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Local extension of maps

Michael Barr, John F. Kennison and R. Raphael

Abstract. We continue our investigations into absolute CR -epic spa-
ces. Given a continuous function f : X ��Y , with X absolute CR -epic,
we search for conditions which imply that Y is also absolute CR -epic.
We are particularly interested in the cases when X is a dense subset of
Y and when f is a quotient mapping. To answer these questions, we
consider issues of local extension of continuous functions. The results
on this question are of independent interest.
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1. Introduction

Unless stated otherwise, all spaces in this paper will be assumed Ty-
chonoff, that is, completely regular and Hausdorff. In a series of papers,
the current authors and others have developed at some length the notion
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of absolute CR -epic spaces: a Tychonoff space X is absolute CR -epic if for
any dense embedding X � � �� Y into another Tychonoff space, the induced
C(Y ) �� C(X) is an epimorphism in the category of commutative rings
(see [BBR03, BRW05, BKR07b, BKR09]). In this paper we continue these
investigations. We consider a continuous map f : X �� Y and search for
conditions under which the fact that X is absolute CR -epic implies the same
for Y . We are interested in two cases. In the first X is a dense subspace of
Y and in the second Y is a quotient of X.

The motivation for this paper came from the study of epimorphisms of
commutative rings in which we have uncovered several classes of spaces.
The class of Lindelöf absolute CR -epic spaces properly contains the class
of Lindelöf CNP spaces. The latter class consists of those spaces that are
P-sets in any (and therefore every) compactification. Both of these classes
can be defined in terms of the extendibility of continuous functions. Lindelöf
absolute CR -epic spaces are precisely those for which continuous functions
extend to neighbourhoods in arbitrary compactifications. Lindelöf CNP
spaces are exactly those for which a countable sequence of functions can be
extended from a point to one of its neighbourhoods in the β-compactification
(Theorem 4.3). There is also a new and stronger class of spaces for which
a neighbourhood works for extending all functions (the uniform property).
In analyzing these classes and in examining their local-global behaviour
we were led to the following definitions which discuss the extendibility of
continuous functions both locally and globally. They make no reference
to epimorphisms. They are general but also contain the key to studying
epimorphisms induced by Lindelöf spaces. The study in the non-Lindelöf
case uses different methods. See [BKR09] for classes of punctured planks
(such as the Dieudonné plank) which are absolute CR -epic.

(1) Extension property (EP): X satisfies the EP if for every dense em-
bedding X � � �� Y , every f ∈ C∗(X) has a continuous extension to a
Y -neighbourhood of X.

(2) Local Extension property (LEP): X satisfies the LEP if every point
of X has an X-neighbourhood that satisfies the EP.

(3) Countable extension property (CEP): X satisfies the CEP if for every
dense embedding X � � �� Y and every sequence f1, f2, . . . , fn, . . . of
functions in C∗(X), there is a single Y -neighbourhood of X to which
each fn extends.

(4) Countable local extension property (CLEP): X satisfies the CLEP if
every point of X has an X-neighbourhood that satisfies the CEP.

(5) Uniform Extension Property (UEP): X satisfies the UEP if for every
dense embedding X ⊆ Y there is a Y -neighbourhood of X to which
every f ∈ C∗(X) extends.

(6) Uniform Local Extension Property (ULEP): X satisfies the ULEP if
every point of X has an X-neighbourhood that satisfies the UEP.
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(7) Sequential Bounded Property (SBP): X satisfies the SBP at a point
p ∈ X if given any sequence f1, f2, . . . , fn, . . . of functions in C(X),
there is an X-neighbourhood of p in which every one of the fn is
bounded. We also say that X satisfies the SBP if it satisfies it at
every point.

(8) Countable neighbourhood property (CNP): X satisfies the CNP if for
every sequence U1, U2, . . . , Un, . . . of βX-neighbourhoods of X, then⋂

Un is a βX-neighbourhood of X. Topologists often say that X is a
P-set in βX.

Obviously, (1) �� (2), (3) �� (4), and (5) �� (6). The converses to all
three are given in 2.4. Clearly (5) �� (3) �� (1). In [BRW05, Corollary
2.13] it was shown that for Lindelöf spaces (1) �� �� absolute CR -epic. We
will see in Theorem 4.1 that for Lindelöf spaces, (7) �� �� (8) �� (3). In
Example 6.5 we will see that the CEP (and even the UEP) does not imply
the CNP. Combining these results, we see that a Lindelöf space that satisfies
any of the eight conditions defined above is absolute CR -epic.

Remark 1.1. We will often say that “X is an EP space” (or a CEP or CNP
space, etc.) as an abbreviation for “X satisfies the EP”.

A compactification X ⊆ K of X is a dense embedding into a compact
space K. One readily sees that since every Tychonoff space can be embedded
into a compact Hausdorff space, it would be sufficient, in points (1), (3), and
(5) above to restrict the spaces Y to being compactifications.

When we are considering the case that X is a dense subspace of Y , it will
often, but not always, be the case that Y is a subspace of βX and f is the
inclusion map. A typical result is that if X is Lindelöf CNP and A ⊆ X,
then X ∪ clβX(A) is Lindelöf CNP (Theorem 4.6). Another result is that
if X is Lindelöf absolute CR -epic and A a zeroset in βX , then X ∪ A is
absolute CR -epic (Corollary 2.9).

Until this paper, we knew only that a Lindelöf locally compact subset of
βX satisfied the UEP, but that is an immediate consequence of the fact that
a locally compact space is open in its β-compactification. In Theorem 6.2 we
will find other examples, which will allow us to resolve negatively a question
raised by Ronnie Levy in [L80], see 6.1.

