New York Journal of Mathematics

New York J. Math. 17 (2011) 1-20.

C^{*}-algebra of the \mathbb{Z}^{n}-tree

Menassie Ephrem

Abstract

Let $\Lambda=\mathbb{Z}^{n}$ with lexicographic ordering. Λ is a totally ordered group. Let $X=\Lambda^{+} * \Lambda^{+}$. Then X is a Λ-tree. Analogous to the construction of graph C^{*}-algebras, we form a groupoid whose unit space is the space of ends of the tree. The C^{*}-algebra of the Λ-tree is defined as the C^{*}-algebra of this groupoid. We prove some properties of this C^{*}-algebra.

Contents

1. Introduction 1
2. The \mathbb{Z}^{n}-tree and its boundary 3
3. The groupoid and C^{*}-algebra of the \mathbb{Z}^{n}-tree 7
4. Generators and relations 9
5. Crossed product by the gauge action 14
6. Final results 18
References 19

1. Introduction

Since the introduction of C^{*}-algebras of groupoids, in the late 1970's, several classes of C^{*}-algebras have been given groupoid models. One such class is the class of graph C^{*}-algebras.

In their paper [10], Kumjian, Pask, Raeburn and Renault associated to each locally finite directed graph E a locally compact groupoid \mathcal{G}, and showed that its groupoid C^{*}-algebra $C^{*}(\mathcal{G})$ is the universal C^{*}-algebra generated by families of partial isometries satisfying the Cuntz-Krieger relations determined by E. In [16], Spielberg constructed a locally compact groupoid \mathcal{G} associated to a general graph E and generalized the result to a general directed graph.

We refer to [13] for the detailed theory of topological groupoids and their C^{*}-algebras.

A directed graph $E=\left(E^{0}, E^{1}, o, t\right)$ consists of a countable set E^{0} of vertices and E^{1} of edges, and maps $o, t: E^{1} \rightarrow E^{0}$ identifying the origin

[^0](source) and the terminus (range) of each edge. For the purposes of this discussion it is sufficient to consider row-finite graphs with no sinks.

For the moment, let T be a bundle of of row-finite directed trees with no sinks, that is a disjoint union of trees that have no sinks or infinite emitters, i.e., no singular vertices. We denote the set of finite paths of T by T^{*} and the set of infinite paths by ∂T.

For each $p \in T^{*}$, define

$$
V(p):=\{p x: x \in \partial T, t(p)=o(x)\} .
$$

For $p, q \in T^{*}$, we see that:

$$
V(p) \cap V(q)= \begin{cases}V(p) & \text { if } p=q r \text { for some } r \in T^{*} \\ V(q) & \text { if } q=p r \text { for some } r \in T^{*} \\ \emptyset & \text { otherwise } .\end{cases}
$$

It is fairly easy to see that:
Lemma 1.1. The cylinder sets $\left\{V(p): p \in T^{*}\right\}$ form a base of compact open sets for a locally compact, totally disconnected, Hausdorff topology of ∂T.

We want to define a groupoid that has ∂T as a unit space. For $x=$ $x_{1} x_{2} \ldots$, and $y=y_{1} y_{2} \ldots \in \partial T$, we say x is shift equivalent to y with lag $k \in$ \mathbb{Z} and write $x \sim_{k} y$, if there exists $n \in \mathbb{N}$ such that $x_{i}=y_{k+i}$ for each $i \geq n$. It is not difficult to see that shift equivalence is an equivalence relation.
Definition 1.2. Let $\mathcal{G}:=\left\{(x, k, y) \in \partial T \times \mathbb{Z} \times \partial T: x \sim_{k} y\right\}$. For pairs in $\mathcal{G}^{2}:=\{((x, k, y),(y, m, z)):(x, k, y),(y, m, z) \in \mathcal{G}\}$, we define

$$
\begin{equation*}
(x, k, y) \cdot(y, m, z)=(x, k+m, z) . \tag{1.1}
\end{equation*}
$$

For arbitrary $(x, k, y) \in \mathcal{G}$, we define

$$
\begin{equation*}
(x, k, y)^{-1}=(y,-k, x) . \tag{1.2}
\end{equation*}
$$

With the operations (1.1) and (1.2), and source and range maps s, r : $\mathcal{G} \longrightarrow \partial T$ given by $s(x, k, y)=y, r(x, k, y)=x, \mathcal{G}$ is a groupoid with unit space ∂T.

For $p, q \in T^{*}$, with $t(p)=t(q)$, define $U(p, q):=\{p x, l(p)-l(q), q x):$ $x \in \partial T, t(p)=o(x)\}$, where $l(p)$ denotes the length of the path p. The sets $\left\{U(p, q): p, q \in T^{*}, t(p)=t(q)\right\}$ make \mathcal{G} a locally compact r-discrete groupoid with (topological) unit space equal to ∂T.

Now let E be a directed graph. We form a graph whose vertices are the paths of E and edges are (ordered) pairs of paths as follows:
Definition 1.3. Let \widetilde{E} denote the following graph:

$$
\begin{aligned}
& \widetilde{E}^{0}=E^{*} \\
& \widetilde{E}^{1}=\left\{(p, q) \in E^{*} \times E^{*}: q=p e \quad \text { for some } \quad e \in E^{1}\right\} \\
& o(p, q)=p, t(p, q)=q .
\end{aligned}
$$

The following lemma, due to Spielberg [16], is straightforward.

Lemma 1.4. [16, Lemma 2.4] \widetilde{E} is a bundle of trees.
Notice that if E is a row-finite graph with no sinks, then \widetilde{E} is a bundle of row-finite trees with no sinks.

If $\mathcal{G}(E)$ is the groupoid obtained as in Definition 1.2 , where \widetilde{E} plays the role of T then, in [16] Spielberg showed, in its full generality, that the graph C^{*}-algebra of E is equal to the C^{*}-algebra of the groupoid $\mathcal{G}(E)$. We refer to [16], for readers interested in the general construction and the proof.

We now examine the C^{*}-algebra \mathcal{O}_{2}, which is the C^{*}-algebra of the graph

Denoting the vertex of E by 0 and the edges of E by a and b, as shown in the graph, the vertices of \widetilde{E} are $0, a, b, a a, a b, b a, b b$, etc. And the graph \widetilde{E} is the binary tree.

Take a typical path p of E, say $p=a a a b b b b b a b b a a a a$. Writing $a a a$ as 3 and $b b b b b$ as 5^{\prime}, etc. we can write p as $35^{\prime} 12^{\prime} 4$ which is an element of $\mathbb{Z}^{+} * \mathbb{Z}^{+}$ (the free product of two copies of \mathbb{Z}^{+}). In other words, the set of vertices of \widetilde{E} is $G_{1}^{+} * G_{2}^{+}$, where $G_{1}^{+}=\mathbb{Z}^{+}=G_{2}^{+}$, and the vertex 0 is the empty word. The elements of $\partial \widetilde{E}$ are the infinite sequence of n 's and m 's, where $n \in G_{1}^{+}$ and $m \in G_{2}^{+}$.

Motivated by this construction, we wish to explore the C^{*}-algebra of the case when Λ is an ordered abelian group, and X is the free product of two copies of Λ^{+}. In this paper we study the special case when $\Lambda=\mathbb{Z}^{n}$ endowed with the lexicographic ordering, where $n \in\{2,3, \ldots\}$.

The paper is organized as follows. In Section 2 we develop the topology of the \mathbb{Z}^{n}-tree. In Section 3 we build the C^{*}-algebra of the \mathbb{Z}^{n}-tree by first building the groupoid \mathcal{G} in a fashion similar to that of the graph groupoid. In Section 4, by explicitly exploring the partial isometries generating the C^{*}-algebra, we give a detailed description of the C^{*}-algebra. In Section 5 , we look at the crossed product of the C^{*}-algebra by the gauge action and study the fixed-point algebra. Finally in Section 6 we provide classification of the C^{*}-algebra. We prove that the C^{*}-algebra is simple, purely infinite, nuclear and classifiable.

I am deeply indebted to Jack Spielberg without whom none of this would have been possible. I also wish to thank Mark Tomforde for many helpful discussions and for providing material when I could not find them otherwise.

2. The \mathbb{Z}^{n}-tree and its boundary

Let $n \in\{2,3, \ldots\}$ and let $\Lambda=\mathbb{Z}^{n}$ together with lexicographic ordering, that is, $\left(k_{1}, k_{2}, \ldots, k_{n}\right)<\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ if either $k_{1}<m_{1}$, or $k_{1}=m_{1}$,
$\ldots, k_{d-1}=m_{d-1}$, and $k_{d}<m_{d}$. We set

$$
\partial \Lambda^{+}=\left\{\left(k_{1}, k_{2}, \ldots, k_{n-1}, \infty\right): k_{i} \in \mathbb{N} \cup\{\infty\}, k_{i}=\infty \Rightarrow k_{i+1}=\infty\right\}
$$

Let $G_{i}=\Lambda^{+}=\{a \in \Lambda: a>0\}$ for $i=1,2$, and let $\partial G_{i}=\partial \Lambda^{+}$ for $i=1,2$. That is, we take two copies of Λ^{+}and label them as G_{1} and G_{2}, and two copies of $\partial \Lambda^{+}$and label them as ∂G_{1} and ∂G_{2}. Now consider the set $X=G_{1} * G_{2}$. We denote the empty word by 0 . Thus, $X=\bigcup_{d=1}^{\infty}\left\{a_{1} a_{2} \ldots a_{d}: a_{i} \in G_{k} \Rightarrow a_{i+1} \in G_{k \pm 1}\right.$ for $\left.1 \leq i<d\right\} \bigcup\{0\}$. We note that X is a Λ-tree, as studied in [4].

Let $\partial X=\left\{a_{1} a_{2} \ldots a_{d}: a_{i} \in G_{k} \Rightarrow a_{i+1} \in G_{k \pm 1}\right.$, for $1 \leq i<d-$ 1 and $\left.a_{d-1} \in G_{k} \Rightarrow a_{d} \in \partial G_{k \pm 1}\right\} \bigcup\left\{a_{1} a_{2} \ldots: a_{i} \in G_{k} \Rightarrow a_{i+1} \in\right.$ $G_{k \pm 1}$ for each $\left.i\right\}$. In words, ∂X contains either a finite sequence of elements of Λ from sets with alternating indices, where the last element is from $\partial \Lambda^{+}$, or an infinite sequence of elements of Λ from sets with alternating indices. For $a \in \Lambda^{+}$and $b \in \partial \Lambda^{+}$, define $a+b \in \partial \Lambda^{+}$by componentwise addition.

For $p=a_{1} a_{2} \ldots a_{k} \in X$ and $q=b_{1} b_{2} \ldots b_{m} \in X \cup \partial X$, i.e., $m \in \mathbb{N} \cup\{\infty\}$, define $p q$ as follows:
(i) If $a_{k}, b_{1} \in G_{i} \cup \partial G_{i}$ (i.e., they belong to sets with the same index), then $p q:=a_{1} a_{2} \ldots a_{k-1}\left(a_{k}+b_{1}\right) b_{2} \ldots b_{m}$. Observe that since $a_{k} \in \Lambda$, the sum $a_{k}+b_{1}$ is defined and is in the same set as b_{1}.
(ii) If a_{k} and b_{1} belong to sets with different indices, then

$$
p q:=a_{1} a_{2} \ldots a_{k} b_{1} b_{2} \ldots b_{m} .
$$

In other words, we concatenate p and q in the most natural way (using the group law in $\Lambda * \Lambda$).

For $p \in X$ and $q \in X \cup \partial X$, we write $p \preceq q$ to mean q extends p, i.e., there exists $r \in X \cup \partial X$ such that $q=p r$.

