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Local framings

David Barnes and Constanze Roitzheim

ABSTRACT. Framings provide a way to construct Quillen functors from
simplicial sets to any given model category. A more structured set-
up studies stable frames giving Quillen functors from spectra to stable
model categories. We will investigate how this is compatible with Bous-
field localisation to gain insight into the deeper structure of the stable
homotopy category. We further show how these techniques relate to
rigidity questions and how they can be used to study algebraic model

categories.
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Introduction

The two categories most important to homotopy theory are the stable
homotopy category and the homotopy category of simplicial sets. It is very
hard to study either of these categories, so a standard and highly successful
method, known as Bousfield localisation, is often used. The idea is to look at
‘smaller pieces’ of these categories. These pieces have less information than
the whole category, but are easier to work with as they are more structured.
To apply this method, one takes a homology theory F, and declares that two
simplicial sets (or two spectra) are equivalent if there is a map between them
which induces an isomorphism of FE,-homology. The resulting homotopy
category is called the E-local homotopy category of simplicial sets or the
FE-local stable homotopy category.

There are many other model categories whose homotopy category behaves
like a category of simplicial sets or spectra. The homotopy category of any
pointed model category C is a closed module over the homotopy category
of pointed simplicial sets, [Hov99]. We show that this action extends to an
action of the E-local homotopy category of pointed simplicial sets if and
only if the simplicial mapping spaces map(X,Y’) are E-local simplicial sets
for any X and Y in C. We call such a model category E-familiar.

If C is a pointed model category then there is a functor

Y: Ho(C) — Ho(C),

which corresponds to tensoring with the simplicial set S'. If this func-
tor is an equivalence then the model category C is said to be stable. The
work of [Lenll] shows that for stable C, Ho(C) has an action of the stable
homotopy category. We have studied when this action is compatible with FE-
localisation and have the following characterisation of compatibility, which
is Theorem 7.8.

Theorem. IfC is a stable model category, then the action of the stable ho-
motopy category on Ho(C) passes to an action of the E-local stable homotopy
category if and only if the mapping spectra Map(X,Y) are E-local spectra
for any X and Y in C.

We call such a model category stably E-familiar. It is important to note
that in general being stable and F-familiar is not sufficient to be stably
E-familiar.

As an application, we study how these techniques relate to rigidity of
stable model categories. A stable model category is called rigid if its homo-
topical behaviour only depends on the triangulated structure of its homotopy
category. The main examples are spectra themselves [Sch07] and K (2)-local
spectra [Roi07]. We show how the proofs of those results fit into our frame-
work. This will provide a more streamlined formal setting for future rigidity
proofs.
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We also consider an alternative approach to rigidity, which investigates
how much homotopical information is seen by framings. The answer, Theo-
rem 9.5, is that in the case of a smashing localisation, the homotopical infor-
mation of E-local spectra is entirely encoded in the Ho(S)-module structure
of the E-local stable homotopy category.

Theorem. Let Lg be a smashing localisation and let
¢ : Ho(LgS) — Ho(C)

be an equivalence of triangulated categories. Then the following are equiva-
lent.

o & is the derived functor of a Quillen equivalence.
o & is a Ho(S)-module functor.

In [SS02], Schwede and Shipley show that a stable model category is
entirely determined by the triangulated structure of its homotopy category
together with a 7. (S)-action. For a stably E-familiar model category, we
prove E-local analogues. This offers a technical advantage as the homotopy
groups of the F-local spheres tend to be more highly structured and better
understood than 7.(S).

A final application is examining algebraic model categories (Ch(Z)-model
categories) that are also stably F-familiar. Our conclusion is Theorem 9.15:

Theorem. The model category of E-local spectra, LS, is an algebraic
model category if and only if E = HQ.

Organisation. Section 1 is a reminder of the notion of Bousfield localisa-
tions of simplicial sets of spectra. Section 2 recalls the notions of C-module
categories and C-model categories. Section 3 summarises Hovey’s work on
framings which proves that the homotopy category of any pointed model
category is a Ho(sSet,)-module.

Section 4 marks the start of the new work. We study when a framing on a
model category is compatible with the E-local model structure on simplicial
sets and define the notion of F-familiar model categories. In Section 5 we
study the properties of these E-familiar model categories. Furthermore, we
show how our set-up generalises the notion of an L sSet,-model category.

