
New York Journal of Mathematics
New York J. Math. 17 (2011) 281–294.

Mild 2-relator pro-p-groups

Michael R. Bush, Jochen Gärtner, John Labute
and Denis Vogel

Abstract. We give effective necessary and sufficient conditions for a
quadratically defined 2-relator pro-p-group to be mild and apply these
results to give examples of 2-extensions with restricted ramification over
an imaginary quadratic base field for which the associated Galois group
is a mild 2-relator pro-2-group.
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1. Introduction

Let G be a finitely presented pro-p-group and let H i(G) = H i(G,Z/pZ).
Then d = d(G) = dimH1(G) is the minimal number of generators of G and
r = r(G) = dimH2(G) is the minimal number of relators. Suppose that the
cup product map

H1(G)⊗H1(G) −→ H2(G)

is surjective. In this case we say that G is quadratically defined. By duality,
we get an injective mapping

ι : H2(G)∗ −→ H1(G)∗ ⊗H1(G)∗
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and hence an embedding of W = H2(G)∗ into the tensor algebra A = T (V )
of V = H1(G)∗ over Fp. Let B = A/(W ), where (W ) is the ideal of A
generated by W . Then B is a finitely presented graded algebra over Fp with
d generators and r quadratic relators; it is called the holonomy algebra of G.
If bn = dimBn, the n-th homogeneous component of B, the formal power
series

B(t) =
∑
n≥0

bnt
n

is the Poincaré series of B. We have B(t) ≥ (1 − dt + rt2)−1, cf. [1]. The
pro-p-group G is called mild if the above inequality is an equality in which
case the algebra B is also called mild. A basis of W is called strongly free if
B = A/(W ) is mild.

Mild pro-p-groups have strong properties; for example, they are of co-
homological dimension 2 and the Lie algebra associated to various central
series of such groups can be computed, cf. [3], [5], [6].

Theorem 1. A quadratically defined 2-relator pro-p-group is mild if p 6= 2.

This is not the case when p = 2. However, we have the following re-
sult which gives an effective algorithm for determining the mildness of a
quadratically defined pro-2-group.

Theorem 2. A quadratically defined 2-relator pro-2-group is mild if and
only if the codimension of the annihilator of H1(G) under the cup-product is
> 2 and ι(H2(G)∗) contains no nonzero square of an element of T (H1(G)∗).

2. Computation of the holonomy algebra

Let G = F/R = 〈x1, . . . , xd | r1, r2〉 be a finitely presented pro-p-group
with r1, r2 ∈ F p[F, F ]. Then d(G) = d. The completed Fp-algebra of the free
pro-p-group F can be identified with the algebra of noncommutative formal
power series in X1, . . . , Xd over Fp. Under this identification, xi = 1 +Xi.
If r ∈ R we have

r =


d∏

i=1

x2cii
i

∏
i<j

[xi, xj ]cij mod F 4[F, F ]2[F, [F, F ]] if p = 2,∏
i<j

[xi, xj ]cij mod F p[F, [F, F ]] if p 6= 2,

so that

r =


d∑

i=1

ciiX
2
i +

∑
i<j

cij [Xi, Xj ] mod terms of degree > 2 if p = 2,∑
i<j

cij [Xi, Xj ] mod terms of degree > 2 if p 6= 2.

Using the transpose of the inverse of the transgression isomorphism

tg : H1(R)F = (R/Rp[R,F ])∗ −→ H2(G),
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the relator r defines a linear form φr on H2(G) such that, if χ1, . . . , χd is the
basis of H1(F ) = (F/F p[F, F ])∗ with χi(xj) = δij , we have φr(χi∪χj) = cij
if i ≤ j, setting cii = 0 if p 6= 2; cf. [9], Prop. 3.9.13. If we identify xi with
its image in V = F/F p[F, F ] the algebra A = T (V ) can be identified with
the free associative algebra on x1, . . . , xd over Fp. Moreover,

ρ = ι(φr) =


d∑

i=1

ciix
2
i +

∑
i<j

cij [xi, xj ] if p = 2,∑
i<j

cij [xi, xj ] if p 6= 2,

which shows that ρ lies in ∧2V if p 6= 2. If p = 2 then ρ lies in Sq(V ),
the symmetric square of V , which is defined to be the subspace of V ⊗ V
generated by elements of the form x⊗x, x⊗y+y⊗x. Under our identification,
∧2V is the 2-component L2 of the Lie subalgebra L of A generated by
x1, . . . , xd and

Sq(V ) =
d∑

i=1

F2x
2
i + L2

if p = 2. Let cji = cij for i < j if p = 2 and cji = −cij , cii = 0 if p 6= 2.
Setting X to be the 1× d matrix [x1, . . . , xd], we obtain a symmetric d× d
matrix C = [cij ] such that ρ = XCXt. This matrix is the matrix of the
bilinear form b on H1(G) defined by b(χ, ψ) = φr(χ∪ψ). The automorphism
f of V defined by X 7→ XP , where P ∈ GLd(F2), extends to an automor-
phism f̂ of A whose restriction to Sq(V ) if p = 2 and to L2 if p 6= 2 sends
the element ρ to f̂(ρ) = XPCP tXt.