For $p \in \partial X$ and $q \in X \cup \partial X$, we write $p \preceq q$ to mean q extends p, i.e., for each $r \in X, r \preceq p$ implies that $r \preceq q$.

We now define two length functions. Define $l: X \cup \partial X \longrightarrow(\mathbb{N} \cup\{\infty\})^{n}$ by $l\left(a_{1} a_{2} \ldots a_{k}\right):=\sum_{i=1}^{k} a_{i}$.

And define $l_{i}: X \cup \partial X \longrightarrow \mathbb{N} \cup\{\infty\}$ to be the $i^{\text {th }}$ component of l, i.e., $l_{i}(p)$ is the $i^{\text {th }}$ component of $l(p)$. It is easy to see that both l and l_{i} are additive.

Next, we define basic open sets of ∂X. For $p, q \in X$, we define

$$
V(p):=\{p x: x \in \partial X\} \quad \text { and } \quad V(p ; q):=V(p) \backslash V(q) .
$$

Notice that

$$
V(p) \cap V(q)= \begin{cases}\emptyset & \text { if } p \npreceq q \text { and } q \npreceq p \tag{2.1}\\ V(p) & \text { if } q \preceq p \\ V(q) & \text { if } p \preceq q .\end{cases}
$$

Hence

$$
V(p) \backslash V(q)= \begin{cases}V(p) & \text { if } p \npreceq q \text { and } q \npreceq p \\ \emptyset & \text { if } q \preceq p .\end{cases}
$$

Therefore, we will assume that $p \preceq q$ whenever we write $V(p ; q)$. Let $\mathcal{E}:=\{V(p): p \in X\} \bigcup\{V(p ; q): p, q \in X\}$.

Lemma 2.1. \mathcal{E} separates points of ∂X, that is, if $x, y \in \partial X$ and $x \neq y$ then there exist two sets $A, B \in \mathcal{E}$ such that $x \in A, y \in B$, and $A \cap B=\emptyset$.

Proof. Suppose $x, y \in \partial X$ and $x \neq y$. Let $x=a_{1} a_{2} \ldots a_{s}, y=b_{1} b_{2} \ldots b_{m}$. Assume, without loss of generality, that $s \leq m$. We consider two cases:

Case I. There exists $k<s$ such that $a_{k} \neq b_{k}$ (or they belong to different G_{i} 's).

Then $x \in V\left(a_{1} a_{2} \ldots a_{k}\right), y \in V\left(b_{1} b_{2} \ldots b_{k}\right)$ and

$$
V\left(a_{1} a_{2} \ldots a_{k}\right) \cap V\left(b_{1} b_{2} \ldots b_{k}\right)=\emptyset .
$$

Case II. $a_{i}=b_{i}$ for each $i<s$.
Notice that if $s=\infty$, that is, if both x and y are infinite sequences then there should be a $k \in \mathbb{N}$ such that $a_{k} \neq b_{k}$ which was considered in Case I. Hence $s<\infty$. Again, we distinguish two subcases:
(a) $s=m$. Therefore $x=a_{1} a_{2} \ldots a_{s}$ and $y=a_{1} a_{2} \ldots b_{s}$, and $a_{s}, b_{s} \in$ ∂G_{i}, with $a_{s} \neq b_{s}$. Assuming, without loss of generality, that $a_{s}<b_{s}$, let $a_{s}=\left(k_{1}, k_{2}, \ldots, k_{n-1}, \infty\right)$, and $b_{s}=\left(r_{1}, r_{2}, \ldots, r_{n-1}, \infty\right)$ where $\left(k_{1}, k_{2}, \ldots, k_{n-1}\right)<\left(r_{1}, r_{2}, \ldots, r_{n-1}\right)$. Therefore there must be an index i such that $k_{i}<r_{i}$; let j be the largest such. Hence $a_{s}+e_{j} \leq b_{s}$, where e_{j} is the n-tuple with 1 at the $j^{\text {th }}$ spot and 0 elsewhere. Letting $c=a_{s}+e_{j}$, we see that $x \in A=V\left(a_{1} a_{2} \ldots a_{s-1} ; c\right), y \in B=V(c)$, and $A \cap B=\emptyset$.
(b) $s<m$. Then $y=a_{1} a_{2} \ldots a_{s-1} b_{s} b_{s+1} \ldots b_{m}(m \geq s+1)$.

Since $b_{s+1} \in\left(G_{i} \cup \partial G_{i}\right) \backslash\{0\}$ for $i=1,2$, choose $c=e_{n} \in G_{i}$ (same index as b_{s+1} is in). Then $x \in A=V\left(a_{1} a_{2} \ldots a_{s-1} ; a_{1} a_{2} \ldots a_{s-1} b_{s} c\right)$, $y \in B=V\left(a_{1} a_{2} \ldots a_{s-1} b_{s} c\right)$, and $A \cap B=\emptyset$.
This completes the proof.
Lemma 2.2. \mathcal{E} forms a base of compact open sets for a locally compact Hausdorff topology on ∂X.

Proof. First we prove that \mathcal{E} forms a base. Let $A=V\left(p_{1} ; p_{2}\right)$ and $B=$ $V\left(q_{1} ; q_{2}\right)$. Notice that if $p_{1} \npreceq q_{1}$ and $q_{1} \npreceq p_{1}$ then $A \cap B=\emptyset$. Suppose, without loss of generality, that $p_{1} \preceq q_{1}$ and let $x \in A \cap B$. Then by construction, $p_{1} \preceq q_{1} \preceq x$ and $p_{2} \npreceq x$ and $q_{2} \npreceq x$. Since $p_{2} \npreceq x$ and $q_{2} \npreceq x$, we can choose $r \in X$ such that $q_{1} \preceq r, p_{2} \npreceq r, q_{2} \npreceq r$, and $x=r a$ for some $a \in \partial X$. If $x \npreceq p_{2}$ and $x \npreceq q_{2}$ then r can be chosen so that $r \npreceq p_{2}$ and $r \npreceq q_{2}$, hence $x \in V(r) \subseteq A \cap B$.

Suppose now that $x \preceq p_{2}$. Then $x=r a$, for some $r \in X$ and $a \in \partial X$. By extending r if necessary, we may assume that $a \in \partial \Lambda^{+}$. Then we may write $p_{2}=r b y$ for some $b \in \Lambda^{+}$, and $y \in \partial X$ with $a<b$. Let $b^{\prime}=b-(0, \ldots, 0,1)$, and $s_{1}=r b^{\prime}$. Notice that $x \preceq s_{1} \preceq p_{2}$ and $s_{1} \neq p_{2}$. If $x \npreceq q_{2}$ then we
can choose r so that $r \npreceq q_{2}$. Therefore $x \in V\left(r ; s_{1}\right) \subseteq A \cap B$. If $x \preceq q_{2}$, construct s_{2} the way as s_{1} was constructed, where q_{2} takes the place of p_{2}. Then either $s_{1} \preceq s_{2}$ or $s_{2} \preceq s_{1}$. Set

$$
s= \begin{cases}s_{1} & \text { if } s_{1} \preceq s_{2} \\ s_{2} & \text { if } s_{2} \preceq s_{1} .\end{cases}
$$

Then $x \in V(r ; s) \subseteq A \cap B$. The cases when A or B is of the form $V(p)$ are similar, in fact easier.

That the topology is Hausdorff follows from the fact that \mathcal{E} separates points.

Next we prove local compactness. Given $p, q \in X$ we need to prove that $V(p ; q)$ is compact. Since $V(p ; q)=V(p) \backslash V(q)$ is a (relatively) closed subset of $V(p)$, it suffices to show that $V(p)$ is compact. Let $A_{0}=V(p)$ be covered by an open cover \mathcal{U} and suppose that A_{0} does not admit a finite subcover. Choose $p_{1} \in X$ such that $l_{i}\left(p_{1}\right) \geq 1$ and $V\left(p p_{1}\right)$ does not admit a finite subcover, for some $i \in\{1, \ldots, n-1\}$. We consider two cases:
Case I. Suppose no such p_{1} exists.
Let $a=e_{n} \in G_{1}, b=e_{n} \in G_{2}$. Then $V(p)=V(p a) \cup V(p b)$. Hence either $V(p a)$ or $V(p b)$ is not finitely covered, say $V(p a)$, then let $x_{1}=$ a. After choosing x_{s}, since $V\left(p x_{1} \ldots x_{s}\right)=V\left(p x_{1} \ldots x_{s} a\right) \cup V\left(p x_{1} \ldots x_{s} b\right)$, either $V\left(p x_{1} \ldots x_{s} a\right)$ or $V\left(p x_{1} \ldots x_{s} b\right)$ is not finitely covered. And we let $x_{s+1}=a$ or b accordingly. Now let $A_{j}=V\left(p x_{1} \ldots x_{j}\right)$ for $j \geq 1$ and let $x=p x_{1} x_{2} \ldots \in \partial X$. Notice that $A_{0} \supseteq A_{1} \supseteq A_{2} \ldots$, and $x \in \bigcap_{j=0}^{\infty} A_{j}$. Choose $A^{\prime} \in \mathcal{U}, q, r \in X$, such that $x \in V(q ; r) \subseteq A^{\prime}$. Clearly $q \preceq x$ and $r \npreceq x$. Once again, we distinguish two subcases:
(a) $x \npreceq r$. Then, for a large enough k we get $q \preceq p x_{1} x_{2} \ldots x_{k}$ and $p x_{1} x_{2} \ldots x_{k} \npreceq r$. Therefore $A_{k}=V\left(p x_{1} x_{2} \ldots x_{k}\right) \subseteq A^{\prime}$, which contradicts to that A_{k} is not finitely covered.
(b) $x \preceq r$. Notice $l_{1}(x)=l_{1}(p)$ and since $x=p x_{1} x_{2} \ldots \preceq r$, we have $l_{1}(x)=l_{1}(p)<l_{1}(r)$. Therefore $V(r)$ is finitely covered, say by $B_{1}, B_{2}, \ldots, B_{s} \in \mathcal{U}$. For large enough $k, q \preceq p x_{1} x_{2} \ldots x_{k}$. Therefore $A_{k}=V\left(p x_{1} x_{2} \ldots x_{k}\right) \subseteq V(q)=V(q ; r) \cup V(r) \subseteq A^{\prime} \cup \bigcup_{j=1}^{n} B_{j}$, which is a finite union. This is a contradiction.

Case II. Let $p_{1} \in X$ such that $l_{i}\left(p_{1}\right) \geq 1$ and $V\left(p p_{1}\right)$ is not finitely covered, for some $i \in\{1, \ldots, n-1\}$.

Having chosen p_{1}, \ldots, p_{s} let p_{s+1} with $l_{i}\left(p_{s+1}\right) \geq 1$ and $V\left(p p_{1} \ldots p_{s+1}\right)$ not finitely covered, for some $i \in\{1, \ldots, n-1\}$. If no such p_{s+1} exists then we are back in to Case I with $V\left(p p_{1} p_{2} \ldots p_{s}\right)$ playing the role of $V(p)$. Now let $x=p p_{1} p_{2} \ldots \in \partial X$ and let $A_{j}=V\left(p p_{1} \ldots p_{j}\right)$. We get $A_{0} \supseteq A_{1} \supseteq \ldots$, and $x=p p_{1} p_{2} \ldots \in \bigcap_{j=0}^{\infty} A_{j}$. Choose $A^{\prime} \in \mathcal{U}$ such that $x \in V(q ; r) \subseteq A^{\prime}$. Notice that $q \preceq x$ and $n-1$ is finite, hence there exists $i_{0} \in\{1, \ldots, n-1\}$ such that $l_{i_{0}}(x)=\infty$. Since $l_{i_{0}}(r)<\infty$, we have $x \npreceq r$. Therefore, for large enough $k, q \preceq p p_{1} \ldots p_{k} \npreceq r$, implying $A_{k} \subseteq A^{\prime}$, a contradiction.

