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Formal group law homomorphisms
over OCp

Kevin Keating

Abstract. Let K be a finite extension of the p-adic field Qp and let
F (X, Y ) and G(X, Y ) be one-dimensional formal group laws over the
ring of integers OK of K. Let φ(X) be a homomorphism from F to
G which is defined over the ring of integers OCp of the completion Cp

of Qalg
p . In this paper we prove that if ker(φ) is finite then there is a

discretely valued subfield L ⊂ Cp such that φ(X) is defined over OL.
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Let Qp be the field of p-adic numbers, let Q
alg
p be an algebraic closure of

Qp, and let Cp be the completion of Q
alg
p with respect to the p-adic valuation.

Let K be a closed discretely valued subfield of Cp and let F (X,Y ), G(X,Y )
be one-dimensional formal group laws over the ring of integers OK of K.
Let L/K be a subextension of Cp/K. A homomorphism from F to G over
OL is defined to be a power series φ(X) ∈ OL[[X]] such that φ(0) = 0 and
φ(F (X,Y )) = G(φ(X), φ(Y )). Let Kalg be the algebraic closure of K in
Cp. It is well-known (see [3, p. 106]) that every homomorphism from F to
G with coefficients in OKalg is defined over OM for some finite subextension
M/K of Kalg/K. In [10] Schmitz raised the question of whether every
homomorphism from F to G with coefficients in OCp is defined over the ring
of integers OL of some discretely valued subfield L of Cp. In this paper we
show that this is true as long as F andG both have height h <∞. If we allow
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F and G to have different (finite) heights, there can exist homomorphisms
from F to G with coefficients in OCp which are not defined over OM for any
finite extension M of K (see Example 3.8). Any such homomorphism must
have infinite kernel.

We now describe the contents of the various sections. In §1 we recall some
basic facts about power series in one variable over OCp . In §2 we extend
some results of Lubin [6] on formal group laws over OK to formal group
laws over OCp . In §3 we prove our main result, as described in the preceding
paragraph.

I would like to thank the referee for suggestions which led to several major
improvements in the exposition. I also thank David Schmitz for his careful
reading of an earlier version of the paper, and especially for pointing out a
fatal flaw in my first attempt to prove Theorem 3.2.

1. Power series over OCp

In this section we review the theory of power series over OCp , in particular
the Weierstrass preparation theorem and the theory of Newton polygons.
The material in this section is certainly well-known (see for instance [5]),
but we include it in order to make the paper more self-contained.

Let p be a prime, let Qp be the field of p-adic numbers, and let Q
alg
p be an

algebraic closure of Qp. The p-adic valuation vp on Qp extends uniquely to a
valuation on Q

alg
p , which we also denote by vp. Let Cp denote the completion

of Q
alg
p with respect to vp. Then Cp is an algebraically closed field [5, Th. 13,

p. 72]. For any subfield K of Cp we define the ring of integers of K to be
OK = {x ∈ K : vp(x) ≥ 0}. Then OK is a local ring with maximal ideal
MK = {x ∈ OK : vp(x) > 0}. We say that K is discretely valued if
vp(K×) = 1

e ·Z for some natural number e. The algebraic closure Kalg of K
in Cp is dense in Cp, and if K is closed in Cp then the action of Gal(Kalg/K)
on Kalg extends uniquely to a continuous action of Gal(Kalg/K) on Cp.

Let R be a commutative ring with 1 and let R[[X]] denote the ring of
formal power series in one variable over R. For φ(X), ψ(X) ∈ R[[X]] such
that ψ(0) = 0 we define the composition of φ with ψ to be (φ ◦ ψ)(X) =
φ(ψ(X)). We say φ(X) ∈ R[[X]] is an invertible power series if φ(X) =
a1X+a2X

2 + · · · with a1 ∈ R×. In this case there exists a unique φ−1(X) ∈
R[[X]] such that (φ ◦ φ−1)(X) = (φ−1 ◦ φ)(X) = X, and the series φ−1(X)
is itself invertible.

Since OCp is a valuation ring, power series over OCp can be studied using
Newton polygons and Newton copolygons. Let φ(X) = a0+a1X+a2X

2+· · ·
be a nonzero element of OCp [[X]]. For each i ≥ 0 with ai �= 0 let

(1.1) Qi = {(x, y) ∈ R2 : x ≥ i, y ≥ vp(ai)},
and defineC to be the convex hull of the union of the collection {Qi : ai �= 0}.
Let B denote the boundary of C and let m = min{i : ai �= 0}. By removing
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the half-line {(m, y) : y > vp(am)} from B we get the Newton polygon Nφ

of φ(X). If there exists k ≥ 0 such that vp(ak) ≤ vp(ai) for all i ≥ 0 then Nφ

is the union of finitely many line segments with negative slope and the half-
line {(x, vp(ad)) : x ≥ d}, where d = min{j : vp(aj) = vp(ak)}. Otherwise,
Nφ is the union of countably many line segments with negative slope. The
endpoints of the line segments which make up Nφ are called the vertices of
Nφ.

The valuation function Ψφ : (0,∞) → (0,∞) of φ(X) is defined by

(1.2) Ψφ(x) = min{vp(ai) + ix : i ≥ 0}.
Let ψ(X) ∈ OCp [[X]] be another nonzero power series. One easily verifies
that Ψφ·ψ = Ψφ + Ψψ, and that Ψφ◦ψ = Ψφ ◦ Ψψ if ψ(0) = 0. The graph
of Ψφ(x) is known as the Newton copolygon of φ, and is denoted N ∗

φ . The
Newton copolygon, like the Newton polygon, may be described as a union
of line segments and a half line. In fact there is a one-to-one correspon-
dence between the vertices of Nφ and the segments of N ∗

φ , and a one-to-one
correspondence between the finite-length segments of Nφ and the vertices
of N ∗

φ : The vertex (a, b) on Nφ corresponds to a segment (or half line) on
N ∗
φ with slope a and y-intercept b, and a segment on Nφ with slope −a and

y-intercept b corresponds to the vertex (a, b) on N ∗
φ .

