
only if M is simple. By [1, 11.4], if

0 �� A �� B �� C �� 0

is exact, then c(B) = c(C)+c(A). Applied in the current context, we obtain
c(F ) = c(R/S) + c(m)

= (c(R) − c(S)) + (c(R) − c(S))

< 2c(R).

Hence, we must have c(F ) = c(R) and c(S) = c(m). Since m and S have
identical composition lengths, they must be equal, and m is the only proper
nontrivial right ideal of R; m is principal by uniqueness. �

If R is a graded commutative local ring, then we need only assume that
Pf is triangulated, as the next proposition demonstrates. Note that if P
admits a triangulation, then thick〈R〉 admits a triangulation, and since R
must be Noetherian, thick〈R〉 = Pf .
Proposition 3.8. Suppose Pf admits a triangulation. If R is a graded com-
mutative local ring with maximal ideal m, then m is principal and contains
no nontrivial proper ideals.

Proof. First, we observe that, even if R is neither graded commutative nor
local, it must satisfy the double annihilator condition annl annr Rx = Rx.
Let x ∈ R, and let i = |x|. We have an exact triangle in P

R[i] x �� R
ψ �� P

φ �� ΣR[i].

Observe that imφ = annr Rx, and if y ∈ annl annr Rx, then (y ·R) ◦ φ = 0.
Exactness at R[i] therefore implies that annl annr Rx = Rx.
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For the remainder of the proof, we assume R is graded commutative and
local. Since Pf is triangulated, R is coherent; this implies that ann(x) is
finitely generated for all x ∈ R.

Consider x ∈ m. We now show that x2 = 0. Since (x·P )◦ψ = ψ◦(x·R) =
0, we obtain a factorization x · P = f ◦ φ, where f : imφ −→ P . Since
imφ = ann(x), (x · P ) ◦ f = 0. Hence, x2 · P = 0. Since R is local, P is free
(P is nontrivial since x is not a unit). Therefore x2 = 0.

Fix a nonzero element x ∈ m. We next show that ann(x) = (x). Note
that P is an extension of finitely generated modules and is therefore finitely
generated. Let {e1, . . . , en} be a basis for the free module P , let φi = φ(ei),
and let ψ(1) = Σeiti. Since x is nonzero, imφ = ann(x) ⊆ m; hence,
φ(eiφi) = φ2

i = 0, and exactness at P provides an element zi ∈ R such that
ψ(zi) = eiφi. This implies that tjzi = 0 when i �= j, and tizi = φi. Since
imφ = ann(x), the elements φi generate ann(x). Let t = t1 + · · · + tn and
consider q = Σφiai ∈ ann(x). We have t(Σziai) = q, so ann(x) ⊆ (t). Since
ψ ◦ (x · R) = 0, we obtain tix = 0 for all i. Hence, (t) = ann(x). Since
x �= 0, t is not a unit, so (t) ⊆ ann(t) = ann ann(x) = (x). This proves that
ann(x) = (t) = (x). Further, it is worth remarking that P must be free of
rank 1. Suppose n ≥ 2. It is clear that e1x and e2x are in the kernel of
φ. Hence, for some a, b ∈ R, e1x = ψ(a) and e2x = ψ(b). This means that
e1xb − e2xa = 0, forcing a, b ∈ ann(x) = (x). But since tix = 0 for all i, it
must be the case that e1x = ψ(a) = Σeitia = 0, a contradiction.

Finally, we show that, if m �= (0), it must be the unique, proper, nontrivial,
principal ideal of R. Suppose a ∈ m and b ∈ R have the property that
ab �= 0. Then, a ∈ ann(ab) = (ab). Hence, there is an element k ∈ R such
that a(1−bk) = 0. Since R is local, this forces a to be zero or b to be a unit.
Now consider two nonzero elements x, y ∈ m. We have x ∈ ann(y) = (y)
and y ∈ ann(x) = (x), so (x) = (y). This forces m to be the unique, proper,
nontrivial, principal ideal of R. �

Proposition 3.9. Let R be a graded commutative local ring with residue
field k. If P (or Pf ) admits a triangulation with suspension Σ = (−)[n],
then R is either

(1) the graded field k,
(2) an exterior algebra k[x]/(x2) with a unit in degree 3|x| + n, where

char k = 2 if n = 0, or
(3) n is even and R ∼= T/(4), where T is the unique (up to isomorphism)

complete 2-ring with residue field k (of characteristic 2) containing a
unit in degree n.