For quotients, we had previously seen that a perfect image of an Lindelöf
CNP space was Lindelöf CNP, [BKR07b, Theorem 3.5.5]. Here we extend
this result to open images, Theorem 4.2, and closed images, Theorem 4.7.
We also show that a quotient of a countable sum of compact spaces is CNP,
Theorem 4.17. The last result will allow us to answer positively a question
we have previously raised and show that the rational numbers with the
“Egyptian topology” (induced by the representation of rational numbers as
the sum of reciprocals of distinct integers) is CNP, hence absolute CR -epic.
One interesting thing about this result is that the rationals with the usual
topology is not absolute CR -epic.
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Another theme that has arisen is encompassed in several theorems that
say that if X satisfies one of the map extension conditions and A ⊆ βX is a
subspace that satisfies some subsidiary condition then X∪A or X∪clβX(A)
satisfies the same extension condition as X (Theorem 2.8, Corollary 2.9,
Theorem 4.6, Theorem 4.12, Theorem 4.13, Theorem 5.4).

Notation and Conventions. If ϕ : X �� Y is a map and A ⊆ X we
denote by ϕ#(A) the “universal image” of A in Y . To be precise ϕ#(A)
consists of all y ∈ Y for which ϕ−1(y) ⊆ A. Another way of defining it is
by the formula ϕ#(A) = Y − ϕ(X − A). The properties of ϕ# are given in
detail in [BKR07b, 2.2]. An important property—evident from the second
definition above—is that when ϕ is a closed mapping, ϕ# takes open sets
to open sets. If E is an equivalence relation on a space X and A ⊆ X we
say that E is A-admissible or A is E-compatible if (A × X) ∩ E = ΔA.
This means that no point of A is E-equivalent to any point of X but itself
(See [BKR07b, Proposition 2.5]). In such a case, the map A to its image in
X/E is a homeomorphism and we will usually treat A as a subspace of that
quotient.

2. Preliminary results

We begin with a pair of known results that we will be using. See [BRW05,
2.13 and 2.14] for the proofs. See also [E89, Problems 1.7.6 and 3.12.25].

Proposition 2.1 (Smirnov’s Theorem). A space X is Lindelöf if and only
if in any compactification K of X, every K-neighbourhood of X contains a
cozeroset containing X.

Proposition 2.2. A Lindelöf space satisfies the EP if and only for every
dense embedding X ⊆ Y and every point p ∈ X every function in C∗(X)
extends to a neighbourhood of p in Y .

The following is proved in detail in [BKR09, 3.1–3.3] and is central to
much of this paper. The limit used in the statement is taken over the
directed set of all pairs (W,x) for which x ∈ X ∩ W with (W,x) ≤ (W ′, x′)
if and only if W ⊇ W ′. This is, of course, only a directed preorder, but that
is all that is required (see [K55, Page 65]).

Theorem 2.3. Suppose X � � ��Y is a dense embedding and f ∈ C(X). Then
f can be extended continuously to a point p ∈ Y if and only if

lim{f(x) | x ∈ X ∩ W and W is a neighbourhood of p}
exists and that limit is the value of the extension to p. Moreover, the exten-
sion of f to all such points is continuous.

Theorem 2.4. LEP (respectively CLEP, ULEP) implies EP (respectively,
CEP, UEP).
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Proof. Suppose X satisfies the LEP and is densely embedded in Y . Suppose
f ∈ C∗(X). For each x ∈ X, there is an X-neighbourhood U(x) of x that
satisfies the EP. Let V (x) = intY (clY (U(x))). Then V (x) is a Y -open set
that contains U(x) and in which U(x) is dense. It follows from the EP
applied to U(x) that f |U(x) extends to a V (x)-open set W (x), which is
evidently also Y -open. The preceding theorem implies that f extends to⋃

x∈X W (x) which is a Y -open set containing X.
The arguments for the CLEP and ULEP are similar. �

Lemma 2.5. Suppose A = Z(f) is a zeroset in βX disjoint from X and E
a closed, A-admissible equivalence relation on βX. Then there is an ε > 0
such that whenever (p, q) ∈ E with p �= q, |f(p)| ∧ |f(q)| > ε.

Proof. We may assume, without loss of generality, that f : βX �� [0, 1].
If the conclusion fails there is a sequence of points (pn, qn) ∈ E such that
pn �= qn and for which the sequence f(pn)∧ f(qn) is not bounded away from
0. Admissibility implies that f(pn)∧ f(qn) is never actually 0. By choosing
a subsequence and interchanging pn with qn, if necessary, we can suppose
that the sequence of f(pn) is not bounded away from 0. There are two cases,
depending on whether the sequence of f(qn) is bounded away from 0 or not.
In the former case, any limit point (p, q) of the sequence (pn, qn) belongs
to E since E is closed. Clearly p ∈ A and q /∈ A, which contradicts the
A-admissibility of E.

If neither of the sequences f(pn), f(qn) is bounded away from 0, then, by
appropriate choice of subsequences, we can suppose that

f(pn) ∨ f(qn) < f(pn−1) ∧ f(qn−1).

Let Bn = f−1[f(pn) ∧ f(qn), 1]. Then Bn ⊆ Bn+1 for all n, both pn and qn

belong to Bn, while neither pn+1 nor qn+1 does. Suppose, by induction, that
we have found, for all m < n, continuous functions gm : Bm

�� [0, 1] such
that gm(pm) = 0, gm(qm) = 1 and gm|Bk = gk for all k < m. Now construct
gn : Bn

�� [0, 1] as follows. Since pn and qn lie outside the closed set
Bn−1, we can extend gn−1 to ĝn−1 on Bn−1 ∪ {pn, qn} by letting ĝn−1(pn) =
0 and ĝn−1(qn) = 1. The extended domain is a closed subspace of the
compact set Bn and so ĝn−1 can be extended to a continuous function gn :
Bn

�� [0, 1] as desired. We let g be the function defined on B = coz(f) =⋃
Bn whose restriction to Bn is gn. To see that g is continuous, we note

that g−1(f(pn) ∧ f(qn), 1] is open, contained in Bn, and contains Bn−1 so
that Bn−1 ⊆ int(Bn). Thus B =

⋃
int(Bn). Since g|int(Bn) = gn|int(Bn) is

continuous, it follows that g is continuous on B. Since X ⊆ B ⊆ βX , we
see that βX = βB and g extends to βX . But any limit point (p, q) of the
sequence (pn, qn) lies in E ∩ (A × A) = ΔA, which is impossible since p = q
while g(p) = 0 and g(q) = 1. �
Corollary 2.6. Under the same hypotheses, there is an open set U ⊇ A
such that E is U -compatible.
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Proof. Just take U = f−1[0, ε). �

Theorem 2.7. Suppose that {Aα} is a family of zerosets in βX, all disjoint
from X and A =

⋃
Aα. Then for every A-compatible equivalence relation E

on βX, there is a βX-open set U ⊇ A such that U is E-compatible.