We move to a stable setting and use Lenhardt’s notion of stable frames
to replace simplicial sets with spectra in Section 6. Following a similar
pattern to the nonstable case, in Section 7, we ask when are these stable
frames compatible with the E-local model structure on spectra. The fact
that a stable E-familiar model category is not, in general, a stably E-familiar
model category is examined in Section 8. We finish the paper with examples
and applications in Section 9. We start with some immediate consequences
from the previous sections regarding chromatic localisations. The next part
is dedicated to rigidity questions, followed by a study of 7.(LgS)-actions.
Finally, we can classify how Ho(LgS) acts on the homotopy category of a
big class of algebraic stably F-familiar model categories.
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1. E-localisations

Let E be a spectrum, then F corepresents a homology functor F, on
the category of simplicial sets via E,(X) = m.(E A X). Bousfield used
this to construct a homotopy category of spaces where maps which induce
isomorphisms on F,-homology are isomorphisms [Bou75]. Later, this was
extended to a similar construction for spectra in [Bou79]. We recap some of
the definitions from this work. We give them for simplicial sets, but there
are obvious analogues for spectra. We denote homotopy classes of maps of
simplicial sets by [—, —] and we denote the product in sSet, by x.

Definition 1.1. A map f: X — Y of simplicial sets is an E-equivalence if
E.(f) is an isomorphism. A simplicial set Z is E-local if f*:[Y, Z] — [X, Z]
is an isomorphism for all F-equivalences f: X — Y. A simplicial set A is
E-acyclic if [A, Z] consists of only the trivial map, for all F-acyclic Z. An
FE-equivalence from X to an E-local object Z is called an E-localisation.

Bousfield localisation of simplicial sets gives rise to a homotopy theory
that is particularly sensitive towards E, and E-local phenomena. The E-
local homotopy theory is obtained from the category of simplicial sets by
formally inverting the E-equivalences. In terms of model structures we have
the theorem below which summarises [Bou75, Section 10]. Note that any
weak homotopy equivalence of simplicial sets is an F-equivalence.

Theorem 1.2. Let E be a homology theory. Then there is a model structure,
LEsSet,, on the category of simplicial sets such that:

o The weak equivalences are the E,-isomorphisms.

e The cofibrations are cofibrations of simplicial sets (i.e., inclusions).

e The fibrations are those maps with the right lifting property towards
trivial cofibrations.

The fibrant replacement functor of the E-local model structure is an E-
localisation functor. In the FE-local homotopy category of simplicial sets,
Ho(Lg sSet,), every object is isomorphic to a local one. Finally, we can
identify the fibrant objects of this model structure. Since we will need to
refer to this later, we give it as a corollary.

Corollary 1.3. A simplicial set K is E-fibrant if and only if it is fibrant in
sSet, and E-local.

Example 1.4. In [Bou75], Bousfield gives some examples of E-local sim-
plicial sets. For this, one has to consider “nilpotent spaces”, i.e., simplicial
sets on whose homotopy groups the fundamental group acts in a certain way
[BouT75, 4.2]. For example, simply connected simplicial sets are nilpotent.
Now let P be a set of primes. For

R=Ez/p or R=1Zp),
pEP
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H R-local simplicial sets can be characterised by their homotopy groups to-
gether with the action of 7 on them [Bou75, Theorem 5.5]. In the case of
R = Zpy this implies that

W*(LHRK) = F*(K) ®Z(p).

In the case of R = @ Z/p, a simplicial set is H R-local if and only if it is
peP
P-complete.

In the later sections of this paper we will deal with spectra instead of
simplicial sets. Two categories of spectra will occur, most prominently the
category of sequential spectra (or Bousfield—Friedlander spectra) which we
will denote by S. For some results we will need a monoidal model category
of spectra. For this we choose symmetric spectra S* in the sense of [HSS00].
Again, there are E-local versions of both model categories where the weak
equivalences are I,-isomorphisms, cofibrations are the same as before and
fibrations are defined via their lifting property. As for references, the intro-
duction of [Bou79] as well as [GJ98, Remark 3.12] cover the case of LgS.
The existence of LrS> is well-known but has not yet been fully published.
The most complete reference known to the authors is the Diplom thesis of
Jan Mollers under the supervision of Stefan Schwede.

Example 1.5. A spectrum X € § is fibrant in the HZp)-local model
structure if and only if it is an Q2-spectrum and its homotopy groups are Zp-
local. In particular, this implies that X is HZp)-local if its level spaces are
local, see Lemma 8.6. Unfortunately, this does not hold for H R-localisation
with R= € Z/p.

peEP

2. Some model category techniques and simplicial methods

In this section, we are briefly going to recall some of the definitions we
work with. For more detail, we refer to [Hov99, Chapter 4] and [Dug06,
Appendix A].

Definition 2.1. Let C, D and & be categories. An adjunction of two vari-
ables consists of functors

- ®— : CxD—¢&
(-)5) . DPxE—C
map(—,—) : CPxE&—D

satisfying the usual adjointness conditions. See [Hov99, Definition 4.1.12].

If the categories in above definition are model categories, then it makes
sense to ask for an adjunction of two variables to be compatible with the
respective model structures.
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Definition 2.2. Now let C, D and &£ be model categories. A Quillen ad-
junction of two variables is an adjunction of two variables such that:

If f: U — V is a cofibration in C and g : W — X is a cofibration in
D, then the induced pushout-product map

fOg:UeX) [[(vew) —VeXx
UW

is a cofibration in £. Furthermore, the map f[Jg must be a trivial cofibration
if either of f or g is.
The left adjoint — ® — is sometimes called a left Quillen bifunctor.