Proof. In the proof of Proposition 3.8, we showed that the cofiber of x · R
is free of rank 1 for any nontrivial element x in the maximal ideal m. Hence,
any such x fits into an exact triangle of the form

(3.2) R[i] x �� R
vx �� R[j] wx �� R[i+ n],
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where i = |x| and v and w are units. One can check that |(vw)−1| = 3i+ n.
Suppose R contains a field. As such, R is a ring of equal characteristic;

since it is complete, it contains a field isomorphic to k = R/m ([22, 28.3]).
So either m = 0 and R is a graded field, or m = (x) for some x �= 0 (by
Proposition 3.8) and R is isomorphic to the exterior algebra k[x]/(x2). In
the latter case, we just observed that k must contain a unit of degree 3i+n.

If p is a unit for all primes p, then R contains the field Q. If p is not a
unit for some prime, then either R has characteristic p and contains a field,
or p is nonzero and is in the maximal ideal. If p is in the maximal ideal
m, then by Proposition 3.8, we must have m = (p). If n is odd, this is not
possible: since p has degree zero, we saw above that there must be a unit
of degree 3 · 0 + n, which is odd. But if s is an odd unit, then 2s2 = 0 by
graded commutativity; this forces 2 = 0, contradicting m = (p).

It remains to consider the case where n is even and m = (p) for some
prime p. Let T be the unique (up to isomorphism) complete p-ring with
residue field k (see [22, §29]). By the discussion on p. 225 of [22], since R
is a complete local ring of unequal characteristic, it contains a coefficient
ring A ∼= T/(p2). Further, it is observed in the proof of [22, 29.4] that every
element can be expanded as a power series in the generators of the maximal
ideal with coefficients in A. Since the maximal ideal is generated by p ∈ A,
we obtain R ∼= A. To see why p = 2, consider the rotation of triangle (3.2),

R
vp �� R[j]

wp �� R[n]
−p �� R[n].

The map κ in the diagram

R
p �� R

vp ��

v

��

R[j]
wp ��

κ

���
�
�

R[n]

R
vp �� R[j]

wp �� R[n]
−p �� R[n]

must exist. Hence, κvp = wpv = −pκv, so 2p = 0. This forces p = 2.
When n = 0 and R = k[x]/(x2), an argument similar to the one just given

shows that char k = 2. �
We next show that, for n = 0 and n = 1, the rings in the conclusion of

Proposition 3.9 are Δn-rings.

Proposition 3.10 ([23]). If T is a complete 2-ring, then T/(4) is a Δ0-ring.

Proof. In [23], a triangulation of Pf is constructed for any commutative
local ring of characteristic 4 with maximal ideal (2), but the proof in fact
shows that P admits a triangulation. These rings are exactly the rings of
the form T/(4) (where T is a complete 2-ring). Certainly, any ring of the
form T/(4) is of the type discussed in [23], and in Proposition 3.9 it is shown
that any commutative local ring of characteristic 4 with maximal ideal (2)
is of the form T/(4). �
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Proposition 3.11. Every graded field k is a Δn-ring for all n. Every
exterior algebra k[x]/(x2) with a unit in degree 3|x|+n is a Δn-ring, provided
n and |x| are not both even when char k �= 2.

Proof. We will use a graded version of the construction presented in [23].
Fix n ≥ 0. We will work in the category of differential graded modules over
a differential graded algebra A, where the degree of all derivations is −n.
So if x, y ∈ A,

d(xy) = d(x)y + (−1)n|x|xd(y).

This category admits a triangulation with suspension functor (−)[n]. For
example, if u ∈ A has degree i, then there is an exact triangle

A[i] u �� A �� A⊕A[i+ n] �� A[i+ n],

where the differential on A[j] is (−1)jd and the differential D on A⊕A[i+n]
is

D(a, b) = (da+ ub, (−1)i+ndb).