Proof. An A-compatible equivalence relation E is also Aα-compatible and
so there is an open Uα ⊇ Aα such that E is also Uα-compatible. Set U =⋃

Uα and then A ⊆ U and E is U -compatible. �

Theorem 2.8. Suppose X is Lindelöf and satisfies the EP and A =
⋃

Aα

is a union of zerosets in βX. Then X ∪ A satisfies the EP.

Proof. Let K be a compactification of X ∪ A and hence of X since X is
dense in X ∪ A. Let f ∈ C∗(X ∪ A). Since X is absolute CR -epic, there is
a K-neighbourhood U of X to which f extends. Since X is Lindelöf we can
assume that U is a cozeroset by Smirnov’s Theorem. Let θ : β(X ∪ A) =
βX �� K be the canonical map and let

E = {(u, v) ∈ βX × βX | θ(u) = θ(v)}
(called its kernel pair). Then V = θ−1(U) is a cozeroset of β(X ∪ A) con-
taining X. The difference of a zeroset and a cozeroset is also a zeroset. Thus
A − V =

⋃
(Aα − V ) is a union of zerosets disjoint from X. The previous

theorem implies there is an E-compatible β(X ∪ A)-neighbourhood W of
A − V and then f extends to U ∪ θ(W ). But θ(W ) = θ#(W ) is a neigh-
bourhood of A − U = θ(A− V ) and hence U ∪ θ(W ) is a neighbourhood of
X ∪ θ(A − V ) = X ∪ A. �

Corollary 2.9. Suppose that X is Lindelöf absolute CR -epic and A =
⋃

An

is a union of at most countably many zerosets in βX. Then X∪A is Lindelöf
absolute CR -epic.

Proof. A zeroset is Lindelöf and so is the union of countably many of them.
�

3. A topological interlude

Lemma 3.1. Suppose X and Y are spaces and K and L are compactifica-
tions of X and Y , respectively. Suppose

Y L� � ��

X

Y

θ

����

X K� � �� K

L

ϕ

��

is a commutative square with θ a closed surjection. Then for any p ∈ K for
which y = ϕ(p) ∈ Y , we have p ∈ clK(θ−1(y)).
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Proof. Let A = θ−1(y). If the conclusion fails, there is a closed K-neigh-
bourhood W of p disjoint from A. Since X is dense in K, we can suppose
that W = clK(X ∩ W ). Then U = X − W is an X-open subset of X such
that A ⊆ U and U ∩ W = ∅. Thus θ#(U) is an open neighbourhood of
ϕ(p) = θ#(A) in Y . Since θ#(U) ∩ θ(W ∩ X) = ∅, we have

ϕ(p) /∈ clL(θ(W ∩ X)) = clL(ϕ(W ∩ X)) ⊇ ϕ(clK(W ∩ X)) = ϕ(W )

which is a contradiction. �
The following is well-known when A and B are disjoint and, in fact,

characterizes normal spaces. This more general case must be known, but we
have not found it in standard references.

Lemma 3.2. Let X be a normal space and A and B two closed subsets of
X. Then clβX(A ∩ B) = clβX(A) ∩ clβX(B).

Proof. Clearly clβX(A ∩ B) ⊆ clβX(A) ∩ clβX(B). So let p ∈ clβX(A) ∩
clβX(B) and suppose that p /∈ clβX(A ∩ B). Then there is a closed neigh-
bourhood U of p in βX such that U ∩A∩B = ∅. Obviously p ∈ clβX(U ∩A)
and similarly p ∈ clβX(U ∩B) which contradicts the special case of disjoint
closed sets. �

The following is true for abstract sets. We omit the easy proof.

Lemma 3.3. Suppose θ : T �� S is a function, A ⊆ S, and B ⊆ T . Then
θ(B ∩ θ−1(A)) = θ(B) ∩ A. �
Lemma 3.4. Let ϕ : K �� L be a continuous map of compact spaces. Let
Y ⊆ L and X = ϕ−1(Y ). Then θ = ϕ|X is closed.

Proof. Suppose that A is a closed subset of X. Then A = clK(A) ∩ X
and then θ(A) = ϕ(A) = ϕ(clK A ∩ ϕ−1(Y )) = ϕ(clK(A)) ∩ Y , which is the
intersection of a compact set with Y and is therefore closed in Y . �

A commutative square

Z Tρ
��

X

Z

τ

��

X Y
σ �� Y

T

θ

��

of not necessarily Tychonoff spaces is called a pushout in Top, provided that,
given any space W and continuous maps μ : Y �� W and ν : Z �� W such
that μσ = ντ , there is a unique ω : T �� Z such that ωθ = μ and ωρ = ν.
Even if σ and τ are subspace inclusions, θ and ρ need not be. If all four
maps are subspace inclusions, then a necessary and sufficient condition that
the square be a pushout is that X = Y ∩Z and that a subset of T is closed if
and only its intersection with each of Y and Z is. In general, if X, Y , and Z
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are Tychonoff spaces, it does not follow that T is. However in the following
lemma, the corresponding space is given as a subspace of a Tychonoff space
and therefore is one as well.

Lemma 3.5. Suppose X is normal and A ⊆ X. Then the square

clβX(A) clβX(A) ∪ X��

X ∩ clβX(A)

clβX(A)
��

X ∩ clβX(A) X�� X

clβX(A) ∪ X
��

is a pushout of topological spaces.

