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On the singular values and eigenvalues of
the Fox–Li and related operators

Albrecht Böttcher, Hermann Brunner,
Arieh Iserles and Syvert P. Nørsett

Abstract. The Fox–Li operator is a convolution operator over a finite
interval with a special highly oscillatory kernel. It plays an important
role in laser engineering. However, the mathematical analysis of its spec-
trum is still rather incomplete. In this expository paper we survey part
of the state of the art, and our emphasis is on showing how standard
Wiener–Hopf theory can be used to obtain insight into the behaviour of
the singular values of the Fox–Li operator. In addition, several approxi-
mations to the spectrum of the Fox–Li operator are discussed and results
on the singular values and eigenvalues of certain related operators are
derived.
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1. Introduction

The Fox–Li operator is

(Fωf)(x) :=
∫ 1

−1
eiω(x−y)2f(y) dy, x ∈ (−1, 1),

where ω is a positive real number [12]. This is a bounded linear operator on
L2(−1, 1), and its spectrum, σ(Fω), has important applications in laser and
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maser engineering; see [15] and Section 60 of [26]. Unfortunately, little is rig-
orously known about σ(Fω). The operator Fω is obviously compact. Hence
σ(Fω) consists of the origin and an at most countable number of eigenval-
ues accumulating at most at the origin. Computation in Figure 1 seems to
indicate that they lie on a spiral, commencing near the point

√
π/ω eiπ/4

and rotating clockwise to the origin, except that, strenuous efforts notwith-
standing, the precise shape of this spiral is yet unknown.

Figure 1. Fox–Li eigenvalues for ω = 100 and ω = 200.

Indeed, rigorous results on the spectrum of the Fox–Li operator are fairly
sparse. Henry Landau [20] studied the behaviour of the ε-pseudospectrum

σε(Fω) := {λ ∈ C : ‖(Fω − λI)−1‖ ≥ 1/ε}
as ω → ∞ (and “invented” the notion of the pseudospectrum on this oc-
casion). We also recommend Sections 6 and 60 of Trefethen and Embree’s
book [26] for a nice introduction into this subject. L. A. Vainshtein employed
arguments from physics to arrive at the conclusion that the eigenvalues of
Fω are

λn ≈
√
π

ω
eiπ/4 exp

(
−ζ(1/2)π3/2

16
√

2ω3/2
n2 − i

π2

16ω
n2

)
,

where ζ(1/2) is the value of Riemann’s zeta function at 1/2, Michael Berry
and his collaborators have written a number of papers on physical aspects
of the spectrum and its applications in laser theory [3], [4], [5], and, in a
recent paper, three of us have analysed several efficient numerical methods
for the determination of σ(Fω) and, with greater generality, of spectra of
integral operators with high oscillation [11].

Much more is known on the set s(Fω) of the singular values of Fω, that
is, the set of the positive square roots of the points in σ(FωF∗ω). Here are
two rigorous results.
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Theorem 1.1. We have s(Fω) ⊂ [0,
√
π/ω ) for every ω > 0.

To describe the finer behaviour of s(Fω) as ω → ∞, it is convenient to
pass to the scaled sets ωs2(Fω) := {ωs2j : sj ∈ s(Fω)}. The following result
was conjectured by Slepian [24] and proved in [21].

Theorem 1.2 (Landau and Widom). As ω →∞, the sets ωs2(Fω) converge
to the line segment [0, π] in the Hausdorff metric, and, for each ε ∈ (0, π/2),

|ωs2(Fω) ∩ (π − ε, π)| = 4ω
π

+
log(2ω)
π2

log
ε

π − ε
+ o(logω),

|ωs2(Fω) ∩ (ε, π − ε)| = 2 log(2ω)
π2

log
π − ε

ε
+ o(logω),

|ωs2(Fω) ∩ (0, ε)| = ∞,

where |E| denotes the number of points in E, with multiplicities counted.

Unlike σ(Fω), the set s(Fω) consists of points on the nonnegative real half-
line. The spiral goes away! However, Theorems 1.1 and 1.2 replace the spiral
by a different, arguably just as striking, feature: although s(Fω) is all the
time contained in [0,

√
π/ω ) and fills this segment more and more densely

as ω →∞, about 4ω/π singular values cluster near the right endpoint, while
the overwhelming rest of them is concentrated near the left endpoint. Of
course, this phenomenon, illustrated for different values of ω in Figure 2, is
not too much a surprise for those who are familiar with Toeplitz and Wiener–
Hopf operators with piecewise continuous symbols; see, for instance, [21], [30]
or Example 5.15 of [7]. Anyway, s(Fω) provides us at least with a poor
shadow of the spirals shown in Figure 1.

Theorems 1.1 and 1.2 are known. We nevertheless thought it could be
worth stating them explicitly and citing the mathematics behind them. One
piece of that mathematics is the switch between convolution by the kernel
k(ωt) over (−1, 1) and convolution by the kernel ω−1k(t) over (−ω, ω). At
the first glance, this might look like a triviality, but the classics, including
Grenander and Szegő [17], Widom [28], [29], [31] and Gohberg and Feld-
man [16], have demonstrated that the right switch at the right time and the
right place may lead to remarkable insight; see also [33]. For example, in this
way we may pass from highly oscillatory kernels on (−1, 1) to non-oscillating
kernels on (−ω, ω) ' (0, 2ω) and thus to truncated Wiener–Hopf operators.
The spectral theory of pure Wiener–Hopf operators, that is, of convolutions
over (0,∞), is simpler than that of truncated Wiener–Hopf operators. As
we are the closer to a pure Wiener–Hopf operator the larger ω is, it follows
that, perhaps counter-intuitively and in a delicate sense, higher oscillations
are simpler to treat than lower oscillations.

