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On strongly summable ultrafilters

Peter Krautzberger

Abstract. We present some new results on strongly summable ultra-
filters. As the main result, we extend a theorem by N. Hindman and
D. Strauss on writing strongly summable ultrafilters as sums.
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Introduction

The equivalent notions of strongly summable and union ultrafilters have
been important examples of idempotent ultrafilters ever since they were first
conceived in [Hin72], [Bla87] respectively. Their unique properties have been
applied in set theory, algebra in the Stone–Čech compactification and set
theoretic topology. For example, strongly summable ultrafilters were, in
a manner of speaking, the first idempotent ultrafilters known, cf. [Hin72]
and [HS98, notes to Chapter 5]; they were the first strongly right maximal
idempotents known and they are the only known class of idempotents with
a maximal group isomorphic to Z. Their existence is independent of ZFC,
since it implies the existence of (rapid) P -points, cf. [BH87].1

The first part of this paper will focus on union ultrafilters for which
we prove a new property; in the second part, this property is applied to
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strengthen a theorem on writing strongly summable ultrafilters as sums due
to N. Hindman and D. Strauss [HS95], [HS98, Chapter 12].

The presentation of the proofs is inspired by [Ler83] and [Lam95] splitting
the proofs into different levels, at times adding [[in the elevator]] comments
in between. Online discussion is possible through the author’s website at
http://peter.krautzberger.info/papers.

1. Preliminaries

Let us begin by giving a nonexhaustive selection of standard terminology
in which we follow N. Hindman and D. Strauss [HS98]; for standard set
theoretic notation we refer to T. Jech [Jec03], e.g., natural numbers are
considered as ordinals, i.e., n = {0, . . . , n−1}. We work in ZFC throughout.
The main objects of this paper are (ultra)filters on an infinite set S, i.e.,
(maximal) proper subsets of the power set P(S) closed under taking finite
intersections and supersets. S carries the discrete topology in which case
the set of ultrafilters is βS, its Stone–Čech compactification. The Stone
topology on βS is generated by basic clopen sets induced by subsets A ⊆ S
in the form A := {p ∈ βS | A ∈ p}. Filters are usually denoted by upper
case Roman letters, mostly F,G,H, ultrafilters by lower case Roman letters,
mostly p, q, r, u.

The set S is always assumed to be the domain of a (partial) semigroup
(S, ·), i.e., the (partial) operation · fulfills the associativity law s · (t · v) =
(s · t) · v (in the sense that if one side is defined, then so is the other and
they are equal). For a partial semigroup S and s ∈ S the set of elements
compatible with s is denoted by σ(s) := {t ∈ S | s · t is defined}. A partial
semigroup is also assumed to be adequate, i.e., {σ(s) | s ∈ S} has the
finite intersection property. We denote the generated filter by σ(S) and the
corresponding closed subset of βS by δS. For partial semigroups S, T a map
ϕ : S → T is a partial semigroup homomorphism if ϕ[σ(s)] ⊆ σ(ϕ(s)) and

(∀s ∈ S)(∀s′ ∈ σ(s)) ϕ(s · s′) = ϕ(s) · ϕ(s′).

To simplify notation in a partial semigroup, s · t is always meant to imply
t ∈ σ(s). For s ∈ S, the restricted multiplication to s from the left (right)
is denoted by λs (ρs).

It is easy to see that the operation of a partial semigroup can always
be extended to a full semigroup operation by adjoining a (multiplicative)
zero which takes the value of all undefined products. One key advantage
of partial semigroups is that partial subsemigroups are usually much more
diverse than subsemigroups. Nevertheless, it is convenient to think about
most theoretical aspects (such as extension to βS) with a full operation in
mind.

The semigroups considered in this paper are (N,+) (with N := ω \ {0}),
(Z,+) and the most important adequate partial semigroup F.

http://peter.krautzberger.info/papers
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Definition 1. On F := {s ⊆ ω | ∅ 6= s finite} we define a partial semigroup
structure by

s · t := s ∪ t if and only if s ∩ t = ∅.

The theory of the Stone–Čech compactification allows for the (somewhat
unique) extension of any operation on S to its compactification, in particular
a semigroup operation.

Definition 2. For a semigroup (S, ·), s ∈ S and A ⊆ S, p, q ∈ βS we define
the following.

• s−1A := {t ∈ S | st ∈ A}.
• A−q := {s ∈ S | s−1A ∈ q}.
• p · q := {A ⊆ S | A−q ∈ p}. Equivalently, p · q is generated by sets⋃

v∈V v ·Wv for V ∈ p and each Wv ∈ q.
• A? := A−q ∩ A. This notation will only be used when there is no

confusion regarding the chosen ultrafilter.

As is well known, this multiplication on βS is well defined and extends
the operation on S. It is associative and right topological, i.e., the operation
with fixed right hand side is continuous. For these and all other theoretical
background we refer to [HS98].

In the case of a partial semigroup, ultrafilters in δS in a way multiply as
if the partial operation was total. With the arguments from the following
proposition it is a simple but useful exercise to check that if (S, ·) is partial
the above definitions still work just as well in the sense that

s−1A := {t ∈ σ(s) | st ∈ A}
and p · q is only defined if it is an ultrafilter.

Proposition 1. Let S be a partial subsemigroup of a semigroup T . Then
δS is a subsemigroup of βT .

Proof. (1) Simply observe that for a ∈ S⋃
b∈σ(a)

b · (σ(ab) ∩ σ(b)) ⊆ σ(a).

(2) Therefore σ(S) ⊆ p · q whenever p, q ∈ δS. �

It is easy to similarly check that partial semigroup homomorphisms extend
to full semigroup homomorphisms on δS.