Proposition 1. Let φi be the linear form on H2(G) associated to ri and
let ρi = ι(φi). Then G is quadratically defined and r(G) = 2 if and only if
ρ1, ρ2 are linearly independent over Fp, in which case, the holonomy algebra
of G is A/(ρ1, ρ2) which implies that G is mild if and only if the sequence
ρ1, ρ2 is strongly free.

3. The classification problem

Let Q be the set of graded Fp-algebras of the form A/(ρ1, ρ2) with ρ1, ρ2

linearly independent elements of Sq(V ) if p = 2 and L2 if p 6= 2. Two
algebras A/(ρ1, ρ2), A/(ρ′1, ρ

′
2) ∈ Q are isomorphic if and only if there is an

automorphism f of V and Q ∈ GL2(Fp) such that[
ρ′1
ρ′2

]
= Q

[
f̂(ρ1)
f̂(ρ2)

]
.

The vector space L2 has dimension
(
d
2

)
with basis

{xij = [xi, xj ] | 1 ≤ i < j ≤ d}
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which we order lexicographically. If p = 2 the symmetric square Sq(V ) has
dimension (d2 + d)/2 over F2 with explicit basis

x2
1 < · · · < x2

d < x12 < x13 < · · · < x23 < x24 < · · · < xd−1,d.

Each relator ρi is determined by its coordinates Y = [ci1, . . . , cis] ∈ Fs
p with

respect to this basis; here s =
(
d
2

)
if p 6= 2 and s = (d2 + 2)/2 if p = 2. If

f(xj) =
∑d

i=1 pijxi then, in terms of these coordinates the automorphism f̂

sends Y to Y P̂ , where P̂ ∈ GLs(Fp) is determined by

f̂(xij) =
∑
r<s

(pripsj + psiprj)xrs

f̂(x2
i ) =

d∑
j=1

p2
jix

2
j +

∑
r<s

pripsixrs if p = 2.

Each algebra in Q is determined by specifying a 2 × s matrix over Fp.
Determining the isomorphism classes of elements of Q reduces to deter-
mining the orbit space of 2 × s matrices C over Fp under the action of
Γ = GL2(Fp)×GLd(Fp) where, for (Q,P ) ∈ GL2(Fp)×GLd(Fp),

(Q,P )C = QCP̂ t.

In the case p = 2, d = 4 computations with symbolic algebra package
Magma [8] yield the following result.

Theorem 3. There are 54 orbits of Q under the action of Γ. The size of
each orbit together with a representative is given in Appendix A.

An orbit is called mild if it has a strongly free representative. If one
representative is strongly free then so are all the others.

4. Determining the mild orbits in the case p = 2, d = 4

Theorem 4. The orbits 19, 20, 21, 49, 50, 51, 52, 53, 54 are the only
nonmild orbits when d = 4, p = 2.

These orbits are nonmild since the 4-th term of their Poincaré series is
either 49 or 50 instead of 48.

To prove strong freeness for all but one of the remaining orbits we use
Anick’s criterion which is developed in [1], §6. In order to state Anick’s
criterion we have to define the notion of a combinatorially free sequence.
A sequence of nonidentity monomials α1, . . . , αd in x1, . . . , xd is said to be
combinatorially free if:

(1) No monomial αi is a submonomial of αj for i 6= j.
(2) If αi = u1v1, αj = u2v2 is a proper factorization with ui, vi mono-

mials then u1 6= v2.
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Let an ordering of x1, . . . , xd be given and order the monomials lexico-
graphically. By the leading term of a homogeneous polynomial w ∈ A we
mean the largest monomial appearing in w (with a nonzero coefficient).

Proposition 2 (Anick’s Criterion). A sequence ρ1, . . . , ρm of homogeneous
elements of A of degree > 0 is strongly free if the sequence of leading terms
of these elements is combinatorially free.

As an example consider orbit 5 which is represented by

ρ1 = x2
1 + [x1, x2], ρ2 = [x1, x3].