Let A = k with zero differential. Trivially, the homology of any differ-
ential graded A-module is projective, so homology induces an equivalence
of categories from D(A) (the derived category of A) to P = Mod(k) by
Proposition 2.1.

For the exterior algebra k[x]/(x2) with a unit v in degree 3|x|+n, we use
the differential graded algebra constructed in [23]. Let i = |x|, and let a
and u be symbols with degrees |a| = 2i+ n and |u| = i. Let A = k〈a, u〉/I,
where I is the two sided ideal generated by the homogeneous elements a2

and au+ ua+ v (here we see why the existence of the unit v is necessary).
Define the differential on A by da = u2 and du = 0. One can check that
this differential is well-defined; if i and n have opposite parity, then v has
odd degree, and so char k = 2 by graded commutativity and signs do not
matter. If i and n are both odd, then the signs work out independent of
the characteristic of k. The differential is not well-defined if i and n are
both even and char k �= 2; fortunately, if n = 0, char k = 2 is forced (see
Proposition 3.9).

As in [23], it is straightforward to check that H∗A ∼= k[x]/(x2), where
x is the homology class of u, and for any differential graded A-module M ,
H∗M is projective. Again we see that homology induces an equivalence of
categories from D(A) to P. �

Remark 3.12. According to [27], every simplicial, cofibrantly generated,
proper, stable model category with a compact generator P is Quillen equiv-
alent to the module category of a certain endomorphism ring spectrum
End(P ). This is true in particular for the derived category of a differen-
tial graded algebra. In light of the proof of Proposition 3.11, we see that
every graded commutative Δ1-ring arises as π∗E for some (not necessarily
commutative) semisimple ring spectrum E. Because of Theorem 1.2 (3),
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however, π∗E being a graded commutative Δ1-ring is not sufficient to con-
clude that E is semisimple (see Remark 5.2).

Observe that, for any integer n, every Δn-ring is a Δn
f -ring. For if P

admits a triangulation, then thick〈R〉 admits a triangulation. Since R must
be Noetherian, thick〈R〉 = Pf . Propositions 3.10 and 3.11 now imply:

Proposition 3.13. Let n ∈ {0, 1}. Every ring R in the conclusion of Propo-
sition 3.9 is a Δn-ring. Hence, the classes of graded commutative local Δn-
rings and graded commutative local Δn

f -rings coincide.

According to [18, 15.27], a commutative ring is quasi-Frobenius if and
only if it is a finite product of local Artinian rings with simple socle. The
following proposition allows us to restrict our attention to the local case.
Combined with the above characterization of commutative local Δn-rings
for n ∈ {0, 1}, this completes the proofs of Theorems 3.2 and 3.3.

Proposition 3.14. Suppose R ∼= A × B. The category of projective R-
modules admits a triangulation if and only if the categories of projective
A-modules and projective B-modules each admit a triangulation. The same
is true for finitely generated projective modules.

Proof. This is a consequence of the fact that Mod(R) ∼= Mod(A) ×
Mod(B). �

As a final note, we broaden the scope of the second statement of Propo-
sition 3.13.

Proposition 3.15. Let n ∈ {0, 1}. The classes of graded commutative
Noetherian Δn-rings and graded commutative Noetherian Δn

f -rings coincide.

Proof. It suffices to check that every commutative Noetherian Δn
f -ring R

is a Δn-ring. Since R must be an IF-ring (Proposition 3.5), it must be a
commutative Noetherian self-injective ring ([8, 6.9]). This makes R quasi-
Frobenius by definition, and therefore a product of local rings, each of which
must be a Δn-ring by Proposition 3.13 (since each local ring is a Δn

f -ring).
Hence, R is a Δn-ring. �

4. Stable homotopy categories

In this section, we assume that T is a monogenic stable homotopy cate-
gory with sphere object S (see [14]). Certain conclusions can be drawn with
weaker hypotheses; this should be clear in the proofs. In particular, Theo-
rems 4.1 and 4.2 also apply to the derived category DE of right E-module
spectra, provided E∗ is commutative. We have the following corollary to
Theorem 3.2.

