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Dualities in equivariant Kasparov theory

Heath Emerson and Ralf Meyer

Abstract. We study several duality isomorphisms between equivariant
bivariant K-theory groups, generalising Kasparov’s first and second
Poincaré duality isomorphisms.

We use the first duality to define an equivariant generalisation of
Lefschetz invariants of generalised self-maps. The second duality is
related to the description of bivariant Kasparov theory for commutative
C∗-algebras by families of elliptic pseudodifferential operators. For many
groupoids, both dualities apply to a universal proper G-space. This is a
basic requirement for the dual Dirac method and allows us to describe
the Baum–Connes assembly map via localisation of categories.
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1. Introduction

The K-homology of a smooth compact manifold M is naturally isomorphic
to the (compactly supported) K-theory of its tangent bundle TM via the
map that assigns to a K-theory class on TM an elliptic pseudodifferential
operator with appropriate symbol. Dually, the K-theory of M is isomorphic
to the (locally finite) K-homology of TM . Both statements have bivariant
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generalisations, which identify Kasparov’s group KK∗
(
C(M1),C(M2)

)
for

two smooth compact manifolds firstly with K∗(TM1 ×M2), secondly with
Klf
∗(TM2 ×M1) := KK∗(C0(TM2 ×M1),C).
In this article, we consider substantial generalisations of these two duality

isomorphisms in which we replace smooth compact manifolds by more general
spaces and work equivariantly with respect to actions of locally compact
groups or groupoids. Furthermore, we get duality theorems in twisted
bivariant K-theory by allowing locally trivial C∗-algebra bundles. Here we
mainly develop the abstract theory behind the duality isomorphisms. Some
applications are explained in [11, 13, 14].

Outside the world of manifolds, duality statements require a substitute for
the tangent space. Since there is no canonical choice, we follow an axiomatic
approach, first finding necessary and sufficient conditions for the duality
isomorphisms and then verifying them for the tangent space of a smooth
manifold, and for the manifold itself if it is endowed with an equivariant
Spinc-structure. We began this study in [11] with the notions of abstract
duals and Kasparov duals, which are related to the first duality isomorphism
in the untwisted case. Here we also examine duality isomorphisms for non-
trivial bundles of C∗-algebras (this contains computations in [9] related to
duality in twisted bivariant K-theory) and consider the second duality iso-
morphism, both twisted and untwisted. Moreover, we show that both duality
isomorphisms become equivalent in the compact case. The second duality
isomorphism is used in an essential way in [14] to develop a topological model
of equivariant Kasparov theory that refines the theory of correspondences due
to Alain Connes and Georges Skandalis in [7], and to Paul Baum (see [1]).
Both dualities together imply the equivalence of the construction of the
Baum–Connes assembly map in [2] with the localisation approach of [25].

Our motivation for developing duality was to define and explore a new
homotopy invariant of a space equipped with an action of a group or groupoid
called the Lefschetz map. Duality is essential to its definition, while its
invariance properties rely on a careful analysis of the functoriality of duals.
In a forthcoming article, we will compute the Lefschetz map in a systematic
way using the topological model of KK-theory in [14].

Jean-Louis Tu also formulates similar duality isomorphisms in [31], but
there are some technical issues that he disregards, so that assumptions are
missing in his theorems. In particular, the two duality isomorphisms require
two different variants of the local dual Dirac element. In practice, these are
often very closely related, as we shall explain, but this only means that both
have the same source, not that one could be obtained from the other.

We now explain the contents of this article in more detail. Let G be a
locally compact Hausdorff groupoid with Haar system (see [28]), let Z denote
its object space. Let X be a locally compact, proper G-space. An abstract
dual for X of dimension n ∈ Z consists of a G-C∗-algebra P and a class

Θ ∈ RKKG
n(X; C0(Z),P) := KKGnX

n (C0(X),C0(X)⊗Z P)
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such that the Kasparov product with Θ induces an isomorphism

(1.1) KKG
∗ (P ⊗Z A,B)

∼=−→ RKKG
∗+n(X;A,B)

for all G-C∗-algebras A and B. This isomorphism is the first Poincaré duality
isomorphism and is already studied in [11]. We may get rid of the dimension n
by suspending P, but allowing n 6= 0 is useful for many examples.

Let X be a bundle of smooth manifolds over Z with a proper and fibrewise
smooth action of G, and let TX be its vertical tangent bundle. Then
P := C0(TX) with a suitable Θ is an abstract dual for X. Except for the
generalisation to bundles of smooth manifolds, this result is already due
to Gennadi Kasparov [17, §4]. More generally, if X is a bundle of smooth
manifolds with boundary, then P := C0(TX◦) is an abstract dual for X,
where X◦ is obtained from X by attaching an open collar on the boundary.
A more complicated construction in [11] provides abstract duals for simplicial
complexes (here G is a group acting simplicially on X). With additional
effort, it should be possible to enhance the duality isomorphism in [8] to an
abstract dual for stratified pseudomanifolds.

To understand the meaning of (1.1), we specialise to the case where Z is
a point, so that G is a group, X is a smooth manifold with boundary with a
proper, smooth action of G, and A = B = C. In this case, we will establish
a duality isomorphism with P := C0(TX◦). The right-hand side in the first
duality isomorphism (1.1) is the G-equivariant representable K-theory of X,

RK∗
G(X) := RKKG

∗+n(X; C,C) := KKGnX
∗+n

(
C0(X),C0(X)

)
(see [12]). The left-hand side of (1.1) is the locally finite G-equivariant
K-homology of TX◦,

KG,lf
∗ (TX◦) := KKG

∗ (C0(TX◦),C),

where locally finite means finite on G-compact subsets in our equivariant
setting. Recall that the G-equivariant K-homology of TX◦ is the inductive
limit

KG
∗ (TX◦) := lim−→

Y

KKG
∗ (C0(Y ),C),

where Y runs through the directed set of G-compact subsets of TX◦. We
also establish a variant of (1.1) that specialises to an isomorphism

KG
∗ (TX◦) ∼= K∗

G(X)

between the G-equivariant K-homology of TX◦ and the G-equivariant K-theo-
ry of X (homotopy theorists woud say “K-theory with G-compact support”).

If the anchor map pX : X → Z is proper, then (1.1) is equivalent to an
isomorphism

KKG
∗ (P ⊗Z A,B)

∼=−→ KKG
∗+n(A,C0(X)⊗Z B),
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that is, to a duality between C0(X) and P in the tensor category KKG (see
Section 5). But in general, abstract duals cannot be defined purely inside
KKG .

Abstract duals are unique up to KKG-equivalence and covariantly functorial
for continuous, not-necessarily-proper G-equivariant maps: if P and P ′ are
abstract duals for two G-spaces X and X ′, then a continuous G-equivariant
map f : X → X ′ induces a class αf ∈ KKG

∗ (P,P ′), and f 7→ αf is functorial
in a suitable sense.

For instance, if X is a universal proper G-space and X ′ = Z, then the
canonical projection X → Z induces a class αf ∈ KKG

0

(
P,C0(Z)

)
. This

plays the role of the Dirac morphism of [25] — in the group case, it is the
Dirac morphism — which is an important ingredient in the description of
the Baum–Connes assembly map via localisation of categories. This example
shows that abstract duals allow us to translate constructions from homotopy
theory to noncommutative topology.

In contrast, C0(X) is contravariantly functorial, and only for proper maps.
Thus the map from the classifying space to a point does not induce anything
on C0(X).

An abstract dual for a G-space X gives rise to a certain grading preserving
group homomorphism

(1.2) Lef : RKKG
∗
(
X; C0(X),C0(Z)

)
→ KKG

∗
(
C0(X),C0(Z)

)
.

This is the Lefschetz map alluded to above. The functoriality of duals implies
that it only depends on the proper G-homotopy type of X. There is a natural
map

KKG
∗
(
C0(X),C0(X)

)
→ RKKG

∗
(
X; C0(X),C0(Z)

)
which sends the class of a G-equivariant proper map ϕ : X → X to its graph

ϕ̃ : X → X ×Z X, ϕ̃(x) := (x, ϕ(x)).

Since the latter map is proper even if the original map is not, we can think of
the domain of Lef as not-necessarily-proper KK-self-maps of X. Combining
both maps, we thus get a map

Lef : KKG
∗
(
C0(X),C0(X)

)
→ KKG

∗ (C0(X),C(Z)).

The Euler characteristic of X already defined in [11] is the equivariant
Lefschetz invariant of the identity map on X. With the specified domain (1.2),
the map Lef is split surjective, so that Lefschetz invariants can be arbitrarily
complicated. Usually, the Lefschetz invariants of ordinary self-maps are quite
special and can be represented by ∗-homomorphisms to the C∗-algebra of
compact operators on some graded G-Hilbert space (see [13]).

In many examples of abstract duals, the G-C∗-algebra P has the additional
structure of a GnX-C∗-algebra. In this case, we arrive at explicit conditions
for (1.1) to be an isomorphism, which also involve explicit formulas for the
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inverse of the duality isomorphism (1.1) and for the Lefschetz map (see
Theorem 4.6 and Equation (4.27)). These involve the tensor product functor

TP : RKKG
∗ (X;A,B) → KKG

∗ (P ⊗Z A,P ⊗Z B)

and a class D ∈ KKG
−n

(
P,C0(Z)

)
which is determined uniquely by Θ. Since

the conditions for the duality isomorphism (1.1) are already formulated
implicitly in [17, §4], we call this situation Kasparov duality.

The formula for the inverse isomorphism to (1.1) makes sense in greater
generality: for any G nX-C∗-algebra A, we get a canonical map

(1.3) KKGnX
∗ (A,C0(X)⊗Z B) → KKG

∗ (A⊗X P, B).

This is a more general situation because A is allowed to be a nontrivial
bundle over X. If A is a trivial bundle C0(X,A0), then A⊗X P ∼= A0 ⊗ P
and the isomorphism in (1.3) is the inverse map to (1.1). It is shown in [9]
that the map (1.3) is an isomorphism in some cases, but not always; this
depends on whether or not the bundle A is locally trivial in a sufficiently
strong (equivariant) sense. Theorem 4.42 provides a necessary and sufficient
condition for (1.3) to be an isomorphism.

We verify these conditions for the tangent duality if X is a bundle of
smooth manifolds with boundary and the bundle A is strongly locally trivial.
Let A be a continuous trace algebra with spectrum X and a sufficiently nice
G-action, so that duality applies, and let B = C0(Z) in (1.3). Let A∗ be the
inverse of A in the G-equivariant Brauer group of X, that is, A ⊗X A∗ is
G-equivariantly Morita equivalent to C0(X). Now the left-hand side in (1.3)
may be interpreted as the G-equivariant twisted representable K-theory of X
with twist A∗ because tensoring with A∗ provides an isomorphism

KKGnX
∗

(
A,C0(X)

) ∼= KKGnX
∗ (C0(X), A∗).

But the right-hand side of (1.3) is KKG
∗
(
A⊗X C0(TX◦),C0(Z)

)
, that is, the

locally finite G-equivariant twisted K-homology of TX◦, where the twist is
given by the pull-back of A.

Thus (1.3) contains a twisted and groupoid-equivariant version of the
familiar isomorphism K∗(X) ∼= Klf

∗(TX) for smooth compact manifolds (see
also [32]).

In addition, we get a canonical map

lim−→KKGnX
∗ (A|Y ,C0(X)⊗Z B) → lim−→KKG

∗ (A|Y ⊗X P, B),

where Y runs through the directed set of G-compact subsets of X. If X is a
bundle of smooth manifolds with boundary, A is strongly locally trivial, and P
is C0(TX◦), then the latter map is an isomorphism as well. This specialises
to an isomorphism KG

∗ (TX◦) ∼= K∗
G(X) for A = C0(X) and B = C0(Z).

We now discuss the second duality isomorphism, which generalises the
isomorphism K∗(X) ∼= K∗(TX) for smooth compact manifolds. Kasparov
only formulates it for compact manifolds with boundary (see [17, Theorem
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4.10]), and it is not obvious how best to remove the compactness assumption.
We propose to consider the canonical map

(1.4) KKGnX
∗+n (A,B ⊗Z P) → KKG

∗ (A,B),

that first forgets the X-structure and then composes with

D ∈ KKG
−n

(
P,C0(Z)

)
.

Here A is a G n X-C∗-algebra and B is a G-C∗-algebra. For instance, if
A = C0(X) and B = C0(Z), then this becomes a map

KKGnX
∗+n (C0(X),P) → KKG

∗
(
C0(X),C0(Z)

)
,

that is, the right-hand side is the G-equivariant locally finite K-homology ofX.
For the tangent duality P = C0(TX◦), the left-hand side is, by definition,
the G-equivariant K-theory of TX◦ with X-compact support (see [12]).

Theorem 6.4 provides a necessary and sufficient condition for (1.4) to
be an isomorphism. It is shown in Section 7 that these conditions hold
for the tangent dual of a bundle X of smooth manifolds with boundary.
Hence (1.4) specialises to an isomorphism KG,lf

∗ (X) ∼= RK∗
G,X(TX◦) between

the G-equivariant locally finite K-homology of X and the G-equivariant
K-theory of TX◦ with X-compact support.

As in the first duality isomorphism, we get a version of the second duality
isomorphism in twisted equivariant K-theory if we allow A to be a strongly
locally trivial G-equivariant bundle of C∗-algebras over X: the twisted
G-equivariant locally finite K-homology of X with twist A is isomorphic to
the twisted G-equivariant K-theory of TX◦ with X-compact support and
with twist A∗. And we get a version with different support conditions:

(1.5) lim−→KKGnX
∗+n (A|Y , B ⊗Z P) → lim−→KKG

∗ (A|Y , B),

where Y runs through the directed set of G-compact subsets of X. For
bundles of smooth manifolds, the latter specialises to an isomorphism

K∗
G(TX◦) ∼= KG

∗ (X).

The duality isomorphism (1.4) for the tangent space dual specialises to an
isomorphism

(1.6) RKG
∗,X(Y ×Z TX◦) ∼= KKG

∗
(
C0(X),C0(Y )

)
.

The first group is the home for symbols of families of elliptic pseudodifferential
operators on X parametrised by Y . There are different formulas for this
isomorphism, using a topological index map or the family of Dolbeault
operators along the fibres of TX◦ → Z, or pseudodifferential calculus. These
are based on different formulas for the class D involved in the duality
isomorphisms. Since D is determined uniquely by Θ, for which there is
only one reasonable geometric formula, duality isomorphisms also contain
equivariant index theorems such as Kasparov’s Index Theorem [15].

The duality isomorphism (1.6) is the crucial step in the geometric descrip-
tion of Kasparov theory in [14]. The question when this can be done remained
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unexamined since Paul Baum introduced his bicycles or correspondences
some thirty years ago. Even for the special case of KK∗(C0(X),C) for a
finite CW-complex X, a detailed proof appeared only recently in [3]. In [14],
we prove that the equivariant Kasparov groups KKG

∗
(
C0(X),C0(Y )

)
can be

described in purely topological terms if X is a bundle over Z of smooth
manifolds with boundary with a smooth action of a proper groupoid G and
some conditions regarding equivariant vector bundles are met.

The basic idea of the argument is that an isomorphism similar to (1.6)
exists in the geometric theory. Thus the problem of identifying geomet-
ric and analytic bivariant K-theory reduces to the problem of identifying
corresponding monovariant K-theory groups with some support conditions.
This becomes trivial with an appropriate definition of the geometric cycles.
Besides finding this appropriate definition, the main work in [14] is necessary
to equip the geometric version of KK with all the extra structure that is
needed to get duality isomorphisms. Our analysis here already shows what
is involved: composition and exterior products and certain pull-back and
forgetful functors.

Let X be a proper G-space and let B be a G nX-C∗-algebra. Then [12,
Theorem 4.2] implies a natural isomorphism

(1.7) lim−→KKGnX
∗ (C0(Y ), B) ∼= K∗(G nB),

where the inductive limit runs over the directed set of G-compact subsets
of X as in (1.5). Equations (1.4) and (1.7) yield a duality isomorphism

(1.8) lim−→KKG
∗ (C0(Y ), B) ∼= K∗+n

(
G n (P ⊗Z B)

)
.

If X is also a universal proper G-space, then our duality isomorphisms are
closely related to the different approaches to the Baum–Connes assembly map
for G. The dual Dirac method is the main ingredient in most proofs of the
Baum–Connes and Novikov Conjectures; this goes back to Gennadi Kasparov
[17, 18], who used the first Poincaré duality isomorphism to prove the Novikov
Conjecture for discrete subgroups of almost connected groups. We will see
that the first duality isomorphism for a groupoid G acting on its classifying
space is essentially equivalent to constructing a Dirac morphism for the
groupoid, which is the (easier) half of the dual Dirac method. The remaining
half, the dual Dirac morphism, is a lifting of Θ ∈ RKKGnX

∗
(
C0(X),C0(X)

)
to KKG

∗
(
C0(Z),C0(Z)

)
. Even if such a lifting does not exist, the Dirac

morphism D ∈ KKG
−n

(
P,C0(Z)

)
is exactly what is needed for the localisation

approach to the Baum–Connes assembly map in [25].
The isomorphism (1.8) relates two approaches to the Baum–Connes as-

sembly map with coefficients. The left-hand side is the topological K-theory
defined in [2], whereas the right-hand side is the topological K-theory in
the localisation approach of [25]. This is exactly the γ-part of K∗(G n B)
provided G has a γ-element.
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Finally, we describe the contents of the following sections. Sections 2
and 3 contain preparatory remarks on groupoids, their actions on spaces and
C∗-algebras, and equivariant Kasparov theory for groupoids. We pay special
attention to tensor product functors because these will play a crucial role.

Section 4 deals with the first Poincaré duality isomorphism and related
constructions. We introduce abstract duals and Kasparov duals and construct
equivariant Euler characteristics and Lefschetz maps from them. We explain
how the first duality is related to Dirac morphisms and thus to the Baum–
Connes assembly map, and we provide a necessary and sufficient condition
for the first duality isomorphism to extend to nontrivial bundles, formalising
an example considered in [9].

Section 5 studies Kasparov duality for bundles of compact spaces. In
this case, the first and second kind of duality are both equivalent to a more
familiar notion of duality studied already by Georges Skandalis in [30].

Section 6 treats the second duality isomorphism. We introduce symmetric
Kasparov duals, which guarantee both duality isomorphisms for trivial
bundles.

In Section 7, we construct symmetric Kasparov duals for bundles of smooth
manifolds with boundary. For a single smooth manifold, this example is
already considered in [17]. We also extend the duality isomorphisms to
certain locally trivial C∗-algebra bundles as coefficients.

1.1. Some standing assumptions. To avoid technical problems, we tac-
itly assume all C∗-algebras to be separable, and all topological spaces to be
locally compact, Hausdorff, and second countable. Groupoids are tacitly
required to be locally compact, Hausdorff, and second countable and to have
a Haar system.

Several constructions of Kasparov duals contain Clifford algebras and hence
yield Z/2-graded C∗-algebras. Therefore, we tacitly allow all C∗-algebra to
carry a Z/2-grading; that is, “C∗-algebra” stands for “Z/2-graded C∗-algebra”
throughout.

The general theory in Sections 2–6 is literally the same for complex, real,
and “real” C∗-algebras (although we usually presume in our notation that
we are in the complex case). The construction of duals for bundles of smooth
manifolds in Section 7 also works for these three flavours, with some small
modifications that are pointed out where relevant. Most importantly, the
results about tangent space duality claimed above only hold if the tangent
bundle is equipped with a “real” structure or replaced by another vector
bundle.

2. Preliminaries on groupoid actions

We recall some basic notions regarding groupoids and their actions on
spaces and C∗-algebras to fix our notation. We pay special attention to
tensor product operations and their formal properties, which are expressed
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in the language of symmetric monoidal categories (see [23, 29, 27]). This
framework is particularly suited to the first Poincaré duality isomorphism.

2.1. Groupoids and their actions on spaces. Let G be a (locally com-
pact) groupoid. We write G(0) and G(1) for the spaces of objects and mor-
phisms in G and r, s : G(1) ⇒ G(0) for the range and source maps.

Definition 2.1. Let Z be a (locally compact, Hausdorff, second countable
topological) space. A space over Z is a continuous map f : X → Z. If f is
clear from the context, we also call X itself a space over Z.

Definition 2.2. Let f : X → Z and g : Y → Z be spaces over Z. Their
fibred product is

X ×f,g Y := {(x, y) ∈ X × Y | f(x) = g(y)}

with the subspace topology and the continuous map (x, y) 7→ f(x) = g(y).
Thus X ×f,g Y is again a space over Z. If f, g are clear from the context, we
also write X ×Z Y instead of X ×f,g Y .

Definition 2.3. A G-space is a space (X,π) over G(0) with the action given
by a map over G(0):

G(1) ×s,π X
(g,x) 7→g·x //

p
%%KKKKKKKKKK

X

π
~~}}

}}
}}

}}

G(0).

Here, the reference map p takes (g, x) to r(g), and the usual associativity
and unitality diagrams commute. Note that we obtain a homeomorphism

G(1) ×s,π X → G(1) ×r,π X, (g, x) 7→ (g, g · x).

Example 2.4. If G is a group then G := G is a groupoid with G(0) = {?},
and G-spaces have the usual meaning.

Example 2.5. View a space Z as a groupoid with only identity morphisms,
that is, Z(1) = Z(0) = Z. A Z-space is nothing but a space over Z.

Definition 2.6. If Z is a G-space, then the transformation groupoid G n Z
is the groupoid with (G n Z)(0) := Z,

(G n Z)(1) := G(1) ×s,π Z ∼= {(z1, g, z2) ∈ Z ×π,r G(1) ×s,π Z | z1 = g · z2},
r(z1, g, z2) := z1, s(z1, g, z2) := z2, (z1, g, z2) · (z2, h, z3) := (z1, g · h, z3).

This groupoid inherits a Haar system from G.

Lemma 2.7. A GnZ-space is the same as a G-space X with a G-equivariant
continuous map p : X → Z.



254 HEATH EMERSON AND RALF MEYER

Hence we call GnZ-spaces G-spaces over Z. We are going to study duality
in bivariant K-theory for a G-space p : X → Z over Z or, equivalently, for
a G n Z-space. Since we lose nothing by replacing G by G n Z, we may
assume from now on that Z = G(0) to simplify our notation. Thus, when we
study duality for bundles of spaces over some base space Z then this bundle
structure is hidden in the groupoid variable G.