Therefore $V(p)$ is compact.

3. The groupoid and C^{*}-algebra of the \mathbb{Z}^{n}-tree

We are now ready to form the groupoid which will eventually be used to construct the C^{*}-algebra of the Λ-tree.

For $x, y \in \partial X$ and $k \in \Lambda$, we write $x \sim_{k} y$ if there exist $p, q \in X$ and $z \in \partial X$ such that $k=l(p)-l(q)$ and $x=p z, y=q z$.

Notice that:
(a) If $x \sim_{k} y$ then $y \sim_{-k} x$.
(b) $x \sim_{0} x$.
(c) If $x \sim_{k} y$ and $y \sim_{m} z$ then $x=\mu t, y=\nu t, y=\eta s, z=\beta s$ for some $\mu, \nu, \eta, \beta \in X t, s \in \partial X$ and $k=l(\mu)-l(\nu), m=l(\eta)-l(\beta)$.

If $l(\eta) \leq l(\nu)$ then $\nu=\eta \delta$ for some $\delta \in X$. Therefore $y=\eta \delta t$, implying $s=\delta t$, hence $z=\beta \delta t$. Therefore $x \sim_{r} z$, where $r=$ $l(\mu)-l(\beta \delta)=l(\mu)-l(\beta)-l(\delta)=l(\mu)-l(\beta)-(l(\nu)-l(\eta))=$ $[l(\mu)-l(\nu)]+[l(\eta)-l(\beta)]=k+m$.

Similarly, if $l(\eta) \geq l(\nu)$ we get $x \sim_{r} z$, where $r=k+m$.
Definition 3.1. Let $\mathcal{G}:=\left\{(x, k, y) \in \partial X \times \Lambda \times \partial X: x \sim_{k} y\right\}$.
For pairs in $\mathcal{G}^{2}:=\{((x, k, y),(y, m, z)):(x, k, y),(y, m, z) \in \mathcal{G}\}$, we define

$$
\begin{equation*}
(x, k, y) \cdot(y, m, z)=(x, k+m, z) . \tag{3.1}
\end{equation*}
$$

For arbitrary $(x, k, y) \in \mathcal{G}$, we define

$$
\begin{equation*}
(x, k, y)^{-1}=(y,-k, x) . \tag{3.2}
\end{equation*}
$$

With the operations (3.1) and (3.2), and source and range maps s, r : $\mathcal{G} \longrightarrow \partial X$ given by $s(x, k, y)=y, r(x, k, y)=x, \mathcal{G}$ is a groupoid with unit space ∂X.

We want to make \mathcal{G} a locally compact r-discrete groupoid with (topological) unit space ∂X.

For $p, q \in X$ and $A \in \mathcal{E}$, define $[p, q]_{A}=\{(p x, l(p)-l(q), q x): x \in A\}$.
Lemma 3.2. For $p, q, r, s \in X$ and $A, B \in \mathcal{E}$,

$$
\begin{aligned}
{[p, q]_{A} \cap[r, s]_{B} } & = \begin{cases}{[p, q]_{A \cap \mu B}} & \text { if there exists } \mu \in X \text { such that } r=p \mu, s=q \mu \\
{[r, s]_{(\mu A) \cap B}} & \text { if there exists } \mu \in X \text { such that } p=r \mu, q=s \mu \\
\emptyset & \text { otherwise. }\end{cases}
\end{aligned}
$$

Proof. Let $t \in[p, q]_{A} \cap[r, s]_{B}$. Then $t=(p x, k, q x)=(r y, m, s y)$ for some $x \in A, y \in B$. Clearly $k=m$. Furthermore, $p x=r y$ and $q x=s y$. Suppose that $l(p) \leq l(r)$. Then $r=p \mu$ for some $\mu \in X$, hence $p x=p \mu y$, implying $x=\mu y$. Hence $q x=q \mu y=s y$, implying $q \mu=s$. Therefore $t=(p x, k, q x)=(p \mu y, k, q \mu y)$, that is, $t=(p x, k, q x)$ for some $x \in A \cap \mu B$.

The case when $l(r) \leq l(p)$ follows by symmetry. The reverse containment is clear.

Proposition 3.3. Let \mathcal{G} have the relative topology inherited from $\partial X \times$ $\Lambda \times \partial X$. Then \mathcal{G} is a locally compact Housdorff groupoid, with base $\mathcal{D}=$ $\left\{[a, b]_{A}: a, b \in X, A \in \mathcal{E}\right\}$ consisting of compact open subsets.

Proof. That \mathcal{D} is a base follows from Lemma 3.2. $[a, b]_{A}$ is a closed subset of $a A \times\{l(a)-l(b)\} \times b A$, which is a compact open subset of $\partial X \times \Lambda \times \partial X$. Hence $[a, b]_{A}$ is compact open in \mathcal{G}.

To prove that inversion is continuous, let $\phi: \mathcal{G} \longrightarrow \mathcal{G}$ be the inversion function. Then $\phi^{-1}\left([a, b]_{A}\right)=[b, a]_{A}$. Therefore ϕ is continuous. In fact ϕ is a homeomorphism.

For the product function, let $\psi: \mathcal{G}^{2} \longrightarrow \mathcal{G}$ be the product function. Then $\psi^{-1}\left([a, b]_{A}\right)=\bigcup_{c \in X}\left(\left([a, c]_{A} \times[c, b]_{A}\right) \cap \mathcal{G}^{2}\right)$ which is open (is a union of open sets).

Remark 3.4. We remark the following points:
(a) Since the set \mathcal{D} is countable, the topology is second countable.
(b) We can identify the unit space, ∂X, of \mathcal{G} with the subset $\{(x, 0, x)$: $x \in \partial X\}$ of \mathcal{G} via $x \mapsto(x, 0, x)$. The topology on ∂X agrees with the topology it inherits by viewing it as the subset $\{(x, 0, x): x \in \partial X\}$ of \mathcal{G}.

Proposition 3.5. For each $A \in \mathcal{E}$ and each $a, b \in X,[a, b]_{A}$ is a \mathcal{G}-set. \mathcal{G} is r-discrete.

Proof.

$$
\begin{aligned}
{[a, b]_{A} } & =\{(a x, l(a)-l(b), b x): x \in A\} \\
\Rightarrow\left([a, b]_{A}\right)^{-1} & =\{(b x, l(b)-l(a), a x): x \in A\} .
\end{aligned}
$$

Hence, $((a x, l(a)-l(b), b x)(b y, l(b)-l(a), a y)) \in[a, b]_{A} \times\left([a, b]_{A}\right)^{-1} \cap \mathcal{G}^{2}$ if and only if $x=y$. And in that case, $(a x, l(a)-l(b), b x) \cdot(b x, l(b)-l(a), a x)=$ $(a x, 0, a x) \in \partial X$, via the identification stated in Remark 3.4(b). This gives $[a, b]_{A} \cdot\left([a, b]_{A}\right)^{-1} \subseteq \partial X$. Similarly, $\left([a, b]_{A}\right)^{-1} \cdot[a, b]_{A} \subseteq \partial X$. Therefore \mathcal{G} has a base of compact open \mathcal{G}-sets, implying \mathcal{G} is r-discrete.

Define $C^{*}(\Lambda)$ to be the C^{*} algebra of the groupoid \mathcal{G}. Thus $C^{*}(\Lambda)=$ $\overline{\operatorname{span}}\left\{\chi_{S}: S \in \mathcal{D}\right\}$.

For $A=V(p) \in \mathcal{E}$,

$$
\begin{aligned}
{[a, b]_{A}=[a, b]_{V(p)} } & =\{(a x, l(a)-l(b), b x): x \in V(p)\} \\
& =\{(a x, l(a)-l(b), b x): x=p t, t \in \partial X\} \\
& =\{(a p t, l(a)-l(b), b p t): t \in \partial X\} \\
& =[a p, b p]_{\partial X} .
\end{aligned}
$$

And for $A=V(p ; q)=V(p) \backslash V(q) \in \mathcal{E}$,

$$
\begin{aligned}
{[a, b]_{A} } & =\{(a x, l(a)-l(b), b x): x \in V(p) \backslash V(q)\} \\
& =\{(a x, l(a)-l(b), b x): x \in V(p)\} \backslash\{(a x, l(a)-l(b), b x): x \in V(q)\} \\
& =[a p, b p]_{\partial X} \backslash[a q, b q]_{\partial X} .
\end{aligned}
$$

Denoting $[a, b]_{\partial X}$ by $U(a, b)$ we get:

$$
\mathcal{D}=\{U(a, b): a, b \in X\} \bigcup\{U(a, b) \backslash U(c, d): a, b, c, d \in X, a \preceq c, b \preceq d\} .
$$

Moreover $\chi_{U(a, b) \backslash U(c, d)}=\chi_{U(a, b)}-\chi_{U(c, d)}$, whenever $a \preceq c, b \preceq d$. This gives us:

$$
C^{*}(\Lambda)=\overline{\operatorname{span}}\left\{\chi_{U(a, b)}: a, b \in X\right\} .
$$

4. Generators and relations

For $p \in X$, let $s_{p}=\chi_{U(p, 0)}$, where 0 is the empty word. Then:

$$
\begin{aligned}
s_{p}^{*}(x, k, y) & =\overline{\chi_{U(p, 0)}\left((x, k, y)^{-1}\right)} \\
& =\chi_{U(p, 0)}(y,-k, x) \\
& =\chi_{U(0, p)}(x, k, y) .
\end{aligned}
$$

Hence $s_{p}^{*}=\chi_{U(0, p)}$.
And for $p, q \in X$,

$$
\begin{aligned}
s_{p} s_{q}(x, k, y) & =\sum_{y \sim_{m} z} \chi_{U(p, 0)}((x, k, y)(y, m, z)) \chi_{U(q, 0)}\left((y, m, z)^{-1}\right) \\
& =\sum_{y \sim_{m} z} \chi_{U(p, 0)}(x, k+m, z) \chi_{U(q, 0)}(z,-m, y) .
\end{aligned}
$$

Each term in this sum is zero except when $x=p z$, with $k+m=l(p)$, and $z=q y$, with $l(q)=-m$. Hence, $k=l(p)-m=l(p)+l(q)$, and $x=p z=p q y$. Therefore $s_{p} s_{q}(x, k, y)=\chi_{U(p q, 0)}(x, k, y)$; that is, $s_{p} s_{q}=\chi_{U(p q, 0)}=s_{p q}$.

Moreover,

$$
\begin{aligned}
s_{p} s_{q}^{*}(x, k, y) & =\sum_{y \sim_{m} z} \chi_{U(p, 0)}((x, k, y)(y, m, z)) \chi_{U(0, q)}\left((y, m, z)^{-1}\right) \\
& =\sum_{y \sim_{m} z} \chi_{U(p, 0)}(x, k+m, z) \chi_{U(0, q)}(z,-m, y) \\
& =\sum_{y \sim_{m} z} \chi_{U(p, 0)}(x, k+m, z) \chi_{U(q, 0)}(y, m, z) .
\end{aligned}
$$

Each term in this sum is zero except when $x=p z, k+m=l(p), y=q z$, and $l(q)=m$. That is, $k=l(p)-l(q)$, and $x=p z, y=q z$. Therefore $s_{p} s_{q}^{*}(x, k, y)=\chi_{U(p, q)}(x, k, y)$; that is, $s_{p} s_{q}^{*}=\chi_{U(p, q)}$.

Notice also that

$$
s_{p}^{*} s_{q}(x, k, y)=\sum_{y \sim_{m} z} \chi_{U(0, p)}((x, k, y)(y, m, z)) \chi_{U(q, 0)}\left((y, m, z)^{-1}\right)
$$

$$
=\sum_{y \sim_{m} z} \chi_{U(0, p)}(x, k+m, z) \chi_{U(q, 0)}(z,-m, y)
$$

is nonzero exactly when $z=p x, l(p)=-(k+m), z=q y$, and $l(q)=-m$, which implies that $p x=q y, l(p)=-k-m=-k+l(q)$. This implies that $s_{p}^{*} s_{q}$ is nonzero only if either $p \preceq q$ or $q \preceq p$.