Theorem 4.1. Let T be a monogenic stable homotopy category with unit
object S. S is semisimple if and only if the following two conditions hold:
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(1) π∗S ∼= R1×· · ·×Rn, where Ri is either a graded field k or an exterior
algebra k[x]/(x2) over a graded field containing a unit in degree 3|x|+1
(π∗S is a Δ1-ring).

(2) For every factor ring of π∗S of the form k[x]/(x2), x ·π∗C �= 0, where
C is the cofiber of x · S.

Proof. First, note that every stable homotopy category has a symmetric
monoidal structure (for which S is the unit) compatible with the triangula-
tion. This forces R = π∗S to be graded commutative ([14, A.2.1]). Further,
we may use the monoidal product to take any element x ∈ π∗S and obtain
a map x · X for any X ∈ T . For example, if e ∈ π∗S is idempotent, then
e ·X is an idempotent endomorphism of X. Since idempotents split, there
is a decomposition X � Y ∨Z such that π∗Y ∼= eπ∗X and π∗Z = (1− e)π∗X
(see [14, 1.4.8]).

Suppose S is semisimple. By Proposition 3.1, the category P of projective
modules over π∗S admits a triangulation with suspension functor (−)[1]. By
Theorem 3.2, condition (1) is satisfied, and π∗S ∼= R1 × · · · ×Rn, where Ri
is either a graded field k or an exterior algebra k[x]/(x2). Since idempotents
split in T , S ∼= A1∨ · · · ∨An, where π∗Ai = Ri. The cofiber Ci of x · Ai is
a summand of C, the cofiber of x · S. Since π∗Ci must be a nontrivial free
Ri-module, x · Ci �= 0. This proves (2).

Conversely, if condition (1) holds, then R and S admit decompositions as
above. We now show that it suffices to assume R is local. Let Ti = loc〈Ai〉;
loc〈Ai〉 is an ideal by [14, 1.4.6]. Every X ∈ T admits a decomposition
X ∼= X1∨ · · · ∨Xn, where Xi ∈ Ti (take Xi = X∧Ai). We claim that this
decomposition is orthogonal, in that HomT (Ti,Tj) = 0 whenever i �= j (i.e.,
every map from an object in Ti to an object in Tj is trivial). First, observe
that if i �= j, then any map f : Ai −→ Aj is trivial, as follows. It suffices
to show that the induced map f∗ : Ri −→ Rj is zero. Let ek ∈ π∗S be the
idempotent corresponding to Rk. We now have f∗(x) = f∗(eix) = eif∗(x) =
0, for all x ∈ Ri. So indeed, [Ai, Aj ]∗ = 0. Now, [Ai,−]∗ vanishes on
loc〈Aj〉 since Ai is compact; therefore [−,X]∗ vanishes on loc〈Ai〉 for any
X ∈ loc〈Aj〉. In summary, there is an orthogonal decomposition

T = loc〈S〉 ∼= T1∨ · · · ∨Tn.
We now see that π∗ is faithful on T if and only if the functors [Ai,−]∗ are
faithful on Ti for i = 1, . . . , n. It therefore suffices to assume that R is a
local ring (see Proposition 2.1 (3)).

We must now show that if R = π∗S is local and satisfies conditions (1)
and (2), then S is semisimple. By Proposition 2.1 (4), we need only check
that π∗X is always projective (or free, since R is local). If R is a graded
field, then this is trivially true. If R ∼= k[x]/(x2), then condition (2) tells
us that π∗C is free, where C is the cofiber of x · S. Since every map of free
k[x]/(x2)-modules is the coproduct of a trivial map, an isomorphism, and
multiplication by x, it is easy to check that π∗X is free for all X ∈ thick〈S〉.
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For arbitrary X ∈ T , π∗X is the direct limit of a system of modules of the
form π∗Xα, where Xα ∈ thick〈S〉 ([14, 2.3.11]). Since any direct limit of flat
modules is flat, π∗X is flat. Over k[x]/(x2), flat implies free. This completes
the proof. �

Using localization, we also have the following corollary to Theorem 3.2.