2.2. C∗-algebras over a space. Let Z be a space. There are several
equivalent ways to define C∗-algebras over Z.

Definition 2.8. A C∗-algebra over Z is a C∗-algebra A together with an
essential ∗-homomorphism ϕ from C0(Z) to the centre of the multiplier
algebra of A; being essential means that ϕ

(
C0(Z)

)
·A = A; equivalently, ϕ

extends to a strictly continuous unital ∗-homomorphism on Cb(Z).

The map ϕ is equivalent to a continuous map from the primitive ideal space
of A to Z by the Dauns–Hofmann Theorem (see [26]). Any C∗-algebra over Z
is the C∗-algebra of C0-sections of an upper semi-continuous C∗-bundle over Z
by [26], and conversely such section algebras are C∗-algebras over Z. We may
also describe a C∗-algebra over Z by the A-linear essential ∗-homomorphism

(2.9) m : C0(Z,A) → A, f ⊗ a 7→ ϕ(f) · a = a · ϕ(f),

called multiplication homomorphism. This ∗-homomorphism exists because
C0(Z,A) is the maximal C∗-tensor product of C0(Z) and A, and it deter-
mines ϕ.

Example 2.10. If p : X → Z is a space over Z, then C0(X) with

p∗ : C0(Z) → Cb(X)

is a commutative C∗-algebra over Z. Any commutative C∗-algebra over Z is
of this form. The multiplication homomorphism

m : C0

(
Z,C0(X)

) ∼= C0(Z ×X) → C0(X)

is induced by the proper continuous map X → Z ×X, x 7→
(
p(x), x

)
.

Definition 2.11. Let A and B be C∗-algebras over Z with multiplica-
tion homomorphisms mA : C0(Z,A) → A and mB : C0(Z,B) → B. A
∗-homomorphism f : A → B is called C0(Z)-linear or Z-equivariant if the
following diagram commutes:

C0(Z,A)
C0(Z,f) //

mA

��

C0(Z,B)

mB

��
A

f // B.

Definition 2.12. We let C∗Z be the category whose objects are the C∗-alge-
bras over Z and whose morphisms are the C0(Z)-linear ∗-homomorphisms.
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Definition 2.13. Let A be a C∗-algebras over Z and let S ⊆ Z be a subset.
If S is closed or open, then we define a restriction functor |S : C∗Z → C∗S :

• If S is open, then A|S is the closed ∗-ideal C0(S) ·A in A, equipped
with the obvious structure of C∗-algebra over S.

• If S is closed, then A|S is the quotient of A by the ideal A|Z\S ,
equipped with the induced structure of C∗-algebra over S.

We abbreviate Az := A|{z} for z ∈ Z.

If S1 ⊆ S2 ⊆ Z are both closed or both open in Z, then we have a natural
isomorphism (A|S2)|S1

∼= A|S1 .

Definition 2.14. Let f : Z ′ → Z be a continuous map. Then we define a
base change functor f∗ : C∗Z → C∗Z′ . Let A be a C∗-algebra over Z. Then
C0(Z ′, A) is a C∗-algebra over Z ′×Z. The graph of f is a closed subset Γ(f)
of Z ′ × Z and homeomorphic to Z ′ via z 7→

(
z, f(z)

)
. We let f∗(A) be the

restriction of C0(Z ′, A) to Γ(f), viewed as a C∗-algebra over Z ′. It is clear
that this construction is natural, that is, defines a functor f∗ : C∗Z → C∗Z′ .

Lemma 2.15. Let f : Z ′ → Z be a continuous map, let A be a C∗-algebra
over Z and let B be a C∗-algebra. Then essential ∗-homomorphisms f∗(A) →
M(B) correspond bijectively to pairs of commuting essential ∗-homomor-
phisms π : A→M(B) and ϕ : C0(Z ′) →M(B) that satisfy ϕ(h ◦ f) · π(a) =
π(h · a) for all h ∈ C0(Z), a ∈ A.

This universal property characterises the base change functor uniquely up
to natural isomorphism and implies the following properties:

Lemma 2.16. If f : S → Z is the embedding of an open or closed subset,
then f∗(A) is naturally isomorphic to A|S.

We have (g ◦ f)∗ = g∗ ◦ f∗ for composable maps Z ′′
f−→ Z ′

g−→ Z, and id∗Z
is equivalent to the identity functor. In particular, f∗(A)z

∼= Af(z).

Notation 2.17. Let A and B be C∗-algebras over Z. Then A ⊗ B is a
C∗-algebra over Z × Z. We let A⊗Z B be its restriction to the diagonal in
Z × Z.

Example 2.18. Let (X, p) be a space over Z. If S ⊆ Z, then restriction
yields C0(X)|S = C0

(
p−1(S)

)
as a space over S.

Now let f : Z ′ → Z be a continuous map. Then

f∗
(
C0(X)

) ∼= C0(X ×p,f Z
′).

In particular, f∗
(
C0(Z)

) ∼= C0(Z ′).
We have C0(X1)⊗Z C0(X2) ∼= C0(X1×Z X2) if X1 and X2 are two spaces

over Z.

The properties of the tensor product ⊗Z are summarised in Lemma 2.22
below. For the time being, we note that it is a bifunctor and that it is
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compatible with the functors f∗: if f : Z ′ → Z is a continuous map, then
there is a natural isomorphism

f∗(A⊗Z B) ∼= f∗(A)⊗Z′ f∗(B)

because both sides are naturally isomorphic to restrictions of C0(Z ′ × Z ′)⊗
A⊗B to the same copy of Z ′ in Z ′ × Z ′ × Z × Z.

2.3. Groupoid actions on C∗-algebras and tensor products. Let G
be a groupoid with object space Z := G(0).

Definition 2.19. LetA be a C∗-algebra over Z together with an isomorphism
α : s∗(A)

∼=−→ r∗(A) of C∗-algebras over G(1). Let Az for z ∈ Z denote the
fibres of A and let αg : As(g)

∼=−→ Ar(g) for g ∈ G(1) be the fibres of α. We call
(A,α) a G-C∗-algebra if αg1g2 = αg1αg2 for all g1, g2 ∈ G(1).

Definition 2.20. A ∗-homomorphism ϕ : A→ B between two G-C∗-algebras
is called G-equivariant if it is C0(Z)-linear and the diagram

s∗(A)

∼=α

��

s∗(ϕ) // s∗(B)

∼=β
��

r∗(A)
r∗(ϕ) // r∗(B)

commutes. We let C∗G be the category whose objects are the G-C∗-algebras
and whose morphisms are the G-equivariant ∗-homomorphisms.

This agrees with our previous definitions if G is a space viewed as a
groupoid with only identity morphisms.

The tensor product over Z of two G-C∗-algebras carries a canonical ac-
tion of G called diagonal action. Formally, this is the composite of the
∗-isomorphisms

s∗(A⊗G(0)B)
∼=−→ s∗(A)⊗G(1)s∗(B)

α⊗G(1)β
−−−−−→r∗(A)⊗G(1)r∗(B)

∼=−→ r∗(A⊗G(0)B).

Notation 2.21. The resulting tensor product operation on G-C∗-algebras
is denoted by ⊗G . We usually abbreviate ⊗G to ⊗ and also write ⊗Z .

Lemma 2.22. The category C∗G with the tensor product ⊗ is a symmetric
monoidal category with unit object C0(Z).

A symmetric monoidal category is a category with a tensor product
functor ⊗, a unit object 1, and natural isomorphisms

(A⊗B)⊗ C ∼= A⊗ (B ⊗ C), A⊗B ∼= B ⊗A, 1⊗A ∼= A ∼= A⊗ 1

called associativity, commutativity, and unitality constraints; these are sub-
ject to various coherence laws, for which we refer to [29]. These condi-
tions allow to define tensor products

⊗
x∈F Ax for any finite set of ob-

jects (Ax)x∈F with the expected properties such as natural isomorphisms
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x∈F1

Ax ⊗
⊗

x∈F2
Ax

∼=
⊗

x∈F Ax for any decomposition F = F1 t F2 into
disjoint subsets. The associativity, commutativity, and unitality constraints
are obvious in our case, and the coherence laws are trivial to verify. Therefore,
we omit the details.

Let G1 and G2 be groupoids and let f : G1 → G2 be a continuous functor.
Let f (0) and f (1) be its actions on objects and morphisms, respectively. If A
is a G2-C∗-algebra with action α, then (f (0))∗(A) is a G1-C∗-algebra for the
action

s∗1(f
(0))∗(A) ∼= (f (0)s1)∗(A) = (s2f (1))∗(A) ∼= (f (1))∗s∗2(A)

(f (1))∗(α)−−−−−−→ (f (1))∗r∗2(A) ∼= (r2f (1))∗(A) = (f (0)r1)∗(A) ∼= r∗1(f
(0))∗(A).

This defines a functor
f∗ : C∗G2

→ C∗G1
,

which is symmetric monoidal, that is, we have canonical isomorphisms

(2.23) f∗(A)⊗G1 f
∗(B) ∼= f∗(A⊗G2 B)

that are compatible in a suitable sense with the associativity, commutativity,
and unitality constraints in C∗G2

and C∗G1
(we refer to [29] for the precise

definition). The natural transformation in (2.23) is part of the data of a
symmetric monoidal functor. Again we omit the proof because it is trivial
once it is clear what has to be checked. As a consequence, f∗ preserves tensor
units, that is,

f∗
(
C0(G(0)

2 )
) ∼= C0(G(0)

1 ).
Let X be a G-space. Then the category C∗GnX carries its own tensor

product, which we always denote by ⊗X , to distinguish it from the tensor
product ⊗ in C∗G . The projection map pX : G nX → G induces a functor

p∗X : C∗G → C∗GnX ,

which acts by A 7→ C0(X)⊗Z A on objects. We have seen above that such
functors are symmetric monoidal, that is, if A and B are G-C∗-algebras, then

(2.24) p∗X(A)⊗X p∗X(B) ∼= p∗X(A⊗B).

If A is a G nX-C∗-algebra and B is merely a G-C∗-algebra, then A⊗Z B
is a G nX-C∗-algebra. This defines another tensor product operation

⊗ = ⊗Z : C∗GnX × C∗G → C∗GnX ,

which has obvious associativity and unitality constraints

(A⊗B)⊗ C ∼= A⊗ (B ⊗ C), A⊗ 1 ∼= A,

where A belongs to C∗GnX , B and C belong to C∗G , and 1 is the unit object,
here C0(Z). These natural isomorphisms satisfy the relevant coherence laws
formalised in [27]. In the notation of [27], C∗GnX is a C∗G-category.

Our two tensor products are related by a canonical isomorphism

(2.25) A⊗B ∼= A⊗X p∗X(B),
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or, more precisely,

A⊗X p∗X(B) := A⊗X (C0(X)⊗B) ∼=
(
A⊗X C0(X)

)
⊗B ∼= A⊗B.

These isomorphisms are all natural and G nX-equivariant.
We also have a canonical forgetful functor

forgetX : C∗GnX → C∗G ,

which maps a G-C∗-algebra over X to the underlying G-C∗-algebra, forgetting
the X-structure. This is a C∗G-functor in the notation of [27], that is, there
are natural isomorphisms

forgetX(A⊗B) ∼= forgetX(A)⊗B

for A in C∗GnX and B in C∗G , and these isomorphisms are compatible with
the associativity and unitality constraints.

3. Equivariant Kasparov theory for groupoids

We use the equivariant Kasparov theory for C∗-algebras with groupoid
actions by Pierre-Yves Le Gall [22]. Let G be a groupoid with object
space Z. Le Gall defines Z/2-graded Abelian groups KKG

∗ (A,B) for (possibly
Z/2-graded) G-C∗-algebras A and B. He also constructs a Kasparov cup-cap
product

(3.1) ⊗D : KKG
∗ (A1, B1⊗D)×KKG

∗ (D⊗A2, B2) → KKG
∗ (A1⊗A2, B1⊗B2)

in KKG with the expected properties such as associativity in general and
graded commutativity of the exterior product (see [22, §6.3]). Throughout
this section, ⊗ denotes the tensor product over Z, so that it would be more
precise to write ⊗Z,D instead of ⊗D.

Notation 3.2. When we write KKG
∗ (A,B), we always mean the Z/2-graded

group. We write KKG
0 (A,B) and KKG

1 (A,B) for the even and odd parts of
KKG

∗ (A,B). We let KKG be the category whose objects are the (separable,
Z/2-graded) G-C∗-algebras and whose morphism spaces are KKG

∗ (A,B), with
composition given by the Kasparov composition product.

Example 3.3. If G is a locally compact group, viewed as a groupoid, then
Le Gall’s bivariant K-theory agrees with Kasparov’s theory defined in [17].

Example 3.4. If G = GnX for a locally compact group G and a locally com-
pact G-space X, then KKG

∗ (A,B) agrees with Kasparov’s RKKG
∗ (X;A,B).

This also contains Kasparov’s groups RKKG
∗ (X;A,B) for two G-C∗-algebras

A and B as a special case because

RKKG
∗ (X;A,B) := RKKG

∗
(
X; C0(X,A),C0(X,B)

)
.

The cup-cap product (3.1) contains an exterior tensor product operation

⊗ = ⊗Z : KKG × KKG → KKG , (A,B) 7→ A⊗B,
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which extends the tensor product on C∗G and turns KKG into an additive
symmetric monoidal category (see [29, 24]). That is, the associativity, com-
mutativity, and unitality constraints that exist in C∗G descend to natural
transformations on KKG ; this follows from the universal property of KKG in
the ungraded case or by direct inspection. Fixing one variable, we get the
exterior product functors

σD : KKG → KKG , A 7→ A⊗D,

for all G-C∗-algebras D. These are additive KKG-functors, that is, there are
natural isomorphisms σD(A⊗B) ∼= σD(A)⊗B with good formal properties
(see [27]).

If G1 and G2 are two groupoids and f : G1 → G2 is a continuous functor,
then the induced functor f∗ : C∗G2

→ C∗G1
descends to an additive functor

f∗ : KKG2 → KKG1 ,

that is, there are canonical maps

(3.5) f∗ : KKG2
∗ (A,B) → KKG1

∗
(
f∗(A), f∗(B)

)
for all G2-C∗-algebras A and B. These maps are compatible with the cup-cap
product in (3.1), so that f∗ is a symmetric monoidal functor. More precisely,
the natural isomorphisms f∗(A) ⊗G1 f

∗(B) ∼= f∗(A ⊗G2 B) in C∗G1
remain

natural when we enlarge our morphism spaces from ∗-homomorphisms to
KK.

Le Gall describes in [22] how to extend this functoriality to Hilsum–
Skandalis morphisms between groupoids. As a consequence, KKG1 and KKG2

are equivalent as symmetric monoidal categories if the groupoids G1 and G2

are equivalent.
We are mainly interested in the special case of (3.5) where we consider

the functor G nX → G n Z = G induced by the projection pX : X → Z for
a G-space X. This yields an additive, symmetric monoidal functor

(3.6) p∗X : KKG → KKGnX ,

which acts on objects by A 7→ C0(X)⊗A.
The canonical tensor products in the categories KKGnX and KKG are over

Z and X, respectively. Therefore, we denote the tensor product in KKGnX

by ⊗X .
The tensor product operation

⊗ = ⊗Z : C∗GnX × C∗G → C∗GnX

also descends to the Kasparov categories, yielding a bifunctor

(3.7) ⊗ = ⊗Z : KKGnX × KKG → KKGnX

that is additive in each variable. The easiest construction uses (2.25). The bi-
functor so defined obviously satisfies the associativity and unitality conditions
needed for a KKG-category (see [27]).
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The forgetful functor descends to an additive functor

forgetX : KKGnX → KKG

between the Kasparov categories. This is a KKG-functor in the notation
of [27]. The obvious C∗-algebra isomorphisms

forgetX(A⊗B) ∼= forgetX(A)⊗B

for all G nX-C∗-algebras A and all G-C∗-algebras B remain natural on the
level of Kasparov categories.

Since many constructions do not work for arbitrary G nX-C∗-algebras,
we often restrict to the following full subcategory of KKGnX :

Definition 3.8. Let A and B be G-C∗-algebras. We define

RKKG
∗ (X;A,B) := KKGnX

∗
(
p∗X(A), p∗X(B)

)
,

and we let RKKG(X) be the category whose objects are the G-C∗-algebras
and whose morphism spaces are RKKG

0 (X;A,B). By definition, RKKG is
the (co)image of the functor p∗X in (3.6). We often view RKKG(X) as a full
subcategory of KKGnX .

Example 3.9. Let G be a group G, so that Z = ?. Then X is just a G-space,
and KKG = KKG is the usual group-equivariant Kasparov category. We have
p∗X(A) = C0(X,A) in this case, so that p∗X : KKG → RKKG(X) is the same
functor as in [11, Equation (7)]. The functor forgetX : RKKG(X) → KKG

agrees with the forgetful functor in [11, Equation (6)].

The subcategory RKKG(X) ⊆ KKGnX is closed under the tensor product
operations ⊗X and ⊗Z . Hence it is a symmetric monoidal category and a
KKG-category in its own right.

A G-equivariant map f : X1 → X2 induces a functor f∗ : KKGnX2 →
KKGnX1 , which restricts to a functor

f∗ : RKKG(X2) → RKKG(X1).

This functoriality contains grading preserving group homomorphisms

f∗ : RKKG
∗ (X2;A,B) → RKKG

∗ (X1;A,B),

which are compatible with cup-cap products in both variables A and B.
These maps also turn X 7→ RKKG

∗ (X;A,B) into a functor from the category
of locally compact G-spaces with G-equivariant continuous maps to the
category of Z/2-graded Abelian groups. This is a homotopy functor, that is,
two G-equivariantly homotopic maps induce the same map on RKKG

∗ (see
Example 5.3 below for a proof).

Notation 3.10. Let P be a G nX-C∗-algebra. Then there is an associated
functor

σP : KKGnX → KKGnX , A 7→ P ⊗X A.
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We denote the composite functor

RKKG(X) ⊆−→ KKGnX
σP−−→ KKGnX

forgetX−−−−→ KKG

by TP . We have TP(A) = P ⊗A for a G-C∗-algebra A, viewed as an object
of RKKG(X), because of the natural isomorphisms P ⊗X p∗X(A) ∼= P ⊗ A.
Thus TP determines maps

TP : RKKG
∗ (X;A,B) := KKGnX

∗
(
p∗X(A), p∗X(B)

)
→ KKG

∗ (P ⊗A,P ⊗B).

The functor TP is the analogue for groupoids of the functor that is called
σX,P in [11]. If f ∈ KKG

∗ (A,B), then

(3.11) TP
(
p∗X(f)

)
= σP(f) = idP ⊗ f in KKG

∗ (P ⊗A,P ⊗B).

This generalises [11, Equation (26)].

4. The first duality

Let G be a locally compact groupoid and let Z := G(0) with the canonical
(left) G-action, so that G n Z ∼= G. Let X be a G-space. The notion of an
equivariant Kasparov dual for group actions in [11] can be copied literally to
our more general setup. To clarify the relationship, we write

1 := C0(Z), 1X := C0(X).

These are the tensor units in KKG and KKGnX , respectively. Wherever C
appears in [11], it is replaced by 1. Furthermore, we write TP instead of σX,P
and 1X instead of C0(X) here.

Definition 4.1. Let n ∈ Z. An n-dimensional G-equivariant Kasparov dual
for the G-space X is a triple (P, D,Θ), where

• P is a (possibly Z/2-graded) G nX-C∗-algebra,
• D ∈ KKG

−n(P,1), and
• Θ ∈ RKKG

n(X;1,P),
subject to the following three conditions:

Θ⊗P D = id1 in RKKG
0 (X;1,1);(4.2)

Θ⊗X f = Θ⊗P TP(f) in RKKG
∗+n(X;A,P ⊗B)(4.3)

for all G-C∗-algebras A and B and all f ∈ RKKG
∗ (X;A,B);

TP(Θ)⊗P⊗P flipP = (−1)nTP(Θ) in KKG
n(P,P ⊗ P),(4.4)

where flipP is the flip automorphism on P ⊗ P as in [11].

This differs slightly from the definition of a Kasparov dual in [11, Definition
18] because (4.3) contains no auxiliary space Y as in [11]. As a result,
(P, D,Θ) is a Kasparov dual in the sense of [11] if and only if its pull-back
to Z ′ is a Kasparov dual for Z ′ ×Z X, viewed as a G n Z ′-space, for any
G-space Z ′. The space Z ′ plays no significant role and is only added in [11]
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because this general setting is considered in [17]. We expect that geometric
sufficient conditions for Kasparov duals are invariant under this base change
operation.

The notion of dual in Definition 4.1 is relative to the base space Z. In a
sense, a G-equivariant Kasparov dual is a G-equivariant family of Kasparov
duals for the fibres of the map pX : X → Z.

We remark without proof that (4.4) is equivalent, in the presence of the
other two conditions, to

(4.5) TP(Θ)⊗P⊗P (D ⊗ idP) = (−1)nidP in KKG
0 (P,P)

(the easier implication (4.4)=⇒(4.5) is contained in Lemma 4.11). Both
formulations (4.4) and (4.5) tend to be equally hard to check.

Condition (4.3) is not so difficult to check in practice, but it lacks good
functoriality properties and is easily overlooked (such as in [31, Théorème
5.6]). This condition turns out to be automatic for universal proper G-spaces
(Lemma 4.31). We will comment further on its role in Section 5, where we
discuss the special case where the map pX : X → Z is proper.

Theorem 4.6. Let P be a G nX-C∗-algebra, n ∈ Z, D ∈ KKG
−n(P,1), and

Θ ∈ RKKG
n(X;1,P). The natural transformations

PD: KKG
i−n(P ⊗A,B) → RKKG

i (X;A,B), f 7→ Θ⊗P f,
PD∗ : RKKG

i (X;A,B) → KKG
i−n(P ⊗A,B), g 7→ (−1)inTP(g)⊗P D

are inverse to each other for all G-C∗-algebras A and B if and only if
(P, D,Θ) is a G-equivariant Kasparov dual for X. In this case, the functor
TP : RKKG(X) → KKG is left adjoint to the functor p∗X : KKG → RKKG(X).

We call the isomorphism in Theorem 4.6 Kasparov’s first duality isomor-
phism because it goes back to Gennadi Kasparov’s proof of his First Poincaré
Duality Theorem [17, Theorem 4.9]. We postpone the proof of Theorem 4.6
to Section 4.1.2 in order to utilise some more notation that we need also for
other purposes.

Kasparov duals need not exist in general, even if the groupoid G is trivial
and Z = ?. The Cantor set is a counterexample (see Proposition 5.9).