The leading terms for the ordering x1 < x2 < x3 < x4 are x2x1, x3x1

which are combinatorially free. The remaining orbits, except for orbit 28
are handled in this way.

To handle orbit 28 we need a more powerful criterion for mildness that was
obtained by Patrick Forré [3]. There he proves a result on how sequences
in A can be modified in a certain way such that strongly free sequences
remain strongly free by assigning different weights e = (e1, e2, e3, e4) to the
basis X = (x1, x2, x3, x4). Dealing with different gradings (X, e) at the
same time together with Anick’s criterion, this gives an alternative proof
of the cup product criterion for cohomological dimension 2 (especially for
pro-2-groups, cf. [6], Th. 1.1).

Proposition 3 (Forré’s Theorem). Let w1 + v1, . . . , wr + vr be a sequence
of homogenous elements of A. Then this sequence is strongly free in A if
there is a grading (X, e) such that:

(a) w1, . . . , wr is a strongly free sequence of e-homogeneous elements of
A.

(b) For each e-homogeneous component u of vj, we have

dege u > dege(wj).

Proof. For a proof we refer to [3], Cor. 3.8 and 3.10. �

Orbit 28 is represented by ρ1 = x2
1 + [x1, x3], ρ2 = x2

2 + [x1, x2]. For the
(X, e)-grading with e1 = 2, e2 = 3, e3 = e4 = 1 the e-homogeneous terms
of lowest degree of ρ1, ρ2 are [x1, x3], [x1, x2] whose highest terms for the
ordering x1 < x2 < x3 < x4 are x3x1, x2x1, a combinatorially free sequence.

5. An algorithm for strong freeness

Theorem 5. The Γ-orbit of an algebra in Q contains a representative B =
A/(ρ1, ρ2) with ρ1, ρ2 in exactly one of the following forms with L,L1, L2 ∈
L2, L1, L2 6= 0:

(I) ρ1, ρ2 ∈ L2, ρ1, ρ2 6= 0, ρ1 6= ρ2.
(II) ρ1 = x2

1 + L1, ρ2 = L2, with L1 6= L2.
(III) ρ1 = x2

1, ρ2 ∈ L2, ρ2 6= 0.
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(IV) ρ1 = x2
1 +L1, ρ2 = x2

2 +L2 with L1 +L2 6= 0, [x1, x2] or L1 = L2 6=
[x1, x2].

(V) ρ1 = x2
1 + [x1, x2], ρ2 = x2

2 + [x1, x2].
(VI) ρ1 = x2

1, ρ2 = x2
2 + L.

The orbit is mild if and only if it is of type (I), (II) or (IV).

Proof. Let B : H1(G) → H2(G) be the linear mapping defined by B(χ) =
χ∪χ and let t = codimKer(B). Let s be the codimension of the annihilator
of H1(G) under the cup-product. Note that p 6= 2 can only occur for type
(I).

The representative ρ1, ρ2 is of type (I) if and only if t = 0 in which case
s ≥ 3. After a change of variables we can assume that the largest term
of ρ2 is [xk, xd]. Let a[xi, xj ] with i < j be the largest term of ρ1. After
possibly subtracting from ρ1 a scalar multiple of ρ2 we may assume that
[xi, xj ] 6= [xk, xd]. To prove mildness we use Anick’s criterion. If j = d then
the highest monomials in ρ1, ρ2 are xdxi, xdxk which are combinatorially
free. If j < d, j 6= k, the highest monomials are xjxi, xdxk which are
combinatorially free. If j < d, j = k then, for the ordering of x1, . . . , xd in
which xd < xk are largest, the highest monomials are xkxi, xkxd which are
combinatorially free. Hence type (I) is mild.

We are in types (II) or (III) if and only if t = 1 in which case we may
assume, without loss of generality, that ρ1 = x2

1 +L1, ρ2 = L2 with L1, L2 ∈
L2. If L1 = 0 we are in type (III); if L1 = L2 then after subtracting ρ2

from ρ1 we fall in type (III). To show that type (III) is not mild let R be
the ideal of A generated by ρ1, ρ2 and let I be the augmentation ideal of
A. Since [x1, ρ1] = 0 we see that x1ρ1 ≡ 0 mod RI and hence that R/RI
is not a free B-module on the images of ρ1, ρ2. This implies that ρ1, ρ2 are
not strongly free, cf. [3]. If ρ1, ρ2 are of type (II) we prove mildness exactly
as for type (I).

We are in type (IV), (V), or (VI) if and only if t = 2. Type (VI) is
not-mild which is proven in the same way as for type (III). Type (V) is not
mild since [x2, ρ1] + [x1, ρ2] = 0.