Theorem 4.2. Let T be a monogenic stable homotopy category with unit
object S. If π∗S is local or Noetherian, then S is semisimple if and only
if it is von Neumann regular. If T is also a Brown category, and S is von
Neumann regular, then for any prime ideal p, (π∗S)p is either a graded field
k or an exterior algebra k[x]/(x2) with a unit in degree 3|x| + 1.

The derived category DE is a Brown category if E∗ is countable, but there
are ring spectra E where DE is not Brown (see [5]).

Proof. Since T is a monogenic stable homotopy category, the unit object
S is a compact generator and R = π∗S is commutative.

Certainly, semisimplicity implies von Neumann regularity. Assume S is
von Neumann regular. By Proposition 3.1, R is a Δ1

f -ring. If R is local or
Noetherian, then it is also a Δ1-ring by Proposition 3.13 or 3.15. We now
wish to invoke Theorem 4.1. To do so, we must verify condition (2). Arguing
as in the proof of Theorem 4.1, it suffices to assume that R ∼= k[x]/(x2). For
this ring, condition (2) is implied by the fact that π∗C must be free since S
is von Neumann regular. This proves the first implication.

For the second, assume T is a Brown category and S is von Neumann
regular. By Theorem 3.2 and Propositions 2.4 and 3.1, Rp is a Δ1

f -ring.
Since it is a graded commutative local ring, it must be Δ1-ring by Propo-
sition 3.13. By Proposition 3.9, R is either a graded field k or an exterior
algebra k[x]/(x2) over a field with a unit in degree 3|x| + 1. �

5. The generating hypothesis

Note that DE is almost an example of a stable homotopy category in the
sense of [14] (it may not admit a symmetric monoidal product), where E
plays the role of the sphere. In any stable homotopy category C with sphere
object S, the functor π∗(−) = [S,−]∗ is of particular interest, and it is
natural to ask how different the homotopy category C is from the algebraic
category of graded modules over π∗S. For example, one might like to know
whether π∗(−) acts faithfully. More concretely, let T be a triangulated
category, and let S ∈ T be a distinguished object. Write π∗(−) for the
functor [S,−]∗. We say that T satisfies the global generating hypothesis if
π∗ is a faithful functor from T to the category of graded right modules over
π∗S. We say that T satisfies the strong generating hypothesis if, for any map
f : X −→ Y with X ∈ thick〈S〉 and Y ∈ T , π∗f = 0 implies f = 0. The
following proposition follows from Propositions 2.1 and 2.2.
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Proposition 5.1. Let T be a weak stable homotopy category with compact
generator S. T satisfies the global generating hypothesis if and only if S is
semisimple, and T satisfies the strong generating hypothesis if and only if S
is von Neumann regular.

Proof. The first assertion is true by definition of the global generating hy-
pothesis and Proposition 2.1. If S is von Neumann regular, then T triv-
ially satisfies the strong generating hypothesis since thick〈S〉 = 〈S〉0f . Con-
versely, if T satisfies the strong generating hypothesis, then one can argue
that thick〈S〉 ⊆ 〈S〉0f (cf. the proof of (4) =⇒ (1) in Proposition 2.1). �

Remark 5.2. As promised in §3, we give an example of a stable homotopy
category where the sphere S is not semisimple even though π∗S is a Δ1-ring.
Condition (2) in Theorem 4.1 is therefore necessary. Consider the stable
module category StMod(k[G]) associated to a finite p-group G and field k

of characteristic p. In StMod(k[G]), π∗S = Ĥ(G; k), the Tate cohomology
of G. For n ≥ 1, Ĥ(Z/(3n); F3) ∼= F3[y, y−1][x]/(x2), where |x| = 1 and
|y| = 2. However, it is shown in [2] that StMod(F3[Z/(3)]) satisfies the
global generating hypothesis, though StMod(F3[Z/(3n)]) does not for n ≥ 2.
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