To construct a Kasparov dual for a space, we need some geometric infor-
mation on the space in question. For instance, for a smooth manifold we can
either use Clifford algebras or the tangent bundle to construct a Kasparov
dual. We may also triangulate the manifold and use this to construct a more
combinatorial dual.

We will use Kasparov duals to construct Lefschetz invariants and Euler
characteristics. This leads to the question how unique Kasparov duals are
and whether other notions derived from them may depend on choices. The
following counterexample shows that Kasparov duals are not unique.

Example 4.7. Let G be the trivial groupoid, so that Z := ? is the one-
point space, and let X := [0, 1]. The homotopy invariance of RKK in the
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space-variable implies

RKK∗(X;A,B) ∼= RKK∗(?;A,B) = KK∗(A,B)

for all C∗-algebras A and B.
Let P := C([0, 1]), let D be the class of an evaluation homomorphism,

and let Θ be the class of the map C([0, 1]) → C([0, 1] × [0, 1]), f 7→ f ⊗ 1.
Inspection shows that this is a Kasparov dual for X. So is P ′ := C, viewed
as a C∗-algebra over [0, 1] by evaluation at any point, with D′ and Θ′ being
the identity maps. While P and P ′ are homotopy equivalent and hence
isomorphic in KK, they are not isomorphic in RKK([0, 1]) because their fibres
are not KK-equivalent everywhere.

Abstract duals formalise what is unique about Kasparov duals. This is
important because constructions that can be expressed in terms of abstract
duals yield equivalent results for all Kasparov duals. The equivalence between
the smooth and combinatorial duals for smooth manifolds is used in [11, 13]
to reprove an index theorem for the equivariant Euler operator and the
Equivariant Lefschetz Fixed Point Theorem of Wolfgang Lück and Jonathan
Rosenberg (see [20, 21]).

Definition 4.8. Let P be a G-C∗-algebra and let Θ ∈ RKKG
n(X;1,P).

We call the pair (P,Θ) an n-dimensional abstract dual for X if the map
PD defined as in Theorem 4.6 is an isomorphism for all G-C∗-algebras A
and B. We call (P,Θ) an n-dimensional weak abstract dual for X if PD is
an isomorphism for A = 1X and all G-C∗-algebras B.

We can always adjust the dimension to be 0 by passing to a suspension
of P.

Theorem 4.6 shows that (P,Θ) is an abstract dual if (P, D,Θ) is a Kas-
parov dual. We will see below that we can recover D and the functor TP
from the abstract dual. The main difference between Kasparov duals and
abstract duals is that for the latter, P is not necessarily a C∗-algebra over X.
This is to be expected because of Example 4.7. We need weak abstract
duals in connection with [14], for technical reasons, because computations in
the geometric version of KK may provide weak abstract duals, but not the
existence of a duality isomorphism for all G-C∗-algebras A.

Proposition 4.9. A weak abstract dual for a space X is unique up to a
canonical KKG-equivalence if it exists, and even covariantly functorial in the
following sense.

Let X and Y be two G-spaces and let f : X → Y be a G-equivariant
continuous map. Let (PX ,ΘX) and (PY ,ΘY ) be weak abstract duals for
X and Y of dimensions nX and nY , respectively. Then there is a unique
Pf ∈ KKG

nY −nX
(PX ,PY ) with ΘX ⊗PX

Pf = f∗(ΘY ). Given two composable
maps between three spaces with duals, we have Pf◦g = Pf ◦ Pg. If X = Y ,
f = idX , and (PX ,ΘX) = (PY ,ΘY ), then Pf = idPX

. If only X = Y ,
f = idX , then Pf is a KKG-equivalence between the two duals of X.
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Proof. The condition characterising Pf is equivalent to PDX(Pf ) = f∗(ΘY ),
which uniquely determines Pf . The uniqueness of Pf implies identities such
as Pf◦g = Pf ◦ Pg for composable morphisms f and g and PidX

= idPX

when we use the same dual of X twice. These functoriality properties imply
that Pf is invertible if f is a G-homotopy equivalence. In particular, the
dual is unique up to a canonical isomorphism. �

4.1. Basic constructions with abstract duals. Most of the following
constructions are immediate generalisations of corresponding ones in [11].
They only use an abstract dual or a weak abstract dual and, therefore, up to
canonical isomorphisms between different duals, do not depend on the choice
of Kasparov dual.

Let (P,Θ) be an n-dimensional weak abstract dual for a G-space X.
Another weak abstract dual (P ′,Θ′) of dimension n′ is related to (P,Θ) by
an invertible element ψ in KKG

n′−n(P,P ′) such that Θ⊗P ψ = Θ′. We will
express in these terms what happens when we change the dual.

4.1.1. Counit. Define D ∈ KKG
−n(P,1) by

(4.10) PD(D) := Θ⊗P D = 1 in RKKG
0 (X;1,1).

Comparison with (4.2) shows that this is the class named D in a Kasparov
dual, which is uniquely determined once P and Θ are fixed. A change of
dual replaces D by ψ−1 ⊗P D.

The example of the self-duality of spin manifolds motivates calling D
and Θ Dirac and local dual Dirac. We may also call D the counit of the
duality because it plays the algebraic role of a counit by Lemma 4.11 below.

4.1.2. Comultiplication. Define ∇ ∈ KKG
n(P,P ⊗ P) by

PD(∇) := Θ⊗P ∇ = Θ⊗X Θ in RKKG
2n(X;1,P ⊗ P).

We call ∇ the comultiplication of the duality. A change of dual replaces ∇
by

(−1)n(n′−n)ψ−1 ⊗P ∇⊗P⊗P (ψ ⊗ ψ) ∈ KKG
n′(P

′,P ′ ⊗ P ′)
because (Θ ⊗P ψ) ⊗X (Θ ⊗P ψ) = (−1)n(n′−n)(Θ ⊗X Θ) ⊗P⊗P (ψ ⊗ ψ) by
the Koszul sign rule.

Lemma 4.11. The object P of KKG with counit D and comultiplication ∇
is a cocommutative, counital coalgebra object in the tensor category KKG if
n = 0. For general n, the coassociativity, cocommutativity, and counitality
conditions hold up to signs:

(−1)n∇⊗P⊗P (∇⊗ 1P) = ∇⊗P⊗P (1P ⊗∇),(4.12)

∇⊗P⊗P flipP = (−1)n∇,(4.13)

(−1)n∇⊗P⊗P (D ⊗ 1P) = 1P = ∇⊗P⊗P (1P ⊗D).(4.14)

Equation (4.12) holds in KKG
2n(P,P⊗3), (4.13) holds in KKG

n(P,P ⊗ P),
and (4.14) holds in KKG

0 (P,P).
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Recall that flipP denotes the flip operator on P ⊗ P.

Proof. The proof is identical to that of [11, Lemma 17]. �

Proof of Theorem 4.6. The proof that PD and PD∗ are inverse to each
other if (P, D,Θ) is a Kasparov dual can be copied from the proof of [11,
Proposition 19]; see also the proof of Theorem 4.42 below. The existence of
such isomorphisms means that the functor TP is left adjoint to the functor p∗X
(with range category RKKG(X)).

Conversely, assume that PD and PD∗ are inverse to each other, so that
(P,Θ) is an abstract dual for X. We check that (P, D,Θ) is a Kasparov dual.
The first condition (4.2) follows because it is equivalent to PD ◦ PD∗(id1) =
id1 in RKKG

0 (X;1,1). Thus D is the counit of the duality. Furthermore, we
get PD∗(Θ) = idP because PD(idP) = Θ. That is,

(4.15) (−1)nTP(Θ)⊗P⊗P (D ⊗ idP) = idP .

Equation (4.3) is equivalent to

(4.16) PD∗(Θ⊗X f) = TP(f)

because Θ ⊗P TP(f) = PD
(
TP(f)

)
. We use graded commutativity of ⊗X

and functoriality of TP to rewrite

PD∗(Θ⊗X f) = (−1)inPD∗(f ⊗X Θ)

= (−1)in+(i+n)nTP(f ⊗C0(X) Θ)⊗P D
= (−1)nTP(f)⊗

TP
(
C0(X)

) TP(Θ)⊗P D

= (−1)nTP(f)⊗P TP(Θ)⊗P D.
Thus (4.16) follows from (4.15).

As a special case, (4.16) contains PD∗(Θ⊗X Θ) = TP(Θ), so that

(4.17) ∇ = TP(Θ).

Hence (4.4) is equivalent to (4.13), which holds for any abstract dual. This
finishes the proof of Theorem 4.6. �

Equation (4.17) shows how to compute ∇ using a Kasparov dual.

4.1.3. The tensor functor. Now let (P,Θ) be an abstract dual, that is,
PD is invertible for all G-C∗-algebras A and B. We define

T ′P : RKKG
∗ (X;A,B) → KKG

∗ (P ⊗A,P ⊗B), f 7→ ∇ ⊗P PD−1(f),

where ∇ is the comultiplication of the duality and ⊗P operates on the second
copy of P in the target P ⊗ P of ∇. This map is denoted σ′P in [11]. A
computation as in [11, Equation (23)] yields

(4.18) PD
(
T ′P(f)

)
= Θ⊗X f in RKKG

i+n(X;A,P ⊗B)

for all f ∈ RKKG
i (X;A,B). Thus (4.16) implies

T ′P(f) = TP(f)
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if (P,Θ) is part of a Kasparov dual. Thus TP does not depend on the dual,
and we may write TP instead of T ′P from now on.

A change of dual replaces TP by the map

RKKG
i (X;A,B) 3 f 7→ (−1)i(n−n′)ψ−1⊗PTP(f)⊗Pψ ∈ KKG

i (P ′⊗A,P ′⊗B).

Lemma 4.19. The maps TP above define a functor

TP : RKKG(X) → KKG .

This is a KKG-functor, that is, it is compatible with the tensor products ⊗,
and it is left adjoint to the functor p∗X : KKG → RKKG.

Proof. It is clear that the natural transformation PD is compatible with ⊗
in (3.7) in the sense that PD(f1 ⊗ f2) = PD(f1) ⊗ f2 if f1 and f2 are
morphisms in RKKG(X) and KKG , respectively. Hence so are its inverse
PD−1 and TP . The existence of a duality isomorphism as in Theorem 4.6
implies that p∗X : KKG → RKKG has a left adjoint functor T : RKKG → KKG
that acts on objects by A 7→ A ⊗ P like TP . This is a functor for general
nonsense reasons. We claim that TP = T , proving functoriality of TP . The
functor T is constructed as follows. A morphism α ∈ RKKG

j (X;A1, A2)
induces a natural transformation

α∗ : RKKG
i (X;A2, B) → RKKG

i+j(X;A1, B),

which corresponds by the duality isomorphisms to a natural transformation

α∗ : KKG
i−n(P ⊗A2, B) → KKG

i+j−n(P ⊗A1, B).

By definition, T (α) is the image of idP⊗A2 under this map. Thus T (α) is
determined by the condition

PD
(
T (α)

)
= α∗

(
PD(idP⊗A2)

)
= α∗(Θ⊗ idA2) = Θ⊗X α.

The same condition uniquely characterises TP(α) by (4.18). �

Now we can describe the inverse duality map as in [11, Equation (24)]:

(4.20) PD−1(f) = (−1)inTP(f)⊗P D in KKG
i−n(P ⊗A,B)

for f ∈ RKKG
i (X;A,B), generalising the definition of PD∗ for a Kasparov

dual in Theorem 4.6 to abstract duals.

4.1.4. The diagonal restriction class. The diagonal embedding X →
X ×Z X is a proper map and hence induces a ∗-homomorphism

1X ⊗ 1X
∼= C0(X ×Z X) → C0(X) = 1X .

This map is G nX-equivariant and hence yields

∆X ∈ RKKG
0 (X;1X ,1) ∼= KKGnX

0

(
C0(X ×Z X),C0(X)

)
.

This is the diagonal restriction class, which is an ingredient in equivariant
Euler characteristics (see Definition 4.26). It yields a canonical map

(4.21) ⊗1X ∆X : KKG
∗ (1X ⊗A,1X ⊗B) → RKKG

∗ (X;1X ⊗A,B).
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In particular, this contains a map KKG
∗ (1X ,1X) → RKKG

∗ (X;1X ,1), which
will be used to construct Lefschetz invariants.

Example 4.22. If f : X → X is a proper, continuous, G-equivariant map,
then

[f ]⊗1X ∆X ∈ RKKG
0 (X;1X ,1)

is the class of the ∗-homomorphism induced by (idX , f) : X → X ×Z X.
Now drop the assumption that f be proper. Then (idX , f) is still a proper,

continuous, G-equivariant map. The class of the ∗-homomorphism it induces
is equal to f∗(∆X), where we use the maps

f∗ : RKKG
∗ (X;A,B) → RKKG

∗ (X;A,B)

for A = 1X , B = 1 induced by f : X → X.

4.1.5. The multiplication class. Let TP be the tensor functor and ∆X

the diagonal restriction class of an abstract dual (P,Θ). The multiplication
class of P is

(4.23) [m] := TP(∆X) ∈ KKG
0 (P ⊗ 1X ,P).

A change of dual replaces [m] by ψ−1 ⊗P [m]⊗P ψ.

Lemma 4.24. Let (P, D,Θ) be a Kasparov dual. Then [m] is the class in
KKG of the multiplication homomorphism P ⊗ C0(X) → P (see (2.9)) that
describes the X-structure on P (up to commuting the tensor factors).

Recall that ⊗ denotes the tensor product over Z. Since a G-C∗-algebra
is already a C∗-algebra over Z, we can describe an additional structure of
C∗-algebra over X by a multiplication homomorphism P ⊗Z C0(X) → P.

Proof. Whenever we have a Kasparov dual, the homomorphism TP(∆X)
is the class of the multiplication homomorphism for P because ∆X is the
multiplication homomorphism for C0(X). �

4.1.6. Abstract duality as an adjointness of functors.

Proposition 4.25. A G-space X has an abstract dual if and only if the
functor

p∗X : KKG → RKKG(X)

has a left adjoint functor T : RKKG(X) → KKG such that T is a KKG-functor
and the natural isomorphism

PD: KKG
0 (P ⊗A,B) → RKKG

0 (X;A,B)

is a KKG-morphism in the notation of [27]; this means that both T and PD
are compatible with the tensor product ⊗.
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Proof. Given an abstract dual, the functor T := TP is a KKG-functor and left
adjoint to p∗X by Lemma 4.19. The natural transformation PD is compatible
with ⊗ by definition.

Suppose, conversely, that p∗X has a left adjoint functor T with the required
properties. Compatibility with ⊗ implies T (A) ∼= T (1 ⊗ A) ∼= P ⊗ A

for the G-C∗-algebra P := T (1). Let Θ := PD(idP) ∈ RKKG
0 (X;1,P).

Compatibility with ⊗ yields PD(idA⊗P) = PD(idP)⊗ idA = Θ⊗ idA. Finally,
naturality forces PD to be of the form f = f ◦ (idA⊗P) 7→ PD(idA⊗P)⊗A⊗P
f = Θ ⊗P f for all f ∈ KKG

0 (A ⊗ P, B). Hence (P,Θ) is an abstract dual
for X. �

It may seem more natural to require an adjoint functor for p∗X on KKGnX ,
not just on the subcategory RKKG(X). But such an extension is not possible
in general (see Example 4.41 below).

4.2. Equivariant Euler characteristic and Lefschetz invariants. Now
we use an abstract dual to define a Lefschetz map

Lef : RKKG
∗
(
X; C0(X),C0(Z)

)
→ KKG

∗
(
C0(X),C0(Z)

)
.

This generalises the familiar construction of Lefschetz numbers for self-maps
of spaces in three ways: first, we consider self-maps in Kasparov theory;
secondly, our invariant is an equivariant K-homology class, not a number;
thirdly, self-maps are not required to be proper, so that the domain of our
map is RKKG

∗
(
X; C0(X),C0(Z)

)
and not KKG

∗
(
C0(X),C0(X)

)
.

We let X be a G-space and (P,Θ) an n-dimensional abstract dual for X
throughout. Occasionally, we assume that this is part of a Kasparov dual
(P, D,Θ), but the definitions and main results do not require this. Let PD
and PD−1 be the duality isomorphisms. As before, we write

1 := C0(Z), 1X := C0(X).

We let ∆X ∈ RKKG
0 (X;1X ,1) = KKGnX

0 (1X ⊗ 1X ,1X) be the diagonal
restriction class and

Θ̄ := forgetX(Θ) ∈ KKG
n(1X ,P ⊗ 1X).

Definition 4.26. The equivariant Lefschetz map

Lef : RKKG
∗ (X;1X ,1) → KKG

∗ (1X ,1)

for a G-space X is defined as the composite map

RKKG
i (X;1X ,1) PD−1

−−−→ KKG
i−n(P ⊗ 1X ,1)

Θ̄⊗P⊗1X−−−−−−→ KKG
i (1X ,1).

The equivariant Euler characteristic of X is

EulX := Lef(∆X) ∈ KKG
0 (1X ,1) = KKG

0

(
C0(X),C0(Z)

)
.
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Our definition of the equivariant Euler characteristic is literally the same
as [11, Definition 12] in the group case.

Let f ∈ RKKG
i (X;1X ,1). Equations (4.20) and (4.23) yield

Lef(f) = (−1)inΘ̄⊗P⊗1X
TP(f)⊗P D,(4.27)

EulX = (−1)inΘ̄⊗P⊗1X
[m]⊗P D.(4.28)

If (P,Θ) is part of a Kasparov dual, then TP = TP and [m] is the KK-class
of the multiplication ∗-homomorphism C0(X,P) → P, so that (4.27) yields
explicit formulas for Lef(f) and EulX . These are applied in [11, 13].

In the group case, [11, Proposition 13] asserts that the equivariant Euler
characteristic does not depend on the abstract dual and is a proper homotopy
invariant of X. This immediately extends to the groupoid case, and also to
the Lefschetz map. The most general statement requires some preparation.

Let X and X ′ be G-spaces, and let f : X → X ′ be a G-homotopy equiva-
lence. Then f induces an equivalence of categories RKKG(X ′) ∼= RKKG(X),
that is, we get invertible maps

f∗ : RKKG
∗ (X ′;A,B) → RKKG

∗ (X;A,B)

for all G-C∗-algebras A and B. Now assume, in addition, that f is proper;
we do not need the inverse map or the homotopies to be proper. Then f
induces a ∗-homomorphism

f ! : C0(X ′) → C0(X),

which yields [f !] ∈ KKG
0

(
C0(X ′),C0(X)

)
. We write [f !] instead of [f∗]

to better distinguish this from the map f∗ above. Unless f is a proper
G-homotopy equivalence, [f !] need not be invertible.

Proposition 4.29. Let X and X ′ be G-spaces with abstract duals. Let
f : X → X ′ be both a proper map and a G-homotopy equivalence. Then

[f !]⊗C0(X) EulX = EulX′ in KKG
0 (C0(X ′),1),

and the Lefschetz maps for X and X ′ are related by a commuting diagram

RKKG
∗ (X; C0(X),1)

LefX

��

RKKG
∗ (X ′; C0(X),1)

f∗

∼=
oo [f !]∗ // RKKG

∗ (X ′; C0(X ′),1)

LefX′
��

KKG
∗ (C0(X),1)

[f !]∗ // KKG
∗ (C0(X ′),1),

where [f !]∗ denotes composition with [f !].
In particular, EulX and the map LefX do not depend on the chosen dual.

Proof. The assertion about Euler characteristics is a special case of the one
about Lefschetz invariants because the proof of [11, Proposition 13] shows
that the diagonal restriction classes ∆X and ∆X′ are related by

∆X′ = [f !]⊗C0(X) (f∗)−1(∆X).
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When we replace ∆X in the proof of [11, Proposition 13] by a general element
α ∈ RKKG

∗ (X;C0(X),1), then the same computations yield our assertion
about the Lefschetz maps. �

Proposition 4.29 implies that the Lefschetz maps for properly G-homotopy
equivalent spaces are equivalent because then [f !] is invertible, so that all
horizontal maps in the diagram in Proposition 4.29 are invertible. In this
sense, the Lefschetz map and the Euler class are invariants of the proper
G-homotopy type of X.

The construction in Example 4.22 associates a class

[∆f ] ∈ RKKG
0 (X; C0(X),1)

to any continuous, G-equivariant map f : X → X; it does not matter
whether f is proper. We abbreviate

Lef(f) := Lef([∆f ])

and call this the Lefschetz invariant of f . Of course, equivariantly homotopic
self-maps induce the same class in RKKG

0 (X;C0(X),1) and therefore have
the same Lefschetz invariant. We have Lef(idX) = EulX .

Furthermore, the Kasparov product with ∆X provides a natural map

⊗1X ∆X : KKG
∗
(
C0(X),C0(X)

)
→ RKKG

∗ (X; C0(X),1),

which we compose with the Lefschetz map to get a map

KKG
∗
(
C0(X),C0(X)

)
→ KKG

∗ (C0(X),1).

While elements of KKG
∗
(
C0(X),C0(X)

)
are the self-maps of C0(X) in the cat-

egory KKG , elements of RKKG
∗ (X; C0(X),1) may be thought of as nonproper

self-maps.
If G is a discrete group and f : X → X is a G-equivariant continuous

map, then its Lefschetz invariant is usually a combination of point evaluation
classes, that is, Lef(f) can be represented by an equivariant ∗-homomorphism
C0(X) → K(H) for some Z/2-graded G-Hilbert space H. [13, Theorems 1
and 2] assert this if f a simplicial map on a simplicial complex or if f
is a smooth map on a smooth manifold whose graph is transverse to the
diagonal. Dropping the transversality condition, Lef(f) is an equivariant
Euler characteristic of its fixed point subset, twisted by a certain orientation
line bundle.

In contrast, Lefschetz invariants for general elements of RKKG
∗ (X; C0(X),1)

may be arbitrarily complicated:

Proposition 4.30. The composition

KKG
∗ (C0(X),1)

p∗X−−→ RKKG
∗ (X; C0(X),1) Lef−−→ KKG

∗ (C0(X),1)

is the identity map.
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Proof. Let α ∈ KKG
∗ (C0(X),1). We check Lef

(
p∗X(α)

)
= α. Let D ∈

KKG
−n(P,1) be the counit of the duality. Then PD(D⊗α) = Θ⊗P D⊗α =

p∗X(α). Therefore,

Lef
(
p∗X(α)

)
= Θ̄⊗P⊗C0(X) PD−1

(
p∗X(α)

)
= Θ̄⊗P⊗C0(X) D ⊗ α = α

because Θ̄⊗P D = Θ⊗P D = idC0(X) = idC0(X). �

4.2.1. Mapping to topological K-theory. We briefly explain an ap-
proach to extract numerical invariants out of Lefschetz invariants and Euler
characteristics.