Since A−q is not an established notation, the following useful observa-
tions present a good opportunity to test it. The proof of the following is
straightforward.

Proposition 2. Let p, q ∈ βS, A ⊆ S and s, t ∈ S.
• t−1s−1A = (st)−1A.
• s−1A−q = (s−1A)−q.
• (A ∩B)−q = A−q ∩B−q.
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• (s−1A)? = s−1A? (with respect to the same ultrafilter).
• (A−q)−p = A−(p·q).

The proverbial big bang for the theory of ultrafilters on semigroups is the
following theorem.

Theorem 1 (Ellis–Numakura Lemma). If (S, ·) is a compact, right topologi-
cal semigroup then there exists an idempotent element in S, i.e., an element
p ∈ S such that p · p = p.

Proof. See, e.g., [HS98, notes to Chapter 2]. �

Therefore the following classical fact is meaningful.

Lemma 1 (Galvin Fixpoint Lemma). For idempotent p ∈ βS, A ∈ p implies
A? ∈ p and (A?)? = A?.

Proof. (A?)? = A? ∩ (A?)−p = A? ∩ (A ∩ A−p)−p = A? ∩ A−p ∩ A−p·p =
A? ∩A−p = A?. �

The following definitions are central in what follows. Even though we
mostly work in N and F we formulate them for a general setting.

Definition 3. Let x = (xn)n<N (with N ≤ ω) be a sequence in a partial
semigroup (S, ·) and let K ≤ ω.

• The set of finite products (the FP-set) is defined as

FP(x) :=
{∏

i∈v

xi | v ∈ F
}

,

where products are in increasing order of the indices. In this case,
all products are assumed to be defined.2

• x has unique representations if for v, w ∈ F,∏
i∈v

xi =
∏
j∈w

xj ⇒ v = w.

• If x has unique representations and z ∈ FP(x) we can define the
x-support of z, x-supp(z), by the equation z =

∏
j∈x-supp(z) xj . We

can then also define x-min := min ◦x-supp, x-max := max ◦x-supp.
• A sequence y = (yj)j<K is called a condensation of x, in short y v x,

if
FP(y) ⊆ FP(x).

In particular, {yi | i < K} ⊆ FP(x). For convenience,

x-supp(y) := x-supp[{yi | i ∈ ω}].
• Define FPk(x) := FP(x′) where x′n = xn+k for all n.

2Note that we will mostly deal with commutative semigroups so the order of indices is
not too important in what follows.
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• FP-sets have a natural partial subsemigroup structure induced by
F. Here (

∏
i∈s xi) · (

∏
i∈t xi) is defined as in S but only if max(s) <

min(t). With respect to this restricted operation define

FP∞(x) := δFP(x) =
⋂
k∈ω

FPk(x).

• If the semigroup is written additively, we write FS(x), etc. accord-
ingly (for finite sums); for F we write FU(x), etc. (for finite unions).

Instead of saying that a sequence has certain properties it is often conve-
nient to say that the generated FP-set does.

The following classical result is the starting point for most applications
of algebra in the Stone–Čech compactification. We formulate it for partial
semigroups.

Theorem 2 (Galvin–Glazer Theorem). Let (S, ·) be a partial semigroup,
p ∈ δS idempotent and A ∈ p. Then there exists x = (xi)i∈ω in A such that

FP(x) ⊆ A.

Proof. This can be proved essentially just like the the original theorem,
cf. [HS98, Theorem 5.8], using the fact that σ(S) ⊆ p to guarantee all
products are defined. �

An immediate corollary is, of course, the following classical theorem, orig-
inally proved combinatorially for N in [Hin74].

Theorem 3 (Hindman’s Theorem). Let S = A0 ∪ A1. Then there exists
i ∈ {0, 1} and a sequence x such that FP(x) ⊆ Ai.

2. Union and strongly summable ultrafilters

The first part of this paper deals primarily with ultrafilters on the partial
semigroup F. The following three kinds of ultrafilters were first described in
[Bla87].

Definition 4 (Ordered, stable, union ultrafilters). An ultrafilter u on F is
called:

• union if it has a base of FU-sets (from disjoint sequences);
• ordered union if it has a base of FU-sets from ordered sequences, i.e.,

sequences s such that max(si) < min(si+1) (for all i ∈ ω);
• stable union if it is union and whenever

F2
< := {(v, w) ∈ F2 | max(v) < min(w)}

is partitioned into finitely many pieces, there exists homogeneous
A ∈ u, i.e., A2

< is included in one part.
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The original definition of stability is similar to that of a P-point (or δ-
stable ultrafilter) which we discuss later. For their equivalence see [Bla87,
Theorem 4.2] and [Kra09, Theorem 4.13]

It is clear yet important to note that FU-sets always have unique repre-
sentations and that all products are defined. At this point it might be useful
to check the following. Union ultrafilters are elements of δF and they are
idempotent since for each included FU-set they contain all FUk-sets. It is
also worth while to check that if our operation on F was not restricted to
disjoint but ordered unions then σ(F) and hence δF would remain the same.

The following notion was introduced in [BH87] to help differentiate union
ultrafilters; it is a special case of isomorphism, but arguably the natural
notion for union ultrafilters.

Definition 5 (Additive isomorphism). Given partial semigroups S, T , call
two ultrafilters p ∈ βS, q ∈ βT additively isomorphic if there exist FP(x) ∈
p, FP(y) ∈ q both with unique products such that the following map maps
p to q

ϕ : FP(x) → FP(y),
∏
i∈s

xi 7→
∏
i∈s

yi.

We call such a map a natural (partial semigroup) isomorphism. It extends
to a homomorphism (in fact, isomorphism) between FP∞(x) and FP∞(y).

In the semigroup (N,+), our interest lies in strongly summable ultrafilters.