Another piece of mathematics that is relevant in this connection is Szegő
limit theorems, and in particular Landau and Widom’s extension of such
theorems to a second order asymptotic formula for Wiener–Hopf operators
generated by the characteristic function of an interval. It turns out that the
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Figure 2. Fox–Li singular values for different values of ω,
approximated as eigenvalues of a (2N+1)×(2N+1) matrix.

operator FωF∗ω is unitarily equivalent to just such a Wiener–Hopf operator.
Moreover, the operator FωF∗ω is at least as important as its coiner Fω. For
instance, FωF∗ω is a crucial actor in random matrix theory. There one is
interested in the determinants det(I − λFωF∗ω) (note that FωF∗ω is a trace
class operator), and the study of these determinants has evolved into results
of remarkable depth; see, for example, [13], [14], [19].

The paper is organized as follows. In Section 2 we record some known
results on Wiener–Hopf operators, which are then employed in Section 3 to
describe the behaviour of the singular values and eigenvalues of fairly general
convolution operators with highly oscillatory kernels. Theorems 1.1 and 1.2
will also be derived there. Section 4 contains some attempts on explaining
where the spiral in σ(Fω) might come from and what its precise shape might
be.
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2. Wiener–Hopf operators

We denote by F : L2(R) → L2(R) the Fourier–Plancherel transform,

(Ff)(ξ) :=
∫ ∞

−∞
f(t)eiξt dt, ξ ∈ R,

and frequently write f̂ for Ff . Let a ∈ L∞(R). Then the multiplication
operator M(a) : f 7→ af is bounded on the space L2(R). The convolution
operator C(a) : L2(R) → L2(R) is defined as C(a)f = F−1M(a)Ff . The
Wiener–Hopf operator W (a) generated by a is the compression of C(a) to
L2(0,∞), that is, the operator

W (a) := P+C(a) |L2(0,∞),

where P+ stands for the orthogonal projection of L2(R) onto L2(0,∞). Fi-
nally, for τ > 0, we denote by Wτ (a) the compression of W (a) to L2(0, τ),

Wτ (a) := PτW (a) |L2(0, τ),

where Pτ : L2(0,∞) → L2(0, τ) is again the orthogonal projection. If a = k̂
for some k ∈ L1(R) ∪ L2(R), we have

(C(k̂)f)(x) =
∫ ∞

−∞
k(x− y)f(y) dy, x ∈ R,

(W (k̂)f)(x) =
∫ ∞

0
k(x− y)f(y) dy, x ∈ (0,∞),

(Wτ (k̂)f)(x) =
∫ τ

0
k(x− y)f(y) dy, x ∈ (0, τ).

The relevant function a in the Fox–Li setting is

(2.1) a(ξ) :=
√
π eiπ/4e−iξ2/4, ξ ∈ R.

For this function, C(a) is the bounded operator given by

(2.2) (C(a)f)(x) =
∫ ∞

−∞
ei(x−y)2f(y) dy, x ∈ R,

and letting

(2.3) aω(ξ) :=
√
π/ω eiπ/4e−iξ2/(4ω), ξ ∈ R,

we get the bounded operator

(2.4) (C(aω)f)(x) =
∫ ∞

−∞
eiω(x−y)2f(y) dy, x ∈ R,

In contrast to this, the operator Lω that is formally defined by

(2.5) (Lωf)(x) =
∫ ∞

−∞
eiω|x−y|f(y) dy, x ∈ R,

is not bounded on L2(R). However, the compression of the last operator to
L2 over a finite interval is obviously compact.
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It is well-known that σ(C(a)) is equal to R(a), the essential range of a.
Note also that C(a), W (a), Wτ (a) are self-adjoint if a is real-valued.

Theorem 2.1 (Hartman and Wintner). If a ∈ L∞(R) is real-valued, then
σ(W (a)) equals convR(a), the convex hull of R(a).

The analogue of this theorem for Toeplitz matrices appeared first in [18].
A full proof is also in Theorem 1.27 of [7] or Section 2.36 of [8]. The easiest
way to pass from Toeplitz matrices to Wiener–Hopf operators is to employ
the trick of Section 9.5(e) of [8].

Theorem 2.2. If a ∈ L∞(R) is real-valued, then σ(Wτ (a)) ⊂ σ(W (a)) for
every τ > 0, and σ(Wτ (a)) converges to σ(W (a)) in the Hausdorff metric
as τ →∞.

This was established in [9]. Combining the last two theorems, we arrive at
the conclusion that if a ∈ L∞(R) is real-valued, then σ(Wτ (a)) ⊂ convR(a)
for every τ > 0 and σ(Wτ (a)) → convR(a) in the Hausdorff metric.

Theorem 2.3. If a ∈ L∞(R) is real-valued and R(a) is not a singleton,
then an endpoint of the line segment convR(a) cannot be an eigenvalue of
Wτ (a).

This is well-known. The short proof is as follows. It suffices to show that
if a ≥ 0 almost everywhere and a > 0 on a set of positive measure, then 0 is
not an eigenvalue of Wτ (a). Assume the contrary, that is, let Wτ (a)f = 0
for some f ∈ L2(0, τ) with ‖f‖ = 1. Then

0 = (Wτ (a)f, f) = (PτP+F
−1M(a)Ff, f)

= (M(a)Ff, Ff) =
∫ ∞

−∞
a(ξ)|f̂(ξ)|2 dξ.