The topological K-theory of G may be defined as the inductive limit

Ktop
∗ (G) = lim−→

X

KKG
∗ (C0(X),1),

where X runs through the category of proper G-compact G-spaces with
homotopy classes of G-equivariant continuous maps as morphisms. If EG is a
universal proper G-space, we may replace this category by the directed set of
G-compact G-invariant subsets of EG, which is cofinal in the above category.

Therefore, if X is proper and G-compact and has an abstract dual, we
may map Lef(α) for α ∈ RKKG

∗ (X;C0(X),1) to an element of Ktop
∗ (G). A

transverse measure on G induces a trace map τ : Ktop
0 (G) → R. It is justified

to call τ
(
Lef(α)

)
the L2-Lefschetz number of α and τ(EulX) the L2-Euler

characteristic of X; equation (7.25) shows that the resulting L2-Euler char-
acteristic is the alternating sum of the L2-Betti numbers and hence agrees
with the L2-Euler characteristic studied by Alain Connes in [6].

4.3. Duality for universal proper actions. Now we consider the special
case where X is a universal proper G-space. More precisely, we assume that
the two coordinate projections X ×Z X ⇒ X are G-equivariantly homotopic;
equivalently, any two G-maps to X are G-equivariantly homotopic, which is a
necessary condition for a proper action to be universal. Here a simplification
occurs because (4.3) is automatic:

Lemma 4.31. Assume that the two coordinate projections X ×Z X ⇒ X
are G-equivariantly homotopic. Let A and B be G-C∗-algebras, let P be a
G nX-C∗-algebra, and let f ∈ RKKG

∗ (X;A,B). Then

f ⊗ idP = p∗X
(
TP(f)

)
in RKKG

∗ (X;P ⊗A,P ⊗B).

As a consequence, Θ⊗X f = Θ⊗P TP(f) for any Θ ∈ RKKG
∗ (X;1,P).

Proof. Since the coordinate projections π1, π2 : X ×Z X ⇒ X are G-equi-
variantly homotopic, we have π∗1(f) = π∗2(f) in RKKG

∗ (X ×Z X;A,B). Now
tensor this over the second space X with P and forget the equivariance in
this direction. The resulting classes

TP
(
π∗1(f)

)
, TP

(
π∗2(f)

)
∈ RKKG

∗ (X;P ⊗A,P ⊗B)
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are still equal. The first one is f ⊗ idP , the second one is p∗X
(
TP(f)

)
.

Finally, we observe that Θ ⊗X f = Θ ⊗X,P (f ⊗ idP) and Θ ⊗P TP(f) =
Θ⊗X,P p

∗
X

(
TP(f)

)
. �

Thus, we only need the two conditions (4.2) and (4.4) for (P, D,Θ) to be
a Kasparov dual for X.

Theorem 4.32. Let EG be a universal proper G-space and let (P, D,Θ) be
an n-dimensional Kasparov dual for EG. Then

Θ ∈ RKKG
n(EG;1,P) and p∗EG(D) ∈ RKKG

−n(EG;P,1)

are inverse to each other, and so are

∇ ∈ KKG
n(P,P⊗P) and idP⊗D = (−1)nD⊗idP ∈ KKG

−n(P⊗P,P).

Thus the functor A 7→ P ⊗A is idempotent up to a natural isomorphism in
KKG and the class in KK0(P ⊗P,P ⊗P) of the flip automorphism on P ⊗P
is (−1)n.

Proof. The pull-back (p∗EGP, p∗EGΘ) is a Kasparov dual for p∗EGEG ∼= EG ×Z

EG over EG, where EG ×Z EG is a space over EG via a coordinate projection
π : EG ×Z EG → EG and

p∗EGΘ ∈ RKKG
n(EG ×Z EG;1,P) ∼= RKKGnEG

n (EG; p∗EG1, p
∗
EGP).

The reason for this is that (4.2) and (4.4) are preserved by the base change p∗EG ,
while (4.3) is automatic by Lemma 4.31.

As a result, p∗EGΘ induces isomorphisms

RKKGnEG
∗ (EG;A,B) ∼= KKGnEG

∗ (P ⊗A,B)

for all G n EG-C∗-algebras A and B; recall that p∗EGP ⊗EG A ∼= P ⊗A.
The universal property of EG implies that the projection π is a G-homotopy

equivalence. Hence it induces isomorphisms

(4.33) KKGnEG
∗ (A,B) ∼= RKKGnEG

∗ (EG;A,B).

Both isomorphisms together show that P ∼= 1 in RKKG(EG). More pre-
cisely, inspection shows that the invertible elements in RKKG

−n(EG;P,1) and
RKKG

n(EG;1,P) that we get are p∗EGD and Θ.
To get the remaining assertions, we apply the functor TP . This shows

that ∇ = TP(Θ) and id⊗D = TP
(
p∗EG(D)

)
are inverse to each other. Thus

P ⊗P ∼= P in KKG . We get idP ⊗D = (−1)nD⊗ idP because both sides are
inverses for ∇ by (4.14), and flip = (−1)n follows from (4.4). �

Theorem 4.34. Let EG be a universal proper G-space and let (P, D,Θ) be a
0-dimensional Kasparov dual for EG. Let A be a G-C∗-algebra. The following
assertions are equivalent:

(1) D ⊗ idA is invertible in KKG
0 (P ⊗A,A);

(2) A ∼= P ⊗A in KKG;
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(3) A is KKG-equivalent to a proper G-C∗-algebra, that is,

A ∼= forgetEG(Â)

for some G n EG-C∗-algebra Â;
(4) the map

p∗EG : KKG
∗ (A,B) → RKKG

∗ (EG;A,B)

is invertible for all G-C∗-algebras B.

Proof. The implications (1)=⇒(2)=⇒(3) are trivial because P ⊗ A is a
proper G-C∗-algebra.

We prove (3)=⇒(1). By definition, a proper G-C∗-algebra is a G n X-
C∗-algebra for some proper G-space X. Since there is a G-map X → EG, we
may view any G nX-C∗-algebra as a G n EG-C∗-algebra and thus assume
A = forgetEG(Â). Then

p∗EG(D)⊗EG idÂ ∈ KKGnEG
0 (p∗EG(P)⊗EG Â, Â)

is invertible because p∗EG(D) is. Now identify p∗EG(P) ⊗EG Â ∼= P ⊗ Â and
forget the EG-structure to see that D ⊗ idA in KKG

0 (P ⊗A,A) is invertible.
Finally, we prove (1) ⇐⇒ (4). For all G-C∗-algebras A and B, the diagram

(4.35)

KKG
∗ (A,B)

D⊗ //

p∗EG

��

KKG
∗ (P ⊗A,B)

PD
∼=

vvlllllllllllllllllll

RKKG
∗ (EG;A,B)

commutes because Θ⊗PD = 1. By the Yoneda Lemma, D⊗ idA is invertible
if and only if the horizontal arrow is invertible for all B. Since the diagonal
arrow is invertible, this is equivalent to the vertical arrow being invertible
for all B, that is, to (4). �

Theorems 4.32 and 4.34 are important in connection with the localisation
approach to the Baum–Connes assembly map developed in [25], as we now
explain.

Definition 4.36. Let EG be a universal proper G-space. We define two
subcategories of KKG :

CC := {A ∈∈ KKG | p∗EG(A) ∼= 0 in RKKG(EG)},
CP := {A ∈∈ KKG | A is KKG-equivalent to a proper G-C∗-algebra}.

Corollary 4.37 (compare [25, Theorem 7.1]). Let EG be a universal proper
G-space and suppose that EG has a 0-dimensional Kasparov dual (P, D,Θ).
Then the pair of subcategories (CP, CC) is complementary. The localisation
functor KKG → CP is A 7→ P ⊗A, and the natural transformation from this
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functor to the identity functor is induced by D. The localisation of KKG at
CC is isomorphic to RKKG(EG) with the functor p∗EG : KKG → RKKG(EG).

Proof. Let L belong to CP and C belong to CC. Then L ∼= P ⊗ L by
Theorem 4.34. Hence

KKG
0 (L,C) ∼= KKG

0 (P ⊗ L,C) ∼= RKKG
0 (EG;L,C)

= KKGnEG
0

(
p∗EG(L), p∗EG(C)

)
= 0.

Thus CP is left orthogonal to CC.
Let A be a G-C∗-algebra. The cone of D⊗ idA : P⊗A→ A (mapping cone

in the sense of triangulated categories) belongs to CC because p∗EG(D ⊗ idA)
is invertible in RKKG(EG) by Theorem 4.32. Hence any object A belongs
to an exact triangle L → A → C → L[1] with L ∈ CP, C ∈ CC, where we
take L = P ⊗ A and the map L → A induced by D. Thus (CP, CC) is a
complementary pair of subcategories.

In the localisation of KKG at CC, the morphism groups are

KKG
0 (A⊗ P, B).

These are identified with RKKG
0 (EG;A,B) by the first Poincaré duality

isomorphism. Hence the localisation is equivalent to RKKG(EG). The com-
muting diagram (4.35) shows that the localisation functor becomes p∗EG . �

Let G be a group. In [25], the analogues of the categories CP and CC
are defined slightly differently: for CC, it is only required that p∗G/H(A) ∼= 0
for all compact subgroups H ⊆ G, and CP is replaced by the triangulated
subcategory generated by objects of the form forgetG/H(Â). We have not
yet tried to construct proper actions of groupoids out of simpler building
blocks in a similar way.

Next we relate Kasparov duality to the Dirac dual Dirac method for
groupoids.

Definition 4.38. An n-dimensional Dirac-dual-Dirac triple for the group-
oid G is a triple (P, D, η) where P is a G n EG-C∗-algebra, D ∈ KKG

−n(P,1),
and η ∈ KKG

n(1,P), such that p∗EG(η ⊗P D) = 1EG in RKKG
0 (EG;1,1) and

D ⊗ η = idP in KKG
0 (P,P).

The two conditions p∗EG(η ⊗P D) = 1EG and D⊗ η = idP are independent:
if both hold, then we may violate the second one without violating the first
one by adding some proper G-C∗-algebra to P and taking (D, 0) and (η, 0);
and the second one always holds if we take P = 0.

Theorem 4.39. Let (P, D, η) be an n-dimensional Dirac-dual-Dirac triple.
Let Θ := p∗EG(η) and let γ := η ⊗P D. Then

(
P, D,Θ

)
is an n-dimensional

Kasparov dual for EG. Furthermore, γ is an idempotent element of the ring
KKG

0 (1,1). This ring acts naturally on all KKG-groups by exterior product.
The map

p∗EG : KKG
∗ (A,B) → RKKG

∗ (EG;A,B)
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vanishes on the kernel of γ and restricts to an isomorphism on the range
of γ. Its inverse is the map

RKKG
i (EG;A,B) → γ ·KKG

i (A,B), α 7→ (−1)inη ⊗P TP(α)⊗P D.

Proof. Condition (4.2) amounts to our assumption p∗EG(γ) = 1EG . Clearly,
the exterior product η⊗η is invariant under flipP up to the sign (−1)n. Since
η ⊗ η = η ⊗P TP(η) and D ⊗ η = idP , this implies (4.4). Condition (4.3) is
automatic by Lemma 4.31. Hence (P, D,Θ) is a Kasparov dual for EG. The
assumption D ⊗ η = idP implies that γ is idempotent.

If f ∈ KKG
i (A,B), then

(−1)inη ⊗P TP
(
p∗EG(f)

)
⊗P D

= (−1)inη ⊗P (idP ⊗ f)⊗P D = η ⊗P D ⊗ f = γ · f.

If f ∈ RKKG
i (EG;A,B), then Lemma 4.31 implies

(−1)inp∗EG(η ⊗P TP(f)⊗P D) = (−1)inΘ⊗P TP(f)⊗P D
= (−1)inΘ⊗EG f ⊗P D = f ⊗EG Θ⊗P D = f.

The remaining assertions follow. �

4.4. Extension to nontrivial bundles. Let (P, D,Θ) be an n-dimension-
al Kasparov dual for X. The functor TP extends to a functor

TP : KKGnX
∗ (A,B) → KKG

∗ (P ⊗X A,P ⊗X B)

for all G nX-C∗-algebras A and B, combining the tensor product over X
with P and forgetX . If B = p∗X(B0) = C0(X) ⊗ B0, then we can simplify
P⊗XB ∼= P⊗B0. Extending the definition in Theorem 4.6, we get a natural
transformation

(4.40) PD∗ : KKGnX
i (A, p∗XB)

(−1)inTP−−−−−−→ KKG
i (P ⊗X A,P ⊗B)

⊗PD−−−−→ KKG
i−n(P ⊗X A,B)

if A is a G nX-C∗-algebra and B is a G-C∗-algebra. This map fails to be an
isomorphism in the following simple counterexample:

Example 4.41. Let G be trivial, take a C∗-algebra A, and view it as a
C∗-algebra over X concentrated in some x ∈ X. Unless x is isolated, the
only X-linear Kasparov cycle for A and C0(X,B) is the zero cycle, so that
KKX

∗
(
A,C0(X,B)

)
= 0. But there is no reason for KK∗(A ⊗X P, B) to

vanish because A⊗X P = A⊗ Px.

The following theorem gives necessary and sufficient conditions for (4.40)
to be an isomorphism. The first results of this kind appeared in [9] and [32].



276 HEATH EMERSON AND RALF MEYER

Theorem 4.42. Let P and A be GnX-C∗-algebras. Let Θ ∈ RKKG
n(X;1,P)

and D ∈ KKG
−n(P,1) satisfy (4.2) and (4.5) (both are necessary condi-

tions for Kasparov duals). The map PD∗ in (4.40) is invertible for all
G-C∗-algebras B if and only if there is

ΘA ∈ KKGnX
n

(
A, p∗X(P ⊗X A)

)
such that the diagram

(4.43)

P ⊗X A
TP (ΘA) //

TP (Θ⊗X idA)
��

P ⊗ (P ⊗X A)

(−1)nflipttjjjjjjjjjjjjjjj

(P ⊗X A)⊗ P

in KKG commutes and, for all α ∈ KKGnX
i

(
A, p∗X(B)

)
,

(4.44) ΘA ⊗P⊗XA TP(α) = Θ⊗X α in KKGnX
i+n

(
A, p∗X(P ⊗B)

)
.

There is at most one element ΘA with these properties, and if it exists, then
the inverse isomorphism to (4.40) is the map

PD: KKG
∗ (P ⊗X A,B) → KKGnX

∗+n

(
A, p∗X(B)

)
, α 7→ ΘA ⊗P⊗XA α.

Proof. If there is ΘA with the required properties, then the following routine
computations show that the maps PD∗ and PD defined above are inverse to
each other. Starting with α ∈ KKGnX

i

(
A, p∗X(B)

)
, we compute

PD ◦ PD∗(α) := (−1)inΘA ⊗P⊗XA TP(α)⊗P D
= (−1)inΘ⊗X α⊗P D = α⊗X Θ⊗P D = α,

using (4.44), graded commutativity of exterior products, and (4.2). Starting
with β ∈ KKG

i−n(P ⊗X A,B), we compute

PD∗ ◦ PD(β) := (−1)inTP(ΘA ⊗P⊗XA β)⊗P D
= (−1)inTP(ΘA)⊗P⊗XA β ⊗P D
= (−1)in+nTP(Θ⊗X idA)⊗(P⊗XA)⊗P (β ⊗D)

= TP(Θ⊗X idA)⊗P⊗(P⊗XA) (D ⊗ β)

= TP
(
(Θ⊗P D)⊗X idA

)
⊗P⊗XA β = β,

using (4.43), graded commutativity of exterior products and (4.2). Hence
our two maps are inverse to each other.

Now suppose, conversely, that PD∗ is an isomorphism for all B. Equations
(4.43) and (4.2) imply

(4.45) PD∗(ΘA) = (−1)nTP(ΘA)⊗P D = TP(Θ⊗X idA)⊗P D = idP⊗XA.

Hence there is at most once choice for ΘA, namely, the unique pre-image of
the identity map on P ⊗X A. The inverse map PD of PD∗ must have the
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asserted form by naturality. We claim that the above choice of ΘA satisfies
(4.43) and (4.44).

For (4.43), we compute the image of

ΘA ⊗X Θ = (−1)nΘ⊗X ΘA ∈ KKGnX
2n (A, p∗X(P ⊗X A)⊗ P)

under PD∗ in two different ways. On the one hand,

PD∗(ΘA ⊗X Θ) := TP(ΘA ⊗X Θ)⊗P D
= TP(ΘA)⊗P TP(Θ)⊗P D = (−1)nTP(ΘA),

using that TP is functorial and (4.5). On the other hand,

PD∗(Θ⊗X ΘA) := TP(Θ⊗X ΘA)⊗P D
= TP(Θ⊗X idA)⊗P⊗XA TP(ΘA)⊗P D
= (−1)nTP(Θ⊗X idA)

by (4.45). Hence TP(Θ⊗X idA) and TP(ΘA) agree up to the sign (−1)n and
the flip of the tensor factors, which we have ignored in the above computation.

Now we check (4.44). Let α ∈ KKGnX
i

(
A, p∗X(B)

)
. Then

PD∗(Θ⊗X α) = PD∗((−1)inα⊗X Θ
)

= TP(α⊗X Θ)⊗P D
= TP(α)⊗P TP(Θ)⊗P D = TP(α)⊗P ∇⊗P D = (−1)nTP(α).

The graded commutativity of exterior products yields

PD∗(ΘA ⊗P⊗XA TP(α)
)

= (−1)inTP(ΘA)⊗P⊗XA TP(α)⊗P D
= TP(ΘA)⊗P D ⊗P⊗XA TP(α) = (−1)nTP(α),

again using (4.45). These computations imply (4.44) because PD∗ is injective.
�

Remark 4.46. The conditions (4.43) and (4.44) are related: we claim
that (4.43) already implies

(4.47) TP
(
ΘA ⊗P⊗XA TP(α)

)
= (−1)inTP(α⊗X Θ)

in KKG
i+n(P ⊗X A,P ⊗ P ⊗ B) for all α ∈ KKGnX

i

(
A, p∗X(B)

)
. If the first

Poincaré duality map in (4.40) is an isomorphism, then TP must be injective,
so that (4.47) yields (4.44). Hence (4.44) is equivalent to injectivity of TP
on suitable groups. This also applies to the second condition (4.3) in the
definition of a Kasparov dual: this is just the special case of Theorem 4.42
where A is a trivial bundle over X.



278 HEATH EMERSON AND RALF MEYER

We check (4.47):

TP
(
ΘA ⊗P⊗XA TP(α)

)
= TP(ΘA)⊗P⊗XA TP(α)

= (−1)nTP(Θ⊗X idA)⊗P⊗XA⊗P flip⊗P⊗XA TP(α)

= (−1)nTP(Θ⊗X α)⊗P⊗P flipP
= (−1)n+inTP(α)⊗P TP(Θ)⊗P⊗P flipP
= (−1)inTP(α)⊗P TP(Θ) = (−1)inTP(α⊗P Θ).

This computation uses (4.43), graded commutativity of exterior products,
and (4.13).

4.5. Modifying the support conditions. The first duality isomorphism
for a proper G-space X specialises to an isomorphism KKG

∗ (P,1) ∼= RK∗
G(X)

for trivial A and B. Now we construct a similar duality isomorphism in
which RK∗

G(X) is replaced by the equivariant K-theory (with G-compact
support)

K∗
G(X) := K∗

(
G n C0(X)

)
.

This is based on a result of Jean-Louis Tu ([31, Proposition 6.25]). Let IX
denote the directed set of G-compact subsets of X (these are closed and
G-invariant by convention).

Theorem 4.48. Let X be a proper G-space and let B be a GnX-C∗-algebra.
Then there is a natural isomorphism

lim−→
Y ∈IX

KKGnX
∗ (C0(Y ), B) ∼= K∗(G nB).

Proof. If X is G-compact, then the left-hand side is simply

KKGnX
∗ (C0(X), B),

and the statement follows easily from [31, Proposition 6.25], see also [12,
Theorem 4.2]. In general, we let

BY := {b ∈ B | bx = 0 for all x ∈ X \ Y } for Y ∈ IX .

This is a G-invariant ideal in B, and K∗(G n BY ) is the inductive limit of
K∗(G nBY ) because K-theory commutes with inductive limits. To finish the
proof, we reduce the general to the G-compact case by constructing natural
isomorphisms

KKGnX
∗ (C0(Y ), B) ∼= KKGnY

∗ (C0(Y ), BY ).

We observe that an X-equivariant correspondence from Y to B must involve
a Hilbert module over B whose fibres vanish outside Y . Hence inner products
of vectors in this Hilbert module must belong to the ideal BY in B and
provide a factorisation of any Kasparov cycle for KKGnX

∗ (C0(Y ), B) through
a unique Kasparov cycle for KKGnY

∗ (C0(Y ), BY ). �
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Now we modify the first duality isomorphism as follows. Let A be a
G nX-C∗-algebra and let B be a G-C∗-algebra. For Y ∈ IX , we let A|Y :=
A

/
C0(X \ Y ) ·A be the restriction of A to Y . Then we consider the map

(4.49) PD∗ : lim−→
Y ∈IX

KKGnX
i (A|Y , p∗XB)

(−1)inTP−−−−−−→

lim−→
Y ∈IX

KKG
i (P ⊗X A|Y ,P ⊗B) ⊗PD−−−−→ lim−→

Y ∈IX

KKG
i−n(P ⊗X A|Y , B)

This is the inductive limit of the maps in (4.49) for A|Y for Y ∈ IX . In
examples, it often happens that this map is invertible between the inductive
limits although the maps for a single Y ∈ IX are not invertible. The following
variant of Theorem 4.42 provides a necessary and sufficient condition for
this:

Theorem 4.50. Let P and A be GnX-C∗-algebras. Let Θ ∈ RKKG
n(X;1,P)

and D ∈ KKG
−n(P,1) satisfy (4.2) and (4.5). The map PD∗ in (4.49) is

invertible for all G-C∗-algebras B if and only if for each Y ∈ IX there are
Y ′ ∈ IX with Y ′ ⊇ Y and

ΘA|Y ∈ KKGnX
n

(
A|Y ′ , p∗X(P ⊗X A|Y )

)
such that the diagram

P ⊗X A|Y ′
TP (ΘA|Y ) //

TP (Θ⊗X idA|Y ′ )
��

P ⊗ (P ⊗X A|Y )

(−1)nflip
��

(P ⊗X A|Y ′)⊗ P
RY

Y ′

// (P ⊗X A|Y )⊗ P

in KKG commutes and, for all α ∈ KKGnX
i

(
A|Y , p∗X(B)

)
,

ΘA|Y ⊗P⊗XA|Y TP(α) = (RY
Y ′)∗(Θ⊗X α) in KKGnX

i+n

(
A|Y ′ , p∗X(P ⊗B)

)
.