Say that the power series

(1.3) φ(X) = a0 + a1X + a2X
2 + · · · ∈ OCp [[X]]

has Weierstrass degree d if ai ∈ MCp for 0 ≤ i < d and ad �∈ MCp . We
define a distinguished polynomial in OCp [X] to be a monic polynomial

(1.4) b0 + b1X + · · · + bd−1X
d−1 +Xd

such that bi ∈ MCp for 0 ≤ i < d.
Let K be a closed subfield of Cp. In order to study formal group law ho-

momorphisms defined over OK we need to formulate versions of the Weier-
strass preparation theorem for power series defined over OK . Since the field
K may not be discretely valued, the ring OK need not be Noetherian. The
following proposition is an analog of [1, 10.2.1] for power series over OK ,
and is proved by essentially the same method.

Proposition 1.1. Let K be a closed subfield of Cp and let φ(X), ψ(X) be
elements of OK [[X]] such that ψ(X) has Weierstrass degree d. Then there
exist unique q(X) ∈ OK [[X]] and r(X) ∈ OK [X] such that deg(r) < d and
φ(X) = ψ(X)q(X) + r(X).

Proof. Write ψ(X) = a0 +a1X+a2X
2 + · · · and choose c ∈ MK such that

ai ∈ cOK for 0 ≤ i < d. We will inductively construct a sequence (qn(X))
of power series and a sequence (rn(X)) of polynomials of degree < d such
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that

φ(X) ≡ ψ(X)qn(X) + rn(X) (mod cn)(1.5)

qn+1(X) ≡ qn(X) (mod cn)(1.6)

rn+1(X) ≡ rn(X) (mod cn)(1.7)

for all n ≥ 0. Clearly (1.5) holds for n = 0 with q0(X) = r0(X) = 0. Let
n ≥ 0 and assume (1.5) holds for n. Then

(1.8) φ(X) = ψ(X)qn(X) + rn(X) + cng(X)

for some g(X) ∈ OK [[X]]. Write g(X) = b0+b1X+b2X2+· · · and recall that
ψ(X) = a0+a1X+a2X

2+· · · with ad ∈ O×
K . Let ω(X) be the multiplicative

inverse of ad + ad+1X + ad+2X
2 + · · · . Then it is straightforward to verify

that

qn+1(X) = qn(X) + cnω(X) · (bd + bd+1X + bd+2X
2 + · · · )(1.9)

rn+1(X) = rn(X) + cn(b0 + b1X + · · · + bd−1X
d−1)(1.10)

satisfy

(1.11) φ(X) ≡ ψ(X)qn+1(X) + rn+1(X) (mod cn+1).

We now define q(X), r(X) to be the limits of the sequences (qn(X)), (rn(X))
with respect to the c-adic topology on OK [[X]]. Then q(X), r(X) satisfy
the conditions of the proposition.

To prove uniqueness suppose we also have φ(X) = ψ(X)q̃(X)+ r̃(X) with
deg(r̃) < d. Then

(1.12) ψ(X)(q(X) − q̃(X)) = r̃(X) − r(X).

If q(X) �= q̃(X) let cn be the largest power of c which divides q(X) − q̃(X).
Then q(X)− q̃(X) = cnh(X) for some h(X) ∈ OK [[X]] which is not divisible
by c. Since

(1.13) ψ(X) ≡ adX
d + ad+1X

d+1 + · · · (mod c)

with vp(ad) = 0 this implies that the left side of (1.12) has at least one term
of degree ≥ d whose coefficient is not divisible by cn+1. Since the right side
of (1.12) is a polynomial of degree < d, this is a contradiction. It follows
that q(X) = q̃(X), and hence that r(X) = r̃(X). �

The following corollary extends the Weierstrass preparation theorem to
power series with coefficients in the (possibly non-Noetherian) local ring OK

(cf. [1, 10.2.4]).

Corollary 1.2. Let K be a closed subfield of Cp and let φ(X) ∈ OK [[X]]
be a power series with Weierstrass degree d. Then there exist a unit power
series u(X) ∈ OK [[X]]× and a distinguished polynomial f(X) ∈ OK [X]
of degree d such that φ(X) = u(X)f(X) and f(X) has the same Newton
polygon as φ(X).
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Proof. This is basically the same as the proof of 10.2.4 in [1]: By Propo-
sition 1.1 there are q(X) ∈ OK [[X]] and r(X) ∈ OK [X] such that Xd =
φ(X)q(X) + r(X) and deg(r) < d. By reducing modulo MK [[X]] we see
that r(X) ∈ MK [X]. Hence f(X) := Xd − r(X) is a distinguished poly-
nomial. Since f(X) = φ(X)q(X), the Weierstrass degree of q(X) is 0, so
q(X) is a unit in OK [[X]]. Setting u(X) equal to the multiplicative inverse
of q(X) we get φ(X) = u(X)f(X), as required. Since u(X) is a unit power
series we have Ψu(x) = 0, and hence

(1.14) Ψφ(x) = Ψu(x) + Ψf (x) = Ψf (x)

for all x > 0. It follows that N ∗
φ = N ∗

f , and hence that Nφ = Nf . �

The following is another version of the Weierstrass preparation theorem
for power series over OCp . A similar result for power series over Cp with
constant term 1 is given in [5, Th. 14, p. 97].