Proof. We may as well suppose that A is closed in X in which case we can
identity clβX(A) with βA and X∩clβX(A) = clX(A) = A. Let Y = βA∪X.
Then the square in question is

βA Y .��

A

βA
��

A X�� X

Y .
��

From the remarks preceding, it suffices to show that for any B ⊆ Y , if
B ∩ βA is compact and B ∩ X is closed in X, then B is closed in Y . So let
B be such a set. We have that

clY (B) = clY ((B ∩ βA) ∪ (B ∩ X)) = clY (B ∩ βA) ∪ clY (B ∩ X).

Since B ∩ βA is compact, the first term is just B ∩ βA ⊆ B. As for the
second term, we have that X ∩ clY (B ∩ X) = clX(B ∩ X) = B ∩ X ⊆ B,
while by 3.2,

βA ∩ clY (B ∩ X) = clβX(A) ∩ clβX(B ∩ X) ∩ Y = clβX(A ∩ B ∩ X) ∩ Y

= clβX(A ∩ B) = clβA(A ∩ B) ⊆ clβA(βA ∩ B)
= βA ∩ B ⊆ B

and so clY (B) ⊆ B. �

4. Spaces satisfying the CEP and CNP

Theorem 4.1. For any Lindelöf space X, the conditions SBP and CNP are
equivalent and imply the CEP.

Proof. We showed in [BKR09, Theorem 7.4] that X satisfies CNP if and
only if it satisfies the SBP at every point. Here we will show that CNP

�� CEP. Suppose that X satisfies the CNP and is densely embedded in a
space Y . Let f1, f2, . . . , fn, . . . be a sequence of functions in C∗(X). The
CNP implies that each fn extends to a Y -neighbourhood Un of X, [BKR07b,
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Corollary 3.4]. The CNP also implies that U =
⋂

Un is a Y -neighbourhood
of X (and hence of each of its points) to which each fn extends. �

The following is an application of the equivalence of the CNP and SBP.

Theorem 4.2. An open image of a Lindelöf CNP space is also Lindelöf
CNP.

Proof. We will show that the SBP is preserved under open surjections.
Suppose θ : X �� Y is an open surjection and X satisfies the SBP. Given
any sequence f1, f2, . . . , fn, . . . ∈ C(Y ) and any y ∈ Y , let x ∈ θ−1(y).
Since X satisfies SBP, there is an open neighbourhood U of x on which each
term of the sequence f1θ, f2θ, . . . , fnθ, . . . is bounded. Then θ(U) is the
desired open neighbourhood of y. �

See Example 6.5 below for a space that satisfies the CEP (in fact, the
UEP) but not the CNP. Here is a result that highlights the difference between
them. The equivalence of the CEP and CLEP implies that when the CEP
is satisfied by a space X then for each countable sequence f1, f2, . . . , fn, . . .
in C∗(X) and each point p ∈ X there is a βX-neighbourhood of p to which
each fn extends. If we replace C∗(X) by C(X) we get the following:

Theorem 4.3. A Lindelöf space X satisfies CNP if and only if there is a
compactification K of X with the property that for each countable sequence
f1, f2, . . . , fn, . . . of functions in C(X) and each point x ∈ X there is a K-
open set containing X to which each fn extends. Moreover, if this condition
is satisfied by any compactification of X it is satisfied by all of them.

Proof. We know from Theorem 4.1 that CNP implies CEP, which implies
the extendability of a sequence of bounded functions to some open subset
of K that contains X. If f : X �� R is continuous, then f/(1 + |f |) is
bounded and if it extends to an open set U ⊇ X, then the only obstacle to
extending f is that it might take on infinite values. Thus f extends to the
one-point compactification R∪{∞} of R and, since R is open in its one-point
compactification, we see that f extends to an R-valued function on an open
set. Since X is a P-set in K, the conclusion follows for a countable sequence
of functions.

For the other direction, suppose {Vn} is countable family of K-open sets
containing X. Since X is Lindelöf, each Vn contains a cozeroset coz(fn) that
contains X. We can suppose that fn : βX �� [0, 1]. Since 1/fn is continuous
on coz(fn), there is, for each x ∈ X, a K-neighbourhood U(x) to which every
1/fn extends. This implies that for all n ∈ N, U(x) ⊆ coz(fn) ⊆ Vn, whence
U(x) ⊆ ⋂

n∈N Vn. Then
⋃

x∈X U(x) ⊆ ⋂
n∈N Vn and the former is a K-open

set containing X. Thus X is a P-set in K, which implies the CNP and that
X is a P-set in any compactification ([BKR07b, Theorem 3.3]). �
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Corollary 4.4. Suppose that {Xn} is a finite or countable family of subsets
of the compact set K such that each Xn is dense in K and is Lindelöf CNP.
Then

⋃
Xn is Lindelöf CNP.

Proof. For any sequence of functions f1, f2, . . . , fm, . . ., there is, for each
n, a K-open set Un containing Xn to which each fm extends. But then
U =

⋃
Un is a K-open set containing

⋃
Xn to which each fm extends. �

The following is an obvious reformulation of the CNP.

Proposition 4.5. A space X has CNP if and only if for every count-
able sequence K1, K2, . . . , Kn, . . . of compact sets in βX − X, we have
clβX(

⋃
Kn) ⊆ βX − X. �

The proof of the following theorem is a substantial simplification of our
original one and we thank Ronnie Levy for suggesting it.

Theorem 4.6. If X is Lindelöf CNP and A ⊆ X, then X ∪ clβX(A) is also
Lindelöf CNP.

Proof. Since clβX(A) = clβX(clX(A)), we can suppose, without loss of
generality, that A is closed in X and therefore Lindelöf. Let {Kn} be a
sequence of compact subsets of βX − X − clβX(A) and B =

⋃
Kn. Then

Y = X ∪ B is Lindelöf and hence normal ([K55, Lemma 4.1]). Since B is
disjoint from clβX(A) and A is closed in X, it follows that A is closed in
Y . Since B is a countable union of closed sets disjoint from X, the CNP
hypothesis implies that clY (B) is also disjoint from X. Hence A and clY (B)
are disjoint closed sets in a normal space and therefore clβX(A) is disjoint
from clβX(B) and hence so is X ∪ clβX(A). �

Theorem 4.7. A closed image of a Lindelöf CNP space is also Lindelöf
CNP.

