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Feynman’s operational calculi: using
Cauchy’s integral formula

Lance Nielsen

Abstract. In this paper we express the disentangling, or the formation
of a function of several noncommuting operators using Cauchy’s Integral
Formula in several complex variables. It is seen that the disentangling
of a given function f can be expressed as a contour integral around the
boundary of a polydisk where the standard Cauchy kernel is replaced by
the disentangling of the Cauchy kernel expressed as an element of the
disentangling algebra. This approach to the operational calculus allows
for us to develop a “differential calculus” with disentanglings.
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1. Introduction

The primary topic for this paper is, as stated in the title, Feynman’s op-
erational calculus. The approach to the operational calculus considered in
this paper is that which was originated in and elaborated on by Jefferies and
Johnson in the papers [5, 6, 7, 8]. Jefferies and Johnson constructed a “com-
mutative world”, specifically a commutative Banach algebra, in which the
time ordering calculations required for the operational calculus are carried
out in a mathematically rigorous way. The result of these calculations — the
disentangling — is then mapped into the noncommutative world of L(X).
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In order to carry out the disentangling calculations, that is, in order to form
the desired function of a (finite) set of not necessarily commuting operators,
the Taylor series for the function is first written down and then the disen-
tangling is carried out term-by-term. The current paper changes this point
of view and looks to obtain the disentangling of a given function, say f , by
avoiding the use of its Taylor series. Indeed, in the approach outlined be-
low, only one Taylor series is ultimately needed and that is the series for the
Cauchy kernel. Once the disentangling for the Cauchy kernel is determined
(and this is very easily done), the disentangling for any desired (and allowed)
function f is calculated via the use of Cauchy’s integral formula. In fact, the
end result is a contour integral of the complex-valued function f(ξ1, . . . , ξn)
against the disentangling of the Cauchy kernel; see Theorem 3.4 below. This
representation makes the operational calculus much easier to deal with, in
the opinion of the present author, as the Cauchy kernel is the only object
that requires explicit disentangling; i.e., a term-by-term disentangling of a
power series. An illustration of this idea is elaborated in the fourth section
of this paper, where a “calculus” of disentanglings is defined and some exam-
ples are considered. Without the representation of the operational calculus
using Cauchy’s integral formula, this “calculus” would not be at all clear.

Before proceeding further, it may be helpful to present some background
on the operational calculus. Feynman’s operational calculus originated with
the 1951 paper [3] and concerns itself with the formation of functions of
noncommuting operators. Indeed, even with functions as simple as f(x, y) =
xy it is not clear how to define f(A,B) if A and B do not commute — does
one let f(A,B) = AB, f(A,B) = BA, f(A,B) = 1

2AB + 1
2BA, or some

other expression involving products of A and B? One has to decide, then,
usually with a particular problem in mind, how to form a given function
of noncommuting operators. As mentioned above, one approach to this
problem (the approach used in this paper) was developed by Jefferies and
Johnson in the papers [5, 6, 7, 8] . This approach is expanded on in the
papers [10], [11], [16], [13], [9], [12] and others. It is important to note that,
in the setting of the Jefferies–Johnson approach, measures on intervals [0, T ]
are used to determine when a given operator will act in products and the
measures used are continuous measures. However, Johnson and the current
author extended the operational calculus to measures with both continuous
and discrete parts in the aforementioned [16].

The discussion just above, then, begs the question of how measures can be
used to determine the order of operators in products. Feynman’s heuristic
rules for the formation of functions of noncommuting operators give us a
starting point.

(1) Attach time indices to the operators to specify the order of operators
in products.

(2) With time indices attached, form functions of these operators by
treating them as though they were commuting.
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(3) Finally, “disentangle” the resulting expressions; i.e., restore the con-
ventional ordering of the operators.

As is well known, the central problem of the operational calculus is the
disentangling process. Indeed in his 1951 paper, [3], Feynman points out
that “The process is not always easy to perform and, in fact, is the central
problem of this operator calculus.”

We first address rule (1) above. It is in the use of this rule that we will see
measures used to track the action of operators in products. First, it may be
that the operators involved may come with time indices naturally attached.
For example, we might have operators of multiplication by time dependent
potentials. However, it is also commonly the case that the operators used are
independent of time. Given such an operator A, we can (as Feynman most
often did) attach time indices according to Lebesgue measure as follows:

A =
1
t

∫ t

0
A(s) ds

where A(s) := A for 0 ≤ s ≤ t. This device does appear a bit artificial but
does turn out to be extremely useful in many situations. We also note that
mathematical or physical considerations may dictate that one use a measure
different from Lebesgue measure. For example, if µ is a probability measure
on the interval [0, T ], and if A is a linear operator, we can write

A =
∫

[0,T ]
A(s) µ(ds)

where once again A(s) := A for 0 ≤ s ≤ T . When we write A in this fashion,
we are able to use the time variable to keep track of when the operator A
acts. Indeed, if we have two operators A and B, consider the product
A(s)B(t) (here, time indices have been attached). If t < s, then we have
A(s)B(t) = AB since here we want B to act first (on the right). If, on the
other hand, s < t, then A(s)B(t) = BA since A has the earlier time index.
In other words, the operator with the smaller (or earlier) time index, acts to
the right of (or before) an operator with a larger (or later) time index. (It
needs to be kept in mind that these equalities are heuristic in nature.) For a
much more detailed discussion of using measures to attach time indices, see
Chapter 14 of the book [14] (and Chapter 2 of the forthcoming book [15])
and the references contained therein.

Concerning the rules (2) and (3) above, we mention that, once we have
attached time indices to the operators involved, we calculate functions of the
noncommuting operators as if they actually do commute. These calculations
are, of course, heuristic in nature but the idea is that with time indices
attached, one carries out the necessary calculations giving no thought to
the operator ordering problem; the time indices will enable us to restore the
desired ordering of the operators once the calculations are finished; this is
the disentangling process and is typically the most difficult part of any given
problem. More details of the process are to be found below, in Section 2.
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2. Definitions and basic properties of Feynman’s operational
calculus

2.1. The Banach algebras A and D. We now move on to a discussion
of the disentangling map. Before defining the map, however, we need some
preliminary definitions and notation (see [5], [10], [15] and others). We begin
by introducing two commutative Banach algebras A and D. These algebras
are closely related and play an important role in the rigorous development
of the operational calculus.

Given n ∈ N and n positive real numbers r1, . . . , rn, let A(r1, . . . , rn)
or, more briefly A, be the space of complex-valued functions (z1, . . . , zn) 7→
f(z1, . . . , zn) of n complex variables that are analytic at the origin and are
such that their power series expansion

(2.1) f(z1, . . . , zn) =
∞∑

m1,...,mn=0

am1,...,mnzm1
1 · · · zmn

n

converges absolutely at least in the closed polydisk

{(z1, . . . , zn) : |z1| ≤ r1, . . . , |zn| ≤ rn} .

All of these functions are analytic at least in the open polydisk

{(z1, . . . , zn) : |z1| < r1, . . . , |zn| < rn} .

Of course, all elements of A are continuous on the boundary of the polydisk.
We remark that the entire functions of (z1, . . . , zn) are in A(r1, . . . , rn) for
any n–tuple (r1, . . . , rn) of positive real numbers.

For f ∈ A given by Equation (2.1) above, we let

(2.2) ‖f‖A(r1,...,rn) = ‖f‖A :=
∞∑

m1,...,mn=0

|am1,...,,mn |r
m1
1 · · · rmn

n .

This expression is a norm on A and turns A into a commutative Banach
algebra. (See Proposition 1.1 of [5].) (In fact A is a weighted `1-space.)