Proposition 1.3. Let φ(X) ∈ OCp [[X]] and let (d, e) be a vertex on the
Newton polygon Nφ of φ. Then there exist a power series ψ(X) ∈ OCp [[X]]
and a distinguished polynomial f(X) ∈ OCp [X] of degree d with the following
properties:

(1) φ(X) = ψ(X)f(X).
(2) N l

f = {(x, y) ∈ Nf : x ≤ d} is the translation of N l
φ = {(x, y) ∈ Nφ :

x ≤ d} by (0,−e).
(3) Nψ is the translation of N r

φ = {(x, y) ∈ Nφ : x ≥ d} by (−d, 0).
Proof. Let −wl, −wr denote the slopes of the segments of Nφ immediately
to the left and right of (d, e); if (d, e) is the left endpoint of Nφ let wl = ∞.
Then wl > wr, so there exists b ∈ OCp such that wr < vp(b) < wl. Write
φ(X) = a0 + a1X + a2X

2 + · · · and set ρ(X) = φ(bX). Then the coefficient
of Xn in ρ(X) is bnan, and by the choice of b we have vp(bdad) < vp(bnan)
for all n �= d. Hence a−1

d b−dρ(X) is an element of OCp [[X]] with Weierstrass
degree d. By Corollary 1.2 there is a unit power series u(X) and a distin-
guished polynomial g(X) of degree d such that a−1

d b−dρ(X) = u(X)g(X).
Let ψ(X) = adu(b−1X) and f(X) = bdg(b−1X). Then ψ(X)f(X) = φ(X)
with f(X) ∈ OCp [X] a distinguished polynomial of degree d. We claim
that ψ(X) ∈ OCp [[X]]. By Proposition 1.1 there exist q(X) ∈ OCp [[X]] and
r(X) ∈ OCp [X] such that φ(X) = f(X)q(X)+ r(X) and deg(r) < d. By re-
placing X with bX we get ρ(X) = g(X)·bdq(bX)+r(bX). Since we also have
ρ(X) = g(X) ·adbdu(X), by the uniqueness statement in Proposition 1.1 we
get bdq(bX) = adb

du(X). Hence ψ(X) = adu(b−1X) = q(X) ∈ OCp [[X]].
It follows from Corollary 1.2 that g(X) has the same Newton polygon

as a−1
d b−dρ(X). Hence bdg(X) has the same Newton polygon as a−1

d ρ(X).
Therefore Ψbdg(x) = Ψa−1

d ρ(x) for all x > 0. Since f(X) = bdg(b−1X) and

a−1
d φ(X) = a−1

d ρ(b−1X) we get Ψf (x) = Ψa−1
d φ(x) for all x > vp(b). Since
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vp(b) < wl it follows from the correspondence between Newton polygons
and copolygons that N l

f = N l
a−1

d φ
. Hence N l

f is the translation of N l
φ by

vp(ad) = e units downwards, so property (2) holds.
It follows from the preceding paragraph that the rightmost finite segment

of Nf has slope −wl and right endpoint (d, 0). Therefore Ψf (x) = dx for
0 ≤ x ≤ wl. Since φ(X) = ψ(X)f(X) we have Ψψ(x) = Ψφ(x) − Ψf (x),
and hence Ψψ(x) = Ψφ(x) − dx for 0 ≤ x ≤ wl. Since ψ(X) = adu(b−1X)
with u(X) ∈ OCp [[X]]×, for x ≥ vp(b) we have Ψψ(x) = vp(ad) = e. Since
vp(b) < wl, these two facts determine Ψψ(x) and N ∗

ψ completely. We find
that the segments of N ∗

ψ have the same y-intercepts as the segments of N ∗
φ

which lie to the left of x = wl, but the slopes of the segments on N ∗
ψ are d

less than the slopes of the corresponding segments on N ∗
φ . It follows from

the correspondence between Newton polygons and Newton copolygons that
the vertices of Nψ are the translates of the vertices of N r

φ by d units to the
left. This gives property (3). �

Remark 1.4. In fact the series ψ(X) and the polynomial f(X) in the
conclusion of Proposition 1.3 are uniquely determined by φ(X) and (d, e).
Furthermore, if φ(X) ∈ OK [[X]] for some closed subfield K of Cp then ψ(X)
and f(X) have coefficients in K. We omit the proofs of these facts because
they are not needed for our applications.

Corollary 1.5. Let φ(X) ∈ XOCp [[X]] and let α be an element of MCp

which does not divide φ(X) in OCp [[X]]. Then there is β ∈ MCp such that
φ(β) = α.

Proof. The assumption on α implies that the Newton polygon of φ(X)−α
has at least one segment with negative slope. It follows from Proposition 1.3
that we can write φ(X) − α = ψ(X)f(X), with ψ(X) ∈ OCp [[X]] and
f(X) ∈ OCp [X] a distinguished polynomial of degree d ≥ 1. Let β ∈ MCp

be any root of f(X). Then φ(β) = α. �

2. Formal group laws

In this section we extend some well-known results in the theory of one-
parameter formal group laws over a p-adic integer ring to include group laws
and homomorphisms which are defined over OCp .