The Fourier transform of the compactly supported function f cannot vanish
on a set of positive measure. Consequently, since a > 0 on a set of positive
measure, we have ∫ ∞

−∞
a(ξ)|f̂(ξ)|2 dξ > 0,

which is a contradiction.

Theorem 2.4 (Szegő’s First Limit Theorem). Let a ∈ L∞(R) ∩ L1(R) be
a real-valued function and let ϕ ∈ C(R) be a function such that ϕ(x)/x has
a finite limit as x → 0. Then ϕ(Wτ (a)) is a trace class operator for every
τ > 0, ϕ ◦ a belongs to L1(R), and

lim
τ→∞

trϕ(Wτ (a))
τ

=
1
2π

∫ ∞

−∞
ϕ(a(ξ)) dξ.

This theorem is proved in Section 8.6 of [17]. The following theorem,
which was established in [21] and a second proof of which is also in [30], re-
markably sharpens Theorem 2.4 for a special but important class of functions
a. We denote by χ(α,β) the characteristic function of the interval (α, β).
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Theorem 2.5 (Landau and Widom). Let γ > 0 be a real number and (α, β)
be a finite interval. Then for every ϕ ∈ C∞(R) satisfying ϕ(0) = 0,

trϕ(Wτ (γχ(α,β))) = τ
ϕ(γ)(β − α)

2π
+

log τ
π2

∫ γ

0

γϕ(x)− xϕ(γ)
x(γ − x)

dx+O(1).

Let Ṙ denote the one-point compactification of R and let a ∈ C(Ṙ). Then
the spectrum of W (a) is the union of the range R(a) = a(R) ∪ {a(∞)} and
all points in C \R(a) whose winding number with respect to the continuous
and closed curve R(a) is nonzero (see, e.g., Theorem VII.3.6 of [16] or The-
orem 2.42 plus Section 9.5(e) of [8]). It may happen that σ(W (a)) = R(a).
This is of course the case if the function a is real-valued. We also encounter
this situation if

a(ξ) = k̂(ξ) =
∫ ∞

−∞
k(t)eiξt dt

with a kernel k ∈ L1(R) which is even, k(t) = k(−t) for all t. In the last
case, a(ξ) traces out a curve from the origin to a(0) as ξ moves from −∞
to 0 and then a(ξ) goes back to the origin in the reverse direction along the
same curve when ξ moves further from 0 to ∞. Thus, all points outside this
curve have winding number zero.

Theorem 2.6. Let a ∈ C(Ṙ) ∩ L1(R) and suppose R(a) has no interior
points and σ(W (a)) = R(a). Then σ(Wτ (a)) → R(a) in the Hausdorff
metric as τ →∞. Furthermore, if ϕ : C → C is a continuous function such
that ϕ(z)/z has a finite limit as z → 0, then ϕ ◦ a is in L1(R) and

lim
τ→∞

trϕ(Wτ (a))
τ

=
1
2π

∫ ∞

−∞
ϕ(a(ξ)) dξ.

This theorem is the continuous analogue of results by Widom [32] and
Tilli [25] (see also Example 5.39 of [7]). Some comments are in order.

First of all note that if λ is not in R(a), then Wτ (a) − λI = Wτ (a − λ)
is invertible for all sufficiently large τ and the norms of the inverses are
uniformly bounded (see, e.g., Theorem 9.40 of [8]). This in conjunction
with the compactness of R(a) implies that if ε > 0 is given then σ(Wτ (a))
is contained in the ε-neighbourhood of R(a) for all τ > τ0(ε). The second
part of the theorem implies that in fact every point of R(a) is a limit point
of a family {λτ}τ>0 with λτ ∈ σ(Wτ (a)). Consequently, σ(Wτ (a)) → R(a)
in the Hausdorff metric.

Secondly, let ϕ be as in the theorem. Then trϕ(Wτ (a)) may simply be
interpreted as

∑
j ϕ(λj) where {λj} is the (at most countable) family of

eigenvalues of Wτ (a), counted according to their algebraic multiplicity. To
prove the second part of the theorem, one can proceed as in [25]. We only
remark that our assumption ensures that ϕ(z) = zh(z) with a continuous
function h : C → C, that, by Runge’s theorem, h can be approximated
uniformly on R(a) by rational functions rn with prescribed poles in the
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bounded components of C \ R(a), and that the second part of the theorem
is easy to prove for ϕ(z) = zrn(z).

We finally turn to the continuous analogue of the Avram–Parter theorem,
which says that we may drop real-valuedness in Theorem 2.4 when passing
from eigenvalues to singular values or equivalently, when replacing Wτ (a)
by |Wτ (a)| := (Wτ (a)Wτ (a)∗)1/2. Notice that the eigenvalues of |Wτ (a)| are
just the singular values of Wτ (a).

Theorem 2.7 (Avram and Parter). Let a ∈ L∞(R) ∩ L1(R) and let ϕ be a
continuous function on [0,∞) such that ϕ(x)/x has a finite limit as x→ 0.
Then ϕ(|Wτ (a)|) is a trace class operator for every τ > 0, ϕ◦|a| is a function
in L1(R), and

lim
τ→∞

trϕ(|Wτ (a)|)
τ

=
1
2π

∫ ∞

−∞
ϕ(|a(ξ)|) dξ.

The discrete version of this theorem is due to Avram [2] and Parter [22].
The proofs given in Section 5.6 of [7] or in Section 4 of [6] for the Toeplitz
case can be easily adapted to the Wiener–Hopf case.

3. Highly oscillatory convolution-type problems

An extremely fortunate peculiarity of the Fox–Li operator Fω is that
FωF∗ω is also unitarily equivalent to a convolution operator over (−1, 1).
Here is the precise result.