Proof. Let θ : X �� Y be a closed surjection and suppose X is Lindelöf
CNP. The space Y is clearly Lindelöf. Write ϕ = β(θ) : βX �� βY . Let
{Ln} be a sequence of compact subsets of βY − Y . Let Kn = ϕ−1(Ln) and
K = clβX (

⋃
Kn). We claim that L = ϕ(K) is contained in βY − Y . If

not, there exists p ∈ K for which y = ϕ(p) ∈ Y so, by Lemma 3.1, we see
p ∈ clβX(θ−1(y)). By Theorem 4.6, X ∪ clβX(θ−1(p)) satisfies the CNP and
hence clβX(θ−1(y)) is disjoint from clβX(

⋃
Kn), which is a contradiction. �

Compare this with [BKR07b, 3.5.5] where we require a perfect surjection
to draw that conclusion.

It is an easy consequence that if you form a quotient space of a Lindelöf
(hence normal) CNP space by collapsing a closed subspace to a point (or
by collapsing any finite number of disjoint closed subspaces to points) the
resultant space is Lindelöf CNP. As an example of how that can be applied,
we have:
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Corollary 4.8. Let X be Lindelöf CNP and A ⊆ X be a subspace. If f1, f2,
. . . , fn, . . . is a sequence of real-valued functions on X, each one bounded on
A, then there is a single neighbourhood of A on which each one is bounded.

Proof. By replacing A by clX A (on which each fn will continue to be
bounded), we can suppose that A is closed. By replacing each fn by |fn|
we can suppose that the values of the fn are nonnegative. If bn is an upper
bound of fn on A, then we can replace fn by fn ∨ bn and suppose that
each fn is constant on A. The quotient mapping θ : X �� X/A, gotten
by identifying the points of A to a single point, is closed and Theorem 4.7
implies that X/A is CNP. Evidently all the functions fn, being constant on
A, descend to the quotient. Thus there is a single neighbourhood U of the
point {A} on which each fn is bounded and then θ−1(U) is the required
neighbourhood of A. �

The following strengthens one of the cases of [BKR09, Lemma 6.9].

Theorem 4.9. Suppose X and Y are Tychonoff spaces with a common
subspace A. Suppose that A is closed in X and that X is normal. Then the
amalgamated sum X +A Y is Tychonoff.

Proof. The amalgamated sum is the pushout (for the definition of pushout,
see the proof of 3.4) in the square

Y X +A Y .��

A

Y
��

A X�� X

X +A Y .
��

A subset B ⊆ X +A Y is closed if and only if B ∩ X and B ∩ Y are closed
in X and Y , respectively. Points clearly have that property, so we need
only show that the amalgamated space is completely regular. So let B be
closed and p /∈ B. We first consider the case that p ∈ X − A. Then
p /∈ A∪ (B∩X) and the latter is a closed subset of X. There is a continuous
function f : X �� [0, 1] for which f(p) = 1, while f vanishes on A∪ (B∩X).
Let g be the constant function 0 on Y . Then f |A = g|A and therefore there
is an h : X +A Y �� [0, 1] whose restrictions to X and Y are f and g,
respectively. Evidently, h(p) = 1, while h vanishes on B.

For the case that p ∈ Y begin with a function g : Y �� [0, 1] such that
g(p) = 1, while g vanishes on B ∩ Y . The function that is g on A and 0 on
B ∩ X is continuous on A ∪ (B ∩ X) since it is continuous on each of two
closed subsets of X and agrees on the overlap. This function then extends,
by normality, to a continuous function f : X �� [0, 1]. Since f |A = g|A we
get the function h as required. �
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Theorem 4.10. Suppose that X and Y are CNP spaces with a common
subspace A that is closed in each and that at least one of X and Y is normal.
Then the amalgamated sum X +A Y also satisfies the CNP.

Proof. The canonical map θ : X + Y �� X +A Y is a closed (even perfect)
surjection since if B is closed in X then θ−1θ(B) = B + (B ∩ A). �
Theorem 4.11. Let X be normal CNP, A ⊆ X be a closed subspace and
K be a compactification of A. Then X +A K is CNP.

Proof. Since A is closed in X, it is known that βA is embedded in βX.
Let K = (βA)/E and F = E ∪ ΔβX , which is a compact X-compatible
equivalence relation on βX. We thus get a map ϕ : βX �� βX/F for which
ϕ−1(X) = X and ϕ−1(K) = clβX(A). The fact (from Lemma 3.5) that

clβX(A) X ∪ clβX(A)��

A

clβX(A)
��

A X�� X

X ∪ clβX(A)
��

is a pushout implies that θ : X ∪ clβX(A) �� X ∪ K is continuous. The
fact that X ∪ K has the pushout topology embeds it into βX/F . Then 3.4
implies that θ is closed and then the result follows from Theorem 4.7. �

Here is an application of Theorem 4.11. By contrast, see 4.14.

Theorem 4.12. Suppose that X is normal CNP and that A ⊆ βX is a
locally compact set such that A ⊆ clβX(A ∩ X). Then X ∪ A is CNP.

Proof. Let K = clβX(A). Since A is locally compact it is open in K. Since
X ∩ A is dense in A by hypothesis and A is evidently dense in K we can
conclude that K is a compactification of X ∩ K. In particular, for any
K-open set U ⊆ K we have that U ⊆ clK(X ∩ U). By hypothesis, every
point p ∈ A has a compact K-neighbourhood Vp. Let Up = intKVp so that
Up is a K-open set containing p. Clearly, clK Up ⊆ Vp and is a compact
neighbourhood of p. Thus we may replace Vp by clK Up and assume that Vp

is a regular closed set. Since Up ⊆ clK(X ∩ Vp) ⊆ Vp it follows immediately
that Vp = clK(X ∩ Vp). The preceding theorem implies that X +X∩Vp Vp is
CNP and it follows from Lemma 3.5 that that space can be identified with
X∪Vp. Suppose now that {Wn} is a countable sequence of open sets of βX ,
all containing X ∪ A. Then intβX (

⋂
Wn) contains each X ∪ Vp and hence

contains their union, which is X ∪ A. �
Theorem 4.13. Let X be Lindelöf CNP and A ⊆ βX such that A itself is
Lindelöf CNP and A ⊆ clβX(A ∩ X). Then X ∪ A is Lindelöf CNP.