Definition 6 (Strongly summable ultrafilters). An ultrafilter p on N is
called (strongly) summable if it has a base of FS-sets.

The following properties are well known and necessary to switch be-
tween summable and union ultrafilters; they are the basic tools for handling
strongly summable ultrafilters, cf. [BH87], [HS98, Chapter 12].

Proposition 3 (and Definition). Every strongly summable ultrafilter has a
base of FS(x)-sets with the property

(∀n < ω) xn > 4 ·
∑
i<n

xi.

In this case x is said to have sufficient growth which implies the following:
(1)

∑
i∈s xi =

∑
i∈t xi iff s = t (unique represenations).

(2)
∑

i∈s xi +
∑

i∈t xi ∈ FS(x) iff s ∩ t = ∅ (unique sums).
In particular, condensations of x have pairwise disjoint x-support

and the map
∑

i∈s xi 7→ s maps the strongly summable to a union
ultrafilter.

(3) To have sufficient growth is hereditary for condensations, i.e., if x
has sufficient growth, so does y v x (assuming that y is increasing).

Proof. This follows (in order) from [HS98, Lemma 12.20, Lemma 12.34,
Lemma 12.32, Theorem 12.36]. The last observation follows easily from the
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second bullet and the growth of x since the growth of x implies that to be
increasing means to be x-max-increasing. �

Maybe the most important aspect to remember is this: whenever we
have a condensation of a sequence with sufficient growth, its elements have
pairwise disjoint x-support (by point (2)) and we can apply the much less
messy intuition about FU-sets to understand the structure of the FS-set. In
particular, whenever a sequence x in N has sufficient growth we can apply the
terminology of x-supp, x-max and x-min as introduced in the preliminaries.

Although it is not relevant in our setting note that on the one hand
growth by a factor 2 (instead of 4) already implies the above properties
(with identical proofs as in the references). On the other hand the proof of
[HS98, Lemma 12.20] can easily be enhanced to show that for any k ∈ N
every strongly summable ultrafilter will have a base with growth factor k
which leads to other interesting properties such as [HS98, Lemma 12.40].

3. Strongly summable ultrafilters are special

Recall that we aim to extend a theorem by N. Hindman and D. Strauss
on writing strongly summable ultrafilters as sums originally published in
[HS95], cf. [HS98, Theorem 12.45]. The original result was shown for a
certain class of strongly summable ultrafilters, the so-called special strongly
summable ultrafilters. Our main result will extend this to a wider class of
strongly summable ultrafilters. The proof will require one new observation,
which we prove in this section, as well as a series of modifications of the
original proof as presented in, e.g., [HS98, Chapter 12].

To investigate special strongly summable ultrafilters as described in [HS95]
and [HS98, 12.24], it is useful to switch to union ultrafilters. However, the
notion introduced below is strictly weaker than the original one used by
N. Hindman and D. Strauss.

Definition 7. Let x,y be sequences in N.
• A strongly summable ultrafilter p ∈ βN is special if there exists

FS(x) ∈ p with sufficient growth such that

(∀L ∈ [ω]ω)(∃y v x) FS(y) ∈ p and |L \ x-supp(y)| = ω.

Given the sequence x we say that p is special with respect to x.
• A union ultrafilter u ∈ βF is special if

(∀L ∈ [ω]ω)(∃X ∈ u)
∣∣∣L \

⋃
X
∣∣∣ = ω.

In [HS95] and [HS98, Chapter 12], the notion of “special” is in this ter-
minology “special with respect to (n!)n∈ω and additionally divisible”, i.e.,
there is a base of sets FS(x) with xn|xn+1 for all n ∈ ω. However, [HS95,
Theorem 5.8] gives an example of a strongly summable ultrafilter that is not
additively isomorphic to a divisible ultrafilter so our notion is consistently
weaker.
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It is not surprising yet very useful that to be the witness for specialness
is hereditary for condensations.

Proposition 4. If a strongly summable ultrafilter p is special with respect
to x and y v x with FS(y) ∈ p, then p is special with respect to y.

Summary of argument. The uniqueness of x-support allows
us to link the elements of the y-support to the x-support.
Hence, for a common condensation, missing elements in the
x-support will imply missing elements in the y-support.

Proof. (1) Take any L ∈ [ω]ω.
(2) Then define L′ := {i ∈ ω | (∃k ∈ L) i ∈ x-supp(yk)}. L′ is obviously

infinite.
[[ Note that the k’s are unique thus linking the two kinds of
support. ]]

(3) Since p is special there exists a condensation z v x with FS(z) ∈ p
and

|L′ \ x-supp(z)| = ω.

(4) For a common condensation v v y, z with FS(v) ∈ p, naturally

|L′ \ x-supp(v)| = ω.

(5) |L \ y-supp(v)| = ω.
(a) If i ∈ L′\x-supp(v), then there exists (by definition of L′) some

ki ∈ L with i ∈ x-supp(yki
).

(b) But then no vj can have ki ∈ y-supp(vj) (or else xi ∈ x-supp(vj)
which is impossible due to the previous proposition).

(c) In other words, ki ∈ L \ y-supp(v).
(d) Since |L′ \ x-supp(v)| = ω and the map i 7→ ki is finite-to-one,

|L \ y-supp(v)| = ω. �

The second observation is that the notions of special summable and special
union ultrafilters are in fact equivalent.

Proposition 5. Let p be a strongly summable ultrafilter additively isomor-
phic to a union ultrafilter u. Then p is special if and only if u is.