If $p \preceq q$ then there exists $r \in X$ such that $q=p r$. But $-k=l(p)-l(q) \Rightarrow$ $k=l(q)-l(p)=l(r)$. And $q y=p r y \Rightarrow x=r y$. Therefore $s_{p}^{*} s_{q}=s_{r}$. And if $q \preceq p$ then there exists $r \in X$ such that $p=q r$. Then $\left(s_{p}^{*} s_{q}\right)^{*}=s_{q}^{*} s_{p}=s_{r}$. Hence $s_{p}^{*} s_{q}=s_{r}^{*}$. In short,

$$
s_{p}^{*} s_{q}= \begin{cases}s_{r} & \text { if } q=p r \\ s_{r}^{*} & \text { if } p=q r \\ 0 & \text { otherwise }\end{cases}
$$

We have established that

$$
\begin{equation*}
C^{*}(\Lambda)=\overline{\operatorname{span}}\left\{s_{p} s_{q}^{*}: p, q \in X\right\} \tag{4.1}
\end{equation*}
$$

Let $\mathcal{G}_{0}:=\{(x, 0, y) \in \mathcal{G}: x, y \in \partial X\}$. Then \mathcal{G}_{0}, with the relative topology, has the basic open sets $[a, b]_{A}$, where $A \in \mathcal{E}, a, b \in X$ and $l(a)=l(b)$. Clearly \mathcal{G}_{0} is a subgroupoid of \mathcal{G}. And

$$
\begin{aligned}
C^{*}\left(\mathcal{G}_{0}\right) & =\overline{\operatorname{span}}\left\{\chi_{U(p, q)}: p, q \in X, l(p)=l(q)\right\} \\
& \subseteq \overline{\operatorname{span}}\left\{\chi_{[p, q]_{A}}: p, q \in X, l(p)=l(q), A \subseteq \partial X \text { is compact open }\right\} \\
& \subseteq C^{*}\left(\mathcal{G}_{0}\right)
\end{aligned}
$$

The second inclusion is due to the fact that $[p, q]_{A}$ is compact open whenever $A \subseteq \partial X$ is, hence $\chi_{[a, b]_{A}} \in C_{c}\left(\mathcal{G}_{0}\right) \subseteq C^{*}\left(\mathcal{G}_{0}\right)$.

We wish to prove that the C^{*}-algebra $C^{*}\left(\mathcal{G}_{0}\right)$ is an AF algebra. But first notice that for any $\mu \in X, V(\mu)=V\left(\mu e_{n}^{\prime}\right) \cup V\left(\mu e_{n}^{\prime \prime}\right)$, where $e_{n}^{\prime}=e_{n}=$ $(0, \ldots, 0,1) \in G_{1}$ and $e_{n}^{\prime \prime}=e_{n} \in G_{2}$.

Take a basic open set $A=V(\mu) \backslash\left(\bigcup_{k=1}^{m_{1}} V\left(\nu_{k}\right)\right)$. It is possible to rewrite A as $V(p) \backslash\left(\bigcup_{k=1}^{m_{2}} V\left(r_{k}\right)\right)$ with $\mu \neq p$. Here is a relatively simple example (pointed out to the author by Spielberg): $V(\mu) \backslash V\left(\mu e_{n}^{\prime}\right)=V\left(\mu e_{n}^{\prime \prime}\right)$, where $e_{n}^{\prime}=e_{n} \in G_{1}$ and $e_{n}^{\prime \prime}=e_{n} \in G_{2}$.
Lemma 4.1. Suppose $A=V(\mu) \backslash\left(\bigcup_{k=1}^{s} V\left(\mu \nu_{k}\right)\right) \neq \emptyset$. Then we can write A as $A=V(p) \backslash\left(\bigcup_{k=1}^{m_{1}} V\left(p r_{k}\right)\right)$ where $l(p)$ is the largest possible, that is, if $A=V(q) \backslash\left(\bigcup_{j=1}^{m_{2}} V\left(q s_{j}\right)\right)$ then $l(q) \leq l(p)$.
Proof. We take two cases:
Case I. For each $k=1, \ldots, s$, there exists $i \in\{1, \ldots, n-1\}$ with $l_{i}\left(\nu_{k}\right) \geq 1$.
Choose $p=\mu, r_{k}=\nu_{k}$ for each k (i.e., leave A the way it is). Suppose now that $A=V(q) \backslash\left(\bigcup_{j=1}^{m_{2}} V\left(q s_{j}\right)\right)$ with $l(p) \leq l(q)$. We will prove that $l(p)=l(q)$. Assuming the contrary, suppose $l(p)<l(q)$. Let $x \in A \Rightarrow$ $x=q y$ for some $y \in \partial X$. Since $q y \in V(p) \backslash\left(\bigcup_{k=1}^{s} V\left(p r_{k}\right)\right), p \preceq q y$. But $l(p)<l(q) \Rightarrow p \preceq q$. Let $q=p r$, since $p \neq q, r \neq 0$. Let $r=a_{1} a_{2} \ldots a_{d}$.

Either $a_{1} \in G_{1} \backslash\{0\}$ or $a_{1} \in G_{2} \backslash\{0\}$. Suppose, for definiteness, $a_{1} \in G_{1} \backslash\{0\}$. Take $t=(0, \ldots, 0, \infty) \in \partial G_{2}$. Since $l\left(r_{k}\right)>l(t)$ for each $k=1, \ldots, s$, we get $p r_{k} \npreceq p t$ for each $k=1, \ldots, s$, moreover $p t \in V(p)$. Hence $p t \in A$. But $p r \npreceq p t \Rightarrow q \npreceq p t \Rightarrow p t \notin V(q) \Rightarrow p t \notin V(q) \backslash\left(\bigcup_{j=1}^{m_{2}} V\left(q s_{j}\right)\right)$ which is a contradiction to $A=V(q) \backslash\left(\bigcup_{j=1}^{m_{2}} V\left(q s_{j}\right)\right)$. Therefore $l(p)=l(q)$. In fact, $p=q$.

Case II. There exists $k \in\{1, \ldots, s\}$ with $l_{i}\left(\nu_{k}\right)=0$, for each $i=1, \ldots, n-1$.
After rearranging, suppose that $l_{i}\left(\nu_{k}\right)=0$ for each $k=1, \ldots, \alpha$ and each $i=1, \ldots, n-1$; and that for each $k=\alpha+1, \ldots, s, l_{i}\left(\nu_{k}\right) \geq 1$ for some $i \leq n-1$. We can also assume that $l\left(\nu_{1}\right)$ is the largest of $l\left(\nu_{k}\right)$'s for $k \leq \alpha$. Then

$$
\begin{aligned}
A & =V(\mu) \backslash\left(\bigcup_{k=1}^{s} V\left(\mu \nu_{k}\right)\right) \\
& =\left[V(\mu) \backslash\left(\bigcup_{k=1}^{\alpha} V\left(\mu \nu_{k}\right)\right)\right] \bigcap\left[V(\mu) \backslash\left(\bigcup_{k=\alpha+1}^{s} V\left(\mu \nu_{k}\right)\right)\right] .
\end{aligned}
$$

Let $m e_{n}=l\left(\nu_{1}\right)$ which is non zero. We will prove that if we can rewrite A as $V(q) \backslash\left(\bigcup_{k=1}^{m_{2}} V\left(q s_{k}\right)\right)$ with $l(\mu) \leq l(q)$ then $q=\mu r$ with $0 \leq l(r) \leq m\left(e_{n}\right)$.

Clearly if $\mu \npreceq q$, then $A \cap V(q)=\emptyset$. So, if $A \cap V(q) \backslash\left(\bigcup_{k=1}^{m_{2}} V\left(q s_{k}\right)\right) \neq \emptyset$ then $\mu \preceq q$. Now let $q=\mu r$, and let $\nu_{1}=a_{1} a_{2} \ldots a_{d}$. Observe that since for each $j, a_{j} \in \Lambda^{+}$and that $l_{k}\left(\nu_{1}\right)=0$ for each $k \leq n-1$, we have $l_{k}\left(a_{j}\right)=0$ for all $k \leq n-1$. Also, by assumption, $l\left(\nu_{1}\right)>0$, therefore either $a_{d} \in G_{1} \backslash\{0\}$ or $a_{d} \in G_{2} \backslash\{0\}$. Suppose, for definiteness, that $a_{d} \in G_{1} \backslash\{0\}$. Let $a_{d}^{\prime}=a_{d}-e_{n}$ and let $\nu^{\prime}=a_{1} a_{2} \ldots a_{d}^{\prime}$ (or just $a_{1} a_{2} \ldots a_{d-1}$, if $a_{d}^{\prime}=0$). If $V\left(\mu \nu^{\prime}\right) \cap A=\emptyset$ then we can replace ν_{1} by ν^{\prime} in the expression of A and and (after rearranging the $\nu_{i}^{\prime} s$) choose a new ν_{1}. Since $A \neq \emptyset$ this process of replacement must stop with $V\left(\mu \nu^{\prime}\right) \cap A \neq \emptyset$. Letting $e_{n}^{\prime}=e_{n} \in G_{1}$ and $e_{n}^{\prime \prime}=e_{n} \in G_{2}$, then $V\left(\mu \nu^{\prime}\right)=V\left(\mu \nu^{\prime} e_{n}^{\prime}\right) \cup V\left(\mu \nu^{\prime} e_{n}^{\prime \prime}\right)=$ $V\left(\mu \nu_{1}\right) \cup V\left(\mu \nu^{\prime} e_{n}^{\prime \prime}\right)$. Since $V\left(\mu \nu_{1}\right) \cap A=\emptyset, A \cap V\left(\mu \nu^{\prime} e_{n}^{\prime \prime}\right) \neq \emptyset$ hence $\nu^{\prime} e_{n}^{\prime \prime} \notin$ $\left\{\nu_{1}, \ldots, \nu_{\alpha}\right\}$. Take $t^{\prime}=(0, \ldots, 0, \infty) \in \partial G_{1}$ and $t^{\prime \prime}=(0, \ldots, 0, \infty) \in \partial G_{2}$. Then $\mu \nu^{\prime} e_{n}^{\prime \prime} t^{\prime}, \mu \nu^{\prime} e_{n}^{\prime \prime} t^{\prime \prime} \in V(\mu) \backslash\left(\bigcup_{k=1}^{\alpha} V\left(\mu \nu_{k}\right)\right)$. Moreover, for each $k=$ $\alpha+1, \ldots, s$, we have $l\left(\nu^{\prime} e_{n}^{\prime \prime} t^{\prime}\right), l\left(\nu^{\prime} e_{n}^{\prime \prime} t^{\prime \prime}\right)<l\left(\nu_{k}\right)$, implying $\mu \nu^{\prime} e_{n}^{\prime \prime} t^{\prime}, \mu \nu^{\prime} e_{n}^{\prime \prime} t^{\prime \prime} \in$ $V(\mu) \backslash\left(\bigcup_{k=\alpha+1}^{s} V\left(\mu \nu_{k}\right)\right)$. Hence $\mu \nu^{\prime} e_{n}^{\prime \prime} t^{\prime}, \mu \nu^{\prime} e_{n}^{\prime \prime} t^{\prime \prime} \in V(q) \backslash\left(\bigcup_{k=1}^{m_{2}} V\left(q s_{k}\right)\right)$. Therefore $q \preceq \mu \nu^{\prime} e_{n}^{\prime \prime} \Rightarrow \mu r \preceq \mu \nu^{\prime} e_{n}^{\prime \prime} \Rightarrow 0 \leq l(r) \leq l\left(\nu^{\prime} e_{n}^{\prime \prime}\right)=l\left(\nu^{\prime}\right)+e_{n}=m e_{n}$. Therefore there is only a finite possible r 's we can choose form. [In fact, since $r \preceq \nu^{\prime} e_{n}^{\prime \prime}$, there are at most m of them to choose from.]