We now turn to the construction of the Banach algebra D. Let X be a Ba-
nach space and let A1, . . . , An ∈ L(X). Construct the commutative Banach
algebra A (‖A1‖ , . . . , ‖An‖) as in the previous paragraph. We associate to
each of the operators Aj , j = 1, . . . , n, the formal object Ãj , j = 1, . . . , n,
by discarding all operator properties of Aj other than its operator norm
‖Aj‖L(X) and assuming that ÃiÃj = ÃjÃi for any 1 ≤ i, j ≤ n. (We re-
mark that we will assume that the objects — “formal commuting objects”
— Ã1, . . . , Ãn are all distinct even if two or more of the operators A1, . . . , An

are identical or are linear combinations of some or all of the A1, . . . , An.)
In order to define D

(
Ã1, . . . , Ãn

)
we replace the indeterminates z1, . . . , zn

in functions f (z1, . . . , zn) ∈ A (‖A1‖, . . . , ‖An‖) by Ã1, . . . , Ãn, respectively.
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That is, we take D
(
Ã1, . . . , Ãn

)
to be the collection of all expressions

(2.3) f
(
Ã1, . . . , Ãn

)
=

∞∑
m1,...,mn=0

am1,...,mn

(
Ã1

)m1

· · ·
(
Ãn

)mn

for which

(2.4) ‖f‖D(Ã1,...,Ãn) = ‖f‖D

=
∞∑

m1,...,mn=0

|am1,...,mn | ‖A1‖m1 · · · ‖An‖mn < ∞.

Clearly f ∈ A (‖A1‖ , . . . , ‖An‖) determines an element of D
(
Ã1, . . . , Ãn

)
.

Equation (2.4) defines a norm on D and D is a commutative Banach algebra
with respect to this norm and point-wise operations of the elements of D.
Further, A and D can be identified — they are in fact isometrically iso-
morphic. For proofs of these statements, see [5] or [15]. The commutative
Banach algebra D

(
Ã1, . . . , Ãn

)
is called the disentangling algebra.

Consider the elements p`
Ãj

(
Ã1, . . . , Ãn

)
:=
(
Ãj

)`
of D for j = 1, . . . , n

and ` ∈ N. We note that

(2.5)
∥∥∥p`

Ãj

∥∥∥
D

= ‖Aj‖`
L(X)

for each j = 1, . . . , n and ` ∈ N. We will below suppress the notation p`
Ãj

and

simply write
(
Ãj

)`
and consider

(
Ãj

)`
as an element of the disentangling

algebra D.

2.2. The disentangling map. Let A1, . . . , An be operators from L(X)
(taken to be nonzero) and let µ1, . . . , µn be continuous probability measures
(time-ordering measures) defined at least on B([0, T ]), the Borel class of
[0, T ], T > 0. (Recall that the measure µ is said to be continuous if µ({s}) =
0 for all s ∈ [0, T ].) We wish to define the disentangling map

(2.6) Tµ1,...,µn : D
(
Ã1, . . . , Ãn

)
−→ L(X)

according to the time-ordering directions given by the measures µ1, . . . , µn.
Said another way, given any analytic function f ∈ A (‖A1‖, . . . , ‖An‖),
we wish to form the function fµ1,...,µn (A1, . . . , An) of the not necessarily
commuting operators A1, . . . , An as directed by µ1, . . . , µn. The measures
µ1, . . . , µn serve to tell us when (or in what order) operators act in products.

Given nonnegative integers m1, . . . ,mn, we let

(2.7) Pm1,...,mn(z1, . . . , zn) = zm1
1 · · · zmn

n ,
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so that

(2.8) Pm1,...,mn

(
Ã1, . . . , Ãn

)
= Ãm1

1 · · · Ãmn
n .

We will begin shortly by doing calculations in the setting of the com-
mutative Banach algebra D

(
Ã1, . . . , Ãn

)
, which will end by showing us,

following Feynman’s ideas, how to define Tµ1,...,µnPm1,...,mn

(
Ã1, . . . , Ãn

)
.

Since we want Tµ1,...,µn to be linear and continuous, it will then be clear

from (2.3) how to define the operator Tµ1,...,µnf
(
Ã1, . . . , Ãn

)
, for any ele-

ment f
(
Ã1, . . . , Ãn

)
of D

(
Ã1, . . . , Ãn

)
.

It is worthwhile at this point to briefly remind the reader of Feynman’s
heuristic rules, since we will follow them explicitly, but in a mathematically
rigorous way. The first of Feynman’s “rules” was to attach time indices
to the operators in question, in order to specify the order of operation in
products. (Operators sometimes come with indices attached, especially in
evolution problems. However, this situation will not concern us in in this
paper.) As mentioned previously, the measures will determine the ordering
of the operators in products and can do this in a variety of ways. Feynman
did not use measures to order operators in products but his choice was nearly
always Lebesgue measure when attaching time indices to operators.

Feynman’s next “rule” was to form the desired function of the operators,
just as if they were commuting and then “disentangle” the result, that is,
bring the expression to a sum of time-ordered expressions. This disentan-
gling will be done in our next proposition by working in D

(
Ã1, . . . , Ãn

)
.

Once we have the time-ordering, Feynman says to simply return from the
commutative framework to the operators themselves. This is the point at
which we will define

Tµ1,...,µnPm1,...,mn

(
Ã1, . . . , Ãn

)
and then

Tµ1,...,µnf
(
Ã1, . . . , Ãn

)
,

for f
(
Ã1, . . . , Ãn

)
∈ D

(
Ã1, . . . , Ãn

)
.

For each m = 0, 1, . . ., let Sm denote the set of all permutations of the
integers {1, . . . ,m}, and given π ∈ Sm, we let

(2.9) ∆m(π) =
{
(s1, . . . , sm) ∈ [0, T ]m : 0 < sπ(1) < · · · < sπ(m) < T

}
.

For j = 1, . . . , n, and all s ∈ [0, T ], we let

(2.10) Ãj(s) ≡ Ãj .
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Now, for nonnegative integers m1, . . . ,mn and m = m1 + · · ·+mn, we define

(2.11) C̃i(s) =


Ã1(s) if i ∈ {1, . . . ,m1} ,

Ã2(s) if i ∈ {m1 + 1, . . . ,m1 + m2} ,
...

Ãn(s) if i ∈ {m1 + · · ·+ mn−1 + 1, . . . ,m} ,

for i = 1, . . . ,m and 0 ≤ s ≤ T .
Although C̃i(s) depends on the nonnegative integers m1, . . . ,mn, we will

suppress this dependence for clarity of notation. The following proposition
is critical for the definition of the disentangling map. Its proof can be found
in [5] and with more detail in [15].

Proposition 2.1.

(2.12) Pm1,...,mn

(
Ã1, . . . , Ãn

)
=∑

π∈Sm

∫
∆m(π)

C̃π(m)(sπ(m)) · · · C̃π(1)(sπ(1))

(µm1
1 × · · · × µmn

n ) (ds1, . . . , dsm).

We see from (2.9) that the right-hand side of (2.12) is the sum of time-
ordered expressions. Following Feynman’s ideas, we now define the map
Tµ1,...,µn which will return us from our commutative framework to the non-
commutative setting of L(X). We need notation as in (2.11), but involving
the operators A1, . . . , An instead of the indeterminates Ã1, . . . , Ãn. Accord-
ingly, for j = 1, . . . , n and all s ∈ [0, T ], we set

(2.13) Ci(s) =


A1(s) if i ∈ {1, . . . ,m1} ,

A2(s) if i ∈ {m1 + 1, . . . ,m1 + m2} ,
...