Proof. (1) Assume that p and u are as above and additively isomorphic
via

ϕ : FS(x) → FU(s),
∑
i∈F

xi 7→ F,

for suitable sequences x, s in N and F respectively.
(2) By switching to a condensation we may assume that x has sufficient

growth.
(3) If u is special, then ϕ clearly guarantees that x is a witness for p

being special.
(4) If p is special, we can assume that x is a witness of specialness thanks

to the preceding proposition.
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(5) Then again ϕ will guarantee that u is special. �

The key fact is that all union ultrafilters are special.

Theorem 4 (Union ultrafilters are special). Every union ultrafilter is spe-
cial. Accordingly, all strongly summable ultrafilters are special.

Summary of argument. Assuming that some set covers all of
L, a simple parity argument on pairs of the form (i, i + 1) in
the support will yield a condensation that misses a lot of L.

Proof. (1) Let L ∈ [ω]ω.
[[ Remember that

S
FU(s) =

S
{si | i ∈ ω}. For the mental

picture of the arguments it is helpful (though not necessary) to
enumerate sequences according to the maximum. ]]

(2) We may assume that {s ∈ F | s ∩ L 6= ∅} ∈ u.
(a) Otherwise its complement, call it X, has L \

⋃
X = L infinite,

as desired.
(3) Since u is a union ultrafilter, we find FU(s) ∈ u included in this set.
(4) If L \

⋃
FU(s) is infinite, we are done.

(5) So assume it is finite; without loss it is empty.
[[ In the following sense we can now think as if L = ω. If t v s
and i 6∈ s-supp(t), then si ∩ L 6= ∅ but si ∩

S
FU(t) = ∅. So

dropping elements in the s-support means dropping elements
in L (and vice versa). We can concentrate on s-supp(s) = ω. ]]

(6) Consider π : FU(s) → ω, t 7→ {i : si, si+1 ⊆ t}. We’re interested in
whether π(t) is even or odd.

(7) Since u is a union ultrafilter, we can find FU(t) ∈ u such that the
elements of π[FU(t)] all have the same parity.

(8) But the elements of π[FU(t)] can only be of even size.
(a) For any x ∈ FU(t), there exists i, j ∈ ω such that

s-max(x) < i < s-min(tj).

(b) In that case π(x ∪ tj) = π(x) + π(tj) — which is even since
π(x) = π(tj).

(9) Then L \
⋃

FU(t) is infinite.
(a) Assume towards a contradiction that it is finite.

[[ We will study the gaps in the s-support of elements in
FU(t) since they correspond to elements in L \ FU(t). ]]

(b) The set s-supp(t) must be cofinite since s covers all of L and
every si ∩ L 6= ∅.

(c) In other words, there exists b ∈ ω such that (∀i ≥ b)(∃ji)si ⊆ tji .
[[ Consider for a moment tjb , the tj containing sb. Since t
covers all later si, some tj contains s-max(tjb)+1. There-
fore their union “gains” a pair of adjacent indices, i.e.,
π(tjb ∪ tj) ≥ π(tjb) + π(tj) + 1. Since π(tjb ∪ tj) is even
it must “gain” even more. If t was ordered, this would
be impossible. For the unordered case, we need to argue
more subtly. ]]
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(d) We define x :=
⋃

i≤b tji ∈ FU(t), adding to tjb
everything “be-

low” it.
[[ x is our initial piece. It contains the s-supp(t) up to
b. This ensures that any tj disjoint from x must have
s-support beyond b. ]]

(e) Next we define b1 := s-max(x), i.e., the index of the last si ⊆ x.
(f) Of course, b1 ≥ b by choice of tjb

⊆ x.
[[ We will derive the contradiction from the fact that we
can fill the entire interval [b, b1 + 1] by choice of b. ]]

(g) Then we define y := tjb1+1
, i.e., the tj that contains the next

element of the s-support.
(h) Finally, let z := (

⋃
{tji : i < b1}) \ (x ∪ y).

[[ y follows on where x ends, z fills all the gaps in the
s-support of x ∪ y between b and b1 (and, of course, the
support of z lies only beyond b). We will now analyze
how gaps in s-supp(x) are actually filled. ]]

(i) On the one hand, we can compare π(x) and π(x ∪ y).
(j) By definition,

π(x ∪ y) = π(x)∪̇π(y)∪̇{i | si ⊆ x, si+1 ⊆ y or vice versa}.

Let us call elements in the third set emerged indices.
(k) We know that π(x∪ y) contains one emerged index, namely b1.
(l) But π(x ∪ y) is even and x has no support past b1.

(m) Therefore π(x∪y) must have an odd number of emerged indices
below b1.

(n) In particular, y has s-support below b1 (sitting inside the gaps
of the s-support of x).

(o) There are four ways how those i ∈ s-supp(y) with i < b1 can be
found within the gaps of s-supp(x): only at the beginning of a
gap, only at the end of a gap, both at the beginning and end of
a gap and finally at neither beginning nor end of a gap.

(p) The latter two cases do not change the parity of π(x ∪ y) since
they account for two and zero emerged indices respectively.

(q) So to make up for b1 there must be an odd number of cases
where s-supp(y) fills only the beginning or only the end of a
gap in s-supp(x).

(r) On the other hand, we can similarly compare π(x) and π(x∪z).
(s) We know that s-supp(x∪y∪z) contains the entire interval [b, b1].
(t) In particular, s-supp(z) fills the beginning or end of any gap of

s-supp(x) that was not filled by s-supp(y).
(u) By the above analysis of π(x ∪ y) and π(x) this gives an odd

number of emerged indices in π(x ∪ z) below b1.
(v) But then π(x∪z) is odd since z has no support below b, x has no

support above b1 and neither contains b1 + 1 – a contradiction.
�
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I am very grateful for Andreas Blass’s help in closing a gap in the final
step of the above proof.