To prove that $C^{*}\left(\mathcal{G}_{0}\right)$ is an AF algebra, we start with a finite subset \mathcal{U} of the generating set $\left\{\chi_{U(p, q)}: p, q \in X, l(p)=l(q)\right\}$ and show that there is a finite dimensional C^{*}-subalgebra of $C^{*}\left(\mathcal{G}_{0}\right)$ that contains the set \mathcal{U}.

Theorem 4.2. $C^{*}\left(\mathcal{G}_{0}\right)$ is an AF algebra.

Proof. Suppose that $\mathcal{U}=\left\{\chi_{U\left(p_{1}, q_{1}\right)}, \chi_{U\left(p_{2}, q_{2}\right)}, \ldots \chi_{U\left(p_{s}, q_{s}\right)}\right\}$ is a (finite) subset of the generating set of $C^{*}\left(\mathcal{G}_{0}\right)$. Let

$$
\mathcal{S}:=\left\{V\left(p_{1}\right), V\left(q_{1}\right), V\left(p_{2}\right), V\left(q_{2}\right), \ldots, V\left(p_{s}\right), V\left(q_{s}\right)\right\}
$$

We "disjointize" the set \mathcal{S} as follows. For a subset \mathbf{F} of \mathcal{S}, write

$$
A_{\mathbf{F}}:=\bigcap_{A \in \mathbf{F}} A \backslash \bigcup_{A \notin \mathbf{F}} A .
$$

Define

$$
\mathcal{C}:=\left\{A_{\mathbf{F}}: \mathbf{F} \subseteq \mathcal{S}\right\} .
$$

Clearly, the set \mathcal{C} is a finite collection of pairwise disjoint sets. A routine computation reveals that for any $E \in \mathcal{S}, E=\bigcup\{C \in \mathcal{C}: C \subseteq E\}$. It follows from (2.1) that for any $\mathbf{F} \subseteq \mathcal{S}, \bigcap_{A \in \mathbf{F}} A=V(p)$, for some $p \in X$, if it is not empty. Hence,

$$
A_{\mathbf{F}}=V(p) \backslash \bigcup_{i=1}^{k} V\left(p r_{i}\right)
$$

for some $p \in X$ and some $r_{i} \in X$. Let $p_{\mathbf{F}} \in X$ be such that $A_{\mathbf{F}}=V(p) \backslash$ $\bigcup_{i=1}^{k} V\left(p r_{i}\right)$ and $l\left(p_{\mathbf{F}}\right)$ is maximum (as in Lemma 4.1). Then

$$
\begin{aligned}
A_{\mathbf{F}} & =p_{\mathbf{F}}\left(\partial X \backslash\left(\bigcup_{i=1}^{k} V\left(r_{i}\right)\right)\right) \\
& =p_{\mathbf{F}} C_{\mathbf{F}}
\end{aligned}
$$

where $C_{\mathbf{F}}=\partial X \backslash\left(\bigcup_{i=1}^{k} V\left(r_{i}\right)\right)$. Now $V\left(p_{\alpha}\right)=p_{F_{1}} C_{F_{1}} \cup p_{F_{2}} C_{F_{2}} \cup \ldots \cup p_{F_{k}} C_{F_{k}}$ where $\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}=\left\{F \subseteq \mathcal{S}: V\left(p_{\alpha}\right) \in F\right\}$. Notice that $p_{F_{i}} C_{F_{i}} \subseteq$ $V\left(p_{\alpha}\right)$ for each i, hence $p_{\alpha} \preceq p_{F_{i}}$. Hence $p_{F_{i}} C_{F_{i}}=p_{\alpha} t_{i} C_{F_{i}}$, for some $t_{i} \in X$. Therefore $V\left(p_{\alpha}\right)=p_{\alpha} U_{1} \cup p_{\alpha} U_{2} \cup \ldots \cup p_{\alpha} U_{k}$ where $U_{i}=t_{i} C_{F_{i}}$. Similarly $V\left(q_{\alpha}\right)=q_{\alpha} V_{1} \cup q_{\alpha} V_{2} \cup \ldots \cup q_{\alpha} V_{m}$, where each $q_{\alpha} V_{i} \in \mathcal{C}$ is subset of $V\left(q_{\alpha}\right)$. Consider the set

$$
\mathcal{B}:=\left\{[p, q]_{C \cap D}: p C, q D \in \mathcal{C} \text { and } p=p_{\alpha}, q=q_{\alpha}, 1 \leq \alpha \leq s\right\} .
$$

Since \mathcal{C} is a finite collection, this collection is finite too. We will prove that \mathcal{B} is pairwise disjoint.

Suppose $[p, q]_{C \cap D} \bigcap\left[p^{\prime}, q^{\prime}\right]_{C^{\prime} \cap D^{\prime}}$ is non-empty. Clearly $p(C \cap D) \bigcap p^{\prime}\left(C^{\prime} \cap\right.$ $\left.D^{\prime}\right) \neq \emptyset$, and $q(C \cap D) \cap q^{\prime}\left(C^{\prime} \cap D^{\prime}\right) \neq \emptyset$. Therefore, among other things, $p C \cap p^{\prime} C^{\prime} \neq \emptyset$ and $q D \cap q^{\prime} D^{\prime} \neq \emptyset$, but by construction, $\left\{p C, q D, p^{\prime} C^{\prime}, q^{\prime} D^{\prime}\right\}$ is pairwise disjoint. Hence $p C=p^{\prime} C^{\prime}$ and $q D=q^{\prime} D^{\prime}$. Suppose, without loss of generality, that $l(p) \leq l\left(p^{\prime}\right)$. Then $p^{\prime}=p r$ and $q^{\prime}=q s$ for some $r, s \in X$, hence $\left[p^{\prime}, q^{\prime}\right]_{C^{\prime} \cap D^{\prime}}=[p r, q s]_{C^{\prime} \cap D^{\prime}}$. Let $(p x, 0, q x) \in[p, q]_{C \cap D} \cap[p r, q s]_{C^{\prime} \cap D^{\prime}}$. Then $p x=p r t$ and $q x=q s t$, for some $t \in C^{\prime} \cap D^{\prime}$, hence $x=r t=s t$. Therefore $r=s$ (since $\left.l(r)=l\left(p^{\prime}\right)-l(p)=l\left(q^{\prime}\right)-l(q)=l(s)\right)$. Hence $p C=p^{\prime} C^{\prime}=p r C^{\prime}$, and $q D=q^{\prime} D^{\prime}=q r D^{\prime}$, implying $C=r C^{\prime}$ and $D=r D^{\prime}$. This gives us $C \cap D=r C^{\prime} \cap r D^{\prime}=r\left(C^{\prime} \cap D^{\prime}\right)$. Hence $\left[p^{\prime}, q^{\prime}\right]_{C^{\prime} \cap D^{\prime}}=$
$[p r, q r]_{C^{\prime} \cap D^{\prime}}=[p, q]_{r\left(C^{\prime} \cap D^{\prime}\right)}=[p, q]_{C \cap D}$. Therefore \mathcal{B} is a pairwise disjoint collection.

For each $[p, q]_{C \cap D} \in \mathcal{B}$, since $C \cap D$ is of the form $V(\mu) \backslash \bigcup_{i=1}^{k} V\left(\mu \nu_{i}\right)$, we can rewrite $C \cap D$ as μW, where $W=\partial X \backslash \bigcup_{i=1}^{k} V\left(\nu_{i}\right)$ and $l(\mu)$ is maximal (by Lemma 4.1). Then $[p, q]_{C \cap D}=[p, q]_{\mu W}=[p \mu, q \mu]_{W}$. Hence each $[p, q]_{C \cap D} \in \mathcal{B}$ can be written as $[p, q]_{W}$ where $l(p)=l(q)$ is maximal and $W=\partial X \backslash \bigcup_{i=1}^{k} V\left(\nu_{i}\right)$.

Consider the collection $\mathcal{D}:=\left\{\chi_{[p, q]_{W}}:[p, q]_{W} \in \mathcal{B}\right\}$. We will show that, for each $1 \leq \alpha \leq s, \chi_{U\left(p_{\alpha}, q_{\alpha}\right)}$ is a sum of elements of \mathcal{D} and that \mathcal{D} is a selfadjoint system of matrix units. For the first, let $V\left(p_{\alpha}\right)=p_{\alpha} U_{1} \cup p_{\alpha} U_{2} \cup \ldots \cup$ $p_{\alpha} U_{k}$ and $V\left(q_{\alpha}\right)=q_{\alpha} V_{1} \cup q_{\alpha} V_{2} \cup \ldots \cup q_{\alpha} V_{m}$. One more routine computation gives us:

$$
\begin{aligned}
U\left(p_{\alpha}, q_{\alpha}\right)=\left[p_{\alpha}, q_{\alpha}\right]_{\partial X} & =\bigcup_{i, j=1}^{k, m}\left(\left[p_{\alpha}, p_{\alpha}\right]_{U_{i}} \cdot\left[p_{\alpha}, q_{\alpha}\right]_{\partial X} \cdot\left[q_{\alpha}, q_{\alpha}\right]_{V_{j}}\right) \\
& =\bigcup_{i, j=1}^{k, m}\left[p_{\alpha}, q_{\alpha}\right]_{U_{i} \cap V_{j}} .
\end{aligned}
$$

Since the union is disjoint,

$$
\chi_{U\left(p_{\alpha}, q_{\alpha}\right)}=\sum_{i, j=1}^{k, m} \chi_{\left[p_{\alpha}, q_{\alpha}\right]_{U_{i} \cap V_{j}}} .
$$

And each $\chi_{\left[p_{\alpha}, q_{\alpha}\right] U_{i} \cap V_{j}}$ is in the collection \mathcal{D}. Therefore $\mathcal{U} \subseteq \operatorname{span}(\mathcal{D})$.
To show that \mathcal{D} is a self-adjoint system of matrix units, let $\chi_{[p, q]_{W}}, \chi_{[r, s]_{V}} \in$ \mathcal{D}. Then

$$
\begin{aligned}
\chi_{[p, q]_{W}} \cdot \chi_{[r, s]_{V}}\left(x_{1}, 0, x_{2}\right) & =\sum_{y_{1}, y_{2}} \chi_{[p, q]_{W}}\left(\left(x_{1}, 0, x_{2}\right)\left(y_{1}, 0, y_{2}\right)\right) \cdot \chi_{[r, s]_{V}}\left(y_{2}, 0, y_{1}\right) \\
& =\sum_{y_{2}} \chi_{[p, q]_{W}}\left(x_{1}, 0, y_{2}\right) \cdot \chi_{[r, s]_{V}}\left(y_{2}, 0, x_{2}\right),
\end{aligned}
$$

where the last sum is taken over all y_{2} such that $x_{1} \sim_{0} y_{2} \sim_{0} x_{2}$. Clearly the above sum is zero if $x_{1} \notin p W$ or $x_{2} \notin s V$. Also, recalling that $q W$ and $r V$ are either equal or disjoint, we see that the above sum is zero if they are disjoint. For the preselected x_{1}, if $x_{1}=p z$ then $y_{2}=q z$ (is uniquely chosen). Therefore the above sum is just the single term $\chi_{[p, q]_{W}}\left(x_{1}, 0, y_{2}\right)$. $\chi_{[r, s]_{V}}\left(y_{2}, 0, x_{2}\right)$. Suppose that $q W=r V$. We will show that $l(q)=l(r)$, which implies that $q=r$ and $W=V$.