An(s) if i ∈ {m1 + · · ·+ mn−1 + 1, . . . ,m} .

Definition 2.2.

Tµ1,...,µn

(
Pm1,...,mn

(
Ã1, . . . , Ãn

))
:=∑

π∈Sm

∫
∆m(π)

Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1)) (µm1
1 × · · · × µmn

n ) (ds1, . . . , dsm).

Then, for f
(
Ã1, . . . , Ãn

)
∈ D

(
Ã1, . . . , Ãn

)
given by

f
(
Ã1, . . . , Ãn

)
=

∞∑
m1,...,mn=0

am1,...,mnÃm1
1 · · · Ãmn

n ,
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we define the action of the disentangling map on

f
(
Ã1, . . . , Ãn

)
∈ D

(
Ã1, . . . , Ãn

)
to be

(2.14) Tµ1,...,µnf
(
Ã1, . . . , Ãn

)
=

∞∑
m1,...,mn=0

am1,...,mnTµ1,...,µn

(
Pm1,...,mn

(
Ã1, . . . , Ãn

))
.

As is customary, we shall write Tµ1,...,µnf in place of Tµ1,...,µn(f) for an

element f of D
(
Ã1, . . . , Ãn

)
. We will also, in the sequel, use the nota-

tion −→µ for the n-tuple (µ1, . . . , µn) of measures and we will use T−→µ f or
f−→µ (A1, . . . , An) to denote Tµ1,...,µnf . The next proposition will assure us
that the sum (2.14) makes sense. We will state the proposition without
proof and refer the reader to [5] or [15] for its proof.

Proposition 2.3. (1) The series (2.14) converges absolutely in the uni-
form operator topology of L(X), for all

f
(
Ã1, . . . , Ãn

)
∈ D

(
Ã1, . . . , Ãn

)
.

(2) Tµ1,...,µn is a linear map from D
(
Ã1, . . . , Ãn

)
into L(X).

(3) For all f
(
Ã1, . . . , Ãn

)
∈ D

(
Ã1, . . . , Ãn

)
, we have

(2.15)
∥∥∥Tµ1,...,µnf

(
Ã1, . . . , Ãn

)∥∥∥
L(X)

≤
∥∥∥f (Ã1, . . . , Ãn

)∥∥∥
D(Ã1,...,Ãn)

.

In fact,

(2.16) ‖Tµ1,...,µn‖ = 1.

In the following section we will develop an integral representation of the
disentangling of a function f

(
Ã1, . . . , Ãn

)
by using the classical Cauchy

Integral Formula from several complex variables. It will be seen that the
disentangling of f can be represented by a contour integral of f against the
disentangling of the Cauchy kernel.

3. Using Cauchy’s integral formula to re-express
disentanglings

Let A1, . . . , An ∈ L(X) be nonzero linear operators on the Banach space
X. Associate to each operator Aj , j = 1, . . . , n, a continuous Borel proba-
bility measure µj on the interval [0, T ], T > 0. Construct, as in Section 2.1,

the commutative Banach algebras A (‖A1‖, . . . , ‖An‖) and D
(
Ã1, . . . , Ãn

)
.
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We begin with some simple observations. First, we recall from (2.5) that∥∥∥∥(Ãj

)`
∥∥∥∥

D
= ‖Aj‖`

L(X)

for ` ∈ N and j = 1, . . . , n. This tells us that the spectral radius of p1
j

(
Ãj

)
=

Ãj ∈ D is

spr
(
p1

j

)
= spr

(
Ãj

)
= lim

`→∞

∥∥∥∥(Ãj

)`
∥∥∥∥1/`

D
= lim

`→∞
‖Aj‖L(X) = ‖Aj‖L(X).

It follows that
spr
(
Ãj

)
≥ spr (Aj)

for each j = 1, . . . , n and so σ (Aj) ⊆ σ
(
Ãj

)
or ρ

(
Ãj

)
⊆ ρ (Aj) (where,

for an operator B, σ(B) denotes its spectrum and ρ(B) its resolvent set)
for each j = 1, . . . , n. (Here and below we suppress the use of p`

j and will
instead write Ã`

j .)
We will be interested in the function

(3.1) h
(
ξ1, . . . , ξn; Ã1, . . . , Ãn

)
:= ξ1 · · · ξn

(
ξ1 − Ã1

)−1
· · ·
(
ξn − Ãn

)−1
.

In particular, we wish to determine the set of (ξ1, . . . , ξn) in Cn for which
h ∈ D. In view of the previous paragraph we must choose ξ1, . . . , ξn ∈ C
such that

(3.2) |ξj | >
∥∥∥Ãj

∥∥∥
D

= ‖Aj‖L(X)

for j = 1, . . . , n. For such ξ1, . . . , ξn we have

h
(
ξ1, . . . , ξn; Ã1, . . . , Ãn

)
= ξ1 · · · ξn

(
ξ1 − Ã1

)−1
· · ·
(
ξn − Ãn

)−1

=
∞∑

m1,...,mn=0

(
Ã1

)m1

· · ·
(
Ãn

)mn

ξm1
1 · · · ξmn

n
∈ D

since

(3.3)

∥∥∥∥∥Ãj

ξj

∥∥∥∥∥
D

=

∥∥∥Ãj

∥∥∥
D

|ξj |
< 1

for j = 1, . . . , n. Hence, given any n-tuple (ξ1, . . . , ξn) ∈ Cn with |ξj | >

‖Aj‖L(X), we have h
(
ξ1, . . . , ξn; Ã1, . . . , Ãn

)
∈ D

(
Ã1, . . . , Ãn

)
. Said differ-

ently,

h
(
· ; Ã1, . . . , Ãn

)
: ρ
(
Ã1

)
× · · · × ρ

(
Ãn

)
→ D

(
Ã1, . . . , Ãn

)
.

As a function on ρ
(
Ã1

)
× · · · × ρ

(
Ãn

)
, h is clearly continuous.
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To accommodate the use of h
(
ξ1, . . . , ξn; Ã1, . . . , Ãn

)
in the operational

calculus, we need a construction that allows us to use functions analytic on
any polydisk containing

(3.4) P0 :=
{
(z1, . . . , zn) : |zj | ≤ ‖Aj‖L(X), j = 1, . . . , n

}
.

We start by choosing sequences {εj,k}∞k=1, j = 1, . . . , n, of strictly decreasing
positive real numbers for which

(3.5) lim
k→∞

εj,k = 0.

Using these sequences, define positive real numbers r1,k, . . . , rn,k by

(3.6) rj,k := ‖Aj‖L(X) + εj,k

for j = 1, . . . , n. Use these numbers to define closed polydisks Pk, k ∈ N:

(3.7) Pk := {(z1, . . . , zn) ∈ Cn : |zj | ≤ rj,k, j = 1, . . . , n} .

Since the sequences {εj,k}∞k=1 are decreasing for each j, the closed polydisks
Pk form a decreasing family, Pk+1 ⊆ Pk for all k, and so the corresponding
commutative Banach algebras

(3.8) Ak := A (r1,k, . . . , rn,k)

form an increasing family:

(3.9) A1 ⊆ A2 ⊆ · · · ⊆ Ak ⊆ Ak+1 ⊆ · · · ⊆ A (‖A1‖, . . . , ‖An‖) .