4. Disjoint support and trivial sums

There is need for another notion of support before formulating the main
result. Every divisible sequence a = (an)n∈ω, i.e., with an|an+1 for n ∈ ω,
with a0 = 1 induces a unique representation of the natural numbers; the
easiest case to keep in mind would be an = 2n, i.e., the binary representation.
We will work with an arbitrary divisible sequence but it might be best to
always think of the binary case.

Definition 8. For the rest of this section we fix some divisible sequence
a = (an)n∈ω, i.e., with an|an+1 for n ∈ ω, with a0 = 1.

• We consider
∏

i∈ω
ai+1

ai
=
∏

i∈ω{0, . . . , ai+1

ai
− 1} as a compact, Haus-

dorff space (with the product topology, each coordinate discrete).
• We can then define α : N →

∏
i∈ω

ai+1

ai
by the (unique) relation

n =
∑
i∈ω

α(n)(i) · ai.

In other words, α(n) yields the unique representation of n with re-
spect to a. Note that α(n) has only finitely many nonzero entries
for any n but for p ∈ βN its continuation α(p) might not.

• The α-support of n, α-supp(n), is the (finite) set of indices i with
α(n)(i) 6= 0; similarly we define α-max(n), α-min to be its maximum
and minimum respectively.

• A sequence x = (xn)n∈ω has disjoint α-support if its elements do;
allowing confusion, FS(x) is said to have disjoint support.

• A strongly summable ultrafilter has disjoint α-support if it contains
an FS-set with disjoint α-support and sufficient growth.

• An idempotent ultrafilter p can be written as a sum only trivially if

(∀q, r ∈ βN) q + r = p ⇒ q, r ∈ (Z + p).

• For (2n)n∈ω, the binary support is abbreviated bsupp; its maximum
and minimum by bmax and bmin respectively.

For the “trivial sums” property we should note that it is an easy exercise
to show that βN \ N is a left ideal of (βZ,+); in particular Z + p ⊆ βN.

So far we have always been interested in the finite sums of a sequence. It
might therefore cause confusion as to why we chose the α-support when we
have so far only studied the a-support (which only coincides on FS(a)). Why
not just assume that FS(a) is in our strongly summable ultrafilter? From a
certain point of view, this is what happens in the original result by Hindman
and Strauss, cf. [HS98, 12.24] and in [HS95]. The advantage of our notion
of disjoint α-support lies precisely in dropping this requirement — we won’t
need (a suitable condensation of) FS(a) in the strongly summable ultrafilter.
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In this spirit, there hopefully won’t be a lot of confusion between α-support
and a-support. Nevertheless we will see that the reasoning with α-support
is quite similar when considering sequences with disjoint α-support.

Since we will be concerned with
⋂

n∈N anN it is worthwhile to point out
that by divisibility, anN ⊇ an+1N. Therefore an ultrafilter containing in-
finitely many such sets already contains all of them. Also, it is well known
that any idempotent ultrafilter contains the set of multiples for any number.
The following will be the main result.

Theorem 5 (Strongly summable ultrafilters as sums). Every strongly sum-
mable ultrafilter with disjoint α-support can be written as a sum only triv-
ially.

The proof requires a series of technical propositions, but the following
convenient corollary is immediate.

Corollary 1. Every strongly summable ultrafilter is additively isomorphic
to a strongly summable ultrafilter that can only be written as a sum trivially.

Proof. (1) For any strongly summable ultrafilter p, pick FS(x) ∈ p with
sufficient growth.

(2) Then, e.g., the natural additive isomorphism ϕ between FS(x) and
FS((2n)n∈ω) maps p to a strongly summable ultrafilter with disjoint
binary support.
(a) Let p′ be the image of p; clearly, p′ is a strongly summable

ultrafilter.
(b) Fix some FS(y) ∈ p′ with sufficient growth.
(c) Then FS(y) = ϕ[FS(z)] = FS(ϕ[z]) for some z v x.
(d) The growth of x guarantees that each zi is a disjoint union of

elements from x.
(e) Hence each yi is a disjoint union of ϕ[x] = (2n)n∈ω.
(f) In other words, y has disjoint binary support, as desired. �

In [HS95] it is shown that strongly summable ultrafilters that are divisible
and special with respect to (n!)n∈ω can only be written as a sum trivially;
however, by [HS95, Theorem 5.8], there consistently exist strongly sum-
mable ultrafilters that are not additively isomorphic to a divisible strongly
summable ultrafilter.3 In so far, this is an improvement.

To begin the series of technical observations, note one additional detail
concerning the herditary nature of specialness.

Lemma 2. A strongly summable ultrafilter p with disjoint α-support is also
α-special in the sense that there exists FS(x) ∈ p

(∀L ∈ [ω]ω)(∃y v x) FS(y) ∈ p and |L \ α-supp(y)| = ω.

3cf. the comment after Definition 7. We could summarize our approach as replacing
(n!)n∈ω with a and divisibility with disjoint α-support.
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Summary of argument. We argue as for the heredity of spe-
cialness using a common condensation of witnesses for dis-
joint α-support and specialness.

Proof. (1) Pick x as a witness for the disjoint α-support of a strongly
summable ultrafilter p.

(2) We may assume that x also witnesses that p is special.
(a) By Proposition 4, to be the witness for specialness is hereditary.
(b) By Proposition 3, any condensation of x has pairwise disjoint

support x-support, hence pairwise disjoint α-support; in other
words, to have disjoint α-support is hereditary.

(c) Therefore a common condensation of the respective witnesses
will have both properties.

(3) Given L ∈ [ω]ω; if L \ α-supp(x) is infinite, we are done.
(4) If not we can consider the (infinite) set

L′ := {n | (∃i ∈ L) i ∈ α-supp(xn)}.

(5) By specialness there exists y v x with FS(y) ∈ p and L′ \x-supp(y)
infinite.