Here RY
Y ′ : A|Y ′ → A|Y denotes the restriction map.

The proof of Theorem 4.50 is almost literally the same as for Theorem 4.42.
In particular, Theorem 4.50 identifies

Ki
G(X) ∼= lim−→

Y ∈IX

KKG
i−n(P|Y ,1).

The right-hand side is a variant of the G-equivariant K-homology of P with
some built-in finiteness properties.

What does the factorisation of Θ in Theorem 4.50 mean if A = C0(X)?
The following discussion explains why we call this a locality condition and
why it does not come for free in an axiomatic approach but is cheap to get in
concrete examples. Since this, eventually, does not help to prove theorems,
we are rather brief. Roughly speaking, we introduce a support of Θ in
X ×Z X. Merely being a cycle for RKKG(X;1,P) forces the restriction
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of the first coordinate projection to the support of Θ to be proper. The
factorisations require the second coordinate projection to be proper as well.
In practice, the support of Θ is a small closed neighbourhood of the diagonal
in X ×Z X, so that both coordinate projections are indeed proper on the
support. But this is a feature of concrete constructions, which cannot be
taken for granted in a general axiomatic theory.

A cycle Θ for RKKG
n(X;1;P) consists of a (possibly Z/2-graded) G-equi-

variant Hilbert module E over C0(X)⊗ P and a G-equivariant self-adjoint
operator F such that ϕ · (1− F 2) is compact for all ϕ ∈ C0(X); here C0(X)
acts by right multiplication because of C0(X)-linearity.

Since P is a C∗-algebra over X as well, we may multiply on the left by func-
tions in C0(X×ZX) and view F as a G-equivariant family of operators F(x1,x2)

for (x1, x2) ∈ X ×Z X, with F(x1,x2) acting on a Hilbert module E(x1,x2)

over Px2 . Compactness of ϕ′ · (1− F 2) for all ϕ′ ∈ C0(X ×Z X) means that
1 − F 2

(x1,x2) is compact for all (x1, x2) and depends norm-continuously on
(x1, x2) in a suitable sense. Assuming this, the operators ϕ · (1 − F 2) are
compact for all ϕ ∈ C0(X) if and only if ‖1 − F 2

(x1,x2)‖ → 0 for x2 → ∞,
uniformly for x1 in compact subsets in X. Letting Sε be the closed set of
all (x1, x2) ∈ X ×Z X with ‖F 2

(x1,x2) − 1‖ ≥ ε, this means that the first
coordinate projection π1 : Sε → X is proper for all ε > 0. Actually, it suffices
to assume this for ε = 1 because F 2 is positive where ‖F 2 − 1‖ < 1, so that
we may always homotope F to another operator with F 2 = 1 outside a given
neighbourhood of S1.

When does Θ|Y factor through KKGnX
n (C0(Y ′),C0(X) ⊗ P|Y )? Cycles

for the latter group may be viewed as cycles for KKGnX
n (C0(X),C0(X)⊗P)

where E(x1,x2) = 0 for x2 /∈ Y or x1 /∈ Y ′. The restriction of Θ to Θ|Y only
ensures E(x1,x2) = 0 for x2 /∈ Y . If only ‖F 2

(x1,x2) − 1‖ < 1 for x2 /∈ Y or
x1 /∈ Y ′, then standard homotopies provide another representative first with
F 2

(x1,x2) = 1 for x2 /∈ Y or x1 /∈ Y ′ and then one with E(x1,x2) = 0 for x2 /∈ Y
or x1 /∈ Y ′. Hence the factorisations required in Theorem 4.50 exist if and
only if for each G-compact subset Y ⊆ X there is a G-compact subset Y ′ ⊆ X
such that S1 ∩ (X ×Z Y ) ⊆ Y ′ ×Z Y . This condition seems unrelated to the
properness of the first coordinate projection on S1. It follows if the second
coordinate projection is proper.

In practice, if Θ does not come from a dual Dirac element, its construction
usually ensures E(x1,x2) = 0 outside a small neighbourhood of the diagonal,
so that both coordinate projections are proper on S1 (see also Section 7).
Hence, the necessary factorisations exist by construction. This feature of the
construction is also used to get ΘA for strongly locally trivial A, compare
Section 7.3.
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5. Bundles of compact spaces

Throughout this section, we consider the simpler case of a proper space
over Z, that is, the map pX : X → Z = G(0) is proper. We may then view X
as a bundle of compact spaces over Z (but these bundles need not be locally
trivial). If X is proper over Z, then there is an equivariant ∗-homomorphism

p!
X : C0(Z) → C0(X), ϕ 7→ ϕ ◦ pX .

If Z is a point, then X is compact and p!
X is the unit map C → C(X).

Proposition 5.1. Let X be a proper G-space over Z. Let A be a G-C∗-algebra
and let B be a G nX-C∗-algebra. Then the map

(5.2) KKGnX
∗ (p∗X(A), B) → KKG

∗ (A,B), α 7→ [p!
X ]⊗C0(X) forgetX(α),

is a natural isomorphism. Let [mB] ∈ KKGnX
0 (p∗X(B), B) be the class of the

multiplication homomorphism p∗X(B) = C0(X)⊗Z B → B. The inverse of
the isomorphism in (5.2) is the map

KKG
∗ (A,B) → KKGnX

∗ (p∗X(A), B), α 7→ p∗X(α)⊗p∗X(B) [mB].

Proof. The action of C0(X) ⊗ A in a cycle for KKGnX
∗ (C0(X) ⊗ A,B)

is already determined by its restriction to A and C0(X)-linearity. We
may describe the restriction to A as the composition with p!

X ⊗ idA : A ∼=
C0(Z)⊗Z A→ C0(X)⊗Z A. Since pX is proper, the compactness conditions
for a Kasparov cycle are the same for KKGnX

∗ (p∗X(A), B) and KKG
∗ (A,B).

Thus p!
X induces an isomorphism as claimed. The formula for the inverse

follows because

[p!
X ]⊗C0(X) p

∗
X(α)⊗p∗X(B) [mB] = α⊗ [p!

X ]⊗p∗X(B) [mB] = α

for all α ∈ KKG
∗ (A,B) — this formalises the naturality of [p!

X ]. �

In the nonequivariant case and in Kasparov’s notation, Proposition 5.1
asserts

RKK∗(X; C0(X)⊗Z A,B) ∼= RKK∗(Z;A,B)
where A is a Z-C∗-algebra and B is an X-C∗-algebra, provided X is proper
over Z. For Z = ? and compact X, we get

RKK∗(X; C(X,A), B) ∼= KK∗(A,B).

When we specialise Proposition 5.1 to the case where both algebras are
pulled back from Z, we get

RKKG
∗ (X;A,B) := KKGnX

∗
(
p∗X(A), p∗X(B)

)
∼= KKG

∗
(
A, p∗X(B)

) ∼= KKG
∗ (A,C0(X)⊗B).

Example 5.3. The coordinate projection X × [0, 1] → X is proper. Propo-
sition 5.1 applied to this map and A and B pulled back from Z yields

RKKG
∗ (X × [0, 1];A,B) ∼= RKKG

∗ (X;A,C([0, 1])⊗B) ∼= RKKG
∗ (X;A,B)
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because Kasparov theory is homotopy invariant in the second variable. This
shows that X 7→ RKKG

∗ (X;A,B) is a homotopy functor.

Plugging Proposition 5.1 into the definition of an abstract dual, we get:

Corollary 5.4. Assume that X is proper over Z, let P be a G-C∗-algebra
and let Θ ∈ RKKG

n(X;1,P). Let

Λ := [p!
X ]⊗C0(X) forgetX(Θ) ∈ KKG

n(1,C0(X)⊗ P).

The pair (P,Θ) is an n-dimensional G-equivariant abstract dual for X if and
only if the map

P̃D: KKG
∗ (P ⊗A,B) → KKG

∗+n(A,C0(X)⊗B), f 7→ Λ⊗P f

is an isomorphism for all G-C∗-algebras A and B.

Such an isomorphism means that C0(X) and P are Poincaré dual objects
of KKG (see [30, 10, 5]). Recall how such duals arise:

Theorem 5.5. Let A and Â be objects of KKG, let n ∈ Z, and let

V ∈ KKG
−n(Â⊗A,1), Λ ∈ KKG

n(1, A⊗ Â).

The maps

P̃D: KKG
i−n(Â⊗ C,D) → KKG

i (C,A⊗D), f 7→ Λ⊗Â f,

P̃D∗ : KKG
i (C,A⊗D) → KKG

i−n(Â⊗ C,D), f 7→ (−1)inf ⊗A V,

are inverse to each other if and only if V and Λ satisfy the zigzag equations

Λ⊗Â V = idA in KKG
0 (A,A),

Λ⊗A V = (−1)n idÂ in KKG
0 (Â, Â).

Definition 5.6. If this is the case, then we call A and Â Poincaré dual, and
we call V and Λ the fundamental class and the dual fundamental class of
the duality.

The zigzag equations are equivalent to

P̃D(V) = idA, P̃D∗(Λ) = idÂ.

Therefore,
V = P̃D∗(idA), Λ = P̃D(idÂ)

if we have a Poincaré duality. In the situation of Corollary 5.4, we can
compute the fundamental class in terms of the constructions in Section 4.1:

V = P̃D∗(idC0(X)) = PD∗(∆X) = TP(∆X)⊗P D = [m]⊗P D.

Here we use that the isomorphism (5.2) maps the diagonal restriction class ∆X

to idC0(X), Equation (4.20), and the definition of the multiplication class [m]
in (4.23).
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Theorem 5.7. Let P be a G-C∗-algebra, let n ∈ Z, let Θ ∈ RKKG
n(X;1,P)

and D ∈ RKKG
−n(X;1,P). Then (P, D,Θ) is an n-dimensional Kasparov

dual for X if and only if C0(X) and P are Poincaré dual objects of KKG

with fundamental class

V := mP ⊗P D in KKG
−n(P ⊗ C0(X),1)

and dual fundamental class

Λ := p!
X ⊗C0(X) Θ in KKG

n(1,C0(X)⊗ P),

where mP ∈ KKG
0 (P ⊗C0(X),P) is the class of the multiplication homomor-

phism and p!
X : C0(Z) → C0(X) is induced by pX .

Furthermore, if we identify RKKG
∗ (X;A,B) ∼= KKG

∗ (A,C0(X)⊗B) as in
Proposition 5.1, then the duality isomorphisms PD and PD∗ in Theorem 4.6
agree with the duality isomorphisms P̃D and P̃D∗ in Theorem 5.5.

Proof. We claim that

P̃D(f) = p!
X ⊗C0(X) Θ⊗P f in KKG

i+n(A,C0(X)⊗B),

P̃D∗(p!
X ⊗C0(X) g) = (−1)inTP(g)⊗P D in KKG

i−n(P ⊗A,B)

for all f ∈ KKG
i (P ⊗ A,B), g ∈ RKKG

i (X;A,B). The formula for P̃D(f)
follows immediately from the definitions. To prove the formula for P̃D∗, let
ĝ := p!

X ⊗C0(X) g in KKG
i (A,C0(X)⊗B). Proposition 5.1 implies

g = p∗X(ĝ)⊗p∗X(C0(X)⊗B) mC0(X)⊗B = p∗X(ĝ)⊗C0(X)⊗C0(X) ∆X .

Using TP
(
p∗X(ĝ)

)
= idP ⊗ ĝ and TP(∆X) = mP , we compute

TP(g)⊗P D = TP(p∗X ĝ)⊗P⊗C0(X) TP(∆X)⊗P D
= ĝ ⊗C0(X) mP ⊗P D = ĝ ⊗C0(X) V.

This yields the formula for P̃D∗ and establishes the claim.
As a consequence of the claim, the duality maps in Theorem 4.6 agree

with those in Theorem 5.5 up to the isomorphism in Proposition 5.1. We
know that C0(X) and P are Poincaré dual with respect to V and Λ if and
only if the maps P̃D and P̃D∗ are inverse to each other for all G-C∗-algebras
A and B. By the claim, this is the case if and only if the maps PD and
PD∗ in Theorem 4.6 are inverse to each other for all G-C∗-algebras A and B,
which is equivalent to (P, D,Θ) being a Kasparov dual for X. �

In the situation of Theorem 5.7, it is easy to reformulate the zigzag
equations in terms of Θ and D. Defining ∇ = TP(Θ) ∈ KKG

n(P,P ⊗ P)
as usual, the second zigzag equation is equivalent to ∇ ⊗P,1 D = (−1)n,
where ⊗P,1 means that D acts on the first copy of P in the target of ∇; this
condition also appears in (4.14). The first zigzag equation is equivalent to
PD(V) = ∆X because the isomorphism in (5.2) maps ∆X to idC0(X). As a
consequence:
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Corollary 5.8. In the situation of Theorem 5.7, (P, D,Θ) is a Kasparov dual
for X if and only if ∇⊗P,1D = (−1)n in KKG

0 (P,1) and Θ⊗P [mP ]⊗PD =
∆X in RKKG

0 (X; C0(X),1).

We can simplify Definition 4.1 here because any element of RKKG
∗ (X;A,B)

is of the form p∗X(f)⊗C0(X) ∆X for some f ∈ KKG
∗ (A,C0(X)⊗B). In (4.3),

we can easily get rid of the factor p∗X(f) because

Θ⊗X p∗X(f) = Θ⊗P TP(f) = Θ⊗ f = (−1)inf ⊗Θ.

Hence (4.3) is equivalent to Θ⊗X ∆X = Θ⊗P mP in RKKG
∗ (X;C0(X),P)

because mP = TP(∆X). But this simplification depends on pX being proper.

Proposition 5.9. Let A be a separable C∗-algebra in the UCT class. Then A
has a Poincaré dual in KK if and only if K∗(A) is finitely generated.

Proof. Any C∗-algebra in the UCT class is KK-equivalent to C0(X) for
a locally finite, two-dimensional, countable simplicial complex X (see [4])
because any countable Z/2-graded Abelian group arises as K∗(X) for some
such X.

Assume first that K∗(A) is finitely generated. Then this simplicial complex
may be taken finite, so that A is KK-equivalent to C(X) for a finite simplicial
complex X. Such spaces admit a Kasparov dual (see [11]), so that C(X)
admits a Poincaré dual in KK. So does A because A ∼= C(X) in KK.

Assume conversely that A has a Poincaré dual Â. Then the functor
B 7→ KK∗(A,B) ∼= K∗(B⊗Â) commutes with inductive limits of C∗-algebras.
Choose X with K∗(X) = K∗(A) as above and write X as an increasing
union of finite subcomplexes Xn. Let X◦

n be the interior of Xn in X, then
C0(X) = lim−→C0(X◦

n). Since KK∗(A, ) commutes with inductive limits, the
KK-equivalence A→ C0(X) factors through C0(X◦

n) for some n ∈ N. Thus
K∗(A) is a quotient of K∗(X◦

n). Since the latter is finitely generated, so is
K∗(A). �

Corollary 5.10. A compact space X has an abstract dual if and only if
K∗(X) is finitely generated.

Proof. A compact space X has an abstract dual if and only if C(X) has a
Poincaré dual in KK. Since C(X) automatically belongs to the UCT class,
the assertion follows from Proposition 5.9. �

6. The second duality

The notion of duality in KKG is reflexive, that is, if Â is dual to A,
then A is dual to Â. This is because the tensor category KKG is symmetric.
Therefore, if p∗X is proper and (P,Θ) is an abstract dual for X, then we get
another duality isomorphism of the form

(6.1) KKG
∗ (C0(X)⊗ C,D) ∼= KKG

∗+n(C,P ⊗D).
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Up to changing the order of the factors, the isomorphism (6.1) is constructed
from the fundamental class and dual fundamental class of the original duality.
In the special case of a compact manifold with boundary acted upon by a
compact group, (6.1) is Kasparov’s second Poincaré duality [17, Theorem
4.10]. We are going to extend this isomorphism to the case where X is not
proper over Z.

Let (P, D,Θ) be an n-dimensional Kasparov dual for X; we do not require
pX to be proper. Let A be a G nX-C∗-algebra and let B be a G-C∗-algebra.
Then P ⊗B = P ⊗X p∗X(B) is a G nX-C∗-algebra. The natural map
(6.2)

PD2 : KKGnX
i (A,P ⊗B)

forgetX−−−−→ KKG
i (A,P ⊗B)

(−1)in ⊗PD−−−−−−−−→ KKG
i−n(A,B)

is called the second duality map associated to the Kasparov dual.
Consider the case A = p∗X(A0) for some G-C∗-algebra A0. Then (6.2)

becomes a map

KKGnX
i (p∗X(A0),P ⊗B) → KKG

i−n(C0(X)⊗A0, B).

By Proposition 5.1, its domain agrees with KKG
i (A0,P ⊗B) if p∗X is proper.

It can be checked that the map is indeed the inverse of the isomorphism
in (6.1). Hence it is an isomorphism if X is proper over Z. But in general, the
assumptions for a Kasparov dual do not imply (6.2) to be an isomorphism,
even for the case of trivial G nX-algebras like A = p∗X(A0). Theorem 6.4
below, which is similar to Theorem 4.42, provides a necessary and sufficient
condition.

Notation 6.3. In the following computations, we consider some tensor
products of the form P ⊗A where both P and A are G-C∗-algebras over X.
Then P⊗A is a G-C∗-algebra over X×X, so that there are two ways to view
it as a C∗-algebra over X. We underline the tensor factor whose X-structure
we use. Thus C0(X) acts on P ⊗A by pointwise multiplication on the first
tensor factor; we could also denote this by P ⊗ forgetX(A), but the latter
notation is rather cumbersome.

Theorem 6.4. Let P and A be GnX-C∗-algebras. Let Θ ∈ RKKG
n(X;1,P)

and D ∈ KKG
−n(P,1) satisfy (4.2) and (4.5) (both are necessary conditions

for Kasparov duals). The map PD2 in (6.2) is an isomorphism for all
G-C∗-algebras B if and only if there is

Θ̃A ∈ KKGnX
n (A,P ⊗A)

such that the diagram

(6.5)
A

eΘA //

Θ⊗XA
��

P ⊗A

(−1)nflipxxppppppppppp

A⊗ P
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commutes in KKG — that is, after forgetting the X-structure — and if for
all G-C∗-algebras B and all α ∈ KKGnX

i (A,P ⊗B),

(6.6) Θ̃A ⊗A forgetX(α) = Θ⊗X α in KKGnX
i+n (A,P ⊗ P ⊗B).

There is at most one element Θ̃A with these properties, and if it exists then
the inverse isomorphism to (6.2) is the map

PD∗
2 : KKG

i (A,B) → KKGnX
i+n (A,P ⊗B), α 7→ Θ̃A ⊗A α.

Proof. Assume first that Θ̃A satisfies (6.5) and (6.6). Define PD∗
2 as above

and let β ∈ KKG
i (A,B). We compute

PD2 ◦ PD∗
2(β) = (−1)(i+n)nforgetX(Θ̃A ⊗A β)⊗P D

= (−1)nforgetX(Θ̃A)⊗P D ⊗A β

= forgetX(Θ⊗X idA)⊗P D ⊗A β = β,

using the graded commutativity of exterior products, (6.5), and (4.2). If
α ∈ KKGnX

i (A,P ⊗B), then

PD∗
2 ◦ PD2(α) = (−1)inΘ̃A ⊗A forgetX(α)⊗P D

= (−1)inΘ⊗X α⊗P D
= α⊗X Θ⊗P D = α

because of (6.6), graded commutativity of exterior products, and (4.2). Thus
PD2 and PD∗

2 are inverse to each other as desired.
Moreover, (6.5) and (4.2) imply

PD2(Θ̃A) := (−1)nforgetX(Θ̃A)⊗P D = forgetX(Θ⊗X idA)⊗P D(6.7)
= idA.

By (6.7), if PD2 is an isomorphism then Θ̃A is the unique PD2-pre-image of
the identity map on forgetX(A). Naturality implies that PD−1

2 = PD∗
2. It

remains to check that Θ̃A defined by (6.7) satisfies (6.5) and (6.6).
To verify (6.5), we compute the PD2-image of

Θ̃A ⊗X Θ = (−1)nΘ⊗X Θ̃A ∈ KKG
2n(A,P ⊗ P ⊗A)

in two ways. On the one hand,

PD2(Θ̃A ⊗X Θ) := forgetX(Θ̃A ⊗X Θ)⊗P D

= forgetX(Θ̃A)⊗P TP(Θ)⊗P D = (−1)nforgetX(Θ̃A)

because forgetX is functorial and Θ̃A ⊗X Θ is the composition of

Θ̃A : A→ P ⊗A
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and σP⊗A(Θ): P ⊗A→ P ⊗A⊗ P; we also use (4.5). On the other hand,

PD2(Θ⊗X Θ̃A) := forgetX(Θ⊗X Θ̃A)⊗P D

= forgetX(Θ⊗X idA)⊗A forgetX(Θ̃A)⊗P D
= (−1)nforgetX(Θ⊗X idA)

by (6.7). Since PD2 is injective, these two formulas imply (6.5).
To check (6.6), we let α ∈ KKGnX

i (A,P ⊗ B) and abbreviate ᾱ :=
forgetX(α). We have α⊗X Θ = (−1)inΘ⊗X α because the exterior product
in Kasparov theory is graded commutative. Equation (6.6) is equivalent to
(−1)inPD2(α⊗X Θ) = ᾱ because

PD−1
2 (ᾱ) = PD∗

2(ᾱ) = Θ̃A ⊗A ᾱ,

We can use σP(Θ) ∈ KKGnX
n (P,P ⊗ P) to rewrite

α⊗X Θ = α⊗P σP(Θ).

Since forgetX(σP(Θ)) = TP(Θ), the functoriality of forgetX and (4.5) yield

(−1)inPD2(α⊗X Θ) = (−1)in(−1)(i+n)nforgetX(α⊗P σPΘ)⊗P D
= (−1)nforgetX(α)⊗P TP(Θ)⊗P D = ᾱ.