Let R be a commutative ring with 1. A (one-parameter) formal group
law over R is a power series F (X,Y ) ∈ R[[X,Y ]] such that F (X, 0) = X,
F (X,Y ) = F (Y,X), and F (F (X,Y ), Z) = F (X,F (Y,Z)). Let F (X,Y )
and G(X,Y ) be formal group laws over R and let S be a commutative ring
which contains R. A homomorphism from F to G over S is a power se-
ries φ(X) ∈ S[[X]] such that φ(0) = 0 and φ(F (X,Y )) = G(φ(X), φ(Y )).
Given homomorphisms φ(X) and ψ(X) from F to G, we define the sum
of φ and ψ to be (φ +G ψ)(X) = G(φ(X), ψ(X)). The series (φ +G ψ)(X)
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is itself a homomorphism from F to G. This operation makes the set of
S-homomorphisms from F to G into an abelian group, which we denote by
HomS(F,G). If φ(X) ∈ HomS(F,G) is invertible (with respect to composi-
tion of power series) we say that φ is an isomorphism from F to G. In this
case φ−1(X) is an isomorphism from G to F . A homomorphism from F to
itself is called an endomorphism of F . The group EndS(F ) = HomS(F,F )
of S-endomorphisms of F is a ring, with multiplication given by composition
of power series. For n ∈ Z we define [n]F (X) to be the image of n under the
canonical map from Z to EndS(F ). Thus for n positive [n]F (X) is the sum
in EndS(F ) of n copies of the identity map [1]F (X) = X.

Let F (X,Y ) be a formal group law over a field k of characteristic p > 0.
Then either [p]F (X) = 0 or [p]F (X) = ψ(Xph

) for some h ≥ 1 and ψ(X) ∈
k[[X]] such that ψ(0) �= 0 (see for instance [4, 18.3.1]). In the first case we
say that F has infinite height; in the second case we say that F has height
h. Suppose that R is a local ring with maximal ideal M whose residue
field R/M has characteristic p. Then the image F (X,Y ) of F (X,Y ) in
(R/M)[[X,Y ]] is a formal group law over R/M. We define the height of
F (X,Y ) to be equal to the height of F (X,Y ).

Let E be a finite extension of Qp and let R be an OE-algebra, with
structure map i : OE → R. A formal OE-module over R is defined to be a
pair (F, j), where F (X,Y ) is a formal group law over R and

(2.1) j : OE −→ EndR(F )

is a ring homomorphism with j(c) = i(c)X + a2X
2 + · · · for every c ∈ OE .

We write j(c) = [c]F (X). The height of the formal OE-module (F, j) is
defined to be h/[E : Qp], where h is the height of the the formal group law
F . If h <∞ then the height of (F, j) is a positive integer [4, 21.8.2]. Suppose
R is a complete local ring with maximal ideal M whose residue field R/M
has characteristic p. Then R is a Zp-algebra and the map n 
→ [n]F (X) can
be uniquely extended to a ring homomorphism j : Zp → EndR(F ). The pair
(F, j) is then a formal Zp-module.

Let F (X,Y ) be a formal group law over OCp . We define the point group
F (MCp) of F to be the set MCp with the operation α ∗ β = F (α, β).
Any formal group law homomorphism φ : F → G over OCp induces a
group homomorphism α 
→ φ(α) from F (MCp) to G(MCp). The kernel
of φ(X) is defined to be the kernel of the associated homomorphism of point
groups. Suppose F (X,Y ) has height h < ∞. Then ker([pn]F (X)) is a
free (Z/pnZ)-module of rank h and α 
→ [p]F (α) gives a surjective homo-
morphism from ker([pn+1]F (X)) to ker([pn]F (X)). By taking the projective
limit of ker([pn]F (X)) for n ≥ 1 we get the Tate module Tp(F ), which is a
free Zp-module of rank h. If F (X,Y ) is defined over OK for some closed
subfield K of Cp then Gal(Kalg/K) acts on ker([pn]F (X)) and on Tp(F ).

Let 1 ≤ h < ∞. Since Qp is a locally compact field it follows from
Krasner’s Lemma that there are only finitely many subextensions L/Qp of
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Q
alg
p /Qp such that [L : Qp] ≤ h. Let Jh denote the compositum of all such

fields L. Then Jh is a finite extension of Qp.

Lemma 2.1. Let F (X,Y ) be a formal group law of height h <∞ over OCp

and let φ(X) = a1X + a2X
2 + · · · ∈ OCp [[X]] be an endomorphism of F .

Then a1 ∈ OJh
.

Proof. Let Tp(φ) denote the endomorphism of Tp(F ) induced by φ(X) and
let g(X) be the minimum polynomial of Tp(φ) over Qp. Then g(X) ∈ Zp[X],
deg(g) ≤ h, and g(φ) ∈ EndOCp

(F ) annihilates Tp(F ). Hence for n ≥ 1 the
pn-torsion points of F lie in the kernel of g(φ). Let f(X) =

∏
α(α − X),

where the product is taken over α ∈ ker([pn]F (X)). Then f(X) divides g(φ)
in OCp [[X]]. It follows that the product of the nonzero pn-torsion points of F
divides g(a1), the coefficient of X in g(φ). Since the sum of the p-valuations
of the nonzero pn-torsion points of F is n, we get pn | g(a1) for every n ≥ 1.
Thus g(a1) = 0. Since deg(g) ≤ h, this implies a1 ∈ Jh ∩ OCp = OJh

. �
Proposition 2.2. Let K be a subfield of Cp, let F (X,Y ) be a formal group
law of height h < ∞ over OK , and let φ(X) ∈ EndOCp

(F ). Then φ(X) has
coefficients in OM , where M = KJh.