(6) But this implies L \ α-supp(y) is infinite by choice of L′ and the
disjoint x-supp of members of y. �

The following well known theorem proves, in a manner of speaking, half
the theorem.

Theorem 6. Every strongly summable ultrafilter p is a strongly right max-
imal idempotent, i.e., the equation q + p = p has the unique solution q = p.

Proof. This is, e.g., [HS98, Theorem 12.39]. �

The next result is also well known and easily checked.

Proposition 6. For n ∈ N, q, r ∈ βN the following holds:
• If q + r ∈ nN, then either both q, r ∈ nN or neither is.
• Similarly we can replace nN by

⋂
n∈N anN and Z +

⋂
n∈N anN.

Proof. This is, e.g., [HS95, Lemma 2.6]. �

As mentioned earlier, our proof follows the same strategy as the proof in
[HS95] and [HS98, Chapter 12]; the proof for the right summand consists
of two parts. The first part proves that if one of the summands is close to
the strongly summable ultrafilter, i.e., in

⋂
n∈ω anN, it is already equal. The

second part shows that writing a strongly summable ultrafilter with disjoint
support as a sum can only be done with the summands “close enough” to
it.

For the first part, a technical lemma reflects the desired property: un-
der restrictions typical for ultrafilter arguments, elements of an FS-set with
disjoint α-support can be written as sums only trivially.
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Lemma 3 (Trivial sums for FS-sets). Let x = (xn)n∈N be a sequence with
disjoint α-support and enumerated with increasing α-min, a ∈ N and

m := min{i | α-max(a) < α-min(xi)}.

Then for every b ∈ N with α-max(xm) < α-min(b)

a + b ∈ FS(x) ⇒ a, b ∈ FS(x).

Summary of argument. The simple idea is that neither the
sums of the xi nor the sum a + b will have any carrying over
in the α-support. Hence, the x-support of a + b splits into
x-support of a and b.

Proof. (1) Assume x, a and b are given as in the lemma.
(2) Since a + b ∈ FS(x), there exists some finite, nonempty H ⊆ N with

~ a + b =
∑
i∈H

xi.

(3) Define

Ha := {j ∈ H | α-supp(xj) ∩ α-supp(a) 6= ∅}

and Hb similarly.
(4) H = Ha∪̇Hb.

(a) On the one hand α-supp(a)∩α-supp(b) = ∅ by assumptions on
b; also x has disjoint α-support.

(b) So there is no carrying over (in the α-support) on either side of
Equation ~, i.e.,

H = Ha ∪Hb.

(c) On the other hand, if α-supp(xi) ∩ α-supp(a) 6= ∅, then i ≤ m
by choice of m.

(d) This in turn implies α-supp(xi) ∩ α-supp(b) = ∅ by the choice
of b.

(e) In other words, Ha ∩Hb = ∅.
(5) Then

∑
i∈Ha

xi = a and
∑

i∈Hb
xi = b, as desired. �

The next lemma takes the proof nearly all the way, i.e., if the second
summand is “close enough” to the strongly summable ultrafilter, both are
equal to it.

Lemma 4 (Trivial sums for
⋂

n∈ω anN). For any strongly summable ultra-
filter p with disjoint α-support

(∀q ∈ βN)
(
∀r ∈

⋂
n∈ω

anN
)

q + r = p ⇒ q = r = p.
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Summary of argument. The proof is basically a reflection
argument. Arguing indirectly, the addition on βN reflects
to elements in the sets of the ultrafilters in such a way that
nontrivial sums of ultrafilters lead to nontrivial sums of an
FS-set, contradicting Lemma 3.

Proof. (1) By Theorem 6, any strongly summable ultrafilter is strongly
right maximal, so it suffices to show that r = p. Assume to the
contrary that r 6= p.

(2) Pick a witness for p, i.e., x = (xn)n∈N with sufficient growth and
disjoint α-support; without loss FS(x) ∈ p \ r.

(3) Since q + r = p, FS(x)−r ∈ q; so pick a such that −a + FS(x) ∈ r.
(4) Pick m as for Lemma 3, i.e., such that all (xn)n>m have α-max(a) <

α-min(xn) (which is possible since x has disjoint α-support).
(5) Define M := α-max(xm) + 1; note that the multiples of aM have

α-support beyond the support of both xm and a.
(6) Now

(−a + FS(x)) ∩ (N \ FS(x)) ∩ aMN ∈ r.

So pick b from this intersection.
(7) Then a + b ∈ FS(x). But applying Lemma 3 both a, b ∈ FS(x),

contradicting b /∈ FS(x). �

In the final and main lemma, it remains to show that if a strongly sum-
mable ultrafilter is written as a sum, then the summands are already “close
enough”.

Lemma 5 (Nearly trivial sums). For any strongly summable ultrafilter p
with disjoint α support

(∀q, r ∈ βN) q + r = p ⇒ q, r ∈ Z +
⋂
n∈ω

anN.

Summary of argument. We follow the strategy of the proof
of [HS98, Theorem 12.38] The argument is similar to the
previous lemma, i.e., if q /∈ Z +

⋂
n∈ω anN, there will always

be a sum a + b that cannot end up in a certain FS-set. For
this, the image of q under (the continuous extension of) α is
analyzed. Using the fact that strongly summable ultrafilters
are special, it turns out that there cannot be enough carrying
over available to always end up in the FS-set.

Proof. (1) By Proposition 6 it suffices to show that q ∈ Z +
⋂

n∈ω anN.
(2) Define the following subsets of ω.