Now suppose that ρ1, ρ2 are of type (IV) with L1 = L2 = L. If we add ρ2

to ρ1 and replace x1 by x1 + x2 we get ρ1 = x2
1 + [x1, x2], ρ2 = x2

2 +L′ with
L′ 6= [x1, x2]. Hence, after a change of variables, we can assume that the
largest term of L′ is [xk, xd] with d > 2. The highest monomials in ρ2, ρ2 are
x2x1, xdxk which are combinatorially free if k 6= 2. If k = 2 we apply Forré’s
Theorem with e1 = 3, e2 = 2, ed = 1, eh = 2 for h 6= 1, 2, d. In this case
the homogeneous components of lowest degree for ρ1, ρ2 are [x1, x2], [x2, xd]
whose highest monomials for the ordering in which x1 < xd < x2 are the
combinatorially free monomials x2x1, x2xd.

Now suppose that ρ1, ρ2 are of type (IV) with L1 6= L2, L1+L2 6= [x1, x2].
Without loss of generality, we can assume the largest term of ρ2 is [xk, xd]
with d > 2. Let [xi, xj ] with i < j be the largest term of ρ1.
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Suppose first that [xi, xj ] 6= [xk, xd]. If j = d or j 6= d, k 6= j the highest
monomials of ρ1, ρ2 are xjxi, xdxk which are combinatorially free. If j 6= d
and k = j 6= 2 then, for the ordering in which the largest variables are
xd < xj , the highest monomials are xkxi, xkxd which are combinatorially
free. If j 6= d, k = j = 2 then

ρ1 = x2
1 + [x1, x2], ρ2 = x2

2 +
d∑

h=2

ah[x1, xh] +
d−1∑
h=3

bh[x2, xh] + [x2, xd].

If we apply Forré’s Theorem with e1 = 3, e2 = 2, ed = 1, eh = 2 for h 6=
1, 2, d, the homogeneous components of lowest degree for ρ1, ρ2 are [x1, x2],
[x2, xd] whose highest monomials for the ordering in which x1 < xd < x2 are
the combinatorially free monomials x2x1, x2xd.

Now suppose that [xi, xj ] = [xk, xd]. If i = k > 2 then, after adding ρ2 to
ρ1 and replacing x1 by x1 + x2, the largest term of ρ1 is a nonzero element
of L2 which is not equal to [xk, xd], the largest term of ρ2. This reduces us
to the previous case in which that ρ1, ρ2 were strongly free. Now suppose
i = k = 2. We have

ρ1 = x2
1 +M1 + [x2, xd], ρ2 = x2

2 +M2 + [x2, xd].

Since L1 + L2 6= 0, [x1, x2] exactly one of M1, M2, say M1, has a term
[x1, xh] or [x2, xh] with h 6= 1, 2, d which we can assume to be the latter if
both appear. If we change the ordering by making xh largest, the highest
monomials are xhx2, xdx2 which are combinatorially free. In the same way
we can prove that ρ1, ρ2 are combinatorially free if i = k = 1. �

Theorems 1 and 2 follow immediately from this result.

6. Examples of mild extensions

Let k be a totally imaginary number field and S a finite set of primes
of k. The pro-2-group GS(2) = Gal(kS(2)/k), i.e. the Galois group of
the maximal 2-extension of k unramified outside S, contains interesting
information on the arithmetic of k. In the case where the set of primes
S2 of k above 2 is contained in S - the wild case - it has been known for a
long time that GS(2) is of cohomological dimension less than or equal to 2,
see [9].

In the tame case, where S ∩ S2 = ∅ and in the mixed case, where ∅ (
S ∩ S2 ( S2, only little had been known about the structure of GS(2) until
recently. The results of [6] on mild pro-2-groups apply to an arithmetic
result of Schmidt [10] which in turn yields a theorem that deals with all
the above cases: For any given finite set S′ of primes of k, there exists a
finite set T of primes of k of odd norm such that for S = S′ ∪ T , the group
GS(2) is of cohomological dimension 2. A natural question in this context
is whether one can even prove the stronger property of mildness of GS(k)
in some situations, in particular when we are given presentations that are
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not of Koch-type. In the following, we will give some examples of mild pro-
2-groups with 4 generators and 2 relators occuring as GS(2) for imaginary
quadratic number fields, making use of our classification.

Finally we will also give an arithmetic example of a nonmild 4-generator
2-relator pro-2 group, which occurs as GS(2) over a cubic field. A good ref-
erence for a general discussion of the calculations we will carry out explicitly
in our examples is section 11.4 of [4]. We will use the same notation and
refer to this for more background and details.