Hence Θ̃A satisfies (6.6). �

Remark 6.8. The two conditions in Theorem 6.4 are related: we claim that
the first condition already implies

(6.9) forgetX

(
Θ̃A ⊗A forgetX(α)

)
= (−1)inforgetX(α⊗X Θ)

in KKG
i+n(A,P⊗P⊗B) for all G-C∗-algebras B and all α ∈ KKGnX

i (A,P⊗B).
If the second Poincaré duality map in (6.2) is an isomorphism, then the map
forgetX in (6.9) is injective, so that (6.9) already implies Θ̃A⊗A forgetX(α) =
(−1)inα⊗X Θ. Hence the second condition in Theorem 6.4 is equivalent to the
injectivity of forgetX on suitable groups. All this is parallel to Remark 4.46
about the first Poincaré duality.

We check (6.9), abbreviating forgetX(α) = ᾱ.

forgetX

(
Θ̃A ⊗A forgetX(α)

)
= Θ̃A ⊗A ᾱ = (−1)nΘ⊗X idA ⊗A⊗P flip⊗A ᾱ

= (−1)nΘ⊗X idA ⊗A ᾱ⊗P⊗P flipP
= (−1)nΘ⊗X α⊗P⊗P flipP
= (−1)n+inα⊗X Θ⊗P⊗P flipP
= (−1)n+inᾱ⊗P TP(Θ)⊗P⊗P flipP
= (−1)inᾱ⊗P TP(Θ) = (−1)inα⊗X Θ.
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If A = p∗X(A0), then Θ̃A lies in the Kasparov group

KKGnX
∗ (A,P ⊗A) = KKGnX

∗ (C0(X)⊗A0,P ⊗ C0(X)⊗A0).

The obvious Ansatz for Θ̃A is Θ̃p∗X(A0) := Θ̃⊗ idA0 for some

Θ̃ ∈ KKGnX
n

(
C0(X),P ⊗ C0(X)

)
.

The latter group differs from KKGnX
n

(
C0(X),P ⊗C0(X)

)
that contains Θ —

unless X is proper over Z: then, both groups agree with KKG
n

(
1,P⊗C0(X)

)
and Θ and Θ̃ correspond to the same element Λ in the latter group. Thus
our two duality isomorphisms use slightly different ingredients unless pX is
proper.

Definition 6.10. A symmetric Kasparov dual for a G-space X is a quadruple
(P, D,Θ, Θ̃) where P is a G nX-C∗-algebra, D ∈ KKG

−n(P,1), and

Θ ∈ KKGnX
n (1X ,1X ⊗ P) = RKKG

n(1,P), Θ̃ ∈ KKGnX
n (1X ,P ⊗ 1X)

satisfy the following conditions:
• Θ⊗P D = id1 in RKKG

0 (X;1,1);
• TP(Θ)⊗P⊗P flipP = (−1)nTP(Θ) in KKG

n(P,P ⊗ P);
• forgetX(Θ) = (−1)nforgetX(Θ̃)⊗P⊗C0(X) flip in KKG

n(1X ,1X ⊗ P);
• Θ⊗X f = Θ⊗P TP(f) in RKKG

∗+n(X;A,P⊗B) for all G-C∗-algebras
A and B and all f ∈ RKKG

∗ (X;A,B);
• Θ̃⊗C0(X) forgetX(f) = Θ⊗X f in KKGnX

∗+n (X; p∗XA,P ⊗ P ⊗B) for
all G-C∗-algebras A and B and all f ∈ KKGnX

∗ (X; p∗XA,P ⊗B).

Equivalently, (P, D,Θ) is a Kasparov dual for X and Θ̃⊗ idA satisfies the
conditions of Theorem 6.4 with A = p∗XA0 for all G-C∗-algebras A0. Here we
identify P ⊗X p∗XA0

∼= P ⊗A0. Thus a symmetric Kasparov dual provides
both duality isomorphisms:

KKGnX
i

(
p∗X(A), p∗X(B)

) ∼= KKG
i+n(P ⊗A,B),

KKGnX
i (p∗X(A),P ⊗B) ∼= KKG

i−n(C0(X)⊗A,B)

for all G-C∗-algebras A and B.
The second duality isomorphism forX yields, in particular, an isomorphism

KKG
∗
(
C0(X),C0(Y )

) ∼= KKGnX
∗

(
C0(X),P ⊗ C0(Y )

)
for another G-space Y . If P = C0(V ) for a space V over X, then the right-
hand side is the G-equivariant K-theory of V × Y with X-compact support
(see [12]). Thus bivariant K-theory with commutative coefficients reduces to
ordinary K-theory with support conditions under a duality assumption.

Applications to the Baum–Connes conjecture require a variant of the
second duality isomorphism with different support conditions, which we
get as in Section 4.5. Let IX denote the directed set of G-compact subsets
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of X, let A|Y for a G nX-C∗-algebra A denote the restriction to Y , and let
RY

Y ′ : A|Y → A|Y ′ for Y ⊆ Y ′ denote the restriction map.

Theorem 6.11. Let P and A be GnX-C∗-algebras. Let Θ ∈ RKKG
n(X;1,P)

and D ∈ KKG
−n(P,1) satisfy (4.2) and (4.5). Then the map PD2 induces

an isomorphism

lim−→
Y ∈IX

KKGnX
i (A|Y ,P ⊗B) → lim−→

Y ∈IX

KKG
i (A|Y , B)

if and only if for each Y ∈ IX there are Y ′ ∈ IX and

Θ̃A|Y ∈ KKGnX
n (A|Y ′ ,P ⊗A|Y )

such that the diagram

A|Y ′
eΘA|Y //

Θ⊗XA|Y ′
��

P ⊗A|Y ′

(−1)nflip
��

A|Y ′ ⊗ P
RY

Y ′

// A|Y ⊗ P

commutes in KKG — that is, after forgetting the X-structure — and for all
G-C∗-algebras B and all α ∈ KKGnX

i (A|Y ,P ⊗B),

Θ̃A|Y ⊗A|Y forgetX(α) = (RY
Y ′)∗(Θ⊗X α) in KKGnX

i+n (A|Y ′ ,P ⊗ P ⊗B).

The proof of Theorem 6.11 is literally the same as for Theorem 6.4.

Theorem 6.12. Under the assumptions of Theorem 6.11, there are natural
isomorphisms

lim−→
Y ∈IX

KKG
∗ (C0(Y ), B) ∼= K∗+n

(
G n (P ⊗B)

)
for all G-C∗-algebras B. If X is a proper G-space, then the following diagram
commutes:

lim−→KKG
∗ (C0(Y ), B)

∼= //

IndexG ))TTTTTTTTTTTTTTT
K∗+n

(
G n (P ⊗B)

)
D

��
K∗(G nB).

Here IndexG denotes the equivariant index map that appears in the Baum–
Connes assembly map.

Proof. The isomorphism follows by combining Theorems 6.11 and 4.48. It
is routine but tedious to check that the diagram commutes. �

Theorem 6.12 corrects [31, Proposition 5.13], which ignores the distinction
between KKGnX

∗ (C0(X),C0(X)⊗ P) and KKGnX
∗ (C0(X),C0(X)⊗ P).



290 HEATH EMERSON AND RALF MEYER

In practice, we get Θ̃A|Y from Θ̃A by restricting to Y in the target variable.
This only yields Θ̃A|Y ∈ KKGnX

n (A,P⊗A|Y ). We need that Θ̃A is sufficiently
local for this restriction to factor through the restriction map A→ A|Y ′ for
some G-compact subset Y ′, and we need that the conditions for duality can
be checked locally as well, so that they hold for these factorisations. The
classes ΘA|Y needed for Theorem 4.50 can be constructed in a similar way
by factoring ΘA.

Definition 6.13. A symmetric dual is called local if such factorisations exist
for Θ and Θ̃ and if these satisfy the appropriate conditions for the duality
isomorphisms in Theorems 4.50 and 6.11.

Thus in the situation of a local symmetric dual, we also get natural
isomorphisms

lim−→
Y ∈IX

KKGnX
∗

(
C0(Y )⊗A, p∗X(B)

) ∼= lim−→
Y ∈IX

KKG
∗ (P|Y ⊗A,B),

lim−→
Y ∈IX

KKGnX
∗ (C0(Y )⊗A,P ⊗B) ∼= lim−→

Y ∈IX

KKG
∗ (C0(Y )⊗A,B).

Assume now that X is a universal proper G-space. Then Corollary 4.37
interprets the functor A 7→ P ⊗A as the localisation functor for the subcate-
gory CC of all objects A with p∗EG(A) = 0. Hence A 7→ K∗+n

(
G n (P ⊗A)

)
is the localisation of K∗(G nA) at the subcategory CC. And Theorem 6.12
identifies the Baum–Connes assembly map with the canonical map from this
localisation to K∗(G nA). Moreover, Theorem 4.34 shows that D induces an
isomorphism K∗+n

(
G n (P ⊗A)

) ∼= K∗(G nA) if A is a proper G-C∗-algebra.
As a result:

Theorem 6.14. The Baum–Connes assembly map is an isomorphism for
proper coefficient algebras provided EG has a local symmetric Kasparov dual.

Finally, let us discuss the difference between the groups

KKGnX
n (C0(X),C0(X)⊗ P) and KKGnX

n (C0(X),C0(X)⊗ P)

that contain Θ and Θ̃. We use the same notation as in the end of Section 4.5.
Cycles for both groups consist of a Hilbert module E over C0(X) ⊗ P
and a norm-continuous G-equivariant family of Fredholm operators F(x1,x2).
In addition, for a cycle for KKGnX

n (C0(X),C0(X) ⊗ P), the first coor-
dinate projection must be proper on Sε for all ε > 0; for a cycle for
KKGnX

n (C0(X),C0(X)⊗P), the second coordinate projection must be proper
on Sε for all ε > 0.

In concrete constructions, it often happens that both coordinate projections
on the support of Θ are proper, and then we may use the same pair (E , F )
(up to a sign (−1)n) to define Θ̃. Moreover, the factorisations needed for a
local symmetric Kasparov dual exist in this case.
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7. Duals for bundles of smooth manifolds

We construct local symmetric Kasparov duals for a bundle of smooth
manifolds with boundary and establish first and second Poincaré duality
isomorphisms with coefficients in bundles of C∗-algebras that are locally
trivial in a sufficiently strong sense. This generalises results in [17, 9, 32].

There are several equivalent duals that are related by Thom isomorphisms.
When dealing with a single smooth manifold, Gennadi Kasparov [17] formu-
lates duality using Cliford algebra bundles. The Clifford algebra bundle may
be replaced by the tangent bundle. If the manifold is K-oriented, then it
is self-dual. In [14], another dual involving a stable normal bundle appears
naturally. The latter has the advantage of working for all cohomology theo-
ries. Already in real K-theory, we meet a problem with the tangent space
duality because we have to equip the tangent space with a nontrivial “real”
structure for things to work out. The three duals indicated above are clearly
equivalent because of Thom isomorphisms, so that it suffices to establish
duality for one of them. But it is useful for applications to describe the
classes D, Θ and Θ̃ explicitly in each case.

Before we come to that, we first explain the notion of a bundle of smooth
manifolds that we use and the assumptions we impose. Then we describe
different duals for a bundle of smooth manifolds with boundary and state
the duality results. Finally, we prove the duality isomorphisms for strongly
locally trivial coefficients.

7.1. Bundles of smooth manifolds. We do not require the base spaces
of our bundles to be manifolds and only require smoothness of the action
along the fibres, but we require the action to be proper. First we explain
why we choose this particular setup. Then we define bundles of smooth
manifolds and smooth groupoid actions on them and construct nice fibrewise
Riemannian metrics. The latter will be needed to construct the duality.

The properness assumption avoids certain rather severe analytical diffi-
culties. The most obvious of these is the absence of G-invariant metrics
on various vector bundles like the tangent bundle. This has the effect that
adjoints of natural G-invariant differential operators such as the vertical de
Rham differential fail to be G-invariant. If we wanted to prove the Baum–
Connes Conjecture for some groupoid, we would have to overcome exactly
such difficulties. Here we use the Baum–Connes Conjecture or, more pre-
cisely, the Dirac dual Dirac method, in order to avoid these difficulties and
replace nonproper actions by proper ones.

The trick is as follows. Let G be a groupoid and let X be a G-space. Let EG
be a universal proper G-space. Then we study the proper GnEG-space X×EG
instead of the G-space X. Note that the groupoid G n EG is itself proper,
whence all its actions are automatically proper. For topological computations,
replacing G by G n EG often yields the same results by Theorem 4.34, which
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asserts that

(7.1) p∗EG : KKG
∗ (A,B) → RKKG

∗ (EG;A,B)

is invertible once A is KKG-equivalent to a proper G-C∗-algebra. The
map (7.1) is the analogue of the Baum–Connes assembly map for KKG

∗ (A,B)
by Corollary 4.37.

The invertibility of (7.1) is closely related to the dual Dirac method. It is
automatic if G acts properly on A. The existence of a dual Dirac morphism
is equivalent to p∗EG being invertible for all proper coefficient algebras B.
The map p∗EG is invertible for arbitrary A and B if and only if G has a dual
Dirac morphism with γ = 1. For instance, this happens if G is an amenable
groupoid. If there is a dual Dirac morphism, then the map p∗EG is split
surjective, and its kernel is the kernel of the γ-element γ ∈ KKG

0 (1,1), which
is notoriously difficult to compute. Thus we may view RKKG

∗ (EG;A,B) as
the topologically accessible part of KKG

∗ (A,B).
Even if Γ is the fundamental group of a smooth manifold M , the universal

proper Γ-space EΓ need not have the homotopy type of a smooth manifold.
Hence the trick above requires that we replace a smooth manifold M by
a bundle EΓ ×M of smooth manifolds over an arbitrary base space EΓ.
Fortunately, we only need smoothness along the fibres, and the properness
of the action on EΓ×M is worth giving up smoothness along the base.

Let Z be a locally compact space and let p : X → Z be a space over Z.
We want to define what it means for X to be a bundle of smooth manifolds
over Z. We require an open covering of X by chart neighbourhoods that
are homeomorphic to U × Rn with U open in Z, such that p becomes the
projection to the first coordinate on U ×Rn. We also require that the change
of coordinate maps on intersections of chart neighbourhoods are smooth in
the Rn-direction.

Example 7.2. Let X and Z be smooth manifolds and let π : X → Z be a
submersion. Then X is a bundle of smooth manifolds over Z.

More generally, we consider bundles of smooth manifolds with boundary.
These are defined similarly, allowing U ×Rn−1 × [0,∞) instead of U ×Rn in
the local charts.

Given two bundles X and Y of smooth manifolds with boundary over Z
and a continuous map f : X → Y over Z, we call f fibrewise smooth or C0,∞

if derivatives of arbitrary order in the Rn−1 × [0,∞)-direction of the maps
U1 × Rn−1 × [0,∞) → U2 × Rn−1 × [0,∞) that we get from f by restriction
to chart neighbourhoods are continuous functions.

Remark 7.3. If p is proper, that is, the fibres of p are compact, then any such
bundle of smooth manifolds is locally trivial (via local homeomorphisms that
restrict to diffeomorphisms on the fibres). We sketch the proof. Fix z ∈ Z,
let M := p−1(z) be the fibre. This is a smooth manifold by assumption. For
any x ∈ p−1(z), there is a chart neighbourhood Ux ⊆ X of x that is identified
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with p(Ux)×Rn. Since p is proper, finitely many such chart neighbourhoods
(Ui) cover a neighbourhood of the fibre M . Shrinking them, if necessary, we
may assume that they all involve the same open subset V = p(Ux) ⊆ z, so
that our chart neighbourhoods cover p−1(V ).

The charts provide local retractions ri : Ui → Ui ∩M . In order to patch
these local retractions together, we choose a fibrewise smooth partition of
unity (τi) subordinate to our covering and embed M into RN for some N ∈ N.
We get a fibrewise smooth map

h :=
∑

i

τi · ri : V → RN ,

which maps the fibre M = p−1(z) identically to M ⊆ RN . Shrinking V , if
necessary, we can achieve that h(V ) is contained in a tubular neighbour-
hood E of M in RN , so that we can compose h with a smooth retraction
E → M . This yields a fibrewise smooth retraction r : p−1(V ) → M . Since
smooth maps that are close to diffeomorphisms are still diffeomorphisms,
r restricts to a diffeomorphism on the fibres p−1(z′) for z′ in some neigh-
bourhood of z. On this smaller neighbourhood, r × p : p−1(V ) → M × V
trivialises our bundle.

There is a well-defined vector bundle TX on X — called vertical tangent
bundle — that consists of the tangent spaces in the fibre directions. This
bundle and the bundles of fibrewise differential forms derived from it are
bundles of smooth manifolds over Z, so that we may speak of C0,∞-sections.
A fibrewise Riemannian metric on X is a C0,∞-section of the bundle of
positive definite bilinear forms on TX.

If p : X → Z has a structure of smooth manifold over Z and f : Z ′ → Z is
a continuous map, then

f∗(p) := f ×Z p : f∗(X) := Z ′ ×Z X → Z ′

inherits a structure of smooth manifold over Z ′.

Definition 7.4. If G is a groupoid with base space Z, then a continuous
action of G on X is called (fibrewise) smooth if the map s∗(X) → r∗(X) that
describes the action is fibrewise smooth.

Example 7.5. Let G be a Lie groupoid. The range map r : G → Z gives
X := G the structure of a smooth bundle of manifolds over Z with a smooth
action of G by translations.

Let X be a bundle of smooth manifolds with boundary over Z and let G
act on it smoothly and properly. We are going to construct a Kasparov dual
for X.

First we construct a collar neighbourhood near the boundary ∂X of X.
The boundary ∂X is a bundle of smooth manifolds over Z with a smooth
action of G.
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Lemma 7.6. The embedding ∂X → X extends to a G-equivariant C0,∞-
diffeomorphism from ∂X × [0, 1) onto an open neighbourhood of ∂X in X.

Proof. Each x ∈ ∂X has a neighbourhood in X that is diffeomorphic to
U × Rn−1 × [0, 1) with U ⊆ Z open, such that x corresponds to a point in
U ×Rn−1×{0}. We transport the inward pointing normal vector field ∂/∂tn
on U × Rn−1 × [0, 1) to a locally defined vector field along the fibres of X.
Patching them together via a C0,∞-partition of unity, we get a C0,∞-vector
field ξ : X → TX such that ξ(x) ∈ TxX points inward for all x ∈ ∂X.
Averaging over the G-action, we can arrange for this vector field to be C0,∞

and G-equivariant as well because G acts properly and has a Haar system.
Let Ψ: X × [0,∞) → X be the flow associated to this vector field. Then

∂X × [0, 1) → X, (x, t) 7→ Ψ(x, %(x) · t)
for a suitable G-invariant C0,∞-function % : X → (0,∞) will be a G-equivariant
diffeomorphism onto a neighbourhood of ∂X because Ψ is a diffeomorphism
near ∂X × {0}. �

Using this equivariant collar neighbourhood, we embed X in a bundle of
smooth manifolds without boundary

X◦ := X t∂X×[0,1) ∂X × (−∞, 1) = X ∪ ∂X × (−∞, 0).

Of course, X◦ is diffeomorphic to the interior X \ ∂X of X, but we prefer
to view it as an enlargement of X by the collar ∂X × (−∞, 0). There is a
continuous G-equivariant retraction

(7.7) r : X◦ → X

that maps points in ∂X × (−∞, 0] to their first coordinate. Clearly, this is
even a deformation retraction via rt(x, s) := (x, ts) for t ∈ [0, 1], x ∈ ∂X,
s ∈ (0,∞) and rt(x) := x for x ∈ X.

Remark 7.8. Since r is a G-homotopy equivalence,

r∗ : RKKG(X) → RKKG(X◦)

is an equivalence of categories. Therefore, an abstract dual for X is the same
as an abstract dual for X◦. This explains why the presence of a boundary
creates no problems for the first Poincaré duality isomorphism. We must,
however, take the boundary into account for the second Poincaré duality
isomorphism because the forgetful functors on RKKG(X) and RKKG(X◦) are
not equivalent: they involve C0(X) and C0(X◦), and these are not homotopy
equivalent because r is not proper.

Lemma 7.9. There is a G-invariant Riemannian metric on X◦ that is of
product type in a neighbourhood of the collar and that is complete in the
following sense. Equip each fibre of p : X◦ → Z with the distance function
associated to the Riemannian metric. For each R ∈ R≥0 and each compact
subset K ⊆ X◦, the set of x ∈ X◦ that have distance at most R from a point
in K is compact.
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Proof. Let U1 := ∂X × (−∞, 1) and U2 := X \ ∂X × [0, 1/2). There is a
fibrewise smooth, G-invariant partition of unity (ϕ1, ϕ2) subordinate to this
covering.

Now choose any Riemannian metric on ∂X. Since G acts properly, we can
make this metric G-invariant by averaging with respect to the Haar system
of G. We equip U1 = ∂X × (−∞, 1) with the product metric. Similarly,
we get a G-invariant Riemannian metric on U2. We patch these metrics
together with the partition of unity (ϕ1, ϕ2). This produces a G-invariant
Riemannian metric on X◦ that is of product type on the collar neighbourhood
∂X × (−∞, 1/2). But it need not yet be complete.

To achieve a complete metric, we use a fibrewise smooth G-invariant
function f0 : X → R≥0 that induces a proper map G\X → R≥0. Let π1 : U1 →
∂X and π2 : U1 → (−∞, 1) be the coordinate projections. We define a
fibrewise smooth G-invariant function f = (f1, f2, f3) : X◦ → R2

≥0 × (−∞, 1)
by

f1(x) := ϕ1(x)f0

(
π1(x)

)
, f2(x) := ϕ2(x)f0(x), f3(x) := ϕ1(x)π2(x).

Clearly, f induces a proper function on G\X◦. Embed X◦ into X◦×R2
≥0 via

(id, f1, f2) and replace our metric by the subspace metric fromX◦×R2
≥0. This

is still a G-invariant Riemannian metric of product type on ∂X × (−∞, 1/2)
because f1 and f2 are constant there. We claim that this new metric is
complete.

Our construction of the new metric ensures that

d(x1, x2) ≥ |f1(x1)− f1(x2)|, d(x1, x2) ≥ |f2(x1)− f2(x2)|
for all x1, x2 in the same fibre of X◦. We also get

d(x1, x2) ≥ |f3(x1)− f3(x2)|
because this already holds for the old metric — recall that it is of product
type on the collar. Since f becomes proper on G\X◦, this estimate shows that
the closed fibrewise R-neighbourhood BR(K) of a compact subset K ⊆ X◦

is G-compact, where R ∈ R≥0 is arbitrary.
We must show that BR(K) is compact, not just G-compact. Let

Y :=
{
x ∈ X◦ ∣∣ d(f(x), f(K)

)
≤ R

}
.