Q0 :=
{

i ∈ ω | α(q)(i) <
ai+1

ai
− 1
}

Q1 :={i ∈ ω | α(q)(i) > 0}.
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[[ In other words, Q0 counts where the α-support does not have
a maximal entry, Q1 counts where it does not have a minimal
entry, i.e., Q1 is just the support of the function α(q) in the
usual sense. ]]

(3) If either Q0 or Q1 is finite, then q ∈ Z +
⋂

n∈ω anN.
(a) Case 1. Q1 is finite.
(b) Pick k ∈ ω such that α(q)(n) = 0 for n > k.
(c) Then show that z :=

∑
i≤k α(q)(i)ai has

(∀n > k) z + anN ∈ q.

(i) Given n > k define

Uz,n :=
{

s ∈
∏
i∈ω

ai+1

ai
| s�n = α(q)�n = α(z)�n

}
.

(ii) Obviously, Uz,n is an open neighbourhood of α(q), hence
α−1[Uz] ∈ q.

(iii) But it is easily checked that α−1[Uz] = z + anN.
(d) Since a was divisible, q ∈ z +

⋂
n∈ω anN, as desired.

(e) Case 2. Q0 is finite.
(f) Pick k such that α(q)(n) = an+1

an
, i.e., maximal, for n > k.

(g) This time show that z := ak+1 −
∑

i<k α(q)(i)ai has

(∀n > k) − z + anN ∈ q,

and therefore again q ∈ −z +
⋂

n∈ω anN.
(i) Again, given n > k, consider α−1[Uz,n]. This time we

check that α−1[Uz,n] = −z + anN.
(ii) Let w ∈ α−1[Uz,n]. Then for some b ≥ 0

w = b · an+1 +
n∑

i>k

(ai+1

ai
− 1
)
ai +

∑
i≤k

α(q)(i)ai,

since by assumption that Q0 is finite, i.e., all of α(q)(i)
beyond k is maximal.

(iii) But this implies

w + z = b · an+1 +
n∑

i>k

(ai+1

ai
− 1
)
ai + ak+1

= b · an+1 + an+1 = (b + 1)an+1,

as desired. This concludes case 2.
(4) So let us assume to the contrary that q /∈ Z +

⋂
n∈ω anN, i.e., both

Q0, Q1 are infinite.
(5) Since u is strongly summable with disjoint α-support, pick a se-

quence x = (xn)n∈ω with disjoint α-support, sufficient growth and
FS(x) ∈ u.
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(6) By Lemma 2, assume without loss that both Q0 \ α-supp(x) and
Q1 \ α-supp(x) are infinite.

[[ Towards the final contradiction, it is now necessary to choose
a couple of natural numbers; each choice will be followed by a
short comment. ]]

(7) By q + r = p of course FS(x)−r ∈ q; so pick a with −a + FS(x) ∈ r.
[[ a can r-often be translated into FS(x) — which will be too
often. ]]

(8) Next, pick s1 ∈ Q1 \ α-supp(x) and s2 ∈ Q0 \ α-supp(x) with

s2 > s1 > α-max(a)

[[ On the one hand, s1 ensures
P

i≤s2
α(q)(i)ai − a > 0, but

this difference has a nonmaximal entry at α-max since s2 ∈ Q0.
On the other hand, α(q)(s2) is not maximal, α(q)(s1) is not
minimal, but every z ∈ FS(x) has α(z)(s2) = α(z)(s1) = 0. ]]

(9) By q + r = p also (as2+1N)−r ∈ q, so pick b with

b ∈ (as2+1N)−r ∩

(∑
i≤s2

α(q)(i)ai + as2+1N

)
∈ q.

where the latter set is in q since it is Uq�(s2+1),s2+1; cf. step (3).
[[ So b has α(b)(si) = α(q)(si) (for i = 2, 1), i.e., nonmaximal
and nonminimal respectively. In particular, b−a > as1 −a > 0
but α(b− a)(s2) is not maximal. ]]

(10) Finally, choose y ∈ (−b + as2+1N) ∩ (−a + FS(x)) ∈ r.
[[ Note that since s2 /∈ α-supp(x) and a + y ∈ FS(x) we have
α(a + y)(s2) = 0. But also y + b ∈ as2+1N. ]]

(11) Recapitulating the choices so far:
(a) α(q)(s1) > 0, α(q)(s2) <

as2+1

as2
− 1 (since s1 ∈ Q1, s2 ∈ Q0).

(b) α-max((
∑

i≤s2
α(q)(i)ai)− a) > 0 (since α-max(a) < s1 ∈ Q1).

(c) α-max((
∑

i≤s2
α(q)(i)ai)−a) is not maximal (since α(q)(s2) not

maximal and s2 > α-max(a)).
(d) α-min(b + y) > s2 (since b + y ∈ as2+1N).
(e) s2 /∈ α-supp(a + y) (since a + y ∈ FS(x)).

[[ The lurking contradiction lies in the fact that since y trans-
lates such a small a into FS(x), it cannot simultaneously trans-
late elements like b, i.e., elements that agree with α(q) up to
s2, to be divisible by as2+1.

This is due to the (nonmaximal) “hole” of both (y + a) and
(b − a) at s2 which simply does not allow for enough carrying
over in the sum (y + b) to get a multiple of 2s2+1. ]]

(12) First calculate∑
i>s2

α(b + y)(i)ai = (a + y) + (b− a)

=
∑
i∈ω

α(a + y)(i)ai +
∑
i∈ω

α(b− a)(i)ai.
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Recall that b−a > 0, so not all α(b−a)(i) are zero, but α(b−a)(s2)
is not maximal (as noted before).