Lemma 3.1. Let V be the unitary operator

V : L2(−1, 1) → L2(−1, 1), (V f)(x) := e−iωx2
f(x).

Then

(V FωF∗ωV ∗f)(x) =
∫ 1

−1

sin(2ω(x− y))
ω(x− y)

f(y) dy, x ∈ (−1, 1).

Proof. Straightforward computation. �

Lemma 3.1 puts us into the following general context. Let a be a function
in L∞(R)∩L1(R). Then a ∈ L2(R) and hence there is a function k ∈ L2(R)
such that a = k̂. Since k̂ ∈ L1(R), we also know that k is continuous and
k(±∞) = 0. For ω > 0, we set

kω(t) := k(ωt)

and consider the compression of the convolution operator C(k̂ω) to L2(−1, 1):

(C(−1,1)(k̂ω)f)(x) :=
∫ 1

−1
k(ω(x− y))f(y) dy, x ∈ (−1, 1).

Lemma 3.1 just says that FωF∗ω is unitarily equivalent to C(−1,1)(k̂ω) with

k(t) =
sin(2t)
t

,
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in which case

(3.1) a(ξ) = k̂(ξ) =
∫ ∞

−∞

sin(2t)
t

eiξt dt = πχ(−2,2)(ξ).

Lemma 3.2. Let U be the unitary operator

U : L2(−1, 1) → L2(0, τ), (Uf)(t) :=

√
2
τ
f

(
2t− τ

τ

)
.

Then
UC(−1,1)(k̂ω)U∗ =

2
τ
Wτ (k̂2ω/τ ).

Proof. Taking into account that U∗ is given by

U∗ : L2(0, τ) → L2(−1, 1), (U∗g)(x) =
√
τ

2
g

(
τx+ τ

2

)
,

this can again be verified by direct computation. �

Theorem 3.3. Let a ∈ L∞(R) ∩ L1(R) be real-valued. Then the spectrum
of ωC(−1,1)(k̂ω) is contained in convR(k̂) for every ω > 0 and converges to
convR(k̂) in the Hausdorff metric as ω → ∞. Moreover, if ϕ ∈ C(R) and
ϕ(x)/x has a finite limit as x→ 0, then

lim
ω→∞

trϕ(ωC(−1,1)(k̂ω))
2ω

=
1
2π

∫ ∞

−∞
ϕ(k̂(ξ)) dξ.

Proof. Using Lemma 3.2 with τ = 2ω, we observe that the spectrum of the
operator ωC(−1,1)(k̂ω) coincides with the spectrum of W2ω(k̂). All assertions
are therefore immediate consequences of Theorems 2.1, 2.2 and 2.4. �

Proofs of Theorems 1.1 and 1.2. From Lemmas 3.1 and 3.2 and (3.1)
we infer that the operator ωFωF∗ω = ωC(−1,1)(k̂ω) is unitarily equivalent to
the operator

ω
2
2ω

W2ω(k̂) = W2ω(πχ(−2,2)).

Theorem 3.3 now implies that ωs2(Fω) is a subset of convR(πχ(−2,2)) =
[0, π] for all ω > 0 and converges to [0, π] in the Hausdorff metric as ω →
∞. The point π cannot belong to ωs2(Fω), since otherwise it would be
an eigenvalue of W2ω(πχ(−2,2)), contradicting Theorem 2.3. This proves
Theorem 1.1 and the first part of Theorem 1.2.

To prove the second part of Theorem 1.2, let

N(α,β) := |ωs2(Fω) ∩ (α, β)|
for 0 ≤ α < β ≤ π and notice that N(α,β) = trχ(α,β)(W2ω(πχ(−2,2))). We
first consider (α, β) = (π − ε, π). Choose a function ϕ ∈ C∞(R) such that
ϕ(x) = 0 for x < π−ε−η, ϕ(x) increases from 0 to 1 for π−ε−η < x < π−ε,
and ϕ(x) = 1 for x > π − ε. Since χ(π−ε,π) ≤ ϕ, we have

N(π−ε,π) ≤ trϕ(W2ω(πχ(−2,2))),
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and Theorem 2.5 tells us that the right-hand side is

2ω
4
2π

+
log(2ω)
π2

∫ π

0

πϕ(x)− x

x(π − x)
dx+O(1).

The O(1) does not exceed some constant Cη <∞ and the integral equals∫ π−ε−η

0

−x
x(π − x)

dx+
∫ π−ε

π−ε−η

πϕ(x)− x

x(π − x)
dx+

∫ π

π−ε

π − x

x(π − x)
dx,

which, for η → 0, converges to

−
∫ π−ε

0

dx
π − x

+
∫ π

π−ε

dx
x

= log
ε

π − ε
.

Thus, if δ > 0 is given, there is an η > 0 and a constant Cη <∞ such that

N(π−ε,π) ≤
4ω
π

+
log(2ω)
π2

log
ε

π − ε
+ δ

log(2ω)
π2

+ Cη

for all ω > 0. Clearly, Cη < (δ/π2) log(2ω) whenever ω > ω1(δ), and for
these ω we then have

N(π−ε,π) ≤
4ω
π

+
log(2ω)
π2

log
ε

π − ε
+

2δ
π2

log(2ω).