Any point of BR(K) is connected to one in K by a path of length R; this
path must lie in Y by the above estimates.

The subset Y is G-invariant and G-compact because f is G-invariant and
becomes proper on G\X◦. Hence there is a compact subset L ⊆ Y with
G · L = Y . We may assume K ⊆ L. Let M be a compact neighbourhood
of L in Y . Thus there is ε > 0 with Bε(K)∩ Y ⊆M . Let H be the set of all
g ∈ G(1) for which there exists x ∈ L with g · x ∈M . This subset is compact
because G acts properly on X. Since G · L = Y ⊇M , we get M = H · L.

Choose N ∈ N with Nε > R. For any x ∈ BR(K), there is a path of
length Nε in the fibre of x that connects x to a point in K. This path must
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be contained in Y . Thus we get a chain of points x0, . . . , xN ∈ Y that belong
to the fibre of x and satisfy x0 ∈ K, xN = x, and d(xj , xj+1) ≤ ε. We want
to prove by induction that xj ∈ Hj ·L. This is clear for x0 ∈ H0 ·K = K ⊆ L.
Suppose xj ∈ Hj ·L has been established, write xj = g·x′ with g ∈ Hj , x′ ∈ L.
Since all points xi lie in the same fibre and the metric is G-invariant, we
have d(g−1xj+1, g

−1xj) ≤ ε as well, so that g−1xj+1 ∈ Bε(L) ⊆M = H · L.
As a consequence, g−1xj+1 = g′ · x′′ for some g′ ∈ H, x′′ ∈ L. Thus
xj+1 = g · g′ · x′′ ∈ Hj ·H · L = Hj+1 · L as claimed.

Our inductive argument yields BR(K) ⊆ HN ·L. Since the right-hand side
is compact, so is BR(K). Thus the metric on Y is complete as asserted. �

7.2. Construction of the duality. LetX be a bundle of smooth manifolds
with a fibrewise smooth proper G-action as above. We construct duals for X
using the following additional data: a G-equivariant vector bundle V over X◦

and a G-equivariant spinor bundle S for the vector bundle V ′ := V ⊕ TX◦.
Since X is a deformation retract of X◦, such vector bundles are determined
uniquely up to isomorphism by their restrictions to X.

We have three main examples in mind. First, if X◦ is K-oriented, then we
are given a spinor bundle S for TX◦ itself, so that we may take V to be the
trivial 0-dimensional vector bundle with total space X◦. Secondly, we may
take V := TX◦ and use the canonical complex spinor bundle S := ΛC(TX◦)
associated to the complex structure on TX◦⊕TX◦. Thirdly, we may let V be
the normal bundle of an embedding of X◦ into the total space of a K-oriented
vector bundle over Z as in [14].

The underlying C∗-algebra of our dual is simply P := C0(V ), where we
also write V for the total space of the vector bundle V . Thus we get C0(X◦)
and C0(TX◦) in the first two examples above. We view V as a space over X
by combining the bundle projection V → X◦ and the retraction r : X◦ → X;
this turns P into a C∗-algebra over X. The given action of G on V turns P
into a G-C∗-algebra.

Remark 7.10. In the real case, we cannot use the tangent dual because
the complex structure on TX◦ ⊕ TX◦ only produces a complex spinor
bundle, which is not enough for a Thom isomorphism in KO-theory. In “real”
K-theory, we may let V := TX◦ with the “real” structure (x, ξ) 7→ (x,−ξ)
for all x ∈ X◦, ξ ∈ TxX

◦. The complex spinor bundle S := ΛC(TX◦) has a
canonical “real” structure, and provides a spinor bundle in the appropriate
sense. Thus the dual for X in “real” KK-theory is the “real” C∗-algebra
C0(TX◦,C) with the involution

f̄(x, ξ) := f(x,−ξ) for x ∈ X◦, ξ ∈ TxX
◦, f : TX◦ → C.

With this “real” C∗-algebra, everything works exactly as in the complex case.
In the real case, we may let P be the real subalgebra

{f ∈ C0(TX◦,C) | f̄ = f}.
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The ingredients D and Θ of the Kasparov dual are easy to describe as
wrong-way maps. These are constructed in [7], but only in the nonequiv-
ariant case and for maps between smooth manifolds. The generalisation to
G-equivariant C0,∞-maps with appropriate K-orientation is straightforward.
We give a few more details about this because we need them, anyway, to
verify the conditions for the duality isomorphisms.

The total space of V is a bundle of smooth manifolds over Z. Its vertical
tangent bundle is isomorphic to the pull-back of the G-equivariant vector
bundle V ′ = V ⊕ TX◦ on X◦. Hence the projection map pV : V → Z is
(G-equivariantly) K-oriented by S. We let

D := (pV )! ∈ KKG
∗ (C0(V ),C0(Z)

)
.

Here we treat pV as if it were a K-oriented submersion, that is, (pV )! is
the KK-class of the family of Dirac operators along the fibres of pV with
coefficients in the spinor bundle S. The completeness of the Riemannian
metric established in Lemma 7.9 ensures that this family of elliptic dif-
ferential operators is essentially self-adjoint and thus defines a Kasparov
cycle (compare [17, Lemma 4.2]). Since the family of Dirac operators is
G-equivariant, we get a class in KKG

∗ (C0(V ),1) as needed. Alternatively, we
may use symbols as in [7] to avoid unbounded operators. Either way, neither
the lack of smoothness of Z nor the additional G-equivariance pose problems
for the construction of D.

If X◦ is K-oriented and V = X, then D is just the family of Dirac
operators along the fibres of X◦ → Z. If V = TX◦ and S is attached to
the canonical complex structure on V ′ ∼= TCX

◦, then D is the family of
Dolbeault operators along the fibres of TCX

◦ — recall that the Dolbeault
operator on an almost complex manifold is equal to the Dirac operator for
the associated K-orientation.

Let δ be the map

δ : X → X ×Z V, x 7→
(
x, (x, 0)

)
.

That is, we combine the diagonal embedding X → X ×Z X ⊆ X ×Z X
◦ and

the zero section of V . We are going to construct a corresponding G n X-
equivariant Kasparov cycle Θ := δ! in KKGnX

∗
(
C0(X),C0(X ×Z V )

)
. Here

we treat δ like a smooth immersion, so that our main task is to describe a
tubular neighbourhood for δ. Such constructions are also carried out in [14].
Later proofs will use the following detailed description of δ.

There is a fibrewise smooth G-invariant function % : X◦ → (0, 1) such
that the (fibrewise) exponential function expx : TxX

◦ → X◦ restricts to a
diffeomorphism from the ball of radius %(x) in TxX

◦ onto a neighbourhood
of x inside its fibre. Let TX be the restriction of TX◦ to a vector bundle on
X ⊆ X◦. Then the map

i : TX → X ×Z X
◦, (x, ξ) 7→

(
x, expx(ξ′)

)
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with ξ′ := ξ · %(x)/
√
‖ξ‖2 + 1 is a C0,∞-diffeomorphism from the total space

of TX onto an open neighbourhood of X in X ×Z X
◦.

We want to construct a corresponding G nX-equivariant C0,∞-diffeomor-
phism

δ̄ : V ′|X → X ×Z V,

where V ′ := TX◦⊕V and where we view the right-hand side as a space overX
by the first coordinate projection. To construct δ̄, we fix a G-equivariant fi-
brewise connection on the vector bundle V . This provides a parallel transport
for vectors in V , that is, a G-equivariant map

TX◦ ×X◦ V → V, (x, ξ, η) 7→ τx,ξ(η)

with τx,ξ(η) ∈ Vexpx(ξ) for ξ ∈ TxX
◦, η ∈ Vx. In the examples V = X◦ or

V = TX◦, this parallel transport is easy to describe: it is constant for the
trivial vector bundle X◦ over X◦, and the differential of the exponential map
on TX◦. Finally, the formula for δ̄ is

δ̄(x, ξ, η) :=
(
x, expx(ξ′), τx,ξ′(η)

)
for all x ∈ X, ξ ∈ TxX

◦, η ∈ Vx

with ξ′ := ξ · %(x)/
√
‖ξ‖2 + 1 as above. It is easy to check that this is a

G nX-equivariant C0,∞-diffeomorphism onto a G-invariant open subset U of
X ×Z V .

The resulting class Θ := δ! ∈ KKGnX
∗

(
C0(X),C0(X ×Z V )

)
is obtained by

composing the Thom isomorphism for the K-orientation S|X on V ′|X with
the GnX-equivariant ideal inclusion C0(V ′|X) → C0(X ×Z V ) associated to
the open embedding δ̄ (extend functions by 0 outside U). More explicitly, we
pull the spinor bundle S back to a Hermitian vector bundle SU on U . The
underlying Hilbert module of Θ is the space of all C0-sections of SU , with the
pointwise multiplication by functions in C0(X ×Z V ) and the pointwise inner
product, the canonical action of G, and the action of C0(X) by pointwise
multiplication via the first coordinate projection:

f1 · f2

(
x1, (x2, η)

)
:= f1(x1) · f2

(
x1, (x2, η)

)
for f1 ∈ C0(X), f2 ∈ C0(U, SU ) ⊆ C0(X ×Z TX◦, SU ), x1 ∈ X, x2 ∈ X◦,
and ξ ∈ Vx2 . The essentially unitary operator for our Kasparov cycle is given
by Cliford multiplication with ξ/

√
1 + ‖ξ‖2 at δ̄(x, ξ) ∈ U , where x ∈ X and

ξ ∈ V ′
x.

To get a symmetric Kasparov dual, we also need

Θ̃ ∈ KKGnX
∗ (C0(X),C0(X)⊗ P),

where the underlined factor is the one whose X-structure we use. We get Θ̃
from Θ by changing the action of C0(X) to

f1 · f2

(
x1, (x2, ξ)

)
:= f1

(
r(x2)

)
· f2

(
x1, (x2, ξ)

)
,

where r : X◦ → X is the retraction described above, and leaving everything
else as before; the new representation of C0(X) isX-linear for theX-structure
on the second tensor factor C0(TX◦).
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Theorem 7.11. Let X be a bundle of smooth n-dimensional manifolds with
boundary over Z with a fibrewise smooth G-action, let V be a G-equivariant
vector bundle over X◦ of dimension k, and let S be a G-equivariant K-ori-
entation (complex spinor bundle) for the vector bundle TX◦ ⊕ V over X◦.
Let P := C0(V ) and let D = (pV )!, Θ = δ!, and Θ̃ as described above. Then
(P, D,Θ, Θ̃) is a −(k+n)-dimensional local symmetric Kasparov dual for X.
Hence there are natural isomorphisms

KKGnX
∗

(
p∗X(A), p∗X(B)

) ∼= KKG
∗+k+n(C0(V )⊗A,B),

KKGnX
∗+k+n(p∗X(A),C0(V )⊗B) ∼= KKG

∗ (C0(X)⊗A,B)

for all G-C∗-algebras A and B and

K∗+k+n

(
G n C0(V,B)

) ∼= lim−→
Y ∈IX

KKG
∗ (C0(Y ), B)

for all G-C∗-algebras B.

In particular, we may take here V = X◦ if X is K-oriented in the sense
that the vector bundle TX◦ over X◦ is K-oriented, and we may always
take V = TX◦ (with an appropriate “real” structure in the “real” case, see
Remark 7.10).

Corollary 7.12. Let G be a locally compact groupoid with object space Z,
let X be a proper G-space, and let Y be any G-space. Suppose that X is a
bundle of smooth manifolds with G acting fibrewise smoothly. Then there is
a natural isomorphism

KKG
∗
(
C0(X),C0(Y )

) ∼= KKGnX
∗

(
C0(X),C0(V ×Z Y )

)
=: RK∗

G,X

(
V ×Z Y ),

where the last group is the G-equivariant K-theory of V ×Z Y with X-compact
support.

Proof. Put A = 1 and B = C0(Y ) in Theorem 7.11 and use the second
Poincaré duality to get the first isomorphism. The right-hand side is exactly
the definition of the G-equivariant K-theory with X-compact support in [12].

�

The equivariant K-theory groups that appear in Corollary 7.12 are dis-
cussed in detail in [12]. Corollary 7.12 is used in [14] to describe suitable
Kasparov groups by geometric cycles as in [1]. Theorem 7.11 will be proved
in Section 7.4, together with a generalisation to nontrivial bundles A over X.
Some situations involving foliation groupoids are discussed in Section 7.5.

7.3. Duality for strongly locally trivial bundles. We define a class of
GnX-C∗-algebras for which we establish first and second Poincaré duality
isomorphisms, extending results in [9] in two aspects: we allow bundles of
smooth manifolds with boundary instead of smooth manifolds.

For the purposes of the following definition, we replace δ : X → X × V
by the diagonal embedding δ′ : X → X ×Z X. Let U ′ ⊆ X ×Z X be the
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image of U under the projection X ×Z V → X ×Z X. Let π′1 : U ′ → X

and π′2 : U ′ → X be the coordinate projections. Let pU ′
U : U → U ′ be the

canonical projection, then π′j ◦ pU ′
U = πj for j = 1, 2.

Definition 7.13. A G n X-C∗-algebra A is called strongly locally trivial
if (π′1)

∗(A) and (π′2)
∗(A) are isomorphic as G n U ′-C∗-algebras via some

isomorphism
α′ : (π′1)

∗(A)
∼=−→ (π′2)

∗(A) in C∗GnU ′ ,
whose restriction to the diagonal X ⊆ U ′ is the identity map on A.

What this definition provides is a G-equivariant local parallel transport on
the bundle A. Not surprisingly, this exists provided A is a smooth bundle
with a suitable connection (see [9], strongly locally trivial bundles are called
feasible there). On finite-dimensional vector bundles, the connection between
local parallel transport and connections is discussed in [19].

It can be shown that α′ is unique up to homotopy if it exists, using that
the coordinate projections on U ′ are homotopy equivalences U ′ → X. By
the way, the following constructions still work if the isomorphism α′ only
exists in KKGnU ′ .

Example 7.14. If A = C0(X,A0) = p∗X(A0) for some G-C∗-algebra A0, that
is, A is trivial along the fibres of X → Z, then A is strongly locally trivial
because

(π′1)
∗(A) ∼= (pXπ

′
1)
∗(A0) = (pU ′)∗(A0) = (pXπ

′
2)
∗(A0) ∼= (π′2)

∗(A).

Here pU ′ = pXπ
′
1 = pXπ

′
2 : U ′ → Z is the canonical projection.

Let A be a strongly locally trivial G n X-C∗-algebra. We have deco-
rated everything in Definition 7.13 with primes because we will mainly use
the corresponding isomorphisms on U henceforth: we can pull back the
isomorphism α′ over U ′ to an isomorphism

α := (pU ′
U )∗(α′) : π∗1(A) → π∗2(A) in C∗GnU via pU ′

U .

Conversely, since pU ′
U is a retraction, the isomorphism α forces α′ to exist.

Notation 7.15. In the following computations, it is important to remember
whether we view U as a space over X via π1 or π2. We write Uπ1 and Uπ2

for the corresponding spaces over X. Similarly for U ′.

Definition 7.16. Let ϑ ∈ KKGnX
n+k

(
C0(X),C0(Uπ1)

)
be the composite of

the class of the Thom isomorphism in KKG
n+k

(
C0(X),C0(V ′)

)
with the iso-

morphism C0(V ′) ∼= C0(Uπ1) from the tubular neighbourhood; we choose
the tubular neighbourhood as in the construction of Θ, so that this isomor-
phism is X-linear if U is viewed as a space over X via π1 : U → X. Let
ϑ̃ ∈ KKGnX

n+

(
C0(X),C0(Uπ2)

)
be the variant where we change the action of

C0(X) so as to get a cycle that is X-linear if U is viewed as a space over X
via π2, as in the construction of Θ̃.
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By construction, we get Θ and Θ̃ out of ϑ and ϑ̃ by composing with the
class of the embedding C0(U) → C0(X ×Z V ). To get the K-oriented classes
ΘA and Θ̃A we also bring in the isomorphism α : π∗1(A) → π∗2(A) over U as
follows.

Definition 7.17. Let ΘA ∈ KKGnX
n+k

(
A, p∗X(P ⊗X A)

)
be the composition

A ∼= C0(X)⊗X A
ϑ⊗X idA−−−−−→ C0(Uπ1)⊗X A = π∗1(A) α−→∼= π∗2(A) ⊂−→ p∗X(C0(V )⊗X A).

Let Θ̃A ∈ KKGnX
n+k (A,A⊗ P) ∼= KKGnX

n+k (A,P ⊗A) be the composition

A ∼= C0(X)⊗X A
ϑ̃⊗X idA−−−−−→ C0(Uπ2)⊗X A = π∗2(A) α−1

−−→∼= π∗1(A) ⊂−→ A⊗ P.

Theorem 7.18. Let X → Z be a bundle of smooth manifolds with boundary
and let A be a strongly locally trivial GnX-C∗-algebra. Then we get Poincaré
duality isomorphisms of the first and second kind:

KKGnX
∗ (A,C0(X)⊗B) ∼= KKG

∗ (C0(V )⊗X A,B),

KKGnX
∗ (A,C0(V )⊗B) ∼= KKG

∗ (A,B)

for all G-C∗-algebras B. The maps are as described in Theorems 4.42 and
6.4. If IX denotes the directed set of G-compact subsets of X, then we get
isomorphisms

lim−→
Y ∈IX

KKGnX
∗ (A|Y ,C0(X)⊗B) ∼= lim−→

Y ∈IX

KKG
∗ (C0(V )⊗X A|Y , B),

lim−→
Y ∈IX

KKGnX
∗ (A|Y ,C0(V )⊗B) ∼= lim−→

Y ∈IX

KKG
∗ (A|Y , B).

In particular, we may take here V = TX◦ with the canonical K-orientation
from the almost complex structure on TX◦ ⊕TX◦, or we may take V = X◦

if X is K-oriented. In the latter case, we get duality isomorphisms

KKGnX
∗ (A,C0(X)⊗B) ∼= KKG

∗ (C0(X◦)⊗X A,B),

KKGnX
∗ (A,C0(X◦)⊗B) ∼= KKG

∗ (A,B).

To make this more concrete, consider the special case where A = 1X =
C0(X) and B = 1 = C0(Z) and use the definitions in [12]. The first duality
isomorphisms identify the equivariant representable K-theory of X,

RK∗
G(X) := KKGnX

∗
(
C0(X),C0(X)

)
,

with the equivariant locally finite K-homology of V ,

KG,lf
∗ (V ) := KKG

∗
(
C0(V ),C0(Z)

)
,

and the K-theory

K∗
G(X) ∼= lim−→

Y ∈IX

KKGnX
∗

(
C0(Y ),C0(X)

)
with lim−→Y ∈IX

KKG
∗
(
C0(V |Y ),C0(Z)

)
.
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The second duality isomorphisms identify the equivariant representable
K-theory of V with X-compact support,

RK∗
G,X(V ) := KKGnX

∗
(
C0(X),C0(V )

)
,

with the equivariant locally finite K-homology of X,

KG,lf
∗ (X) := KKG

∗
(
C0(X),C0(Z)

)
,

and the equivariant K-theory K∗
G(V ) with the equivariant K-homology of X,

KG
∗ (X) := lim−→

Y ∈IX

KKG
∗
(
C0(Y ),C0(Z)

)
.

If we also drop the groupoid actions, we recover well-known classical con-
structions.

An important special case of C∗-algebra bundles over X are continuous
trace C∗-algebras. The question when they are strongly locally trivial is
already discussed in [9]. This is automatic in the nonequivariant case, but
requires a mild condition about the group actions in general. Assuming
strong local triviality, we may decorate the statements above by such twists.

The strongly locally trivial C∗-algebras over X with fibre K(H) form a
group with respect to tensor product over X. If A∗ is the inverse of A, that
is, A⊗X A∗ is Morita equivalent to C0(X), then

KKGnX
∗ (A⊗X D,B) ∼= KKGnX

∗ (D,A∗ ⊗X B)

by exterior tensor product over X with A∗ and A. In particular, we may
identify

KKGnX
∗ (A,C0(X)⊗B) ∼= KKGnX

∗ (C0(X), A∗ ⊗B),

KKGnX
∗ (A,C0(V )⊗B) ∼= KKGnX

∗ (C0(X), A∗ ⊗X C0(V )⊗B).

If we specialise toB = 1, then KKGnX
∗ (C0(X), A∗⊗B) = KKGnX

∗ (C0(X), A∗)
is the twisted representable K-theory of X with twist A∗.

When twisted equivariant K-theory is relevant, then we should replace
C0(V ) by the Cliford algebra dual as in [17]. Equivariant Bott periodicity
shows that this Clifford algebra bundle is KKGnX -equivalent to C0(V ), so
that we also get such duality statements. The Clifford algebra bundle is a
strongly locally trivial continuous trace C∗-algebra over X. We refer to [9]
for more details.

7.4. Verifying the conditions for a duality. We will now give the proof
of Theorem 7.18, showing that the quadruple (C0(V ), D,Θ, Θ̃) described
above satisfies the conditions to give a duality.

First we verify (4.2), that is,

Θ⊗P D = idC0(X) in KKGnX
0

(
C0(X),C0(X)

)
.
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In the framework of wrong-way maps, (4.2) amounts to the functoriality
statement π1! ◦ δ! = (π1 ◦ δ)!. Recall that

ϑ ∈ KKGnX
n+k

(
C0(X),C0(U)

) ∼= KKGnX
n+k

(
C0(X),C0(V ′|X)

)
generates the Thom isomorphism for the vector bundle V ′|X ∼= U over X
with respect to the G-equivariant K-orientation S. Let i be the embedding
C0(U) → C0(X ×Z V ), where we extend functions by 0 outside U . We factor
Θ = ϑ⊗C0(U) [i].

We have Θ⊗P D = Θ⊗X,P p
∗
X(D). Recall that D is the class in Kasparov

theory associated to the family of Dirac operators on the fibres of V → Z.
Hence p∗X(D) is the class in Kasparov theory associated to the family of
Dirac operators on the fibres of π1 : X ×Z V → X. A routine computation
with symbols shows that composing p∗X(D) with i simply restricts everything
to U , so that we get the class in KKGnX

−n−k

(
C0(V ′|X),C0(X)

)
of the family of

Dirac operators on the fibres of U ⊆ X ×Z V .
But U ∼= V ′|X is the total space of a K-oriented vector bundle over X,

and the family of Dirac operators and the class ϑ are inverse to each other,
implementing the Thom isomorphism X ∼ V ′|X in KKGnX . This goes back
to Gennadi Kasparov [16], and a simple proof in the groupoid setting can be
found in [22, §7.3.2]. This finishes the proof of (4.2).