Example 1. Let k = Q(
√
−7), S = {p, p, q}, where p =

(
1+
√
−7

2

)
and

p =
(

1−
√
−7

2

)
are the primes of k above 2 and q = (2 +

√
−7) is one of the

primes of k above 11. Then GS(2) is a mild pro-2-group on 4 generators
and 2 relators corresponding to orbit 39 in the list given in Appendix A.

Proof. The ideal class group of k is trivial, and we have

V∅ = {α ∈ k× | α ∈ Ulk
×2
l for all primes l of k}/k×2 ∼= {±1},

where kl denotes the completion of k at l and Ul denotes the unit group of
kl. Since −1 is not a square in Q2 = kp, we have

VS = {α ∈ k× | α ∈ k×2
l for l ∈ S, α ∈ Ulk

×2
l for l 6∈ S}/k×2 = 1.

Let US be the subgroup of the idele group Ik consisting of those ideles whose
components for l ∈ S are 1 and for l 6∈ S are units. Then we have an exact
sequence

0 −−−−→ {±1} −−−−→
∏

l∈S Ul/U
2
l −−−−→ Ik/(USI

2
kk

×) −−−−→ 0

and an isomorphism

Ik/(USI
2
kk

×) ∼= GS(2)/GS(2)2.

In particular, the generator rank of GS(2) is given by

dimF2 Up/U
2
p + dimF2 Up/U

2
p + dimF2 Uq/U

2
q − 1 = 2 + 2 + 1− 1 = 4.

We set αp,1 = 5, αp,2 = −1, αp,1 = 5, αp,2 = −1, αq = −1. Then
{αp,1, αp,2}, {αp,1, αp,2} and {αq} are bases of Up/U

2
p , Up/U

2
p and Uq/U

2
q ,

respectively. Let P be fixed prime divisor of p in kS . Let τp,1 be an el-
ement of the inertia group of P whose restriction to the maximal abelian
subextension L/k of kS(2)/k equals (α̂p,1, L/k), where α̂p,1 denotes the ele-
ment of the idele group Ik of k whose p-component equals αp,1 and all other
components are equal to 1. In an analogous way we define τp,2, τp,1, τp,2, τq.
Then {τp,1, τp,2, τp,1, τp,2, τq} is a nonminimal set of generators of GS(2). We
have to determine which one of the generators we can omit. In the group
Ik/(USI

2
kk

×) we have the identity

−1 ≡ α̂p,2α̂p,2α̂q mod USI
2
kk

×,

and therefore
τq ≡ τp,2τp,2 mod GS(2)2.
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So we can omit τq, and {τp,1, τp,2, τp,1, τp,2} is a minimal set of generators
of GS(2). Now we have to deal with the relators. By [4], we have relators
rp, rp, rq (which we will determine shortly) of which we can omit any. We
omit rq, hence GS(2) has a minimal presentation (as pro-2-group)

GS(2) = 〈τp,1, τp,2, τp,1, τp,2 | rp = rp = 1〉.

We have yet to determine rp and rp. We set πp = 1+
√
−7

2 and πp = 1−
√
−7

2 .
Let σp be a lift of the Frobenius automorphism of P (with respect to the
maximal subextension of kS/k in which P is unramified) whose restriction
to L/k is given by (π̂p, L/k). In an analogous way, we define σp. We cal-
culate the following Hilbert symbols in kp: (αp,1, αp,2) = 1, (αp,1, πp) = −1,
(αp,2, πp) = −1. For the Hilbert symbols in kp we obtain (αp,1, αp,2) = 1,
(αp,1, πp) = −1, (αp,2, πp) = −1. This means that rp is given by

rp = σ2
pτ

2
p,2[τp,1, σp],

and the relator rp is given by

rp = σ2
pτ

2
p,2[τp,1, σp]

(note that there is a mistake in [4] concerning the signs of the Hilbert sym-
bols, as a consequence the squares of Frobenius are missing there). Compu-
tations in Magma [8] show that

π̂p ≡ α̂p,1α̂p,2 mod USI
2
kk

×,

and
π̂p ≡ α̂p,1α̂p,2α̂q mod USI

2
kk

×,

so
σp ≡ τp,1τp,2 mod GS(2)2,

and
σp ≡ τp,1τp,2τq ≡ τp,1τp,2τp,2τp,2 ≡ τp,1τp,2 mod GS(2)2.