Approximating the function χ(π−ε,π) by a C∞ function ψ from below, one
can show analogously that given δ > 0, there is some ω2(δ) such that

N(π−ε,π) ≥
4ω
π

+
log(2ω)
π2

log
ε

π − ε
− 2δ
π2

log(2ω)

for all ω > ω2(δ). Combining the last two estimates and taking into account
that o(log(2ω)) = o(logω), we obtain that

N(π−ε,π) =
4ω
π

+
log(2ω)
π2

log
ε

π − ε
+ o(logω),

as asserted. To prove the result for N(ε,π−ε) we may proceed similarly.
Employing Theorem 2.5 with ϕ(π) = 0 we get

N(ε,π−ε) =
log(2ω)
π2

∫ π−ε

ε

π

x(π − x)
dx+ o(logω)

=
log(2ω)
π2

· 2 log
π − ε

ε
+ o(logω),

again as desired.
Finally, by Theorem 2.3, the operator W2ω(πχ(−2,2)) is injective. Conse-

quently, so also is ωFωF∗ω, which implies that ωFωF∗ω has dense and thus
infinite-dimensional range. It follows that ωs2(Fω)∩ (0, π) is an infinite set.
As this set has only 4ω/π+ o(ω) points in [ε, π), we arrive at the conclusion
that infinitely many points must lie in (0, ε). �
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Let us return to the general context of Theorem 3.3. Fix two real numbers
α < β and suppose that 0 /∈ [α, β]. Invoking Theorem 2.4 and including
the characteristic function χ(α,β) between two continuous functions ψ and
ϕ as in the preceding proof, one obtains that if the measure of the set
{ξ : k̂(ξ) = α} ∪ {ξ : k̂(ξ) = β} is zero then

(3.2) lim
ω→∞

|σ(ωC(−1,1)(k̂ω)) ∩ (α, β)|
2ω

=
1
2π

mes {ξ : k̂(ξ) ∈ (α, β)},

mesE denoting the (Lebesgue) measure of E.

Example 3.4. Let k(t) = e−t2 , in which case

a(ξ) = k̂(ξ) =
√
π e−ξ2/4.

Theorems 3.3 and 2.3 along with (3.2) imply that then all eigenvalues of
ωC(−1,1)(k̂ω) are contained in [0,

√
π), that they fill [0,

√
π] densely as ω

goes to ∞, and that the number of eigenvalues of C(−1,1)(k̂ω) in (α/ω, β/ω)
is

ω

π
mes {ξ : α <

√
π e−ξ2/4 < β}+ o(ω).

To have another example, take k(t) = (1− cos t)/t2. Then

a(ξ) = k̂(ξ) = π(1− |ξ|)+.

Hence, the eigenvalues of ωC(−1,1)(k̂ω) fill the segment [0, π] densely and
if 0 < α < β ≤ π, the number of eigenvalues of C(−1,1)(k̂ω) belonging to
(α/ω, β/ω) is

ω

π
mes {ξ : α < π(1− |ξ|)+ < β}+ o(ω) =

2(β − α)
π2

ω + o(ω). �

The kernel k occurring in Theorem 3.3 satisfies k(t) = k(−t) for all t and
is not necessarily in L1(R). The following result addresses eigenvalues for
kernels in L1(R) for which k(t) = k(−t). Notice that neither the former nor
the latter assumptions are in force for the Fox–Li kernel k(t) = eit2 .

Theorem 3.5. Let k ∈ L1(R) and suppose k(t) = k(−t) for all t and
R(k̂) has no interior points. Then ωσ(C(−1,1)(k̂ω)) converges to R(k̂) in the
Hausdorff metric as ω →∞ and if ϕ : C → C is a continuous function such
that ϕ(z)/z has a finite limit as z → 0, then ϕ ◦ a is in L1(R) and

lim
ω→∞

1
2ω

∑
j

ϕ(ωλj) =
1
2π

∫ ∞

−∞
ϕ(k̂(ξ)) dξ,

the sum over the λj in σ(C(−1,1)(k̂ω)).

Proof. Lemma 3.2 with τ = 2ω shows that ωC(−1,1)(k̂ω) is unitarily equiv-
alent to W2ω(k̂). As k̂(ξ) = k̂(−ξ) for all ξ, it follows that σ(W (k̂)) = R(k̂).
The assertion is therefore an immediate consequence of Theorem 2.6. �
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Herewith a result on the singular values for arbitrary kernels in L1(R).

Theorem 3.6. Let k ∈ L1(R). Then ωs(C(−1,1)(k̂ω)) ⊂ R(|k̂|) for every
ω > 0 and ωs(C(−1,1)(k̂ω)) converges to R(|k̂|) in the Hausdorff metric as
ω →∞. Moreover, if ϕ is a continuous function on [0,∞) such that ϕ(x)/x
has a finite limit as x→ 0 then ϕ ◦ k̂ is in L1(R) and

(3.3) lim
ω→∞

1
2ω

∑
j

ϕ(ωsj) =
1
2π

∫ ∞

−∞
ϕ(|k̂(ξ)|) dξ,

the sum over the sj in s(C(−1,1)(k̂ω)).