Next we check (4.4), that is, ∇⊗P⊗P flip = (−1)n+k∇ for ∇ := TP(Θ) in
KKG

n+k(P,P ⊗ P) = KKG
n+k(C0(V ),C0(V ×Z V ). By construction, ∇ is the

wrong-way element associated to the map

V ∼= V ×X X
id×Xδ−−−−→ V ×X X ×X V ∼= V ×Z V,

V 3 (x, ξ) 7→
(
(x, ξ), (r(x), 0)

)
,

where r is the collar retraction from (7.7). This is homotopic to the diagonal
embedding of V via the homotopy

V × [0, 1] → V ×Z V × [0, 1], (x, ξ, t) 7→
(
(x, ξ),

(
rt(x), Drt(tξ)

)
, t

)
.

This whole map behaves like an immersion and has a tubular neighbourhood;
hence we get a homotopy of wrong-way elements, which connects TP(Θ) to
the wrong-way element for the diagonal embedding V → V ×Z V . Thus (4.4)
amounts to the statement flip! ◦∆! = (−1)n+k∆!, where ∆ : V → V ×Z V
is the diagonal embedding and flip: V × V → V × V maps (ξ, η) 7→ (η, ξ).
The maps ∆ and flip are K-oriented because V is K-oriented by S. The
sign (−1)k+n appears because the fibres of V have dimension k + n and
the flip map changes orientations and K-orientations by such a sign. To
actually complete the argument, we must replace the maps above by open
embeddings on suitable vector bundles (tubular neighbourhoods) and connect
these open embeddings by homotopies. This is possible (up to the sign
(−1)n+k) because these open embeddings are determined uniquely up to
isotopy by their differential on the zero-section. We leave further details to
the reader.



304 HEATH EMERSON AND RALF MEYER

The remaining condition (4.3) for a Kasparov dual (Definition 4.1) is
equivalent to (4.44) for p∗X(A) for all G-C∗-algebras A because Θp∗X(A) =
Θ⊗ idA. We consider the more general case of strongly locally trivial bundles
right away.

To begin with, we notice that the classes ΘA and Θ̃A are local in the sense
required by Theorems 4.50 and 6.11. That is, for each G-compact subset Y
there is a G-compact subset Y ′ such that ΘA and Θ̃A restrict to cycles

ΘA|Y ∈ KKGnX
n+k

(
A|Y ′ , p∗X(P ⊗X A|Y )

)
,

Θ̃A|Y ∈ KKGnX
n+k (A|Y ′ ,P ⊗A|Y ).

Here we let Y be the closure of the set of all x ∈ X for which there is
y ∈ Y with (x, y) ∈ U ′ or (y, x) ∈ U ′. It is clear from the definition that the
restrictions of ΘA and Θ̃A to Y factor through Y ′ as needed.

Let A be a strongly locally trivial bundle with isomorphism α : π∗1(A) →
π∗2(A), and let f ∈ KKGnX

i (A, p∗XB) for some G-C∗-algebra B. Equa-
tion (4.44) asserts ΘA ⊗P⊗XA TP(f) = Θ⊗X f . By the definition of exterior
products, the right-hand side is the composition

A
Θ⊗X idA−−−−−→ A⊗ P f⊗idP−−−−→ p∗X(B)⊗ P.

Both ΘA and Θ⊗X idA factor through

ϑ⊗X idA : A ∼= C0(X)⊗X A→ C0(Uπ1)⊗X A = π∗1(A).

Thus it suffices to compare the compositions

π∗1(A) α−→∼= π∗2(A) ⊂−→ C0(X)⊗ (C0(V )⊗X A)

p∗XTP (f)
−−−−−→ C0(X)⊗ (C0(V )⊗X p∗XB) ∼= p∗X(C0(V )⊗B)

and
π∗1(A) ⊂−→ A⊗ P f⊗idP−−−−→ p∗X(B)⊗ C0(V ).

To see the difference, we view f as a family (fx)x∈X of Kasparov cycles for
Ax and p∗X(B)x = B. Then the above compositions are given by families
of Kasparov cycles parametrised by U . The first composite that describes
ΘA ⊗P⊗XA TP(f) yields

(π∗1A)u
∼= Aπ1(u)

α−→∼= Aπ2(u)

fπ2(u)−−−−→ B.

The second composite that describes Θ⊗X f yields

(π∗1A)u
∼= Aπ1(u)

fπ1(u)−−−−→ B.

Recall that U is the total space of a vector bundle over X, with bundle
map π1. Hence the first map is homotopic to the second one via

(π∗1A)u = Aπ1(u)
α−→∼= Aπ2(t·u)

fπ2(t·u)−−−−→ B
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for t ∈ [0, 1] because π2(0 · u) = π1(u) for all u ∈ U . This pointwise formula
describes a homotopy between the corresponding cycles for

KKGn(X×ZX)
∗

(
π∗1(A), p∗X(P ⊗B)

)
.

This establishes (4.44) and hence (4.3), so that (P, D,Θ) is a Kasparov dual
for X. Furthermore, the homotopy above is sufficiently local to apply to
yield the corresponding condition in Theorem 4.50.

To establish the first Poincaré duality isomorphism for a strongly locally
trivial bundle A, it remains to verify (4.43), that is,

TP(ΘA) = flip ◦ TP(Θ⊗X idA),

where flip exchanges the tensor factors P and P ⊗X A in the target object.
This is closely related to (4.4). Roughly speaking, the homotopy that is used
to prove (4.4) can be performed over a sufficiently small neighbourhood of
the diagonal in X×Z X, so that the coefficients A create no further problems
because of the isomorphism π∗1(A) ∼= π∗2(A) over such a small neighbourhood.
We leave the details to the reader; once again, the necessary homotopies are
local enough to yield the corresponding condition in Theorem 4.50 as well.
Thus Theorems 4.42 and 4.50 apply if A is strongly locally trivial.

Now we turn to the second Poincaré duality, verifying the two conditions
in Theorem 6.4. First, (6.5) requires Θ̃A and Θ⊗X idA to agree up to the
flip automorphism A⊗ P ∼= P ⊗A — after forgetting the X-structure.

By definition, Θ̃A involves

A
ϑ̃⊗X idA−−−−−→ C0(Uπ2)⊗X A = π∗2(A) α−1

−−→ π∗1(A).

The difference between forgetX(ϑ̃) and forgetX(ϑ) is only the way C0(X) acts
on the cycle, and the two actions are clearly homotopic. This homotopy is
not X-linear, of course, but we can control what happens: we get a Kasparov
cycle for

KKGnX
∗

(
A,C0(U × [0, 1])

)
,

where we view U × [0, 1] as a space over X via (u, t) 7→ π2(t · u), using the
vector bundle structure on π1 : U → X. The isomorphism α pulls back to an
isomorphism

C0(U × [0, 1])⊗X A ∼= π∗1(A)⊗ C([0, 1]) in C∗GnU×[0,1].

Thus forgetX

(
α−1 ◦ (ϑ̃⊗X idA)

)
= forgetX(ϑ⊗X idA), and this implies (6.5).

Once again, the homotopy is local and also yields the corresponding condition
in Theorem 6.11.

It remains to check (6.6) and the analogous condition in Theorem 6.11;
this will also establish that (P, D,Θ, Θ̃) is a local symmetric Kasparov dual.
Instead of giving a detailed computation, we use a less explicit but more
coneptual argument using Remark 6.8.

Let B be a G-C∗-algebra and let f ∈ KKGnX
∗ (A,P ⊗B). We must check

(7.19) Θ̃A ⊗A f = Θ⊗X f in KKG
∗ (A,P ⊗ P ⊗B).
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Remark 6.8 yields

(7.20) forgetX

(
Θ̃A ⊗A f

)
= forgetX(Θ⊗X f).

The proof of (7.20) in Remark 6.8 constructs a homotopy between both
sides using the first condition in Theorem 6.4, commutativity of exterior
products, and the cocommutativity of ∇. Since we have already checked
these conditions, we get (7.20) for free. But actually, our arguments show
a bit more: the homotopy that we get by following through the argument
is supported in a small neighbourhood of the diagonal (we make this more
precise below). A straightforward extension of [7, Lemma 2.2] now shows
that the space of cycles that are supported sufficiently close to the diagonal
deformation-retracts to the space of cycles supported on the diagonal. Since
our homotopy is supported near the diagonal, we conclude that we can
modify it so that its support lies on the diagonal, so that we get a sufficiently
local and G nX-equivariant homotopy.

The support is defined as before Lemma 2.2 in [7], but such that the
support of a Kasparov cycle for KKG

∗ (A,P ⊗ P ⊗B) is a subset of X ×Z X.
Namely, the Hilbert module that appears in such a cycle is a bimodule
over C0(X), and its support is contained in X ×Z X ⊆ X ×X because the
representation of A is Z-equivariant.

Lemma 7.21. Let A be strongly locally trivial, and let U ′ be as in Defi-
nition 7.13. Any Kasparov cycle for KKG

∗ (A,P ⊗ P ⊗ B) supported in U ′

is homotopic to a G nX-equivariant cycle in a canonical way, so that the
space of cycles with support U ′ deformation retracts onto the space of GnX-
equivariant cycles.

Proof. Let (ϕ, F, E) be a cycle supported in U ′. We leave F and E fixed and
only modify the representation ϕ. The representation ϕ of A and the action
of C0(X) by right multiplication define a GnX-equivariant representation of
p∗X(A) = C0(X)⊗A on E . By definition of the support, this factors through

C0(X)⊗A|supp E = p∗supp E(A).

Since supp E ⊆ U ′, the coordinate projections supp E → X are proper
and the isomorphism (π′1)

∗(A) ∼= (π′2)
∗(A) provides a G n X-equivariant

∗-homomorphism
A→ p∗supp E(A).

Composition with this ∗-homomorphism retracts the space of cycles sup-
ported in U ′ to the space of G n X-equivariant cycles. Since the tubular
neighbourhood U of δ(X) in X ×Z V deformation retracts to δ(X), the pro-
jection U ′ → X is a deformation retraction as well. Hence the corresponding
map on Kasparov cycles supported on U ′ is a deformation retraction. �

Lemma 7.21 shows that (7.20) can be lifted to (7.19). This verifies all the
conditions in Theorems 6.4 and 6.11, so that we get the second Poincaré
duality isomorphisms. This finishes the proof of Theorems 7.11 and 7.18.
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7.5. An example: foliation groupoids. We briefly review the construc-
tion of the holonomy groupoid G of a foliated manifold (Z,F) and introduce
some actions of G. These are automatically bundles of smooth manifolds,
so that our general theory applies. We formulate the duality theorems in
this case and sketch how the Euler characteristics defined here are related to
the index of the leafwise de Rham operator and the L2-Euler characteristic
defined in [6], referring to [11, 13] for proofs. The geometric framework of [14]
is much more suitable for actual computations of both Euler characteristics
and Lefschetz invariants, so that we do not give any further examples here.

Let z ∈ Z. The universal cover L̃ of the leaf L through z is the quotient
of the set of paths γ : [0, 1] → L with γ(0) = z by the relation of homotopy
with fixed endpoints. Any such path extends to a holonomy map Σγ(0) →
Σγ(1) using the local triviality of the foliation, where Σγ(0) and Σγ(1) are
local transversals through γ(0) and γ(1). Write γ ∼ γ′ if the paths γ
and γ′ generate the same holonomy maps (in particular, they have the same
endpoints). The holonomy covering L̂ of L is the set of holonomy classes of
paths γ with γ(0) = z. Since homotopic loops generate the same holonomy
map, this is a quotient of the universal covering L̃.

Let G be the set of holonomy classes of paths in leaves with arbitrary
endpoints, and let r, s : G ⇒ Z be the maps that send a path to its endpoints.
Thus the fibre of s at z is the holonomy cover L̂ described above. Concate-
nation of paths with matching endpoints defines a multiplication on G that
turns this into a groupoid. Finally, there are rather obvious local charts
on G that turn it into a smooth (non-Hausdorff) manifold. This manifold
is Hausdorff in many situations, for example if the foliation is described by
analytic foliation charts. We assume from now on that G is Hausdorff.

The following recipe yields some free and proper G-spaces. Let π : Z ′ → Z
be a space over Z. Let

X := G ×s,π Z
′ = {(γ, z′) ∈ G × Z ′ | s(γ) = π(z′)}

and view this as a space over Z via p : X → Z, p(γ, z′) := r(γ). Then G acts
on X via multiplication on the left. It is easy to see that G acts freely and
properly on X because the action of G on itself by left multiplication is free
and proper. The second coordinate projection identifies the orbit space G\X
with Z ′. For instance, if π is the identity map, then we get the action of G
on its morphism space by left multiplication.

If Z ′ ⊆ Z is a transversal to F in the sense that it is a submanifold with
TzZ

′ ⊕Fz = TzZ for all z ∈ Z ′, then the fibres of r : X → Z = Z are

Xz = {γ ∈ G | s(γ) ∈ Z ′ and r(γ) = z},
and these subsets of G are countable and topologically discrete and thus
(zero-dimensional) manifolds.

Returning to the general case of a smooth manifold π : Z ′ → Z, note that
the space X is a smooth manifold because s is a submersion. The space X
constructed above is a bundle of smooth manifolds over Z if p : X → Z
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is a submersion. This is equivalent to π : Z ′ → Z being transverse to F
in the sense that π(Tz′Z

′) + Fπ(z′) = TzZ for all z′ ∈ Z ′. We assume this
transversality from now on. Then F ′ := π−1(F) is a foliation on Z ′ whose
leaves are the connected components of the π-pre-images of the leaves of F .
Transversality of π implies that a leaf-path in F ′ has nontrivial holonomy if
and only if its image in F has nontrivial holonomy.

The fibres of X → Z are of the form L̂z×Lz π
−1(Lz). The vertical tangent

bundle TX of p : X → Z is the pull-back of TF ′ along the coordinate
projection X → Z ′, (γ, z′) 7→ z′, that is, TX ∼= X ×Z′ TF ′.

Theorem 7.11 provides a symmetric Kasparov dual for X, involving
P = C0(TX). We are going to examine the special case where the co-
efficient C∗-algebras A and B in Theorem 7.11 are trivial. The first duality
isomorphism yields

RK∗
G(X) := RKKG

∗ (X;1,1) ∼= KKG
∗ (C0(TX),1) =: KG,lf

∗ (TX),

that is, the G-equivariant representable K-theory of X agrees with the
G-equivariant locally finite K-homology of TX. Since G acts freely on X with
orbit space Z ′, G nX is Morita equivalent to Z ′. Hence RK∗

G(X) ∼= RK∗(Z ′)
and the first duality isomorphism yields KG,lf

∗ (TX) ∼= RK∗(Z ′).
The second duality isomorphism yields

KG,lf
∗ (X) := KKG

∗ (C0(X),1) ∼= KKGnX
∗

(
C0(X),C0(TX)

)
=: RK∗

G,X(TX),

that is, the G-equivariant locally finite K-homology of X agrees with the
G-equivariant K-theory of TX with X-compact support. Using TX =
X ×Z′ TF ′ and the Morita equivalence G nX ∼ Z ′, we may identify

KKGnX
∗

(
C0(X),C0(TX)

) ∼= KKZ′
∗

(
C0(Z ′),C0(TF ′)

)
=: K∗

Z′(TF ′)

that is, we get the K-theory with Z ′-compact support of the underlying space
of the distribution TF ′ on Z ′.

Assume now that X is a universal proper G-space. Then the results
in Section 4.3 show that D ∈ KKG

∗
(
C0(TX),C0(Z)

)
is a Dirac morphism

for G and that the Baum–Connes assembly map for G with coefficients B is
equivalent to the map

(7.22) K∗
(
G n C0(TX,B)

)
→ K∗

(
G nB

)
induced by D. The second duality isomorphism combined with another
natural isomorphism identifies

lim−→
Y ∈IX

KKG
∗
(
C0(Y ), B

) ∼= K∗
(
G n C0(TX,B)

)
and identifies the map in (7.22) with the index map

lim−→
Y ∈IX

KKG
∗ (C0(Y ), B) → K∗(G nB).

By Theorem 4.34, these assembly maps are isomorphisms if G acts properly
on B.
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This leads to the question when X is universal. Since G acts freely on X,
this forces the holonomy groupoid G to be torsion-free; that is, two parallel
leaf paths must have the same holonomy once some finite powers of them
have the same holonomy. Another necessary condition for X to be universal
is that its fibres Xz be contractible for all z ∈ Z; in fact, this condition is
sufficient as well because G is Morita equivalent to an étale groupoid (we omit
further details). Thus X is a universal proper G-space if the holonomy of F
is torsion-free and the holonomy coverings of the leaf pre-images p−1(Lz)
are contractible. Of course, this implies that these holonomy coverings are
universal coverings. For instance, G itself is a universal proper G-space if
and only if the foliation has torsion-free holonomy and the holonomy covers
of the leaves are contractible.

Example 7.23. Let M be a compact, smooth, aspherical manifold and
let M̃ be its universal cover. Let G := π1(M) act by deck transformations
on M̃ and let V be a smooth compact manifold with a free G-action. Foliate
Z := M̃ ×G V by the images in Z of the slices M̃ ×{v}, for v ∈ V . This is a
foliation with contractible leaves because M is assumed aspherical. In this
case, the morphism space G is a universal proper G-space.

More generally, if the G-action on V is not free, then G will still be
universal if the holonomy representation of the fundamental group of each
leaf is faithful.

Now we allow X to be a proper G-equivariant bundle of smooth manifolds
over Z. We want to show that the equivariant Euler characteristic of X
is the class in KKG

0 (C0(X),1) given by the family of de Rham operators
along the fibres of X. It is possible to do this computation using the tangent
space dual described above. But it simplifies if we use the Clifford algebra
dual used in [11, 13]. This does not change the result because the Euler
characteristic is independent of the chosen Kasparov dual. We just sketch
the situation here in order to give an example of Euler characteristics in the
context of smooth G-manifolds.

Fix an invariant metric on the vertical tangent bundle TX and form the
associated bundle of vertical Clifford algebras Cτ (X); this is a locally trivial
bundle of finite-dimensional C∗-algebras over X. The Thom isomorphism
provides an invertible element in KKGnX

∗
(
C0(TX), Cτ (X)

)
(the idea in [22,

Théorème 7.4] shows how to get this result equivariantly for groupoids).
Since we have Kasparov duality with C0(TX), we also have it with the
Clifford bundle instead of C0(TX). Even more, since these two duals are
KKGnX -equivalent, the first and second duality isomorphisms translate from
one to the other, even if the coefficient algebras are nontrivial bundles over X.
One can check that the classes D and Θ for this new dual are exactly the
same ones as in [11, 13]. The same easy computation as in the group case
in [11] then shows that

(7.24) EulG = [DdR] ∈ KKG
∗ (C0(X),C0(Z)

)
.
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Here DdR denotes the de Rham operator along the fibres of the anchor map
X → Z. If X = G, then these fibres are just the holonomy covers of the
leaves of F , so that we get the family of de Rham operators along the leaves
of the foliation.

Let
µ : Ktop(G) → K∗(C∗

rG)
be the Baum–Connes assembly map and let ϕ : G → EG be the classifying
map of the proper G-space X := G. This induces a map

ϕ∗ : KKG
∗
(
C0(X),C0(Z)

)
→ Ktop

∗ (G).

The map
µX := µ ◦ ϕ∗ : KKG

∗
(
C0(X),C0(Z)

)
→ K∗(C∗

rG)

is the G-equivariant index map for G. It maps EulG ∈ KKG
0

(
C0(X),C0(Z)

)
to the equivariant index in K0(C∗

rG) of the family of de Rham operators on
the holonomy covers of the leaves of the foliation by (7.24).

If Λ is a G-invariant transverse measure on the foliation, then we may
pair it with classes in K0(C∗

rG) to extract numerical invariants. For the
equivariant Euler characteristic of the foliation, this yields the alternating
sum of its L2-Betti numbers,

(7.25) Eul(2)X = (Λ ◦ µX)
(
[DdR]

)
=

∑
i

(−1)iβi
L2 .

8. Conclusion and outlook

We have constructed analogues of the first and second Poincaré duality
isomorphisms in [17] for proper groupoid actions on C∗-algebra bundles
over possibly noncompact spaces. In the simplest case of a smooth man-
ifold without any groupoid action, this generalises familiar isomorphisms
Klf
∗(TM) ∼= RK∗(M) between the locally finite K-homology of the tangent

bundle and the representable K-theory of M , and K∗
M (TM) ∼= Klf

∗(M) be-
tween the K-theory of the tangent bundle with M -compact support and the
locally finite K-homology of M .

These duality isomorphisms follow from the existence of a symmetric
Kasparov dual. We have constructed such a dual for bundles of smooth
manifolds, equivariantly with respect to a smooth proper groupoid action.
Furthermore, we have extended the two duality isomorphisms by allowing
strongly locally trivial bundles.

A different construction in [11] provides a dual for a finite-dimensional
simplicial complex. This is, in fact, a symmetric Kasparov dual. We plan
to discuss this elsewhere, together with a discussion of the new aspects that
appear for bundles, namely, the singularities that necessarily appear when
triangulating bundles of smooth manifolds. More generally, we may replace
simplicial complexes by stratified pseudomanifolds. A duality isomorphism
in this setting was recently established by Claire Debord and Jean-Marie
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Lescure (see [8]). It remains to establish that this is another instance of a
symmetric dual.

The two duality isomorphisms discussed in this article are related to the
dual Dirac method and the Baum–Connes Conjecture. Roughly speaking,
the duality shows that the approach to the Baum–Connes Conjecture by
Baum, Connes and Higson in [2] via the equivariant K-homology of the
universal proper G-space and Kasparov’s approach using Dirac, dual Dirac,
and the γ-element are equivalent whenever the universal proper G-space has
a symmetric Kasparov dual.

The second duality isomorphism reduces KK-groups to K-groups with
support conditions. This is used in [14] to describe equivariant bivariant
K-theory groups by geometric cycles (under some assumptions).

Furthermore, we have used the duality to define equivariant Euler charac-
teristics and Lefschetz invariants. The construction of these invariants only
uses formal properties of Kasparov theory and therefore works equally well
in purely geometric bivariant theories defined using correspondences. This
seems the appropriate setting for explicit computations of such Lefschetz
invariants.
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