Given this,

$$
\begin{aligned}
\chi_{[p, q]_{W}} \cdot \chi_{[r, s]_{V}}\left(x_{1}, 0, x_{2}\right) & =\chi_{[p, q]_{W}}\left(x_{1}, 0, y_{2}\right) \cdot \chi_{[r, s]_{V}}\left(y_{2}, 0, x_{2}\right) \\
& =\chi_{[p, q]_{W}}\left(x_{1}, 0, y_{2}\right) \cdot \chi_{[q, s]_{W}}\left(y_{2}, 0, x_{2}\right) \\
& =\chi_{[p, s]_{W}}\left(x_{1}, 0, x_{2}\right) .
\end{aligned}
$$

To show that $l(q)=l(r)$, assuming the contrary, suppose $l(q)<l(r)$ then $r=q c$ for some non-zero $c \in X$, implying $V=c W$. Hence $[r, s]_{V}=$ $[r, s]_{c W}=[r c, s c]_{W}$, which contradicts the maximality of $l(r)=l(s)$. By symmetry $l(r)<l(q)$ is also impossible. Hence $l(q)=l(r)$ and $W=V$. This concludes the proof.

5. Crossed product by the gauge action

Let $\hat{\Lambda}$ denote the dual of Λ, i.e., the abelian group of continuous homomorphisms of Λ into the circle group \mathbb{T} with pointwise multiplication: for $t, s \in \hat{\Lambda},\langle\lambda, t s\rangle=\langle\lambda, t\rangle\langle\lambda, s\rangle$ for each $\lambda \in \Lambda$, where $\langle\lambda, t\rangle$ denotes the value of $t \in \hat{\Lambda}$ at $\lambda \in \Lambda$.

Define an action called the gauge action: $\alpha: \hat{\Lambda} \longrightarrow \operatorname{Aut}\left(C^{*}(\mathcal{G})\right)$ as follows. For $t \in \hat{\Lambda}$, first define $\alpha_{t}: C_{c}(\mathcal{G}) \longrightarrow C_{c}(\mathcal{G})$ by $\alpha_{t}(f)(x, \lambda, y)=$ $\langle\lambda, t\rangle f(x, \lambda, y)$ then extend $\alpha_{t}: C^{*}(\mathcal{G}) \longrightarrow C^{*}(\mathcal{G})$ continuously. Notice that $(A, \hat{\Lambda}, \alpha)$ is a C^{*} - dynamical system.

Consider the linear map Φ of $C^{*}(\mathcal{G})$ onto the fixed-point algebra $C^{*}(\mathcal{G})^{\alpha}$ given by

$$
\Phi(a)=\int_{\hat{\Lambda}} \alpha_{t}(a) d t, \text { for } a \in C^{*}(\mathcal{G}) .
$$

where $d t$ denotes a normalized Haar measure on $\widehat{\Lambda}$.
Lemma 5.1. Let Φ be defined as above.
(a) The map Φ is a faithful conditional expectation; in the sense that $\Phi\left(a^{*} a\right)=0$ implies $a=0$.
(b) $C^{*}\left(\mathcal{G}_{0}\right)=C^{*}(\mathcal{G})^{\alpha}$.

Proof. Since the action α is continuous, we see that Φ is a conditional expectation from $C^{*}(\mathcal{G})$ onto $C^{*}(\mathcal{G})^{\alpha}$, and that the expectation is faithful. For $p, q \in X, \alpha_{t}\left(s_{p} s_{q}^{*}\right)(x, l(p)-l(q), y)=\langle l(p)-l(q), t\rangle s_{p} s_{q}^{*}(x, l(p)-l(q), y)$. Hence if $l(p)=l(q)$ then $\alpha_{t}\left(s_{p} s_{q}^{*}\right)=s_{p} s_{q}^{*}$ for each $t \in \hat{\Lambda}$. Therefore α fixes $C^{*}\left(\mathcal{G}_{0}\right)$. Hence $C^{*}\left(\mathcal{G}_{0}\right) \subseteq C^{*}(\mathcal{G})^{\alpha}$. By continuity of Φ it suffices to show that $\Phi\left(s_{p} s_{q}^{*}\right) \in C^{*}\left(\mathcal{G}_{0}\right)$ for all $p, q \in X$.

$$
\int_{\hat{\Lambda}} \alpha_{t}\left(s_{p} s_{q}^{*}\right) d t=\int_{\hat{\Lambda}}\langle l(p)-l(q), t\rangle s_{p} s_{q}^{*} d t=0, \text { when } l(p) \neq l(q) .
$$

It follows from (4.1) that $C^{*}(\mathcal{G})^{\alpha} \subseteq C^{*}\left(\mathcal{G}_{0}\right)$. Therefore $C^{*}(\mathcal{G})^{\alpha}=C^{*}\left(\mathcal{G}_{0}\right)$.

We study the crossed product $C^{*}(\mathcal{G}) \times{ }_{\alpha} \widehat{\Lambda}$. Recall that $C_{c}(\hat{\Lambda}, A)$, which is equal to $C(\hat{\Lambda}, A)$, since $\hat{\Lambda}$ is compact, is a dense ${ }^{*}$-subalgebra of $A \times{ }_{\alpha} \hat{\Lambda}$. Recall also that multiplication (convolution) and involution on $C(\hat{\Lambda}, A)$ are, respectively, defined by:

$$
(f \cdot g)(s)=\int_{\hat{\Lambda}} f(t) \alpha_{t}\left(g\left(t^{-1} s\right)\right) d t
$$

and

$$
f^{*}(s)=\alpha\left(f\left(s^{-1}\right)^{*}\right)
$$

The functions of the form $f(t)=\langle\lambda, t\rangle s_{p} s_{q}^{*}$ from $\hat{\Lambda}$ into A form a generating set for $A \times_{\alpha} \hat{\Lambda}$. Moreover the fixed-point algebra $C^{*}\left(\mathcal{G}_{0}\right)$ can be imbedded into $A \times{ }_{\alpha} \hat{\Lambda}$ as follows: for each $b \in C^{*}\left(\mathcal{G}_{0}\right)$, define the function $b: \hat{\Lambda} \longrightarrow A$ as $b(t)=b$ (the constant function). Thus $C^{*}\left(\mathcal{G}_{0}\right)$ is a subalgebra of $A \times{ }_{\alpha} \hat{\Lambda}$.

Proposition 5.2. The C^{*}-algebra $B:=C^{*}\left(\mathcal{G}_{0}\right)$ is a hereditary C^{*}-subalgebra of $A \times{ }_{\alpha} \hat{\Lambda}$.

Proof. To prove the theorem, we prove that $B \cdot A \times{ }_{\alpha} \hat{\Lambda} \cdot B \subseteq B$. Since $A \times{ }_{\alpha} \hat{\Lambda}$ is generated by functions of the form $f(t)=\langle\lambda, t\rangle s_{p} s_{q}^{*}$, it suffices to show that $b_{1} \cdot f \cdot b_{2} \in B$ whenever $b_{1}, b_{2} \in B$ and $f(t)=\langle\lambda, t\rangle s_{p} s_{q}^{*}$ for $\lambda \in \Lambda, p, q \in X$.

$$
\begin{aligned}
\left(b_{1} \cdot f \cdot b_{2}\right)(z) & =\int_{\hat{\Lambda}} b_{1}(t) \alpha_{t}\left(\left(f \cdot b_{2}\right)\left(t^{-1} z\right)\right) d t \\
& =\int_{\hat{\Lambda}} b_{1} \alpha_{t}\left(\int_{\hat{\Lambda}} f(w) \alpha_{w}\left(b_{2}\left(w^{-1} t^{-1} z\right)\right) d w\right) d t \\
& =\int_{\hat{\Lambda}} \int_{\hat{\Lambda}} b_{1} \alpha_{t}\left(f(w) \alpha_{w}\left(b_{2}\right)\right) d w d t \\
& =\int_{\hat{\Lambda}} \int_{\hat{\Lambda}} b_{1} \alpha_{t}\left(\langle\lambda, w\rangle s_{p} s_{q}^{*}\right) b_{2} d w d t, \text { since } \alpha_{w}\left(b_{2}\right)=\alpha_{t}\left(b_{2}\right)=b_{2} \\
& =\int_{\hat{\Lambda}} \int_{\hat{\Lambda}} b_{1}\langle\lambda, w\rangle \alpha_{t}\left(s_{p} s_{q}^{*}\right) b_{2} d w d t \\
& =\int_{\hat{\Lambda}} \int_{\hat{\Lambda}} b_{1}\langle\lambda, w\rangle\langle l(p)-l(q), t\rangle s_{p} s_{q}^{*} b_{2} d w d t \\
& =\int_{\hat{\Lambda}}\langle\lambda, w\rangle d w \int_{\hat{\Lambda}}\langle l(p)-l(q), t\rangle d t b_{1} s_{p} s_{q}^{*} b_{2} \\
& =0 \text { unless } \lambda=0 \text { and } l(p)-l(q)=0 .
\end{aligned}
$$

And in that case (in the case when $\lambda=0$ and $l(p)-l(q)=0)$ we get ($b_{1} \cdot f$. $\left.b_{2}\right)(z)=b_{1} s_{p} s_{q}^{*} b_{2} \in B$ (since $\left.l(p)=l(q)\right)$. Therefore B is hereditary.

Let I_{B} denote the ideal in $A \times{ }_{\alpha} \hat{\Lambda}$ generated by B. The following corollary follows from Theorem 4.2 and Proposition 5.2.

Corollary 5.3. I_{B} is an AF algebra.
We want to prove that $A \times{ }_{\alpha} \hat{\Lambda}$ is an AF algebra, and to do this we consider the dual system. Define $\hat{\alpha}: \hat{\Lambda}=\Lambda \longrightarrow \operatorname{Aut}\left(A \times{ }_{\alpha} \hat{\Lambda}\right)$ as follows: For $\lambda \in \Lambda$ and $f \in C(\hat{\Lambda}, A)$, we define $\hat{\alpha}_{\lambda}(f) \in C(\hat{\Lambda}, A)$ by: $\hat{\alpha}_{\lambda}(f)(t)=\langle\lambda, t\rangle f(t)$. Extend $\hat{\alpha}_{\lambda}$ continuously.

As before we use \cdot to represent multiplication in $A \times{ }_{\alpha} \hat{\Lambda}$.