Proof. Once more by Lemma 3.2 with τ = 2ω,

ω2UC(−1,1)(k̂ω)C(−1,1)(k̂ω)∗U∗ = W2ω(k̂)W2ω(k̂)∗,

whence ω|C(−1,1)(k̂ω)| = |W2ω(k̂)|. First of all, this shows that

(3.4) ωs(C(−1,1)(k̂ω)) ⊂ [0, ‖Wτ (k̂)‖] ⊂ [0,max |k̂|] = R(|k̂|),

and secondly, using Theorem 2.7 we obtain (3.3). Finally, (3.3) and (3.4)
together imply the convergence of ωs(C(−1,1)(k̂ω)) to R(k̂) in the Hausdorff
metric. �

Example 3.7. Let k(t) = eit2µ(t) where µ is in L1(R) and µ(t) = µ(−t) for
all t. In that case the preceding two theorems are applicable and describe
the eigenvalues and singular values of the operator

(Fω,µf)(x) :=
∫ 1

−1
eiω(x−y)2µ(

√
ω(x− y))f(y) dy, x ∈ (−1, 1),

which is just C(−1,1)(k√ω). Take, for instance, µε(t) = e−εt2 with a fixed
ε > 0, that is, consider

(Fω,εf)(x) := (Fω,µεf)(x) =
∫ 1

−1
e(i−ε)ω(x−y)2f(y) dy, x ∈ (−1, 1).

We have

(3.5) k̂(ξ) =
∫ ∞

−∞
e(i−ε)t2eiξt dt =

√
π

ε− i
exp

(
− ξ2

4(ε− i)

)
,

which may also be written in the form

k̂(ξ) =

√
π(ε+ i)
1 + ε2

exp
(
− εξ2

4(1 + ε2)

)
exp

(
−i

ξ2

4(1 + ε2)

)
.

Thus, R(k̂) is a spiral commencing at
√
π(ε+ i)/(1 + ε2) (which is about√

π eiπ/4 if ε > 0 is small) and rotating clockwise into the origin. Theo-
rem 3.5 tells that when ω → ∞, then the set of the eigenvalues of

√
ωFω,ε
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converges in the Hausdorff metric to this spiral. The spiral has the para-
metric representation

z =

√
π(ε+ i)
1 + ε2

e−(i+ε)ϕ, 0 ≤ ϕ <∞,

and the number of eigenvalues of the scaled operator
√
ωFω,ε that lie near

the beginning arc of the spiral given by 0 ≤ ϕ < x is
√
ω

π
mes

{
ξ ∈ R : 0 ≤ ξ2

4(1 + ε2)
< x

}
+ o(

√
ω).

On the other hand, Theorem 3.6 says that the singular values of
√
ωFω,ε

densely fill the segment [0,max |k̂|] = [0, π1/2(1+ε2)−1/4] and that the num-
ber of singular values in (α/

√
ω, β/

√
ω) is

√
ω

π
mes

{
ξ ∈ R : α <

√
π

4
√

1 + ε2
exp

(
− εξ2

4(1 + ε2)

)
< β

}
+ o(

√
ω).

Figure 3 demonstrates how, for growing ω, the spectrum lies increasingly
near to the spiral k̂. �

Example 3.8. Fix ε > 0 and consider the operator

(Mω,εf)(x) :=
∫ 1

−1
eiω|x−y|e−εω|x−y|f(y) dy, x ∈ (−1, 1).

This is some kind of regularization of the compression of operator (2.5) to
L2(−1, 1). Clearly, Mω,ε = C(−1,1)(k̂ω) with k(t) = e(i−ε)|t|. We have

k̂(ξ) =
∫ ∞

−∞
e(i−ε)|t|eiξt dt =

2(ε− i)
ξ2 + (ε− i)2

,

and Theorems 3.5 and 3.6 imply that ωσ(Mω,ε) and ωs(Mω,ε) converge in
the Hausdorff metric to R(k̂) and R(|k̂|), respectively, as ω → ∞. It is
readily seen that R(|k̂|) = [0,mε] where

mε =
{
ε−1(1 + ε2)1/2 for 0 < ε ≤ 1,
2(1 + ε2)−1/2 for 1 ≤ ε <∞.

To determine the range of k̂, consider the Möbius transform

γ(z) :=
2(ε− i)

z + (ε− i)2
.

The set γ(R) is a circle passing through γ(∞) = 0 and γ(1− ε2) = 1/ε+ i,
while γ(1−ε2+iR) is the straight line through γ(∞) = 0, γ(1−ε2) = 1/ε+i
and γ(−(ε− i)2) = ∞. As R and 1−ε2 +iR intersect at a right angle, so also
must γ(R) and γ(1− ε2 + iR). Consequently, the line segment [0, 1/ε+ i] is
a diameter of the circle γ(R), which shows that

(3.6) γ(R) =

{
z ∈ C :

∣∣∣∣z − 1
2

(
1
ε

+ i
)∣∣∣∣ = 1

2

√
1
ε2

+ 1

}
.
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Figure 3. Spectra of Fω,ε from Example 3.7 for ε = 1/4
and different values of ω, as well as the spiral k̂.

The range R(k̂) is γ([0,∞]), and a moment’s thought reveals that this is the
arc of γ(R) that is described in the clock-wise direction from γ(0) = 2/(ε− i)
to γ(∞) = 0. Figure 4 illustrates how the eigenvalues approximate the
circle (3.6) and that their distribution mimics the values of k̂ at equally
spaced points. Notice that the convergence is very slow for small ε > 0.

As in Example 3.8, the limit passage ε → 0 does not yield anything for
Mω := Mω,0, the compression of operator (2.5) to L2(−1, 1). However, the
case ε = 0 was treated in [10] on the basis of pure asymptotic expansions,
and that paper virtually completely explains the asymptotic behaviour of
the eigenvalues of Mω. We refer in this connection also to [11]. On the
other hand, apart from the scaling, the lower right picture of Figure 4 nicely
resembles the numerical data for the operator Mω shown in papers [11,
Figure 1.2] and [10, Figure 2]. �
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Figure 4. Spectra of Mω,ε from Example 3.8 for different
values of ε and ω (left), as well as the values of the Fourier
transform k̂(ξ) for ξ = j/100 with j = 0, 1, . . . , 5000 (right).