Proof. Let l(X) = X + c2X
2 + c3X

3 + · · · ∈ K[[X]] be the logarithm of F .
Thus l(X) is an isomorphism over K from F (X,Y ) to the additive formal
group law Ga(X,Y ) = X+Y (see [4, 5.4.4]). Since φ(X) = a1X+a2X

2+· · ·
is an endomorphism of F with coefficients in OK , the series l(φ(l−1(X))) ∈
K[[X]] is an endomorphism of Ga. Since K is a field of characteristic 0,
every endomorphism of Ga over K is of the form i(X) = bX for some
b ∈ K (see for instance Corollary 2 on p. 97 of [3]). Since the coefficient
of X in l(φ(l−1(X))) is a1 we get l(φ(l−1(X))) = a1X. By Lemma 2.1
we have a1 ∈ Jh. It follows that φ(X) = l−1(a1l(X)) has coefficients in
OCp ∩M = OM . �
Remark 2.3. It is proved in [3, IV §1, Prop. 4] that if K is a closed dis-
cretely valued subfield of Cp and F (X,Y ) is formal group law defined over
OK then the conclusion to Proposition 2.2 is valid with Jh replaced by the
compositum of the extensions L/Qp such that [L : Qp] divides h. One could
obtain this improved version of Proposition 2.2 for general K ⊂ Cp using
the fact (stated without proof in [7, 2.3.0]) that the reduction map from
EndOCp

(F ) to End
F
alg
p

(F ) is injective.

Proposition 2.4. Let F , G be formal group laws over OCp such that F has
height h < ∞, and let φ : F → G be a nonzero homomorphism over OCp .
Then there is no c ∈ MCp such that c divides every coefficient of φ(X).

Proof. Write [p]F (X) = a1X+a2X
2 + · · · and choose 1 ≤ j < ph such that

vp(aj) ≤ vp(ai) for 1 ≤ i < ph. Since a1 = p and F (X,Y ) has height h we
have 0 < vp(aj) ≤ 1. Let S be the set of elements of OCp which divide φ(X)
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in OCp [[X]], and set m = sup{vp(a) : a ∈ S}. If m > 0 then there exists
c ∈ OCp such that 1

2m < vp(c) < m and vp(c) > m−vp(aj). Since vp(c) < m

we have φ(X) = cψ(X) for some ψ(X) = b1X+b2X2+· · · ∈ OCp [[X]]. Since
m− vp(c) < vp(aj) and m − vp(c) < vp(c), the bi do not all lie in the ideal
I = (c, aj) of OCp . Let n be the smallest positive integer such that bn �∈ I.
Since φ([p]F (X)) = [p]G(φ(X)) we have

(2.2) cψ([p]F (X)) = [p]G(cψ(X)).

The coefficients on the right side of (2.2) all lie in cI. Since

ψ(X) ≡ bnX
n + · · · (mod I)(2.3)

[p]F (X) ≡ aphXph
+ · · · (mod I)(2.4)

with aph ∈ O×
Cp

, the coefficient of Xnph
on the left side of (2.2) does not lie

in cI. This is a contradiction, so we must have m = 0. Hence φ(X) is not
divisible by any element of MCp . �

Corollary 2.5. Let F , G be formal group laws over OCp such that F has
finite height, and let φ : F → G be a homomorphism defined over OCp which
has trivial kernel. Then φ(X) is an isomorphism.

Proof. Since φ(X) = a1X + a2X
2 + · · · is nonzero and OCp has charac-

teristic 0 we have a1 �= 0. If φ(X) is not an isomorphism then vp(a1) > 0.
Using Proposition 2.4 we see that φ(X) is not divisible by any element of
MCp . Therefore the Newton polygon of φ(X) has at least one segment
with negative slope. Hence by Proposition 1.3 we have φ(X) = ψ(X)f(X)
with ψ(X) ∈ OCp [[X]] and f(X) ∈ OCp [X] a distinguished polynomial of
degree d > 1. It follows that φ(X) has a nontrivial zero in MCp , contrary
to assumption. Therefore φ : F → G is an isomorphism. �

The following proposition is an apparent generalization of Theorem 1.4
in [6]. The result presented here applies to homomorphisms φ(X) defined
over OCp , rather than over the ring of integers of a finite extension of K
as in [6]. However, it will follow from Theorem 3.2 that every φ(X) which
satisfies the hypotheses of Proposition 2.6 also satisfies the hypotheses of [6,
Th. 1.4]. The more general statement given below is needed for the proof of
Theorem 3.2.

Proposition 2.6. Let K be a discretely valued subfield of Cp and let F , G
be formal group laws defined over OK such that F has height h < ∞. Let
φ : F → G be a homomorphism defined over OCp such that W = ker(φ)
is finite, and let L be the closure of K(W ) in Cp. Then L is discretely
valued and there is a formal group law G′ defined over OL, a homomorphism
φ′ : F → G′ defined over OL, and an isomorphism i : G′ → G defined over
OCp such that i ◦ φ′ = φ. Furthermore, G and G′ both have height h.
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Proof. Since W is a finite subgroup of F (MCp) we have W ≤ ker([pn]F (X))
for some n ≥ 0. By the Weierstrass preparation theorem the elements of
ker([pn]F (X)) are the roots of a distinguished polynomial with coefficients
in OK . Hence [K(W ) : K] < ∞, so K(W ) is discretely valued. It follows
that L is discretely valued as well.