Lemma 5.4. $\hat{\alpha}_{\lambda}\left(I_{B}\right) \subseteq I_{B}$ for each $\lambda \geq 0$.
Proof. Since the functions of the form $f(t)=\langle\lambda, t\rangle s_{p} s_{q}^{*}$ make a generating set for $A \times_{\alpha} \hat{\Lambda}$, it suffices to show that if $\lambda>0$ then $\hat{\alpha}_{\lambda}(f \cdot b \cdot g) \in I_{B}$ for $f(t)=\left\langle\lambda_{1}, t\right\rangle s_{p_{1}} s_{q_{1}}^{*}, g(t)=\left\langle\lambda_{2}, t\right\rangle s_{p_{2}} s_{q_{2}}^{*}$, and $b=s_{p_{0}} s_{q_{0}}^{*}$, with $l\left(p_{0}\right)=l\left(q_{0}\right)$.
First

$$
\begin{aligned}
(f \cdot b & \cdot g)(z) \\
& =\int_{\hat{\Lambda}} f(t) \alpha_{t}\left((b \cdot g)\left(t^{-1} z\right)\right) d t \\
& =\int_{\hat{\Lambda}} f(t) \alpha_{t}\left[\int_{\hat{\Lambda}} b(w) \alpha_{w}\left(g\left(w^{-1} t^{-1} z\right)\right) d w\right] d t \\
& =\int_{\hat{\Lambda}} f(t)\left[\int_{\hat{\Lambda}} b \alpha_{t w}\left(g\left(w^{-1} t^{-1} z\right) d w\right)\right] d t \\
& =\int_{\hat{\Lambda}} f(t)\left[\int_{\hat{\Lambda}} b \alpha_{w}\left(g\left(w^{-1} z\right) d w\right)\right] d t \\
& =\int_{\hat{\Lambda}} \int_{\hat{\Lambda}} f(t) b \alpha_{w}\left(g\left(w^{-1} z\right)\right) d w d t \\
& =\int_{\hat{\Lambda}} \int_{\hat{\Lambda}}\left\langle\lambda_{1}, t\right\rangle s_{p_{1}} s_{q_{1}}^{*} s_{p_{0}} s_{q_{0}}^{*}\left\langle\lambda_{2}, w^{-1} z\right\rangle \alpha_{w}\left(s_{p_{2}} s_{q_{2}}^{*}\right) d w d t \\
& =\int_{\hat{\Lambda}} \int_{\hat{\Lambda}}\left\langle\lambda_{1}, t\right\rangle s_{p_{1}} s_{q_{1}}^{*} s_{p_{0}} s_{q_{0}}^{*}\left\langle\lambda_{2}, w^{-1} z\right\rangle\left\langle l\left(p_{2}\right)-l\left(q_{2}\right), w\right\rangle s_{p_{2}} s_{q_{2}}^{*} d w d t
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \hat{\alpha}_{\lambda}(f \cdot b \cdot g)(z) \\
& =\langle\lambda, z\rangle \int_{\hat{\Lambda}} \int_{\hat{\Lambda}}\left\langle\lambda_{1}, t\right\rangle s_{p_{1}} s_{q_{1}}^{*} s_{p_{0}} s_{q_{0}}^{*}\left\langle\lambda_{2}, w^{-1} z\right\rangle\left\langle l\left(p_{2}\right)-l\left(q_{2}\right), w\right\rangle s_{p_{2}} s_{q_{2}}^{*} d w d t \\
& =\int_{\hat{\Lambda}} \int_{\hat{\Lambda}}\left\langle\lambda_{1}, t\right\rangle s_{p_{1}} s_{q_{1}}^{*} s_{p_{0}} s_{q_{0}}^{*}\left\langle\lambda, w^{-1} z\right\rangle\langle\lambda, w\rangle\left\langle\lambda_{2}, w^{-1} z\right\rangle \\
& \left\langle l\left(p_{2}\right)-l\left(q_{2}\right), w\right\rangle s_{p_{2}} s_{q_{2}}^{*} d w d t \\
& =\int_{\hat{\Lambda}} \int_{\hat{\Lambda}}\left\langle\lambda_{1}, t\right\rangle s_{p_{1}} s_{q_{1}}^{*} s_{p_{0}} s_{q_{0}}^{*}\left\langle\lambda+\lambda_{2}, w^{-1} z\right\rangle\left\langle\lambda+l\left(p_{2}\right)-l\left(q_{2}\right), w\right\rangle s_{p_{2}} s_{q_{2}}^{*} d w d t
\end{aligned}
$$

letting $\lambda^{\prime}=\lambda \in G_{1}$, then this last integral gives us

$$
\begin{aligned}
& =\int_{\hat{\Lambda}} \int_{\hat{\Lambda}}\left\langle\lambda_{1}, t\right\rangle s_{p_{1}} s_{q_{1}}^{*} s_{\lambda^{\prime}}^{*} s_{\lambda^{\prime}} s_{p_{0}} s_{q_{0}}^{*} s_{\lambda^{\prime}}^{*} s_{\lambda^{\prime}}\left\langle\lambda+\lambda_{2}, w^{-1} z\right\rangle \\
& \\
& =\int_{\hat{\Lambda}} \int_{\hat{\Lambda}}\left\langle\lambda+l\left(p_{2}\right)-l\left(q_{2}\right), w\right\rangle s_{p_{1}} s_{p_{2} s^{\prime} q_{1}}^{*} s_{{q^{\prime}}^{\prime} p_{0}}^{*} s_{\lambda^{\prime} q_{0}}^{*}\left\langle\lambda+\lambda_{2}, w^{-1} z\right\rangle \\
& =\left(f^{\prime} \cdot b^{\prime} \cdot g^{\prime}\right)(z), \quad\left\langle\lambda+l\left(p_{2}\right)-l\left(q_{2}\right), w\right\rangle s_{\lambda^{\prime} p_{2}} s_{q_{2}}^{*} d w d t
\end{aligned}
$$

where $f^{\prime}(t)=\left\langle\lambda_{1}, t\right\rangle s_{p_{1}} s_{\lambda^{\prime} q_{1}}^{*}, g^{\prime}(t)=\left\langle\lambda+\lambda_{2}, t\right\rangle s_{\lambda^{\prime} p_{2}} s_{q_{2}}^{*}$, and $b^{\prime}=s_{\lambda^{\prime} p_{0}} s_{\lambda^{\prime} q_{0}}^{*}$. Therefore $\hat{\alpha}_{\lambda}(f \cdot b \cdot g) \in I_{B}$.

For each $\lambda \in \Lambda$ define $I_{\lambda}:=\hat{\alpha}_{\lambda}\left(I_{B}\right)$. Clearly each I_{λ} is an ideal of $A \times{ }_{\alpha} \hat{\Lambda}$ and is an AF algebra. Let $\lambda_{1}<\lambda_{2}$ then $\lambda_{2}-\lambda_{1}>0 \Rightarrow I_{\lambda_{2}-\lambda_{1}}=$ $\hat{\alpha}_{\lambda_{2}-\lambda_{1}}\left(I_{B}\right) \subseteq I_{B}$. Therefore $I_{\lambda_{2}}=\hat{\alpha}_{\lambda_{2}}\left(I_{B}\right)=\hat{\alpha}_{\lambda_{1}}\left(\hat{\alpha}_{\lambda_{2}-\lambda_{1}}\left(I_{B}\right)\right) \subseteq I_{\lambda_{1}}$. That is, $I_{\lambda_{1}} \supseteq I_{\lambda_{2}}$ whenever $\lambda_{1}<\lambda_{2}$. In particular $I_{B}=I_{0} \supseteq I_{\lambda}$ for each $\lambda \geq 0$. Furthermore, if $f \in C(\hat{\Lambda}, A)$ is given by $f(t)=\langle\lambda, t\rangle s_{p} s_{q}^{*}$, for $\lambda \in \Lambda$ and $p, q \in X$ then $\hat{\alpha}_{\beta}(f)(t)=\langle\beta, t\rangle f(t)=\langle\beta, t\rangle\langle\lambda, t\rangle s_{p} s_{q}^{*}=\langle\beta+\lambda, t\rangle s_{p} s_{q}^{*}$.

For $f \in C(\mathcal{G})$ given by $f(t)=\langle\lambda, t\rangle s_{p} s_{q}^{*}$, let us compute $f^{*}, f \cdot f^{*}$, and $f^{*} \cdot f$ so we can use them in the next lemma.

$$
\begin{aligned}
f^{*}(t) & =\alpha_{t}\left(f\left(t^{-1}\right)^{*}\right) \\
& =\alpha_{t}\left(\left(\left\langle\lambda, t^{-1}\right\rangle s_{p} s_{q}^{*}\right)^{*}\right) \\
& =\overline{\left\langle\lambda, t^{-1}\right\rangle} \alpha_{t}\left(s_{q} s_{p}^{*}\right) \\
& =\langle\lambda, t\rangle\langle l(q)-l(p), t\rangle s_{q} s_{p}^{*} \\
& =\langle\lambda+l(q)-l(p), t\rangle s_{q} s_{p}^{*}
\end{aligned}
$$

$$
\left(f \cdot f^{*}\right)(z)=\int_{\hat{\Lambda}} f(t) \alpha_{t}\left(f^{*}\left(t^{-1} z\right)\right) d t
$$

$$
=\int_{\hat{\Lambda}}\langle\lambda, t\rangle s_{p} s_{q}^{*} \alpha_{t}\left(\left\langle\lambda+l(q)-l(p), t^{-1} z\right\rangle s_{q} s_{p}^{*}\right) d t
$$

$$
=\int_{\hat{\Lambda}}\langle\lambda, t\rangle s_{p} s_{q}^{*}\left\langle\lambda+l(q)-l(p), t^{-1} z\right\rangle\langle l(q)-l(p), t\rangle s_{q} s_{p}^{*} d t
$$

$$
=\int_{\hat{\Lambda}}\langle\lambda+l(q)-l(p), t\rangle s_{p} s_{q}^{*}\left\langle\lambda+l(q)-l(p), t^{-1} z\right\rangle s_{q} s_{p}^{*} d t
$$

$$
=\int_{\hat{\Lambda}}\langle\lambda+l(q)-l(p), z\rangle s_{p} s_{q}^{*} s_{q} s_{p}^{*} d t
$$

$$
=\langle\lambda+l(q)-l(p), z\rangle s_{p} s_{q}^{*} s_{q} s_{p}^{*}
$$

$$
=\langle\lambda+l(q)-l(p), z\rangle s_{p} s_{p}^{*},
$$

and

$$
\begin{aligned}
\left(f^{*} \cdot f\right)(z) & =\langle(\lambda+l(q)-l(p))+l(p)-l(q), z\rangle s_{q} s_{q}^{*} \\
& =\langle\lambda, z\rangle s_{q} s_{q}^{*} .
\end{aligned}
$$

Lemma 5.5. Let $\lambda \in \Lambda, p, q \in X, f(t)=\langle\lambda, t\rangle s_{q} s_{q}^{*}$, and let $g(t)=$ $\langle\lambda, t\rangle s_{p} s_{q}^{*}$.
(a) If $\lambda \geq 0$ then $f \in I_{B}$.
(b) If $\lambda+l(q) \geq l(p)$ then $g \in I_{B}$.

Proof. To prove (a), $s_{q} s_{q}^{*} \in C^{*}\left(\mathcal{G}_{0}\right) \subseteq I_{B}$. Then $f \in I_{B}$, since $\lambda \geq 0$, by Lemma 5.4. To prove (b), $\left(g \cdot g^{*}\right)(z)=\langle\lambda+l(q)-l(p), z\rangle s_{p} s_{p}^{*}$. By (a), $g \cdot g^{*} \in I_{B}$, implying $g \in I_{B}$.
Theorem 5.6. $A \times{ }_{\alpha} \hat{\Lambda}$ is an AF algebra.
Proof. Let $f(t)=\langle\lambda, t\rangle s_{p} s_{q}^{*}$. Choose $\beta \in \Lambda$ large enough such that $\beta+\lambda+$ $l(q) \geq l(p)$. Then

$$
\begin{aligned}
\hat{\alpha}_{\beta}(f)(z) & =\langle\beta, z\rangle\langle\lambda, z\rangle s_{p} s_{q}^{*} \\
& =\langle\beta+\lambda, z\rangle s_{p} s_{q}^{*} .
\end{aligned}
$$

Applying Lemma $5.5(\mathrm{~b}), \hat{\alpha}_{\beta}(f) \in I_{B}$. Thus $\hat{\alpha}_{-\beta}\left(\hat{\alpha}_{\beta}(f)\right) \in I_{-\beta}$, implying $f \in I_{-\beta}$. Therefore $A \times{ }_{\alpha} \hat{\Lambda}=\overline{\bigcup_{\lambda \leq 0} I_{\lambda}}$. Since each I_{λ} is an AF algebra, so is $A \times{ }_{\alpha} \hat{\Lambda}$.

6. Final results

Let us recall that an r-discrete groupoid G is locally contractive if for every nonempty open subset U of the unit space there is an open G-set Z with $s(\bar{Z}) \subseteq U$ and $r(\bar{Z}) \varsubsetneqq s(Z)$. A subset E of the unit space of a groupoid G is said to be invariant if its saturation $[E]=r\left(s^{-1}(E)\right)$ is equal to E.