4. Attempts on the Fox–Li spectrum itself

Inasmuch as the singular values of Fω or the eigenvalues of the operator
Fω,ε of Example 3.7 are interesting, the real prize is the spectrum of the
Fox–Li operator Fω.

Staying within Wiener–Hopf operators. We know from (2.4) that
Fω equals C(−1,1)(aω) with aω given by (2.3). To get a large truncated
Wiener-Hopf operator, we employ Lemma 3.2 with τ = 2

√
ω and see that

Fω is unitarily equivalent to

1√
ω
W2

√
ω(a) with a(ξ) =

√
π eiπ/4e−iξ2/4.

(Note that this and also (2.1) formally result from (3.5) with ε = 0.) How-
ever, because a is neither in C(Ṙ) nor in L1(R), Theorem 2.6 is not appli-
cable.
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The convolution operator generated by a has the kernel `(t) := eit2 . In
Example 3.7 we saved matters by passing from `(t) to `(t)e−εt2 for ε > 0, but
this operation changed the operator and thus also its spectral characteristics
dramatically. Another strategy is to consider

(4.1) `[ω](t) := χ(−2
√

ω,2
√

ω)(t) eit2 ,

which a function in L1(R) ∩ L2(R) such that

`
[ω]√

ω
(t) := `[ω](

√
ωt) = χ(−2,2)(t)e

iωt2

and which allows us to write

Fω = C(−1,1)

(
ˆ̀[ω]√

ω

)
.

Now Lemma 3.2 with τ = 2
√
ω yields

(4.2) UFωU
∗ =

1√
ω
W2

√
ω(ˆ̀[ω])

with

(4.3) ˆ̀[ω](ξ) =
∫ 2

√
ω

−2
√

ω
eit2eiξt dt.

Consequently,

(4.4)
√
ω σ(Fω) = σ(W2

√
ω(ˆ̀[ω])).

But what is the spectrum on the right of (4.4)? Note that both the trun-
cation interval and the generating function of the Wiener–Hopf operator
depend on the parameter ω.

Fix ω and consider the Wiener–Hopf operator W (ˆ̀[ω]). From (4.3) we
see that ˆ̀[ω] is an analytic and even function. Consequently, R(ˆ̀[ω]) has no
interior points and σ(W (ˆ̀[ω]) = R(ˆ̀[ω]). Theorem 2.6 therefore implies that
the eigenvalues of Wτ (ˆ̀[ω]) are asymptotically distributed (in a well-defined
sense) along the curve R(ˆ̀[ω]) as τ →∞.

The problem is that in our case τ = 2
√
ω is not independent of ω. So

let us, flying in the face of mathematical rigour, keep the dependence of the
generating function on ω but assume that if ω is very large then convolution
over (0, 2

√
ω) may be replaced by convolution over (0,∞). This amounts to

the replacement

(4.5) σ(W2
√

ω(ˆ̀[ω])) ≈ σ(W (ˆ̀[ω])) = R(ˆ̀[ω])

and thus to saying that σ(Fω) ≈ (1/
√
ω)R(ˆ̀[ω]): cf. Figure 5. However, we

emphasize once again that we cannot muster any rigorous argument that
would justify the replacement (4.5).

Turning to Toeplitz matrices. The following approach seems to be
equally unsuccessful theoretically but provides at least a better chance for
tackling the problem numerically. Namely, we fix ω and discretize Fω at
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Figure 5. The spirals (1/
√
ω)R(ˆ̀[ω]) for ω = 100 and ω = 200.

2N + 1 equidistant points, whereby Fωf = λf is approximated by the alge-
braic eigenvalue problem

B[N ]f [N ] = λ[N ]f [N ],

where
B[N ] := (v[N ]

j−k)
N
j,k=−N with v[N ]

n :=
1
N

eiωn2/N2
.

Thus, Toeplitz matrices enter the scene.1 Given a function v in L1 over the
unit circle T with Fourier coefficients

vn :=
1
2π

∫ 2π

0
v(eiθ)e−inθ dθ, n ∈ Z,

let T (v) and TN (v) denote the infinite Toeplitz matrix (vj−k)∞j,k=0 and the
(2N + 1)× (2N + 1) Toeplitz matrix (vj−k)N

j,k=−N , respectively. Note that
T (v) induces a bounded operator on `2(Z+) if and only if v ∈ L∞(T). We
may now write

(4.6) B[N ] = TN (v[N ])

where

(4.7) v[N ](eiθ) :=
2N∑

n=−2N

v[N ]
n einθ =

1
N

2N∑
n=−2N

eiωn2/N2
einθ.

Clearly, (4.6) is just the discrete analogue of (4.2) while (4.7) corresponds
to (4.1). This time we don’t have a perfect counterpart of (4.4), that is,

1Better quality of approximation follows once we half each B
[N ]
±N,k, a procedure that

corresponds to discretizing the integral with the compound trapezoidal rule. However,
once we do so, the Toeplitz structure is lost.
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the equality σ(Fω) = σ(TN (v[N ])). However, since Fω is compact, standard
approximation arguments reveal that

(4.8) σ(TN (v[N ])) → σ(Fω) in the Hausdorff metric as N →∞.

This might be a reasonable basis for approximating σ(Fω) numerically.
(Note that Figure 1 was produced in just this manner, by computing the
eigenvalues of TN (v[N ]) for really large N . This brute force approach to
eigenvalue approximation, which is justified by the compactness of the Fox–
Li operator, can be much improved by using the methodology of [11].) But as
both the order and the generating function of the Toeplitz matrices TN (v[N ])
vary with N , a theoretical prediction of the limit of σ(TN (v[N ])) is difficult.