By [6, Th. 1.4] there is a formal group law G′ defined over OL such that
the power series

(2.5) φ′(X) =
∏
γ∈W

F (X, γ) ∈ OL[[X]]

is a homomorphism from F to G′ with kernel W . By considering the reduc-
tion modulo MCp of the formula φ′ ◦ [p]F = [p]G′ ◦φ′ we see that G′ has the
same height h as F . Set ξ = φ′(X) and A0 = OK [[ξ]] ⊂ OL[[X]]. Then by
[6, Lemma 1.3] the power series

(2.6) Q(T ) = −ξ +
∏
γ∈W

F (T, γ)

lies in A0[[T ]]. Since A0 is a complete Noetherian local ring, by the general
form of the Weierstrass preparation theorem [1, 10.2.4] we have Q(T ) =
U(T )H(T ), where U(T ) ∈ A0[[T ]]× and H(T ) ∈ A0[T ] has degree |W |.

We now construct i(X) by imitating the proof of [6, Lemma 1.3]. Set A =
OCp [[ξ]], B = OCp [[X]], K = Frac(A), and L = Frac(B). Then L = K(X)
and X is a root of H(T ), so we have [L : K] ≤ deg(H) = |W |. On the other
hand, for γ ∈ W and Δ(X) ∈ L define (γ · Δ)(X) = Δ(F (X, γ)); the right
side of this equation makes sense because vp(γ) > 0. This gives a faithful
Cp-linear action of W on L. By (2.5) we have γ · ξ = ξ for every γ ∈ W .
Thus K is contained in the fixed field LW of W , so we have [L : K] ≥ |W |.
Hence [L : K] = |W | and K = LW . Since B is free of rank |W | over A, with
basis {1,X,X2, . . . ,X |W |−1}, we have A = K ∩ B = LW ∩ B = BW . Since
φ(X) ∈ BW = A there is i(X) ∈ OCp [[X]] such that φ(X) = i(ξ). Thus
φ = i ◦ φ′.

Since φ′ : F → G′ and φ : F → G are formal group law homomorphisms,
i(X) is a homomorphism from G′ to G. If α ∈ ker(i) then by Corollary 1.5
there is β ∈ MCp such that φ′(β) = α. Hence φ(β) = i(φ′(β)) = i(α) = 0,
so β ∈ W . Since ker φ′ = W we get α = φ′(β) = 0, and hence ker(i) = {0}.
It follows from Corollary 2.5 that i(X) is an isomorphism. Since G′ has the
same height h as F and G is isomorphic to G′ over OCp we deduce that G
also has height h. �

3. Homomorphisms of formal group laws

Let K be a discretely valued subfield of Cp and let F , G be formal group
laws over OK with the same finite height. In this section we prove that there
is a closed discretely valued subfieldM of Cp such that every homomorphism
from F to G is defined over OM .
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To begin we assume that K is closed in Cp as well as discretely valued.
Since OK is an integral domain of characteristic 0 we may identify EndOK

(F )
with a subring of OK using the map DF : EndOK

(F ) → OK which maps
φ(X) = a1X + a2X

2 + · · · onto DF (φ) = a1. If DF (ψ) = b we write
ψ(X) = [b]F (X). Let A be a Zp-subalgebra of EndOK

(F ); then DF identifies
A with a subring of OK . Hence E = Frac(A) is a subfield of K which
is a finite extension of Qp. The Tate module Tp(F ) is a module over A,
and Vp(F ) = Tp(F ) ⊗Zp Qp is a vector space over E. Let Kalg be the
algebraic closure of K in Cp, and let Kab/K, Knr/K be the maximum
abelian subextension and the maximum unramified subextension of Kalg/K.
The action of Galois on Vp(F ) gives a representation

(3.1) ρF : Gal(Kalg/K) −→ AutE(Vp(F )).

For σ ∈ Gal(Kalg/Knr) let σ̃ denote the restriction of σ to Gal(Eab/Enr),
and let u

eσ be the element of O×
E which corresponds to σ̃ under the reciprocity

isomorphism Gal(Eab/Enr) ∼= O×
E of local class field theory. Then the map

(3.2) ψKE : Gal(Kalg/Knr) −→ O×
E

defined by ψKE (σ) = u
eσ is a homomorphism.

The following is a slight generalization of a theorem proved by Strauch
[11, Th. 3.3] in the case A = OE . The case A = Zp was proved by Raynaud
[9, Prop. 4.2].

Proposition 3.1. Let K be a closed discretely valued subfield of Cp and
let F (X,Y ) be a formal group law over OK with finite height. Let A be a
Zp-subalgebra of EndOK

(F ), set E = Frac(A), and let

ρF : Gal(Kalg/K) −→ AutE(Vp(F ))

be the Galois representation associated to F . Then det(ρF (σ)) = ψKE (σ)−1

for every σ ∈ Gal(Kalg/Knr), where ψKE is induced by the class field theory
isomorphism Gal(Eab/Enr) ∼= O×

E .

Proof. By [6, p. 301] there exist a formal OE-module (F ′, j′) and a nonzero
homomorphism π : F → F ′, both defined over OK . The map π induces a
Gal(Kalg/K)-equivariant Zp-module homomorphism

(3.3) Tp(π) : Tp(F ) −→ Tp(F ′)

which is one-to-one with finite cokernel. Thus the induced map

(3.4) Vp(π) : Vp(F ) −→ Vp(F ′)

is a Gal(Kalg/K)-equivariant isomorphism which is E-linear since

(3.5) π ◦ [a]F = [a]F ′ ◦ π
for a ∈ A. It follows that det(ρF (σ)) = det(ρF ′(σ)) for σ ∈ Gal(Kalg/K).
Since (F ′, j′) is a formal OE-module, by Strauch’s result [11, Th. 3.3] we have
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det(ρF ′(σ)) = ψKE (σ)−1 for every σ ∈ Gal(Kalg/Knr). Hence det(ρF (σ)) =
ψKE (σ)−1 for σ ∈ Gal(Kalg/Knr). �

We now use Propositions 2.6 and 3.1 to prove our main result.