Now that we have our family {Ak}∞k=1 of commutative Banach algebras, we
can easily obtain the corresponding family {Dk}∞k=1 of disentangling alge-
bras. This is done by replacing the indeterminates z1, . . . , zn for f ∈ Ak by
the formal objects Ã1, . . . , Ãn, respectively. We have, of course, Dk

∼= Ak

(they are isometrically isomorphic) for all k ∈ N.
Now, given k, l ∈ N, with k < l, we define glk : Ak → Al by glk(f) :=

f |Pl
. Clearly glk is linear and because our sequences {rj,k}∞k=1 of weights are

decreasing, it follows that

(3.10) ‖glk(f)‖Ak
= ‖f |Pl

‖Al
≤ ‖f‖Ak

.

Hence glk is continuous for k, l ∈ N, k < l. We therefore have a inductive
system (Ak, gkl) and we define

(3.11) A∞ := lim
−→

glk(Ak);

the inductive limit of the increasing family {Ak} of Banach algebras. It
is well-known that A∞ is an algebra and it is clear that for f ∈ A∞, f
is analytic on a polydisk containing the closed polydisk P0. Further, for
f ∈ A∞, there is obviously a least positive integer k0 such that f ∈ Ak0 and,
of course, f ∈ Ak for all k ≥ k0.

As for the disentangling algebras D1, D2, . . . , we repeat the construction
above to obtain an increasing family {Dk}∞k=1 of commutative Banach alge-
bras, the maps glk : Dk −→ Dl and the inductive limit algebra D∞.
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We now define the disentangling map on the inductive limit algebra D∞.
Given f ∈ D∞, there is a least positive integer k0 such that f ∈ Dk0 .
As observed above in regard to the algebras Ak, it is clear that f ∈ Dk

for all k ≥ k0. Given any k ∈ N, we denote by T (k)
µ1,...,µn the “standard”

disentangling map from Dk into L(X) (defined in Definition 2.2 above).

Definition 3.1. Given f ∈ D∞, let k0 ∈ N be the least integer for which
f ∈ Dk0 . Define T−→µ : D∞ −→ L(X) by

(3.12) T−→µ f := T (k0)
µ1,...,µn

f =: T (k0)
−→µ f.

Remark 3.2. This definition gives the same operator for every k ≥ k0 as
f is analytic on every Pk with k ≥ k0 and so the disentangling series is the
same for every k ≥ k0.

It follows at once from Proposition 5.6 of [1] that, because T (k)
µ1,...,µn is

continuous from each Dk into L(X), T−→µ is continuous from D∞ into L(X).
It is obvious that T−→µ is linear.

With the inductive limit constructions done and the proper definition of
the analogue of the disentangling map defined, we turn to the calculations
that will lead us to our representation of the disentangling using the classical
Cauchy Integral Formula from several complex variables. Given f ∈ D∞,
let k0 be the smallest positive integer for which f ∈ Dk0 . Write

(3.13) f
(
Ã1, . . . , Ãn

)
=

∞∑
m1,...,mn=0

am1,...,mn

(
Ã1

)m1

· · ·
(
Ãn

)mn

on the polydisk Pk0 . Via Cauchy’s Integral Formula for derivatives we may
write

am1,...,mn =

(2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

f (ξ1, . . . , ξn) ξ−m1−1
1 · · · ξ−mn−1

n dξ1 · · · dξn.

We can therefore write

T−→µ f =
∞∑

m1,...,mn=0

[
(2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

f (ξ1, . . . , ξn) ξ−m1−1
1 · · ·

ξ−mn−1
n dξ1 · · · dξn

] ∑
π∈Sm

∫
∆m(π)

Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1))·

(µm1
1 × · · · × µmn

n ) (ds1, . . . , dsm).

Provided that we can establish the validity of interchanging the sum over
m1, . . . ,mn ∈ N ∪ {0} and the integral over the boundary of the polydisk
Pk0 , we may rewrite T−→µ f as
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T−→µ f = (2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

f (ξ1, . . . , ξn) ξ−1
1 · · · ξ−1

n

∞∑
m1,...,mn=0

ξ−m1
1 · · · ξ−mn

n

∑
π∈Sm

∫
∆m(π)

Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1))

(µm1
1 × · · · × µmn

n ) (ds1, . . . , dsm)dξ1 · · · dξn.

To continue further, we define symbols C̃ξ
j and Cξ

j by modifying (2.11) and
(2.13), respectively, to

(3.14) C̃ξ
j (s) :=



Ã1(s)
ξ1

if j ∈ {1, . . . ,m1}
Ã2(s)

ξ2
if j ∈ {m1 + 1, . . . ,m1 + m2}

...
Ãn(s)

ξn
if j ∈ {m1 + · · ·+ mn−1 + 1, . . . ,m}

and

(3.15) Cξ
j (s) :=



A1(s)
ξ1

if j ∈ {1, . . . ,m1}
A2(s)

ξ2
if j ∈ {m1 + 1, . . . ,m1 + m2}

...
An(s)

ξn
if j ∈ {m1 + · · ·+ mn−1 + 1, . . . ,m} .

Of course, we must have ξ1, . . . , ξn ∈ C\ {0}. We can, using the Cξ
j just

defined, write

(3.16) T−→µ f = (2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

f (ξ1, . . . , ξn) ξ−1
1 · · · ξ−1

n

∞∑
m1,...,mn=0

∑
π∈Sm

∫
∆m(π)

Cξ
π(m)(sπ(m)) · · ·C

ξ
π(1)(sπ(1))

(µm1
1 × · · · × µmn

n ) (ds1, . . . , dsm)dξ1 · · · dξn.

At this point we ask ourselves what function has a disentangling equal to

(3.17)
∞∑

m1,...,mn=0

∑
π∈Sm

∫
∆m(π)

Cξ
π(m)(sπ(m)) · · ·C

ξ
π(1)(sπ(1))

(µm1
1 × · · · × µmn

n ) (ds1, . . . , dsm)

and is such that the contour integral in (3.16) makes sense. Consider the
function h

(
ξ1, . . . , ξn; Ã1, . . . , Ãn

)
defined by

(3.18) h
(
ξ1, . . . , ξn; Ã1, . . . , Ãn

)
= ξ1 · · · ξn

(
ξ1 − Ã1

)−1
· · ·
(
ξn − Ãn

)−1
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for |ξj | = rj,k0 , j = 1, . . . , n. In view of the discussion at the start of
this section, h as defined is analytic on any polydisk containing P0 because
ξj ∈ ρ(Ãj) for j = 1, . . . , n. It is routine to calculate the disentangling of
the function h; however, to ensure convergence of the contour integral, we
apply the disentangling map T (k0+1)

−→µ to h to obtain

T (k0+1)
−→µ h =

∞∑
m1,...,mn=0

∑
π∈Sm

∫
∆m(π)

Cξ
π(m)(sπ(m)) · · ·C

ξ
π(1)(sπ(1))·

(µm1
1 × · · · × µmn

n ) (ds1, . . . , dsm).

Hence

(3.19) T−→µ f = (2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

f (ξ1, . . . , ξn) T (k0+1)
−→µ

((
ξ1 − Ã1

)−1
· · ·
(
ξn − Ãn

)−1)
dξ1 · · · dξn.

Note that for any k, l ∈ N, we have

T (k)
−→µ

((
ξ1 − Ã1

)−1
· · ·
(
ξn − Ãn

)−1)
= T (l)

−→µ

((
ξ1 − Ã1

)−1
· · ·
(
ξn − Ãn

)−1)
for ξj ∈ ρ

(
Ãj

)
, j = 1, . . . , n.