We obtain that

rp = σ2
pτ

2
p,2[τp,1, σp] ≡ (τp,1τp,2)

2τ2
p,2[τp,1, τp,1τp,2]

≡ τ2
p,2τ

2
p,1τ

2
p,2[τp,1, τp,1][τp,1, τp,2][τp,1, τp,2] mod GS(2)3

and

rp = σ2
pτ

2
p,2[τp,1, σp] ≡ (τp,1τp,2)

2τ2
p,2[τp,1, τp,1τp,2]

≡ τ2
p,1[τp,1, τp,1][τp,1, τp,2][τp,1, τp,2] mod GS(2)3.

Therefore, GS(2) has a presentation by generators x1, x2, x3, x4 and relators
whose initial forms ρ1, ρ2 are given by

ρ1 = x2
2 + x2

3 + x2
4 + [x1, x3] + [x1, x4] + [x3, x4],

ρ2 = x2
1 + [x1, x3] + [x1, x4] + [x3, x4].

One can check that this presentation belongs to orbit 39 and hence is mild.
In fact, applying the automorphism f given by f(x1) = x2, f(x2) = x2 +



290 MICHAEL R. BUSH, JOCHEN GÄRTNER, JOHN LABUTE AND DENIS VOGEL

x4, f(x3) = x1 + x3 + x4, f(x4) = x2 + x3, yields the representative given
for orbit 39 in Appendix A. �

Example 2. Let k = Q(
√
−7), S = {p, p, q}, where p =

(
1+
√
−7

2

)
and

p =
(

1−
√
−7

2

)
are the primes of k above 2 and q is the unique prime of k

above 3. Then GS(2) is a mild pro-2-group on 4 generators and 2 relators
corresponding to orbit 17.

Proof. We proceed in the same way as in Example 1, except that we set
αq = ζ8 where ζ8 denotes a primitive eighth root of unity in kq. Then
{τp,1, τp,2, τp,1, τp,2, τq} is a nonminimal set of generators of GS(2). In the
group Ik/(USI

2
kk

×) we have the identity

−1 ≡ α̂p,2α̂p,2 mod USI
2
kk

×,

and therefore
τp,2 ≡ τp,2 mod GS(2)2.

So we can omit τp,2, and {τp,1, τp,2, τp,1, τq} is a minimal set of generators of
GS(2). By [4], we have relators rp, rp, rq, and we can omit any of them. We
choose to omit rp. We have yet to determine rp and rq. We set πp = 1+

√
−7

2
and πq = 3 and define σp and σq as in Example 1. The relator rp is given as
in Example 1 by

rp = σ2
pτ

2
p,2[τp,1, σp].

The relator rq is given by

rq = τ
N(q)−1
q [τq, σq] = τ8

q [τq, σq].

Using Magma [8] we obtain that

π̂p ≡ α̂p,1α̂p,2α̂q mod USI
2
kk

×,

and
π̂q ≡ α̂p,1α̂p,2α̂p,1α̂p,2 mod USI

2
kk

×.

Hence,
σp ≡ τp,1τp,2τq ≡ τp,2τp,1τq mod GS(2)2,

and
σq ≡ τp,1τp,2τp,1τp,2 ≡ τp,1τp,1 mod GS(2)2.

It follows that

rp = σ2
pτ

2
p,2[τp,1, σp] ≡ (τp,2τp,1τq)

2τ2
p,2[τp,1, τp,2τp,1τq]

≡ τ2
p,1τ

2
q [τp,1, τp,2][τp,1, τp,1][τp,1, τq][τp,2, τp,1][τp,2, τq][τp,1, τq] mod GS(2)3

and

rq = τ8
q [τq, σq] ≡ [τq, τp,1τp,1] ≡ [τq, τp,1][τq, τp,1] mod GS(2)3.
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Therefore, GS(2) has a presentation by generators x1, x2, x3, x4 and relators
whose initial forms ρ1, ρ2 are given by

ρ1 = x2
3 + x2

4 + [x1, x2] + [x1, x3] + [x1, x4] + [x2, x3] + [x2, x4] + [x3, x4],

ρ2 = [x1, x4] + [x3, x4].

Applying Anick’s criterion with x4 < x3 < x2 < x1, we see that GS(2)
is mild. More precisely, applying the automorphism f given by f(x1) =
x1 + x4, f(x2) = x1 + x3, f(x3) = x1 + x2 + x4, f(x4) = x2 + x4 we obtain
the representative for orbit 17 in Appendix A. �

Example 3. Let k = Q( 3
√

3), S = {p, p, q}, where q denotes the real prime
of k and p = ( 3

√
3− 1) and p = (1 + 3

√
3 + 3

√
3
2
) are the primes of k above 2.