(13) Rearranging this equation yields∑
i>s2

α(b + y)(i)ai −
∑
i>s2

α(a + y)(i)ai −
∑
i>s2

α(b− a)(i)ai

=
∑
i≤s2

α(a + y)(i)ai +
∑
i≤s2

α(b− a)(i)ai

=
∑
i<s2

α(a + y)(i)ai +
∑
i≤s2

α(b− a)(i)ai,

since s2 /∈ α-supp(a + y).
(14) Clearly, as2+1 divides the first line, so the last line must add up to

(a multiple of) as2+1.
[[ However, there is not enough carrying over. ]]

(15) But

0 <
∑
i<s2

α(a + y)(i)ai +
∑
i≤s2

α(b− a)(i)ai < as2 +
(as2+1

as2

− 1
)
as2 = as2+1.

(a) Since α(b) agrees with α(q) up to s2, step (11b) implies that
both summands are positive.

(b) Also since α(b) agrees with α(q) up to s2, α(b)(s2) is not max-
imal, i.e., less than

(as2+1

as2
− 1
)
.

(c) Finally, by choice of s1 > α-max(a), also α(b − a)(s2) is not
maximal. �

After this complicated proof, the main result follows almost immediately.

Theorem 7 (Trivial sums). A strongly summable ultrafilter with disjoint
α-support can only be written as a sum trivially.

Proof. (1) Assume that p is a strongly summable ultrafilter with dis-
joint α-support and q, r ∈ βN with

q + r = p.

(2) The above Lemma 5 implies r ∈ Z +
⋂

n∈ω anN.
(3) Therefore there exists k ∈ Z such that −k + r ∈

⋂
n∈ω anN; in

particular
(k + q) + (−k + r) = p.

(4) But now applying Lemma 4 with k + q and −k + r implies k + q =
−k + r = p, as desired. �

This result, however, leaves some obvious questions open.

Question 1. • Does every strongly summable ultrafilter have the triv-
ial sums property?
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• Does every strongly summable ultrafilter have disjoint α-support for
some a?

• Do other (idempotent) ultrafilters have the trivial sums property?

A slight progress on the first two is the following proposition.

Proposition 7. Let p be a strongly summable ultrafilter additively isomor-
phic to a stable ordered union ultrafilter. Then p has disjoint binary support
(hence trivial sums).

Summary of argument. Ordered unions guarantee ordered
x-support for appropriate x. Since FS(x) always contains
elements with ordered binary support, stability “enforces”
this throughout a condensation.

Proof. (1) Consider an additive isomorphism ϕ defined on a suitable
FS(x) ∈ p such that ϕ(p) is stable ordered union.

(2) Consider the following set

{(v, w) ∈ ϕ[FS(x)]2< | bmax(ϕ−1(v)) < bmin(ϕ−1(w))}.
(3) Since ϕ(p) is a stable ordered union ultrafilter, there exists ordered

FU(s) ∈ ϕ(p) such that FU(s)2< is included or disjoint from the
above set.

(4) But FU(s)2< cannot be disjoint.
(a) For any FU(s) ∈ ϕ(p) there is some y v x with ϕ−1[FU(s)] =

FS(y).
(b) But for any z ∈ FS(y) we can pick z′ ∈ FS(y)∩ 2bmax(z)N(∈ p).
(c) Then the pair (ϕ(z), ϕ(z′)) is included in the above set.

(5) The homogeneous FU(s) ∈ ϕ(p) yields some ϕ−1[FU(s)] = FS(y) ∈
p.

(6) Since s is ordered, y must have ordered, hence disjoint binary sup-
port. �

So, as usual, the strongest notion of strongly summable ultrafilter has the
desired trivial sums property. A negative answer to the first question would
probably require the identification of a new kind of union ultrafilter.

The most natural answer to the second question would be to prove that
bsupp maps strongly summables to union ultrafilters — after all, its inverse
map maps union ultrafilters to strongly summable ultrafilters.

For the closing remark, recall the following two notions. An ultrafilter in N
is a P -point if whenever we pick countably many of its elements (An)n∈ω, it
includes a pseudo-intersection B, i.e., An \B is finite for all n. An ultrafilter
is rapid if for every unbounded function f : N → N it contains an element B
such that |f−1(n) ∩ B| ≤ n for all n. Since union ultrafilters map to rapid
P -points under max, the following might suggest a positive answer.

Proposition 8. Let p be strongly summable. Then bmax(p) is a rapid P -
point.
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Summary of argument. The proof is a modification of the
proof of [BH87, Theorem 2].

Proof. (1) Pick a sequence x with sufficient growth and FS(x) ∈ p.
(2) Given f ∈ ωω consider the set

A = {a ∈ FS(x) | f(bmax(a)) ≤ min(x-supp(a))}.
Then either A or its complement is in p.

(3) If A ∈ p then f is bounded (and therefore constant) on a set in
bmax(p).
(a) Pick a ∈ A and FS(y) ⊆ (A ∩ FS>x-max(a)(x) ∩ 2aN) in p.
(b) Then for b ∈ FS(y) calculate

f(bmax(b)) = f(bmax(a + b)) ≤ min(x-supp(a + b))

= min(x-supp(a)).

(c) In other words, f is bounded on bmax[FS(y)] ∈ bmax(p).
(4) If N \A ∈ p, then f has |f−1(n)| ≤ n on a set in bmax(p).

(a) Pick y v x with FS(y) ∈ p, disjoint from A.
(b) Therefore, each z ∈ FS(y) with n = f(bmax(z)) must have

n > x-min(z).
(c) Since y has sufficient growth, bmax[FS(y)] = bmax[y].
(d) Due to the disjoint x-support of the yi, there are at most n

indices i such that n > x-min(yi). �

Thanks to the above proposition we might favor that all strongly summa-
ble ultrafilters have disjoint binary support. However, an answer remains
elusive. It seems, however, that further progress on writing strongly sum-
mable ultrafilters as sums might lead to a better understanding of the phe-
nomena in βN in general, just as it did with strongly right maximality.
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