Remark 3.3. The reason that we apply the disentangling map

T (k0+1)
−→µ : Dk0+1 → L(X)

to the Cauchy kernel is due to the norm on the disentangling algebras.
Indeed, on Dk, we have∥∥∥∥(ξ1 − Ã1

)−1
· · ·
(
ξn − Ãn

)−1
∥∥∥∥

Dk

=

∥∥∥∥∥∥ξ−1
1 · · · ξ−1

n

∞∑
m1,...,mn=0

(
Ã1

ξ1

)m1

· · ·

(
Ãn

ξn

)mn
∥∥∥∥∥∥

Dk

= |ξ1|−1 · · · |ξn|−1
∞∑

m1,...,mn=0

rm1
1,k · · · r

mn
n,k

|ξ1|m1 · · · |ξn|mn
.

If |ξ1| = r1,k, . . . , |ξn| = rn,k, i.e., if we’re on the boundary of the polydisk Pk,
then this series fails to converge. Further, by disentangling with the index
k0 + 1, we obtain the inequality ‖T (k0)

−→µ f‖ ≤ ‖f‖Dk0
. (See Proposition 3.5

below.) Finally, using the index k0 + 1 on the disentangling of the Cauchy
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kernel does not effect the disentangling of the kernel and, as long as the index
is larger than k0, there is no effect on the conclusion of Proposition 3.5.

All that remains to be done in order to show that (3.19) is the disentan-
gling of f ∈ D∞ is to verify that we can indeed interchange the sum over
m1, . . . ,mn ∈ N ∪ {0} and the contour integral around the boundary of the
polydisk in question (Pk0). The tool we use for this task is the vector version
of Corollary 12.33 of [4]. The scalar version is stated here.

Corollary (Corollary 12.33 of [4]). Let {fn} be a sequence of C-valued mea-
surable functions on the measure space (Ω,A, µ) such that

∞∑
n=1

|fn| ∈ L1 (Ω, µ)

or, equivalently,
∞∑

n=1

∫
Ω
|fn| dµ < ∞.

Then
∑∞

n=1 fn ∈ L1 (Ω, µ) and∫
Ω

( ∞∑
n=1

fn

)
dµ =

∞∑
n=1

∫
Ω

fn dµ.

In our setting we take, for the sequence {fn},
gm1,...,mn (ξ1, . . . , ξn) = f (ξ1, . . . , ξn) ξ−1

1 · · · ξ−1
n∑

π∈Sm

∫
∆m(π)

Cξ
π(m)(sπ(m)) · · ·C

ξ
π(1)(sπ(1))

(µm1
1 × · · · × µmn

n ) (ds1, . . . , dsm).

It is clear that gm1,...,mn is continuous on the boundary

{(ξ1, . . . , ξn) : |ξj | = rj,k0 , j = 1, . . . , n}
of the polydisk Pk0 for all m1, . . . ,mn. Since

∞∑
m1,...,mn=0

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

gm1,...,mn (ξ1, . . . , ξn) dξ1 · · · dξn

is the disentangling series for f ∈ Dk0 , it is norm convergent in L(X). The
sum–integral interchange follows at once from the (obvious) vector-valued
version of the corollary stated above.

The discussion above is summarized in the following theorem.

Theorem 3.4. Let D∞ be as constructed above. For f ∈ D∞, let k0 ∈ N be
the least integer such that f ∈ Dk0. Then

f(ξ1, . . . , ξn)T (k0+1)
−→µ

((
ξ1 − Ã1

)−1
· · ·
(
ξn − Ãn

)−1)
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is Bochner integrable on the boundary of Pk0 and we have

T−→µ f = T (k0)
µ1,...,µn

f = T (k0)
−→µ f = fµ1,...,µn (A1, . . . , An)

= (2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

f (ξ1, . . . , ξn) T (k0+1)
−→µ

((
ξ1 − Ã1

)−1
· · ·
(
ξn − Ãn

)−1)
dξ1 · · · dξn.

It is clear that the same result obtains for any k ≥ k0.

Proof. The only part of the theorem that needs proof is the assertion

that f(ξ1, . . . , ξn)· T (k0+1)
−→µ

((
ξ1 − Ã1

)−1
· · ·
(
ξn − Ãn

)−1)
is Bochner inte-

grable. But this is clear since f is continuous on the boundary of Pk0 and

T (k0+1)
−→µ

((
ξ1 − Ã1

)−1
· · ·
(
ξn − Ãn

)−1)
is a bounded operator. Hence the

contour integral of the scalar function∥∥∥f(ξ1, . . . , ξn) · T (k0+1)
−→µ

((
ξ1 − Ã1

)−1
· · ·
(
ξn − Ãn

)−1)∥∥∥
L(X)

around the boundary of Pk0 is finite and so

f(ξ1, . . . , ξn)T (k0+1)
−→µ

((
ξ1 − Ã1

)−1
· · ·
(
ξn − Ãn

)−1)
is Bochner integrable as claimed. (See Theorem 2, page 45 of [2].) �

It is natural to ask if representing the disentangling using the disentan-
gling of the Cauchy kernel causes the disentangling map to be other than a
contraction. The answer is “no” as is seen in the following proposition.

Proposition 3.5. For f ∈ D∞,
∥∥T−→µ f

∥∥
L(X)

≤ ‖f‖Dk0
= ‖f‖Ak0

.

Proof. Let f ∈ D∞. Let k0 ∈ N be the least integer such that f ∈ Dk0 . We
calculate as follows:∥∥f−→µ (A1, . . . , An)

∥∥
L(X)

=

∥∥∥∥∥(2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

f (ξ1, . . . , ξn) ·

T (k0+1)
−→µ

((
ξ1 − Ã1

)−1
· · ·
(
ξn − Ãn

)−1
)

dξ1 · · · dξn

∥∥∥∥∥
L(X)

(a)
=

∥∥∥∥∥
L(X)

(2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

T (k0+1)
−→µ
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f (ξ1, . . . , ξn)

(
ξ1 − Ã1

)−1
· · ·
(
ξn − Ãn

)−1
)

dξ1 · · · dξn

∥∥∥∥∥
L(X)

(b)
=

∥∥∥∥∥T (k0+1)
−→µ

(
(2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

f (ξ1, . . . , ξn)

(
ξ1 − Ã1

)−1
· · ·
(
ξn − Ãn

)−1
dξ1 · · · dξn

)∥∥∥∥∥
L(X)

(c)
=
∥∥∥T (k0+1)

−→µ f
(
Ã1, . . . , Ãn

)∥∥∥
L(X)

≤ ‖f‖Dk0+1
≤ ‖f‖Dk0

.

Equality (a) follows from the linearity of the disentangling map. Equality
(b) follows from the argument above that shows that we can interchange
the contour integral and the sum over m1, . . . ,mn. Also, note that we can
apply T (k0+1)

−→µ to the contour integral representing f at this point since Dk0 ⊆
Dk0+1. Equality (c) follows from Cauchy’s Integral Formula. The second to
the last inequality is due to the fact that T (k)

−→µ is a linear contraction for
every k ∈ N and the last inequality is due to the fact that the sequences
{rj,k}k∈N of weights are (strictly) decreasing. �

It is striking that the representation obtained in Theorem 3.4 tells us that
we can obtain the disentangling of a function f ∈ D∞ by integrating this
function against the disentangling of the standard Cauchy kernel around
the boundary of a polydisk. Upon some reflection, this type of represen-
tation seems very natural in view of the Cauchy representation of analytic
functions.