Then GS(2) is pro-2-group on 4 generators and 2 relators corresponding to
the nonmild orbit 54.

Proof. First let us remark that since the field k is not totally imaginary
and S contains the real prime of k, complex conjugation induces a nontrivial
2-torsion element in GS(2). In particular, it follows that GS(2) has infinite
cohomological dimension and therefore cannot be mild. In the following
we show that d(GS(2)) = 4, r(GS(2)) = 2 and in fact GS(2) belongs to
orbit 54. Again k has trivial ideal class group, and it follows that a F2-
basis for V∅ is given by the residue classes of −1,−ε modulo k×2, where
ε = 4 + 3 3

√
3 + 2 3

√
3
2

is a fundamental unit. Clearly −1,−ε are not squares
in kq = R and furthermore ε is not a square in kp = Q2. Hence it follows
that VS = 1. The primes p and p have inertia degrees 1 and 2 respectively
and by chapter 11 of [4] it follows that d(GS(2)) = 4, r(GS(2)) ≤ 2. We set

αp,1 := 5, αp,2 := −1, αp,1 := 1 + 4 3
√

3, αp,2 := −1, αp,3 := ε, αq := −1.

Then the sets {αp,1, αp,2}, {αp,1, αp,2, αp,3}, {αq} are bases of Up/U
2
p , Up/U

2
p

and Uq/U
2
q respectively. As in the previous examples we may choose a

corresponding nonminimal set of generators {τp,1, τp,2, τp,1, τp,2, τp,3, τq} of
GS(2). By class field theory the identities of ideles

−1 ≡α̂p,2α̂p,2α̂q,2 mod USI
2
kk

×,

ε ≡α̂p,2α̂p,3 mod USI
2
kk

×

yield
τp,2 ≡ τp,3 ≡ τp,2τq mod GS(2)2

and hence {τp,1, τp,1, τp,2, τq} is a minimal set of generators of GS(2). By [4],
we have relators rp, rp, rq, and we can omit any of them. We choose to omit
rp. The relator rq belonging to the infinite prime is given by

rq = τ2
q .

We set πp = 3
√

3− 1 and define σp as in Example 1 and 2. We calculate the
following Hilbert symbols in kp: (αp,1, αp,2) = 1, (αp,1, πp) = −1, (αp,2, πp) =
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1. Therefore rp is given by

rp = τ2
p,2[τp,1, σp] ≡ τ2

p,2τ
2
q [τp,1, σp][τp,2, τq] mod GS(2)3.

Note that, contrary to the previous examples, the Hilbert symbol (αp,2, πp)
being trivial implies that there is no square of the Frobenius.

Using Magma [8] we find that

π̂p ≡ α̂p,1 mod USI
2
kk

×,

so
σp ≡ τp,1 mod GS(2)2

and we obtain

rp ≡ τ2
p,2τ

2
q [τp,1, τp,1][τp,2, τq] mod GS(2)3.

Therefore GS(2) admits a presentation by generators x1, x2, x3, x4 and two
relators with initial forms ρ1, ρ2 given by

ρ1 = x2
3 + x2

4 + [x1, x2] + [x3, x4],

ρ2 = x2
4.

By making the successive substitutions x1 ↔ x4, x2 ↔ x3, x2 7→ x1 +x2 one
checks that this presentation belongs to orbit 54. �

Appendix A. List of orbit representatives for the case p = 2,
d = 4.

This is a list of orbit representatives followed by the size and type of the
orbit for the case p = 2, d = 4.

(1) [x1, x2], [x1, x3], 630, (I)
(2) [x1, x2], [x3, x4], 1680, (I)
(3) [x1, x2], [x1, x4] + [x2, x3], 1260, (I)
(4) [x1, x2] + [x3, x4], [x1, x3] + [x2, x4] + [x3, x4], 336, (I)
(5) x2

1 + [x1, x2], [x1, x3] , 1890, (II)
(6) x2

1 + [x1, x2], [x3, x4], 10080, (II)
(7) x2

1 + [x1, x2], [x1, x2] + [x3, x4], 10080, (II)
(8) x2

1 + [x1, x2], [x1, x4] + [x2, x3], 7560, (II)
(9) x2

1 + [x1, x3], [x2, x3], 7560, (II)
(10) x2

1 + [x1, x3] + [x2, x4], [x2, x3], 15120, (II)
(11) x2

1 + [x1, x3] + [x2, x4], [x1, x2] + [x2, x4] + [x3, x4], 15120, (II)
(12) x2

1 + [x1, x4] + [x2, x3], [x1, x2], 3780, (II)
(13) x2

1 + [x1, x4] + [x2, x3], [x1, x2] + [x3, x4], 181440, (II)
(14) x2

1 + [x2, x3], [x1, x3], 3780, (II)
(15) x2

1 + [x2, x3], [x1, x4], 10080, (II)
(16) x2

1 + [x2, x3], [x1, x4] + [x2, x4], 30240, (II)
(17) x2

1 + [x3, x4], [x2, x4], 15120, (II)
(18) x2

1 + [x3, x4], [x1, x2] + [x1, x4] + [x2, x3], 15120, (II)
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(19) x2
1, [x1, x2], 630, (III)