Proof. Let K = clβX A. As above K is a compactification of both X∩A and
X ∩K. Let f1, f2, . . . , fn, . . . be a sequence of functions in C(X ∪A). Since
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A is CNP and K is a compactification of A, it follows from Theorem 4.3
that there is a K-open set U ⊆ K that includes A and to which each fn

extends. Since U is open in K, it follows that U ⊆ clK(X∩U) = clβX(X∩U)
and is also locally compact so that by 4.12 X ∪ U is CNP. It follows from
Theorem 4.3 that there is a βX-neighbourhood of X ∪ U to which each fn

extends. The conclusion now follows from the converse part of the same
theorem. �
Example 4.14. We give an example of a compactification K of an Lindelöf
CNP space X and a closed subspace A ⊆ X for which X ∪ clK(A) is not
absolute CR -epic.

We take X = N. It is known that there is a compactification K of N for
which K − N is the unit interval I = [0, 1], see [C76, Theorem 7.8]. Take
an open interval U ⊆ I and a point p ∈ I not in clI(U). Since clI(U) is
compact, it is also closed in K. Thus there is a function f : K �� [0, 1] such
that f(p) = 1, while f vanishes on cl(U). The set V = f−1[0, 1/2) is open
and contains cl(U). If A = V ∩ N, then U ⊆ V ⊆ clK(A) ⊆ f−1[0, 1/2]. It
follows that p /∈ clK(A) so that clK(A) ∩ I is a closed subset that is neither
empty nor all of I. We claim that B = N∪ clK(A) does not satisfy CNP. In
fact, K − B is an open subset of I and therefore a countable union of open
intervals, each of which is σ-compact and hence K−B is also σ-compact. It
is, in particular, an Fσ and its complement B is a Gδ . A Gδ that satisfies the
CNP is open. But if B were open, B ∩ I would be clopen in I and different
from ∅ and I. Thus B does not satisfy the CNP.

To see that B is not even absolute CR -epic, we begin by observing that
every point of K is a Gδ. For N this is obvious. If p ∈ K − N, there is a
function f : K − N �� [0, 1] that vanishes only at p. This function extends
to K. Since N is Lindelöf and open in K, there is a function g : L �� [0, 1]
with coz(g) = N and then we see that f + g vanishes only at p, which is
thereby a Gδ . Since B is Lindelöf and not CNP, it is not locally compact.
It follows from [BRW05, Theorem 4.2] that K is first countable at every
point. Then the condition 2 of [BRW05, Theorem 4.3] applies, from which
we conclude that B is not absolute CR -epic.

Definition 4.15. Let θ : X �� Y be continuous. We say that θ has local
sections if for all p ∈ Y there is a neighbourhood U of p and a map ϕ : U ��X
such that θϕ is the inclusion U � � �� Y .

Theorem 4.16. Suppose that θ : X �� Y has local sections. If X is CNP
so is Y .

Proof. Suppose that p ∈ Y . Choose a neighbourhood U of p on which there
is a section ϕ. We can choose U open, in which case θ−1(U) will also be
open and hence satisfy the CNP (see [BKR07b, Theorem 3.5.4]). Clearly
the image of ϕ is contained in θ−1(U) and hence U is a retract of θ−1(U). A
retract in a Hausdorff space is closed and hence ϕ(U) is also CNP (Theorem
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3.4.1, op. cit.). Since ϕ(U) ≡ U , it follows that each point of Y has a CNP
neighbourhood and thus Y is CNP (Theorem 3.4.2, op.cit.). �

4.1. The Egyptian topology on Q. There is a topology on the rational
numbers Q that is derived from the representation of rationals as Egyptian
fractions. The easiest way to describe this is to let N+∗ denote the one
point compactification of the positive integers and let X =

∑∞
k=1(N

+∗)k.
Map f : {0, 1} × X �� Q by letting

f(n0, n1, n2, . . . , nk) = (−1)n0

(
1
n1

+
1

n1 + n2
+ · · · + 1

n1 + · · · + nk

)
.

This is surjective since every rational number has at least one (actually
infinitely many) representations as a sum of distinct unit—or Egyptian—
fractions. Of course, any term with ∞ in the denominator is 0. The Egyptian
topology on Q is the quotient topology induced by f . The resultant space is
obviously Hausdorff since the topology is finer than the usual topology on
Q.

For several years we have been wondering whether Q with the Egyptian
topology was absolute CR -epic. The following theorem gives a positive an-
swer to the question. One of the implications is that the Egyptian topology
on Q is finer than the usual topology since the latter is not absolute CR -epic
([BRW05, Example 1.3.12]).

Theorem 4.17. Suppose the Hausdorff space X =
⋃

n∈N Kn is a union
of compact sets and has the quotient topology from

∑
n∈N Kn. Then X is

Tychonoff and Lindelöf CNP.

Proof. We begin by showing X is Tychonoff. The inverse image of a point in⋃
Kn consists of at most one point in each summand and is therefore closed.

We can assume, without loss of generality that K1 ⊆ K2 ⊆ · · · . Let A ⊆ X
be closed and p /∈ A. We will construct a series of continuous functions
fn : Kn

��[0, 1] each extending the previous one and let f : X ��[0, 1] be the
unique function whose restriction to Kn is fn. The quotient topology is such
that a function is continuous if its restriction to each Kn is. We may assume
without loss of generality that p ∈ K1. Begin by letting f1 : K1

�� [0, 1]
be any function for which f1(p) = 0 and f1(A ∩ K1) = 1. First extend
this to K1 ∪ (A ∩ K2) by letting the extended function be 1 on A ∩ K2.
Since K1 ∪ (A∩K2) is compact, it is C-embedded in K2 and hence may be
extended to a function f2 : K2

�� [0, 1]. Continue the obvious induction to
get the required function f .