4. An application of the Cauchy representation of
Feynman’s operational calculus

We can use the representation of Feynman’s operational calculus (in the
time-independent setting) obtained above in Theorem 3.4 to obtain a “differ-
ential calculus” for the operational calculus. The motivation for the “partial
derivative” introduced below is the Cauchy representation for the partial de-
rivative of an analytic function of several variables. Indeed, given a function
g(z1, . . . , zn) that is analytic on the open polydisk P with radii r1, . . . , rn

and continuous on its boundary, we can write, for (c1, . . . , cn) ∈ P ,

∂g

∂zj
(c1, . . . , cn) =

1
(2πi)n

∫
|ξ1|=r1

· · ·
∫

|ξn|=rn

g(ξ1, . . . , ξn) (ξ1 − c1)
−1 · · ·

(ξj−1 − cj−1)
−1 (ξj − cj)

−2 (ξj+1 − cj+1)
−1 · · · (ξn − cn)−1 dξ1 · · · dξn.

We use this idea to define the “derivative” δAjf−→µ (A1, . . . , An) of the disen-
tangled operator f−→µ (A1, . . . , An).
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Definition 4.1. Given f ∈ D∞, let k0 be the smallest positive integer such
that f ∈ Dk0 . Define, for each j = 1, . . . , n, δAjf−→µ (A1, . . . , An) by

(4.1) δAjf−→µ (A1, . . . , An) := (2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

f (ξ1, . . . , ξn) ·

T (k0+1)
−→µ

((
ξ1 − Ã1

)−1
· · ·
(
ξj−1 − Ãj−1

)−1 (
ξj − Ãj

)−2

(
ξj+1 − Ãj+1

)−1
· · ·
(
ξn − Ãn

)−1
)

dξ1 · · · dξn

Proceeding exactly as in the proof of Proposition 3.5, we have:

Proposition 4.2. For f ∈ D∞ and for any j = 1, . . . , n,∥∥δAjf−→µ (A1, . . . , An)
∥∥
L(X)

≤
∥∥∥∥ ∂f

∂zj

∥∥∥∥
Dk0

where k0 is the least integer for which f ∈ Dk0.

The basic properties of δAj are given in the next proposition.

Proposition 4.3. Let f, g ∈ D∞ and let k0 be the smallest positive integer
for which f, g ∈ Dk0. Let α, β ∈ C.

(1) δAj is linear:

(4.2) δAj

[
αf−→µ (A1, . . . , An) + βg−→µ (A1, . . . , An)

]
= αδAjf−→µ (A1, . . . , An) + βδAjg−→µ (A1, . . . , An) .

for j = 1, . . . , n.
(2) δAj satisfies the Leibniz rule:

(4.3) δAj

[
f−→µ (A1, . . . , An) g−→µ (A1, . . . , An)

]
=
(
δAjf−→µ (A1, . . . , An)

)
g−→µ (A1, . . . , An)

+ f−→µ (A1, . . . , An)
(
δAjg−→µ (A1, . . . , An)

)
for j = 1, . . . , n.

The proof of this proposition will be delayed so that we can establish some
necessary machinery. We first note that, for any fixed j,

(4.4) lim
ω↓0

(
ξj −

(
Ãj − ωĨ

))−1
−
(
ξj − Ãj

)−1

ω
=
(
ξj − Ãj

)−2
.

Remark 4.4. A one-sided limit is used above for reasons that will become
clear as we proceed.
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We would like to be able to write (where the limit is taken in the norm
topology on L(X))

(4.5) δAjf−→µ (A1, . . . , An)

= lim
ω↓0

1
ω

(f−→µ (A1, . . . , Aj−1, Aj − ωI, Aj+1, . . . , An)

− f−→µ (A1, . . . , An)).

Before we can establish this formula, we must make sure that, when choosing
f ∈ D∞, we are able to make mathematical sense of

f
(
Ã1, . . . , Ãj−1, Ãj − ωĨ, Ãj+1, . . . , Ãn

)
for small ω (since we are letting ω tend to zero). We will work with the
algebras A(·). As always, for f ∈ A∞, there is a smallest integer k0 such
that f ∈ Ak0 . We start by choosing ω0 > 0 so that

(4.6) rj,k0 > rω0
j,k0

:= ‖Aj − ω0I‖+ εj,k0

≥ ‖Aj‖ − ω0 + εj,k0 ≡ rj,k0 − ω0 > rj,k0+1.

It follows that

Ak0 ≡ A (r1,k0 , . . . , rn,k0)(4.7)

⊆ A
(
r1,k0 , . . . , rj−1,k0 , r

ω0
j,k0

, rj+1,k0 , . . . , rn,k0

)
⊆ A (r1,k0 , . . . , rj−1,k0 , rj,k0 − ω0, rj+1,k0 , . . . , rn,k0)
⊆ Ak0+1.

It is due to this chain of inclusions that we use the limit ω ↓ 0 above in (4.4).
For any ω for which the preceding chain of inclusions holds, in particular
for any ω ≤ ω0, we have

(4.8) f ∈ Ak0 ⊆ A
(
r1,k0 , . . . , rj−1,k0 , r

ω0
j,k0

, rj+1,k0 , . . . , rn,k0

)
.

Because of the identification of the algebras Ak and Dk, it makes sense to
consider, for any ω ≤ ω0, the element

f
(
Ã1, . . . , Ãj−1, Ãj − ωĨ, Ãj+1, . . . , Ãn

)
∈ D(ω)

where D(ω) denotes the disentangling algebra corresponding to

A
(
r1,k0 , . . . , rj−1,k0 , r

ω
j,k0

, rj+1,k0 , . . . , rn,k0

)
for f ∈ Dk0 . The disentangling of f

(
Ã1, . . . , Ãj−1, Ãj − ωĨ, Ãj+1, . . . , Ãn

)
,

f ∈ Dk0 , is

(4.9) f−→µ (A1, . . . , Aj−1, Aj − ωI, Aj+1, . . . , An)

= (2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

f (ξ1, . . . , ξn) T (k0+1)
−→µ

((
ξ1 − Ã1

)−1
· · ·



F.O.C.: USING CAUCHY’S INTEGRAL FORMULA 481(
ξj−1 − Ãj−1

)−1 (
ξj −

[
Ãj − ωĨ

])−1 (
ξj+1 − Ãj+1

)−1
· · ·
(
ξn − Ãn

)−1
)

dξ1 · · · dξn.

Next, we want to establish that

lim
ω↓0

∥∥f−→µ (A1, . . . , Aj−1, Aj − ωI, Aj+1, . . . , An)(4.10)

−f−→µ (A1, . . . , Aj−1, Aj , Aj+1, . . . , An)
∥∥
L(X)

= 0.

All that we need to do to obtain this limit is to appeal to the definition
of the disentangling map and use the time independence of the operators.
Indeed, we can easily obtain∥∥∥∥T (k0+1)

−→µ

((
ξ1 − Ã1

)−1
· · ·
(
ξj−1 − Ãj−1

)−1

(
ξj −

[
Ãj − ωĨ

])−1 (
ξj+1 − Ãj+1

)−1 (
ξn − Ãn

)−1)
− T (k0+1)

−→µ

((
ξ1 − Ã1

)−1
· · ·
(
ξj−1 − Ãj−1

)−1 (
ξj − Ãj

)−1

(
ξj+1 − Ãj+1

)−1
· · ·
(
ξn − Ãn

)−1)∥∥∥∥
L(X)

≤
∞∑

m1,...,mn=0

∣∣∣ξ−m1−1
1 · · · ξ−mn−1

n

∣∣∣
∑

π∈Sm

∥∥∥C(ω)
π(m) · · ·C

(ω)
π(1) − Cπ(m) · · ·Cπ(1)

∥∥∥
L(X)

(µm1
1 × · · · × µmn

n ) (∆m(π))

where C
(ω)
j denotes the operators in the disentangling of the version of the

Cauchy kernel containing Ãj − ωĨ. It is clear that the norm difference in
the sum over Sm that appears in the second to last line of the above display
goes to zero as ω ↓ 0 since the norm on L(X) is continuous. Using the
Dominated Convergence Theorem, we obtain

(4.11) lim
ω↓0

∞∑
m1,...,mn=0

∣∣∣ξ−m1−1
1 · · · ξ−mn−1

n

∣∣∣
∑

π∈Sm

∥∥∥C(ω)
π(m) · · ·C

(ω)
π(1) − Cπ(m) · · ·Cπ(1)

∥∥∥
L(X)

(µm1
1 × · · · × µmn

n ) (∆m(π)) = 0.