(20) x2
1, [x2, x3], 2520, (III)

(21) x2
1, [x1, x4] + [x2, x3], 2520, (III)

(22) x2
1 + [x1, x2], x2

2 + [x1, x3], 3780, (IV)
(23) x2

1 + [x1, x2], x2
2 + [x3, x4], 10080, (IV)

(24) x2
1 + [x1, x2], x2

2 + [x1, x2] + [x3, x4], 10080, (IV)
(25) x2

1 + [x1, x2], x2
2 + [x1, x4] + [x2, x3], 7560, (IV)

(26) x2
1 + [x1, x2] + [x3, x4], x2

2 + [x1, x3] + [x2, x4] + [x3, x4], 60480 (IV)
(27) x2

1 + [x1, x2] + [x2, x3], x2
2 + [x1, x3] + [x2, x4] + [x3, x4], 60480, (IV)

(28) x2
1 + [x1, x3], x2

2 + [x1, x2], 7560, (IV)
(29) x2

1 + [x1, x3], x2
2 + [x2, x3], 2520, (IV)

(30) x2
1 + [x1, x3], x2

2 + [x2, x4], 15120, (IV)
(31) x2

1 + [x1, x3], x2
2 + [x1, x4] + [x2, x4], 30240, (IV)

(32) x2
1 + [x1, x3] + [x2, x4], x2

2 + [x1, x3] + [x1, x4] + [x2, x3], 5040, (IV)
(33) x2

1 + [x1, x3] + [x3, x4], x2
2 + [x1, x3] + [x2, x3] + [x2, x4], 120960, (IV)

(34) x2
1 + [x1, x4], x2

2 + [x3, x4], 60480, (IV)
(35) x2

1 + [x1, x4], x2
2 + [x1, x3] + [x2, x4], 15120, (IV)

(36) x2
1 + [x1, x4], x2

2 + [x2, x3] + [x3, x4], 30240, (IV)
(37) x2

1 + [x1, x4], x2
2 + [x1, x3] + [x2, x3] + [x2, x4] + [x3, x4], 30240, (IV)

(38) x2
1 + [x1, x4] + [x2, x3], x2

2 + [x1, x3] + [x2, x3] + [x2, x4], 5040, (IV)
(39) x2

1 + [x1, x4] + [x2, x4], x2
2 + [x1, x3] + [x2, x3] + [x3, x4], 60480, (IV)

(40) x2
1 + [x1, x4] + [x2, x4], x2

2 + [x1, x3] + [x1, x4] + [x2, x3], 30240, (IV)
(41) x2

1 + [x2, x3], x2
2 + [x1, x3], 7560, (IV)

(42) x2
1 + [x2, x3], x2

2 + [x1, x3] + [x2, x3], 5040, (IV)
(43) x2

1 + [x2, x3], x2
2 + [x1, x4] + [x2, x3], 30240, (IV)

(44) x2
1 + [x2, x4], x2

2 + [x1, x3], 15120, (IV)
(45) x2

1 + [x2, x4], x2
2 + [x2, x3], 15120, (IV)

(46) x2
1 + [x3, x4], x2

2 + [x1, x4], 60480, (IV)
(47) x2

1 + [x3, x4], x2
2 + [x2, x3] + [x2, x4] + [x3, x4], 60480, (IV)

(48) x2
1+[x3, x4], x2

2+[x1, x2]+[x1, x4]+[x2, x3]+[x2, x4]+[x3, x4], 60480,
(IV)

(49) x2
1 + [x1, x2], x2

2 + [x1, x2], 210, (V)
(50) x2

1, x
2
2, 630, (VI)

(51) x2
1, x

2
2 + [x1, x3], 3780, (VI)

(52) x2
1, x

2
2 + [x1, x4] + [x2, x3], 7560, (VI)

(53) x2
1, x

2
2 + [x2, x3], 7560, (VI)

(54) x2
1, x

2
2 + [x3, x4], 20160, (VI)
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