The function v[N ](eiθ) is again an analytic and even function of θ ∈ [−π, π]
and hence σ(T (v[N ])) = v[N ](T), that is, we may have recourse to the discrete
version of Theorem 2.6. The analogue of (4.5) is the replacement

(4.9) σ(TN (v[N ])) ≈ σ(T (v[N ])) = v[N ](T)

and thus the approximation σ(Fω) ≈ v[N ](T), but as in the case of Wiener–
Hopf operators, we do not know any rigorous justification for (4.9).

Figure 6. The spirals v[N ](T) for N = 500, ω = 100 and
ω = 200.

Figure 6 displays the spirals v[N ](T) for two different values of ω. Note
the uncanny similarity of Figures 5 and 6. This is striking enough to call for
an explanation. Commencing from (4.7) with θ =

√
ω ξ/N , we approximate

v[N ](eiθ) =
1
N

2N∑
n=−2N

eiωn2/N2
ei
√

ω ξn/N =
∫ 2

−2
eiωx2

ei
√

ω ξx dx+O(1/N)

=
1√
ω

∫ 2
√

ω

−2
√

ω
eit2eiξt dt+O(1/N) =

1√
ω

ˆ̀[ω](ξ) +O(1/N),
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and this explains the similarity of Figures 5 and 6. Insofar as the Fox–
Li spectrum is concerned, comparison with Figure 1 shows that these two
figures are equally wrong and that, consequently, the replacements (4.5)
and (4.9) indeed lead us astray.

Incidentally, the integral in (4.3) can be computed explicitly: after some
elementary algebra we have

ˆ̀[ω](ξ) =
π

1
2 e−

1
4
iξ2

2(−iω)
1
2

[
erf
(
2(−iω)

1
2 + 1

2(−i)
1
2 ξ
)

+ erf
(
2(−iω)

1
2 − 1

2(−i)
1
2 ξ
)]
.

The asymptotic estimate

erfz = 1− e−z2
/(π

1
2 z) +O(z−3),

which is valid for | arg z| < 3
4π [1, p. 298], easily shows that

ˆ̀[ω](ξ) ≈ (iπ)
1
2 e−

1
4
iξ2

ω
1
2

− ie4iω

ω
1
2

 e−2iω
1
2 ξ

4ω
1
2 − ξ

+
e2iω

1
2 ξ

4ω
1
2 + ξ

+O(ω−2)

for 4
√
ω > |ξ| and

ˆ̀[ω](ξ) ≈ ie4iω

ω
1
2

 e−2iω
1
2 ξ

ξ − 4ω
1
2

− e2iω
1
2 ξ

ξ + 4ω
1
2

+O(ξ−2)

for |ξ| > 4
√
ω. This explains the two regimes observed in the spiral in

Figures 5 and 6: an extended rotation with roughly equal amplitude as long
as |ξ| < 4ω

1
2 , followed by attenuation.

Figure 7. The real part and the absolute value, respectively,
of the spiral (1/

√
ω)R(ˆ̀[ω]) from Figure 4 for ω = 100.

In Figure 7 we display the real part and the absolute value, respectively,
of the spiral (1/

√
ω)R(ˆ̀[ω]) for ω = 100 and ξ ≥ 0. Note that the maximum
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of the absolute value is attained at 4
√
ω = 40 and it neatly separates the

two regimes which we have just described.

Is theta-three the power broker behind the scene? Another interest-
ing observation, so far without any obvious implications for the spectrum
of the Fox–Li operator, is the close connection of the function v[N ] with the
Jacobi theta function θ3. Recalling the definition of v[N ], we have

v[N ](e2iα) =
1
N

[
1 + 2

2N∑
k=1

qk2

N cos(2αk)

]
with qN = eiω/N2

.

Compare this with the standard definition (for which, see, e.g., p. 314 of
[23]):

θ3(α, q) := 1 + 2
∞∑

k=1

qk2
cos(2αk).

Figure 8. Attenuated theta spirals, superimposed on the
spectra, for ω = 100 and ω = 200.

The snag is that absolute convergence of the series requires |q| < 1, while
|qN | = 1. What makes v[N ] stay nice when N →∞ is the normalizing factor
1/N .

Yet, there appears to be a connection between the theta function and
σ(Fω), and this is confirmed by our numerical experimentation. Thus, we
consider sequences q = {qN,ω}∞N=1such that |qN,ω| < 1 for all N and

lim
N→∞

qN,ω

qN
= lim

N→∞

qN,ω

eiω/N2 = 1,

and examine the quotient

θ3(α, qN,ω)
N

for N � 1, −π
2
≤ α ≤ π

2
.
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(It is enough, by symmetry, to restrict α to [0, π/2].) Everything now de-
pends on the specific choice of the sequence q: in our experience, we need
to attenuate |qN | by exactly the right amount to obtain a good fit with the
Fox–Li spiral. After a large number of trials, we have used

qN,ω = 1− ω1/2

21/2N2
,

and this results in Figure 8, where we have superimposed the theta function
curve on the eigenvalues of Fω for ω = 100 and ω = 200. Although the
match is far from perfect, in particular in the intermediate regime along the
spiral, and we can provide neither rigorous proof nor intuitive explanation,
there is enough in the figure to indicate that, at the very last, we might
be on the right track in seeking the explicit form for the spectral spiral of
σ(Fω).

Acknowledgements. We thank Alexander V. Sobolev for pointing out
some useful references to us and are greatly indebted to Harold Widom for
valuable comments.
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