It therefore follows, again by the Dominated Convergence Theorem, that

lim
ω↓0

∥∥f−→µ (A1, . . . , Aj−1, Aj − ωI, Aj+1, . . . , An)−(4.12)

f−→µ (A1, . . . , Aj−1, Aj , Aj+1, . . . , An)
∥∥
L(X)

= 0.
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With the discussion just above completed, we can verify (4.5) by calcu-
lating as follows, using the definition of δAj .

δAjf−→µ (A1, . . . , An)

= (2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

f (ξ1, . . . , ξn) T (k0+1)
−→µ

((
ξ1 − Ã1

)−1
· · ·

(
ξj−1 − Ãj−1

)−1 (
ξj − Ãj

)−2 (
ξj+1 − Ãj+1

)−1
· · ·
(
ξn − Ãn

)−1
)

dξ1 · · · dξn

= (2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

f (ξ1, . . . , ξn) T (k0+1)
−→µ

((
ξ1 − Ã1

)−1
· · ·
(
ξj−1 − Ãj−1

)−1

lim
ω↓0

(
ξj −

(
Ãj − ωĨ

))−1
−
(
ξj − Ãj

)−1

ω


(
ξj+1 − Ãj+1

)−1
· · ·
(
ξn − Ãn

)−1
)

dξ1 · · · dξn

(?)
= lim

ω↓0

1
ω

[
(2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

f (ξ1, . . . , ξn) T (k0+1)
−→µ

((
ξ1 − Ã1

)−1
· · ·
(
ξj−1 − Ãj−1

)−1 (
ξj −

(
Ãj − ωĨ

))−1

(
ξj+1 − Ãj+1

)−1
· · ·
(
ξn − Ãn

)−1
)

dξ1 · · · dξn

− (2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

f (ξ1, . . . , ξn) T (k0+1)
−→µ

((
ξ1 − Ã1

)−1
· · ·
(
ξj−1 − Ãj−1

)−1 (
ξj − Ãj

)−1

(
ξj+1 − Ãj+1

)−1
· · ·
(
ξn − Ãn

)−1
)

dξ1 · · · dξn

]

= lim
ω↓0

1
ω

[
f−→µ (A1, . . . , Aj−1, Aj − ωI, Aj+1, . . . , An)

− f−→µ (A1, . . . , Aj−1, Aj , Aj+1, . . . , An)
]
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where equality (?) follows easily from the dominated convergence theorem
and the linearity of the disentangling map. Finally, the last equality just
above follows from (4.9). We see, then, that (4.5) holds as claimed.

The proof of Proposition 4.3 is now straightforward.

Proof of Proposition 4.3. The proof of item (1) is obvious. For the proof
of item (2), the Leibniz property for δAj , j = 1, . . . , n, we proceed much as
one does in elementary calculus. For simplicity of notation we execute the
proof for j = 1 as the proof for arbitrary j will be identical except for the
obvious changes in notation. Given f, g ∈ D∞ let k0 be the least positive
integer such that f, g ∈ Dk0 . (It should be noted here, however, that the
notation we are using suppresses the role of Dk0 in the calculation below.)
We calculate as shown below, appealing to (4.5) and (4.12) in the first and
fourth equalities below:

δA1

[
f−→µ (A1, . . . , An) g−→µ (A1, . . . , An)

]
= lim

ω↓0

1
ω

[
f−→µ (A1 − ωI, A2, . . . , An) g−→µ (A1 − ωI, A2, . . . , An)

−f−→µ (A1, A2, . . . , An) g−→µ (A1, A2, . . . , An)
]

= lim
ω↓0

1
ω

[
f−→µ (A1 − ωI, A2, . . . , An) g−→µ (A1 − ωI, A2, . . . , An)

−f−→µ (A1 − ωI, A2, . . . , An) g−→µ (A1, A2, . . . , An)

+f−→µ (A1 − ωI, A2, . . . , An) g−→µ (A1, A2, . . . , An)

−f−→µ (A1, A2, . . . , An) g−→µ (A1, A2, . . . , An)
]

= lim
ω↓0

f−→µ (A1 − ωI, A2, . . . , An){
1
ω

(
g−→µ (A1 − ωI, A2, . . . , An)− g−→µ (A1, A2, . . . , An)

)}
+

lim
ω↓0

{
1
ω

(
f−→µ (A1 − ωI, A2, . . . , An)− f−→µ (A1, A2, . . . , An)

)}
g−→µ (A1, A2, . . . , An)

= f−→µ (A1, A2, . . . , An)
[
δA1g−→µ (A1, A2, . . . , An)

]
+
[
δA1f−→µ (A1, A2, . . . , An)

]
g−→µ (A1, A2, . . . , An) �

With the basic properties of δAj put down, we can define higher order
“derivatives”, or iterations of δAj .

Definition 4.5. Given f ∈ D∞, we define δAj

[
δAif−→µ (A1, . . . , An)

]
by

δAj

[
δAif−→µ (A1, . . . , An)

]
= δAj

{
(2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

f (ξ1, . . . , ξn) T (k0+1)
−→µ

((
ξ1 − Ã1

)−1
· · ·
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ξi−1 − Ãi−1

)−1 (
ξi − Ãi

)−2 (
ξi+1 − Ãi+1

)−1
· · ·
(
ξn − Ãn

)−1
)

dξ1 · · · dξn

}

= (2πi)−n

∫
|ξ1|=r1,k0

· · ·
∫

|ξn|=rn,k0

f (ξ1, . . . , ξn) T (k0+1)
−→µ

((
ξ1 − Ã1

)−1
· · ·

(
ξi−1 − Ãi−1

)−1 (
ξi − Ãi

)−2 (
ξi+1 − Ãi+1

)−1
· · ·
(
ξj−1 − Ãj−1

)−1

(
ξj − Ãj

)−2 (
ξj+1 − Ãj+1

)−1
· · ·
(
ξn − Ãn

)−1
)

dξ1 · · · dξn

where we’ve assumed that j > i for notational simplicity. The corresponding
definitions for j < i and j = i are obvious. Further, k0 is, as usual, the least
positive integer for which f ∈ Dk0 .

Remark 4.6. It is clear from Definition 4.5 how to iterate δAj to any order.
In fact, we can state the following proposition concerning the commutativity
of the iteration of δAj .

Proposition 4.7. Given f ∈ D∞, we have

(4.13) δAj

[
δAif−→µ (A1, . . . , An)

]
= δAi

[
δAjf−→µ (A1, . . . , An)

]
for i, j ∈ {1, . . . , n}.

Proof. The proof is accomplished by using Definition 4.5 on both sides of
(4.13) and observing that the expressions obtained are identical. �

We now turn our attention to the exponential function; i.e., to the dis-
entangling of the exponential function. From elementary calculus, we know
that the derivative of the exponential function is itself. Such a statement is
true for the disentangled exponential function as is seen from the following
proposition.