From Lemma 4.5, to show CNP, it is (necessary and) sufficient to show
that if L1, L2, . . . is a countable family of compact subsets of βX −X, and
L =

⋃
Ln, then clβX L is disjoint from X. So assume we are given such a

family and assume that p ∈ X. We will show that there is a neighbourhood
V of L and a function f : X �� [0, 1] such that f(p) = 0 and f(V ∩
X) = 1. Finding such a V and f will suffice since from L ⊆ intβX(V ) ⊆
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clβX(intβX(V ) ∩ X), it will follow that f(p) = 0, while f(L) = 1 and hence
that p /∈ clβX(L). Since p was an arbitrary point of X, it therefore follows
that X∩clβX(L) = ∅. To construct this function, we again suppose that the
Kn are nested and that p ∈ K1. Begin by choosing a closed (hence compact)
neighbourhood V1 of L1 that misses p. There is a function f1 : K1

�� [0, 1]
with f1(p) = 0 and f1(V1 ∩ K1) = 1. The next step is to choose a closed
neighbourhood V2 of L2 that is disjoint from K1. This is possible because
K1 is a compact set inside X and L2 is a compact set disjoint from X. First
extend f1 to the set K1∪ ((V1∪V2)∩K2) by letting it be 1 on (V1∪V2)∩K2.
This works because (V1∪V2)∩K2∩K1 = (V1∪V2)∩K1 = V1∩K1 since V2 is
disjoint from K1. Then let f2 be a further extension of f1 to all of K2, with
f2 = 0 on (V1 ∪ V2) ∩ K2. Continue by induction to finally get f . Again,
the restriction to each Kn is continuous and therefore f is continuous in the
quotient topology. That X is Lindelöf is obvious. �

Example 4.18. Let N∗ denote the one-point compactification of N. Map

the space N×N∗ θ ��Q by enumerating the rationals in a sequence q1, q2, . . . ,
qn, . . . and defining θ(k,m) = qk+1/m while θ(k,∞) = qk. This is obviously
continuous, but cannot be a quotient mapping since Q is not even absolute
CR -epic, let alone CNP. We conclude that there must exist a discontinuous
function f : Q �� R that nonetheless satisfies limm �� ∞ f(q + 1/m) = f(q)
for all q ∈ Q. After we mentioned the existence of such a function to Alan
Dow, he sent us a simple construction of an explicit one that is nowhere
continuous, in fact, unbounded in every interval of rationals.

Example 4.19. On the other hand, the countability in Theorem 4.17 is
crucial. Let S ⊆ QN∗

denote the set of convergent sequences with their
limits. Give S the discrete topology and consider the evaluation map

S × N∗ �� Q.

This is clearly a quotient mapping since a map on Q that preserves the limits
of all convergent sequences is continuous. But Q does not satisfy the CNP;
it is not even absolute CR -epic.

5. Subspaces and extensions of EP spaces

Theorem 5.1. A closed C∗-embedded subspace of an EP space is also an
EP space.

Proof. Let X satisfy the EP and A be a closed C∗-embedded subspace. It
is sufficient to show that in any compactification K of A, every function in
C∗(A) extends to a K-neighbourhood of A. In [BKR07b, 6.1–6.3], we showed
that the amalgamated sum X +A K has enough real-valued functions to
separate points and thus maps injectively to its associated Tychonoff space
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that we will denote Z. Thus the diagram

K Zϕ
��

A

K
��

A X�� X

Z

θ

��

is a pushout in the category of Tychonoff spaces (although not necessarily
in Top). We also showed that θ is a topological embedding. We claim that
θ is a dense embedding. In fact, if W = clZ(θ(X)), then ϕ−1(W ) is a closed
subspace of K containing A, which means that ϕ−1(W ) = K. But then ϕ
and θ both factor through W , which is impossible for W �= Z. Then any
f ∈ C∗(A) extends to X and then to a Z-neighbourhood U of θ(X). It
follows that ϕ−1(U) is a K-neighbourhood of A. �
Theorem 5.2. An open subspace of a normal EP space is also an EP space.

Proof. Let X be a normal EP space and U an open subset. For each x ∈ X
there is a closed neighbourhood V (x) of x contained in U . Since V (x) is
closed and embedded in the normal space X, it is C∗-embedded. By the
preceding theorem, V (x) is an EP space. Now apply Theorem 2.4. �
Theorem 5.3. Suppose X is a Lindelöf EP space and A ⊆ X. Then X ∪
clβX(A) is also Lindelöf and EP (and is therefore absolute CR -epic).

Proof. Let Y = X∪clβX(A). We must show that whenever K is a compact-
ification of Y (and hence of X, since X is dense in Y ), then every f ∈ C∗(Y )
extends to a neighbourhood of Y in K. Let f be such a function. Since X
is absolute CR -epic, the maximum extension of f |X in K (implicit in 2.3)
includes a cozeroset U ⊇ X and also includes clβX(A), so that it includes
W = U ∪ clβX(A). Let θ : βX �� K be the canonical map and V = θ−1(U).
Clearly V is a cozeroset in βX that contains X. A cozeroset in a compact
space is locally compact and Lindelöf and hence CNP ([BKR07b, Example
5.1]).

Now let Z = V ∪clβX(A). Since A ⊆ X ⊆ V , it follows from Theorem 4.6
that Z is Lindelöf CNP. Since K is a compactification of X ∪ clβX(A), it
follows that θ maps clβX(A) homeomorphically on its image in K. Thus
θ−1(U ∪ clβX(A)) = V ∪ clβX(A) and it follows from 3.4 that θ|Z is closed.
From 4.7, we see that W = θ(Z) is CNP. Since it is obviously Lindelöf, it is
absolute CR -epic and the map f that we started with extends to an open
subset of K that contains W and, a fortiori, X ∪ clβX(A). �
Theorem 5.4. Suppose X is Lindelöf absolute CR -epic and A ⊆ βX is
either a zero-set or a cozero-set. Then X ∪A is Lindelöf absolute CR -epic.