Theorem 3.2. Let K be a discretely valued subfield of Cp, let F , G be formal
group laws over OK such that F has height h < ∞, and let φ : F → G be a
homomorphism over OCp with finite kernel. Then there is a closed discretely
valued subfield M of Cp such that φ(X) has coefficients in OM .

Proof. Let W = ker(φ) and let L be the closure of K(W ) in Cp. Then
by Proposition 2.6 there is a formal group law G′(X,Y ) over OL, a homo-
morphism φ′ : F → G′ over OL, and an isomorphism i : G′ → G over OCp

such that i ◦ φ′ = φ. Furthermore, L is discretely valued and G, G′ both
have height h. Recall that Jh is the compositum of all the extensions of Qp

of degree ≤ h, and let N be the closure in Cp of the maximum unramified
extension of LJh. Since Jh/Qp is finite, N is discretely valued. To prove the
theorem it suffices to show that there is a finite extension M/N such that i
is defined over OM .

Let A = {a1 : a1X + a2X
2 + · · · ∈ EndOCp

(G)} be the image of DG, and
let E be the field of fractions of A. By Lemma 2.1 we have A ⊂ OJh

, which
implies that E is contained in N . Therefore for σ ∈ Gal(Kalg/N) we have
iσ ◦ i−1 ∈ AutOCp

(G) ∼= A×, and hence iσ ◦ i−1 = [aσ]G for some aσ ∈ A×.
Let Tp(i) : Tp(G′) → Tp(G) be the isomorphism induced by i. Then for
v ∈ Tp(G′) we have

(3.6) σ(Tp(i)(v)) = Tp(iσ)(σ · v) = Tp([aσ]G ◦ i)(σ · v) = aσTp(i)(σ · v).
Let

ρG : Gal(Kalg/N) −→ AutE(Vp(G))(3.7)

ρG′ : Gal(Kalg/N) −→ AutE(Vp(G′))(3.8)

be the representations associated to G and G′. It follows from (3.6) that

(3.9) ρG(σ) ◦ Tp(i) = aσTp(i) ◦ ρG′(σ).

Since Tp(i) induces an isomorphism Vp(i) : Vp(G′) → Vp(G) we get

(3.10) det(ρG(σ)) = det(aσρG′(σ)) = adσ det(ρG′(σ)),

where d = dimE(Vp(G′)) = h/[E : Qp]. Hence by Proposition 3.1 we have
adσ = 1 for every σ ∈ Gal(Kalg/N). One easily verifies that the map

(3.11) λ : Gal(Kalg/N) −→ A×

defined by λ(σ) = aσ is a continuous homomorphism. Hence the fixed field
M of the kernel of λ is an extension of N of degree ≤ d. Since iσ(X) = i(X)
for all σ ∈ Gal(Kalg/M), the coefficients of i(X) lie in the subfield of Cp

fixed by Gal(Kalg/M). Since the completion of Kalg is Cp, it follows from
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Ax’s theorem [2] that the fixed field of Gal(Kalg/M) acting on Cp is M .
Hence i(X) has coefficients in M ∩ OCp = OM . �

Remark 3.3. It is well-known that there need not exist a finite extension
M/K such that the coefficients of φ(X) lie in OM . Indeed, let K be a finite
extension of Qp, let Knr ⊂ Cp be the maximum unramified extension of K,
and let N be the closure in Cp of Knr. Let F be a formal group law over OK

and let α(X) be an automorphism of F which is defined over OK and has infi-
nite order. Then by imitating the proof of [3, III §3, Prop. 3] we see that there
is an invertible power series φ(X) ∈ ON [[X]] such that φσ(X) = φ(α(X)),
where σ is the continuous automorphism of N induced by the Frobenius
element of Gal(Knr/K). Define G(X,Y ) = φ(F (φ−1(X), φ−1(Y ))). Then
G(X,Y ) is a formal group law over OK and φ(X) ∈ ON [[X]] is an iso-
morphism from F to G. But φ(X) is not defined over OM for any finite
extension M of K.

We now consider the properties of homomorphisms φ : F → G over OCp

with infinite kernel. In Example 3.8 we will construct an example of such a
homomorphism.

Lemma 3.4. Let F , G be formal group laws of finite height over OCp and
let φ : F → G be a nonzero homomorphism defined over OCp . Then for
every α ∈ ker(φ) there is n ≥ 0 such that [pn]F (α) = 0.

Proof. Let α ∈ ker(φ). For any β ∈ MCp we have

(3.12) vp([p]F (β)) ≥ min{vp(β) + 1, 2vp(β)}.
Hence if α is not pn-torsion for any n ≥ 0 then (vp([pn]F (α)))n≥0 is a se-
quence of rational numbers which increases without bound. By considering
the Newton polygon of φ(X) we see that the valuations of the nonzero el-
ements of ker(φ) are bounded above. Therefore for n sufficiently large we
have [pn]F (α) �∈ ker(φ), and hence α �∈ ker(φ). This is a contradiction, so
[pn]F (α) = 0 for some n ≥ 0. �

Proposition 3.5. Let F , G be formal group laws over OCp whose heights
hF , hG are finite. Suppose there exists a nonzero homomorphism φ : F → G
over OCp. Then hF ≥ hG. Furthermore, if ker(φ) is infinite then hF > hG.