Proposition 4.8. For the entire function

f (z1, . . . , zn) = exp (z1 + · · ·+ zn)

we have

(4.14) δAj

[
f−→µ (A1, . . . , An)

]
= f−→µ (A1, . . . , An)

for any j = 1, . . . , n. Further, any iterate of δAj returns the same result.

Proof. First, it is clear that, because f is an entire function, f ∈ D∞.
Indeed, f ∈ Dk for all k ∈ N and also f ∈ D

(
Ã1, . . . , Ãn

)
, the “base”

algebra. We will carry out the proof of this proposition for j = 1; the proof
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for any other j is a simple and obvious change in notation. We have, by
definition of δA1 and because f ∈ D

(
Ã1, . . . , Ãn

)
,

δA1

[
f−→µ (A1, . . . , An)

](4.15)

= (2πi)−n

∫
|ξ1|=r1,k

· · ·
∫

|ξn|=rn,k

exp (ξ1 + · · ·+ ξn) T (k+1)
−→µ

((
ξ1 − Ã1

)−2 (
ξ2 − Ã2

)−1
· · ·
(
ξn − Ãn

)−1
)

dξ1 · · · dξn

= (2πi)−n

∫
|ξ1|=r1,k

· · ·
∫

|ξn|=rn,k

exp (ξ1 + · · ·+ ξn) T (k+1)
−→µ

( ∞∑
m1=1;m2,...,mn=0

m1ξ
−m1−1
1 · · · ξ−mn−1

n

(
Ã1

)m1−1 (
Ã2

)m1

· · ·
(
Ãn

)mn

)
dξ1 · · · dξn

=
∞∑

m1=1;m2,...,mn=0

m1

{
(2πi)−n

∫
|ξ1|=r1,k

· · ·
∫

|ξn|=rn,k

exp (ξ1 + · · ·+ ξn)

ξ−m1−1
1 · · · ξ−mn−1

n dξ1 · · · dξn

}

·
∑

π∈Sm−1

∫
∆m−1(π)

Cπ(m−1)(sπ(m−1)) · · ·Cπ(1)(sπ(1))
(
µm1−1

1 × · · · × µmn
n

)
(ds1, . . . , dsm−1)

=
∞∑

m1=1;m2,...,mn=0

(
1

(m1 − 1)!m2! · · ·mn!

) ∑
π∈Sm1−1+m2+···+mn∫

∆m1−1+m2+···+mn (π)

Cπ(m1−1+m2+···+mn)(sπ(m1−1+m2+···+mn))

· · ·Cπ(1)(sπ(1))
(
µm1−1

1 × · · · × µmn
n

)
(ds1, . . . , dsm1−1+m2+···+mn)

=
∞∑

m1,...,mn=0

1
m1! · · ·mn!

∑
π∈Sm

∫
∆m(π)

Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1))·

(µm1
1 × · · · × µmn

n ) (ds1, . . . , dsm)

= f−→µ (A1, . . . , An) .
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Finally, the last comment of the proposition concerning the result of any
iterate of δAj is simply Proposition 4.7. �

We conclude with some examples to show that δAj acts as expected when
applied to disentangled monomials/polynomials. These examples also illus-
trate how the Cauchy representation of the disentangling works for some
simple, easy to calculate, disentanglings.

Example 4.9. We consider here the constant function f(z1, . . . , zn) = α,
for α ∈ C. Of course, for any choices of the measures µ1, . . . , µn we have
f−→µ (A1, . . . , An) = α. We would expect that δAjf−→µ (A1, . . . , An) = 0. To see
that this is indeed the case, we calculate δA1f−→µ (A1, . . . , An); the calculation
for δAjf−→µ (A1, . . . , An) is the same. We have, for any k ∈ N:

δA1f−→µ (A1, . . . , An)

= (2πi)−n

∫
|ξ1|=r1,k

· · ·
∫

|ξn|=rn,k

αT (k+1)
−→µ

((
ξ1 − Ã1

)−2 (
ξ2 − Ã2

)−1
· · ·

(
ξn − Ãn

)−1
)

dξ1 · · · dξn

=
∞∑

m1=1;m2,...,mn=0

{
(2πi)−n

∫
|ξ1|=r1,k

· · ·
∫

|ξn|=rn,k

αξ−m1−1
1 · · · ξ−mn−1

n dξ1 · · · dξn

}

·m1

∑
π∈Sm−1

∫
∆m−1(π)

Cπ(m−1)(sπ(m−1)) · · ·Cπ(1)(sπ(1))
(
µm1−1

1 × · · · × µmn
n

)
(ds1, . . . , dsm−1)

= 0

since, for m1 ≥ 1 and m2, . . . ,mn ≥ 0 we have

(2πi)−n

∫
|ξ1|=r1,k

· · ·
∫

|ξn|=rn,k

αξ−m1−1
1 · · · ξ−mn−1

n dξ1 · · · dξn = 0.

Example 4.10. We consider here the case where n = 2 and f (z1, z2) =
z2
1z2. We let µ1 and µ2 be any continuous probability measures on [0, T ]. We

will calculate δA2fµ1,µ2 (A1, A2). Because the disentangling fµ1,µ2 (A1, A2)
is linear in A2, we would expect that the “derivative” δA2fµ1,µ2 (A1, A2) will
not involve A2 at all. We have, for any k ∈ N,

δA2fµ1,µ2 (A1, A2)

=
∞∑

m1=0,m2=1

(2πi)−2

∫
|ξ1|=r1,k

∫
|ξ2|=r2,k

ξ−m1+1
1 ξm2

2 dξ1dξ2
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·m2

∑
π∈Sm1+m2−1

∫
∆m1+m2−1(π)

Cπ(m1+m2−1)(sπ(m1+m2−1))

· · ·Cπ(1)(sπ(1))
(
µm1

1 × µm2−1
2

)
(ds1, . . . , dsm1+m2−1)

= 2
∑
π∈S2

∫
∆2(π)

Cπ(2)Cπ(1)

(
µ2

1

)
(ds1, ds2)

= 2
(
A2

1µ
2
1 ({s1 < s2}) + A2

1µ
2
1 ({s2 < s1})

)
= 2A2

1

since the only nonzero terms in the sum are for m1 = 1 and m2 = 2 and
since µ1 is a probability measure. Further, when m1 = 1 and m2 = 2, both
operators Cπ(2) and Cπ(1) are equal to A1, for both permutations in S2.

Example 4.11. For this example we stay with the same function as that
used in the preceding example but we calculate δA1fµ1,µ2 (A1, A2). We would
assume, since the function is quadratic in z1, that δA1fµ1,µ2 (A1, A2) will be
linear in both A1 and A2. For any k ∈ N we have

δA1fµ1,µ2 (A1, A2)

=
∞∑

m1=1,m2=0

(2πi)−2

∫
|ξ1|=r1,k

∫
|ξ2|=r2,k

ξ−m1+1
1 ξ−m2

2 dξ1dξ2


·m1

∑
π∈Sm1−1+m2

∫
∆m1−1+m2 (π)

Cπ(m1−1+m2)(sπ(m1−1+m2))

· · ·Cπ(1)(sπ(1)) ·
(
µm1−1

1 × µm2
2

)
(ds1, . . . , dsm1−1+m2)

= 2
∑
π∈S2

∫
∆2(π)

Cπ(2)Cπ(1) (µ1 × µ2) (ds1, ds2)

= 2 (A1A2 (µ1 × µ2) ({s1 < s2}) + A2A1 (µ1 × µ2) ({s2 < s1}))
since the only nonzero terms of the sum are for m1 = 2 and m2 = 1. In this
instance, one of the operators Cπ(j) is A1 and the other is A2 in both terms
of the sum over S2.
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