Proof. The case of a zeroset is already covered in 2.9. A cozero-set is the
union of zero-sets and the result follows from 2.8. �
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6. Extensions that satisfy the UEP

Lemma 6.1. A space X satisfies the UEP if and only if for every closed
X-admissible equivalence relation E on βX, there is an E-compatible βX-
neighbourhood of X.

Proof. Suppose X satisfies the UEP. Suppose that E is a closed X-ad-
missible equivalence relation on βX and K = βX/E with canonical map
θ : βX ��K. Let V be a K-neighbourhood of X such that every f ∈ C∗(X)
extends to V . Clearly U = θ−1(V ) is a neighbourhood of X. Suppose E
is not U -admissible. Then there is a point p ∈ U and a point q ∈ βX (the
latter might or might not belong to U) such that p �= q, but (p, q) ∈ E.
There is an f ∈ C(βX) such that f(p) = 0 and f(q) = 1. Then it is obvious
that f |X has no extension to U .

For the converse, let K be a compactification of X and let θ : βX �� K
be the canonical map. If E is the kernel pair of θ, then E is X-admissible,
hence there is an E-compatible U ⊇ X. Since every f ∈ C∗(X) extends to
βX, it follows immediately that every such f extends to U . �
Theorem 6.2. Suppose X satisfies the UEP and {Aα} is a family of zerosets
in βX, each disjoint from X. Then if A =

⋃
Aα, X ∪ A satisfies the UEP.

Proof. Let K be a compactification of X ∪ A, and E be the kernel pair of
the canonical map βX ��K. Since X satisfies the UEP, there is a βX-open
set U containing X such that E is also U -admissible. Theorem 2.7 supplies
an open set V ⊇ A such that every A-admissible equivalence relation is V -
admissible and hence every (X ∪ A)-admissible equivalence relation is also
(U ∪ V )-admissible. The conclusion now follows from Lemma 6.1. �
Corollary 6.3. Suppose X is Lindelöf. Then the conclusion of the preceding
theorem is true without the assumption that the Aα are disjoint from X.

Proof. Let K be a compactification of X ∪ A. Let E be the kernel pair
of the canonical map θ : βX �� K and let U be an E-admissible βX-
neighbourhood of X. Since X is Lindelöf, Smirnov’s Theorem implies that
we may take U to be a cozeroset. But then U is locally compact Lindelöf
and has the UEP. For each α, Aα − U is then a zeroset and the preceding
theorem implies that U ∪ (A − U) = U ∪A satisfies the UEP. Thus there is
an E-admissible open set V ⊇ A. It follows that U ∪ V is an E-admissible
open set containing X ∪ A. �
Corollary 6.4. If X is Lindelöf and satisfies the UEP and U is an open
set in βX, then X ∪ U satisfies the UEP.

Proof. An open set in a Tychonoff space is a union of cozerosets and every
cozeroset is a (countable) union of zerosets. �
6.1. Levy’s question. Ronnie Levy has shown that any Tychonoff space
X that is not pseudocompact can be densely and properly embedded into a
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space Y with the property that for any p ∈ Y − X there is an f ∈ C∗(X)
that cannot be extended to p, [L80, Corollary 6.2]. He further raised the
question of whether Y could be taken as pseudocompact or even compact.
Here we use the preceding corollary to provide a negative answer to this
question.

Our counter-example uses the space X of [BKR09, 6.1–6.4]. Begin with a
countable family {Xn}. For this example, we will suppose the Xn are locally
compact, noncompact, and Lindelöf (and therefore not pseudocompact).
The space β(

∑
Xn) can be viewed as the union of three disjoint subsets:

A = β(
∑

Xn)−∑
(βXn), B =

∑
(Xn), and C =

∑
(βXn −Xn), which can

be pictured:

B =
∑

Xn C =
∑

(βXn − Xn)

A = β(
∑

Xn) − ∑
βXn

We let f : β(
∑

Xn) ��[0, 1] be the continuous extension of the map on
∑

Xn

that takes every element of Xn to 1/n. It is clear that f is identically 1/n
on all of βXn and hence the zeroset of f is exactly A. We let X = A ∪ B,
which is Lindelöf. Now let X �� Y be a dense embedding of X into a
pseudocompact space. Then K = βY is a compactification of X which
means it is quotient of βX . For each n, the set Xn is clopen in B. If it were
clopen in Y , Y could not be pseudocompact. In fact, let θ : A∪B∪C �� K
be the canonical surjection and Z = θ−1(Y ). A clopen set is C-embedded
and, since Xn is not pseudocompact, there is an unbounded function on Xn.
Since Xn is open, it cannot be closed, which means that some point of its
frontier βXn − Xn meets Z. But for sufficiently large n, every bounded
function on A ∪ B extends to all of βXn − Xn. This is inconsistent with a
positive answer to Levy’s question.

We note that the same argument shows that we cannot ensure that Levy’s
space is connected since if there were no point of βXn −Xn in Y , Xn would
be a clopen subset of Y .

Example 6.5. We have just seen that the space X above satisfies the UEP
(and therefore the CEP), but it was shown in [BKR09, 6.1–6.4] that it did not
satisfy the CNP. This demonstrates that CNP is stronger than the CEP (and
independent of the UEP). Added in proof: The one-point Lindelöfization of
an uncountable discrete space provides an example of a space that satisfies
the CNP and not the UEP.

6.2. Open questions.
1. Are finite products of Lindelöf CNP spaces either Lindelöf or CNP?
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2. Since both open and closed images of Lindelöf CNP spaces are Lin-
delöf CNP, it is natural to ask about general quotient maps. Note
that if X �� Y is a quotient map that factors into a finite sequence
of alternately open and closed maps and X is Lindelöf CNP, so is Y .

3. The results on the Egyptian topology on Q suggest the question of
which countable spaces are absolute CR -epic. Such spaces, if Ty-
chonoff, are necessarily totally disconnected, and we can start by
considering the extremely disconnected case. (There is a countable
extremally disconnected space in βQ −Q that has no isolated points
and is not absolute CR -epic (see [BRW05, 4.4]. On the other hand
assuming that there are P-points in βN − N, there is a countable
extremally disconnected Lindelöf CNP space without isolated points
constructed in [DGS88].)
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