An r-discrete groupoid G is essentially free if the set of all x 's in the unit space G^{0} with $r^{-1}(x) \cap s^{-1}(x)=\{x\}$ is dense in the unit space. When the only open invariant subsets of G^{0} are the empty set and G^{0} itself, then we say that G is minimal.
Lemma 6.1. \mathcal{G} is locally contractive, essentially free and minimal.
Proof. To prove that \mathcal{G} is locally contractive, let $U \subseteq \mathcal{G}^{0}$ be nonempty open. Let $V(p ; q) \subseteq U$. Choose $\mu \in X$ such that $p \preceq \mu, q \npreceq \mu$ and $\mu \npreceq q$. Then $V(\mu) \subseteq V(p ; q) \subseteq U$. Let $Z=[\mu, 0]_{V(\mu)}$. Then $Z=\bar{Z}, s(Z)=V(\mu) \subseteq$ $U, r(Z)=\mu V(\mu) \varsubsetneqq V(\mu) \subseteq U$. Therefore \mathcal{G} is locally contractive.

To prove that \mathcal{G} is essentially free, let $x \in \partial X$. Then $r^{-1}(x)=\{(x, k, y)$: $\left.x \sim_{k} y\right\}$ and $s^{-1}(x)=\left\{(z, m, x): z \sim_{m} x\right\}$. Hence $r^{-1}(x) \cap s^{-1}(x)=$ $\left\{(x, k, x): x \sim_{k} x\right\}$. Notice that $r^{-1}(x) \cap s^{-1}(x)=\{x\}$ exactly when $x \sim_{k} x$ which implies $k=0$. If $k \neq 0$ then $x=p t=q t$, for some $p, q \in X, t \in \partial X$ such that $l(p)-l(q)=k$. If $k>0$ then $l(p)>l(q)$ and we get $q \preceq p$. Hence $p=q b$, for some $b \in X \backslash\{0\}$. Therefore $x=q b t=q t$, implying $b t=t$. Hence $x=q b b b \ldots$. Similarly, if $k<0$ then $x=p b b b \ldots$, for some $b \in X$, with $l(b)>0$. Therefore, to prove that \mathcal{G} is essentially free, we need to prove that if U is an open set containing an element of the form $p b b b \ldots$, with $l(b)>0$, then it contains an element that cannot be written in the form of $q d d d \ldots$, with $l(d)>0$. Suppose $p b b b \ldots \in U$, where U is open in \mathcal{G}^{0}. then $U \supseteq V(\mu ; \nu)$ for some $\mu, \nu \in X$. Choose $\eta \in X$ such that $\mu \preceq \eta, \nu \npreceq \eta$, and $\eta \npreceq \nu$. Then $V(\eta) \subseteq V(\mu ; \nu) \subseteq U$. Now take $a_{1}=(1,0, \ldots, 0) \in G_{1}, a_{2}=$ $(2,0, \ldots, 0) \in G_{2}, a_{3}=(3,0, \ldots, 0) \in G_{1}, a_{4}=(4,0, \ldots, 0) \in G_{2}$, etc. Now $t=\eta a_{1} a_{2} a_{3} \ldots \in V(\eta) \subseteq U$, but t cannot be written in the form of $q d d d \ldots$..

To prove that \mathcal{G} is minimal, let $E \subseteq \mathcal{G}^{0}$ be nonempty open and invariant, i.e., $E=r\left(s^{-1}(E)\right)$. We want to show that $E=\mathcal{G}^{0}$. Since E is open, there exist $p, q \in X$ such that $V(p ; q) \subseteq E$. But

$$
s^{-1}(V(p ; q))=\{(\mu x, l(\mu)-l(p \nu), p \nu x): q \npreceq p \mu x\} .
$$

Let $x \in \mathcal{G}^{0}$. Choose $\nu \in X$ such that $p \nu \npreceq q$ and $q \npreceq p \nu$. Then $(x,-l(p \nu), p \nu x) \in s^{-1}(V(p ; q)) \subseteq s^{-1}(E)$ and $r(x,-l(p \nu), p \nu x)=x$. That is, $x \in r\left(s^{-1}(V(p ; q))\right)$, hence $E=\mathcal{G}^{0}$. Therefore \mathcal{G} is minimal.
Proposition 6.2 ([1, Proposition 2.4]). Let G be an r-discrete groupoid, essentially free and locally contractive. Then every non-zero hereditary C^{*} subalgebra of $C_{r}^{*}(G)$ contains an infinite projection.
Corollary 6.3. $C_{r}^{*}(\mathcal{G})$ is simple and purely infinite.
Proof. This follows from Lemma 6.1 and Proposition 6.2.
Theorem 6.4. $C^{*}(\mathcal{G})$ is simple, purely infinite, nuclear and classifiable.
Proof. It follows from the Takesaki-Takai Duality Theorem that $C^{*}(\mathcal{G})$ is stably isomorphic to $C^{*}(\mathcal{G}) \times{ }_{\alpha} \hat{\Lambda} \times \hat{\alpha} \Lambda$. Since $C^{*}(\mathcal{G}) \times{ }_{\alpha} \hat{\Lambda}$ is an AF algebra and that $\Lambda=\mathbb{Z}^{2}$ is amenable, $C^{*}(\mathcal{G})$ is nuclear and classifiable. We prove that $C^{*}(\mathcal{G})=C_{r}^{*}(\mathcal{G})$. From Theorem 4.2 we get that the fixed-point algebra $C^{*}\left(\mathcal{G}_{0}\right)$ is an AF algebra. The inclusion $C_{c}\left(\mathcal{G}_{0}\right) \subseteq C_{c}(\mathcal{G}) \subseteq C^{*}(\mathcal{G})$ extends to an injective $*$-homomorphism $C^{*}\left(\mathcal{G}_{0}\right) \subseteq C^{*}(\mathcal{G})$ (injectivity follows since $C^{*}\left(\mathcal{G}_{0}\right)$ is an AF algebra). Since $C^{*}\left(\mathcal{G}_{0}\right)=C_{r}^{*}\left(\mathcal{G}_{0}\right)$, it follows that $C^{*}\left(\mathcal{G}_{0}\right) \subseteq C_{r}^{*}(\mathcal{G})$. Let E be the conditional expectation of $C^{*}(\mathcal{G})$ onto $C^{*}\left(\mathcal{G}_{0}\right)$ and λ be the canonical map of $C^{*}(\mathcal{G})$ onto $C_{r}^{*}(\mathcal{G})$. IF E^{r} is the conditional expectation of $C_{r}^{*}(\mathcal{G})$ onto $C^{*}\left(\mathcal{G}_{0}\right)$, then $E^{r} \circ \lambda=E$. It then follows that λ is injective. Therefore $C^{*}(\mathcal{G})=C_{r}^{*}(\mathcal{G})$. Simplicity and pure infiniteness follow from Corollary 6.3.
Remark 6.5. Kirchberg-Phillips classification theorem states that simple, unital, purely infinite, and nuclear C^{*}-algebras are classified by their K theory [12]. In the continuation of this project, we wish to compute the K-theory of $C^{*}\left(\mathbb{Z}^{n}\right)$.

Another interest is to generalize the study and/or the result to a more general ordered group or even a "larger" group, such as \mathbb{R}^{n}

References

[1] Anantharaman-Delaroche, C. Purely infinite C^{*}-algebras arising from dynamical systems. Bull. Soc. Math. France 125 (1997), no. 2, 199-225. MR1478030 (99i:46051), Zbl 0896.46044.
[2] Bates, T.; Pask, D.; Raeburn, I.; Szymański, W. The C^{*}-algebras of rowfinite graphs. New York J. Math. 6 (2000), 307-324. MR1777234 (2001k:46084), Zbl 0976.46041.
[3] Lectures on operator theory. Edited by B. V. Rajarama Bhat, George A. Elliott and Peter A. Fillmore. Fields Institute Monographs, 13. American Mathematical Society, Providence, RI, 1999. xii+323 pp. ISBN: 0-8218-0821-4. MR1743202 (2001j:46077), Zbl 0932.46043.
[4] Chiswell, I. Introduction to Λ-trees. World Scientific Publishing Co., Inc., River Edge, NJ, 2001. xii+315 pp. ISBN: 981-02-4386-3. MR1851337 (2003e:20029), Zbl 1004.20014.
[5] Cuntz, J. Simple C^{*}-algebras generated by isometries. Commun. Math. Phys. bf 57 (1977), 173-185. MR0467330 (57 \#7189), Zbl 0399.46045.
[6] Cuntz, J.; Krieger, W. A class of C^{*}-algebras and topological Markov chains. Invent. Math. 56 (1980), 251-268. MR0561974 (82f:46073a), Zbl 0434.46045.
[7] Dixmier, J. C^{*}-algebras. Translated from the French by Francis Jellett. NorthHolland Mathematical Library, 15. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. xiii+492 pp. ISBN: 0-7204-0762-1. MR0458185 (56 \#16388), Zbl 0372.46058.
[8] Ephrem, M. Characterizing liminal and type I graph C^{*}-algebras. J. Operator Theory. 52 (2004), 303-323. MR2119272 (2005j:46034).
[9] Kumjian, A.; Pask, D.; Raeburn, I. Cuntz-Krieger algebras of directed graphs. Pacific J. Math. 184 (1998), 161-174. MR1626528 (99i:46049), Zbl 0917.46056.
[10] Kumjian, A.; Pask, D.; Raeburn, I. ; Renault, J. Graphs, groupoids and CuntzKrieger algebras. J. Funct. Anal. 144 (1997), 505-541. MR1432596 (98g:46083), Zbl 0929.46055.
[11] Murphy, G. C^{*}-algebras and operator theory. Academic Press, Inc., Boston, MA, 1990. x+286 pp. ISBN: 0-12-511360-9. MR1074574 (91m:46084), Zbl 0714.46041.
[12] Phillips, N. C. A classification theorem for nuclear purely infinite simple C^{*} algebras. Doc. Math. 5 (2000), 49-114 (electronic). MR1745197 (2001d:46086b), Zbl 0943.46037.
[13] Renault, J. A groupoid approach to C^{*}-algebras. Lecture Notes in Mathematics, 793. Springer, Berlin, 1980. ii +160 pp. ISBN: 3-540-09977-8. MR0584266 (82h:46075), Zbl 0433.46049.
[14] Robertson, G.; Steger, S. Affine buildings, tiling systems and higher rank Cuntz-Krieger algebras. J. Reine angew. Math. 513 (1999), 115-144. MR1713322 (2000j:46109), Zbl 1064.46504.
[15] Serre, J. Trees. Translated from the French by John Stillwell. Springer-Verlag, Berlin-New York, 1980. ix +142 pp. ISBN: 3-540-10103-9. MR0607504 (82c:20083), Zbl 0548.20018.
[16] Spielberg, J. A functorial approach to the C^{*}-algebras of a graph. Internat. J. Math. 13 (2002), no.3, 245-277. MR1911104 (2004e:46084), Zbl 1058.46046.
[17] Spielberg, J. Graph-based models for Kirchberg algebras. J. Operator Theory 57 (2007), no. 2, 347-374. MR2329002 (2008f:46073), Zbl 1164.46028.

Department of Mathematics and Statistics, Coastal Carolina University, ConwAy, SC 29528-6054
menassie@coastal.edu
This paper is available via http://nyjm.albany.edu/j/2011/17-1.html.

[^0]: Received January 15, 2008; revised January 21, 2011.
 2000 Mathematics Subject Classification. 46L05, 46L35, 46L55.
 Key words and phrases. Directed graph, Cuntz-Krieger algebra, Graph C*-algebra.