Proof. Let F (MCp)tor, G(MCp)tor denote the torsion subgroups of the
point groups F (MCp), G(MCp). We claim that φ maps F (MCp)tor onto
G(MCp)tor. Let α ∈ G(MCp)tor; then [pn]G(α) = 0 for some n ≥ 0.
It follows from Proposition 2.4 that α does not divide φ(X) in OCp [[X]].
Therefore by Corollary 1.5 there is β ∈ MCp such that φ(β) = α. Hence

(3.13) φ([pn]F (β)) = [pn]G(φ(β)) = [pn]G(α) = 0,

so we have [pn]F (β) ∈ ker(φ). It follows from Lemma 3.4 that [pn]F (β)
is pm-torsion for some m ≥ 0. Therefore β is pm+n-torsion, and hence
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β ∈ F (MCp)tor. By Lemma 3.4 we have ker(φ) ⊂ F (MCp)tor, and hence
G(MCp)tor ∼= F (MCp)tor/ ker(φ). Since

(3.14) F (MCp)
tor ∼= (Qp/Zp)hF , G(MCp)

tor ∼= (Qp/Zp)hG ,

we get hF ≥ hG, and hF > hG if ker(φ) is infinite. �
Remark 3.6. Assume ker(φ) is infinite and write φ(X) = a1X+a2X

2+· · · .
It follows from Proposition 2.4 that there is no c ∈ MCp such that ai ∈ cOCp

for every i ≥ 1. On the other hand, if ai ∈ O×
Cp

for some i then φ(X) has
finite Weierstrass degree, and hence finite kernel, contrary to assumption.
Therefore the coefficients a1, a2, . . . of φ(X) generate the ideal MCp in OCp ,
and the Newton polygon of φ(X) is asymptotic to the x-axis.

Using Proposition 3.5 we get a stronger version of Theorem 3.2.

Corollary 3.7. Let K be a discretely valued subfield of Cp and let F , G
be formal group laws over OK with the same finite height h. Then there
is a closed discretely valued subfield M of Cp such that every element of
HomOCp

(F,G) has coefficients in OM .

Proof. Let N be the closure in Cp of the maximum unramified exten-
sion of K. It follows from Proposition 3.5 and Theorem 3.2 that for ev-
ery φ(X) ∈ HomOCp

(F,G) there is a finite extension Mφ/N such that
φ(X) ∈ OMφ

[[X]]. Hence by [3, IV §1, Prop. 3] the reduction map from
HomOCp

(F,G) to Hom
F
alg
p

(F,G) is injective. Since Hom
F
alg
p

(F,G) is a free

Zp-module of rank h2 [3, IV §1, Lemma1] it follows that HomOCp
(F,G) is a

free Zp-module of finite rank. For a Zp-basis {φ1, . . . , φr} of HomOCp
(F,G),

let M be the compositum of the fields Mφ1 , . . . ,Mφr . Then M is a closed
discretely valued subfield of Cp and every element of HomOCp

(F,G) has
coefficients in OM . �

We conclude by giving an example of a nonzero homomorphism whose
kernel is infinite. We first recall some definitions. Let K be a subfield
of Cp and let F (X,Y ) be a formal group law of height h < ∞ over OK .
The pn-torsion group scheme F (pn) of F is defined to be the affine scheme
Spec(OK [[X]]/([pn]F (X))) with the group operation induced by F (X,Y ).
Thus F (pn) is a connected group scheme of order pnh over OK . The p-
divisible group F (p∞) of F is defined to be the injective system of the
pn-torsion group schemes F (pn) for n ≥ 1.

I thank Jonathan Lubin for pointing out the following example to me.

Example 3.8. Let K be a discretely valued subfield of Cp and let E be an
elliptic curve over OK whose special fiber E ⊗ (OK/MK) is supersingular.
By choosing a parameter we get a formal group law Ê for E. Since E has
supersingular reduction, the pn-torsion subgroup scheme Ê(pn) of Ê can be
identified with the pn-torsion subgroup scheme E(pn) of E. Hence the Weil
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pairing on E(pn) induces a nondegenerate bilinear map of group schemes
over OK

(3.15) ( , )pn : Ê(pn) × Ê(pn) −→ Gm(pn),

where Gm(pn) is the pn-torsion subgroup scheme of the multiplicative formal
group law Gm. Let Qn ∈ Ê(MCp) be a point of order pn. Then

(3.16) (Qn, ∗)pn : Ê(pn) −→ Gm(pn)

is a surjective group scheme homomorphism defined over OCp . By choosing
a sequence (Qn)n≥1 of points of order pn such that Qn = [p]E(Qn+1) for
all n ≥ 1 we get a surjective homomorphism φp : Ê(p∞) → Gm(p∞) of
p-divisible groups over OCp .

Let R be a complete Noetherian ring whose residue field has characteristic
p. In [12, Prop. 1] Tate showed that the functor F 
→ F (p∞) gives an
equivalence from the category of formal group laws of finite height over R
to the category of connected p-divisible groups over R. The proof that the
induced map from HomR(F,G) to HomR(F (p∞), G(p∞)) is a bijection is
valid for non-Noetherian rings R as long as there is a Noetherian subring R0

of R such that the formal group laws F (X,Y ) and G(X,Y ) are both defined
over R0. Hence we can apply Tate’s result to show that φp is induced by a
nonzero homomorphism φ : Ê → Gm which is defined over OCp . The kernel
of φ is the infinite subgroup of Ê(MCp) generated by the set {Qn : n ≥ 1}.
It follows from Remark 3.6 that φ(X) is not defined over any discretely
valued subfield of Cp. Therefore the conclusion to Theorem 3.2 does not
hold if we allow ker(φ) to be infinite.
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