Definition 2.3. Let D be a closed symmetric monoidal category with prod-
uct x and unit S. A category M is a closed D-module category if it has an
adjunction of two variables
(_ ® -, (_)(_)a Inap(—, _)) :MXxD— M
together with natural associativity isomorphisms
(X®D)®FE — X®(DxXE)
and natural unit isomorphisms

X®s—X.

These isomorphisms have to satisfy some standard coherence conditions.
That is, the pentagonal diagram describing fourfold associativity must com-
mute, as must the triangle relating the two ways to obtain X ® D from
X ® (S x D).

If D is a symmetric monoidal model category, then one can ask for the D-
module structure on a model category M to be compatible with the model
structures.

Definition 2.4. Let D be a closed symmetric monoidal model category. A
model category M is a D-model category if it is a D-module category in the
sense of Definition 2.3 satisfying the following.

e — ® — is a Quillen bifunctor.
e Let QS — S be the cofibrant replacement of the unit in D and let
X € M be cofibrant. Then

XS —X®S
is a weak equivalence in M.

We are interested in the case where D is the model category of pointed
simplicial sets or symmetric spectra.

Definition 2.5. A simplicial model category is an sSet,-model category. A
spectral model category is an S*-model category.
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3. Framings

In this section we are going to recall some basic properties of cosimplicial
and simplicial frames. Suppose one is studying a model category C that is
not necessarily simplicial, one would still like to have a reasonable substitute
for tensoring with simplicial sets or for mapping spaces. Framings provide
such a generalisation. The idea is to take an object A € C, view it as a
constant cosimplicial (or simplicial object) in C and then apply a particular
cofibrant (respectively fibrant) replacement. The resulting cosimplicial or
simplicial objects can then be used to define the desired tensor, cotensor
and enrichment structures over sSet,. Since various choices are involved in
the process, this will not make C a simplicial model category. But it can
at least ensure that the homotopy category Ho(C) is a closed Ho(sSet,)-
module. For more details on framings see, for example, [Hov99, Chapter 5]
or [Hir03, Chapter 16].

We note that for the statements in this section the simplicial case for C is
dual to the cosimplicial case of C°?, but we prefer to spell out the simplicial
case anyway.

We begin with the cosimplicial case. Let C be a category. By C® we
denote the category of cosimplicial objects in C. The standard model struc-
ture for this category is the Reedy model structure, which is described in
[Hov99, Section 5.1]. It is well-known that C® is equivalent to the category
of adjunctions

sSet, = C
see, for example, [Hov99, Proposition 3.1.5] or [Hir03, Theorem 16.4.2]. We
denote the image of A®* € C® under this equivalence by
(A*® —,C(A%,—)).
Note that:

o A*® Aln] = A®[n].

e A* ® OA[n] — A® ® A[n] is the n'" latching map of A® [Hir03,
Proposition 16.3.8].

e A® ® — preserves colimits.

Dually, the category C2™ of simplicial objects in C is equivalent to the
category of adjunctions

sSet? = C.

We denote the image of an object A, € C2™ by (Ag_),C(—,A.)). Note
carefully that an adjunction

sSet? = C
is the same as an adjunction

sSet, &= C°
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with the left and right adjoints interchanged. In the first convention the
functor AS_) is the right adjoint of C(—, As). Again we have the following
properties.

o AN = A ).

. A.A["] — A?AM is the n* matching map of A, [Hir03, Proposition
16.3.8].

° AE_) takes limits of sSet, to colimits of C.

One must take care with the last property. For example, note that a limit
of sSet, is a colimit of sSet?.

Definition 3.1. If C is a model category, we say that an object A® € C is
a cosimplicial frame if

A®* ® — :sSet, &= C:C(A®%, —)

is a Quillen adjunction.
An object A, € C2” is a simplicial frame if

AL sSet® ¢ C(—, Ad)
is a Quillen adjunction.

Note that a Quillen adjunction C Z= D is the same as a Quillen adjunc-
tion C°? == D, under this identification a left Quillen functor F : C — D
becomes a right Quillen functor F' : C°? — D°P with respect to the opposite
model structure [Hov99, Remark 1.1.7].

Simplicial and cosimplicial frames can be characterised as follows.

Proposition 3.2. A cosimplicial object A®* € C* is a cosimplicial frame if
and only if A® is cofibrant and the structure maps A®[n] — A®[0] are weak
equivalences for n > 0.

A simplicial object Ae € C is a simplicial frame if and only if Ae is
cofibrant and the structure maps A4[0] — Ae[n| are weak equivalences for
all n > 0.

The various ingredients to the proof can be found in [Hov99, Proposition
3.6.8, Example 5.2.4, Theorem 5.2.5, Proposition 5.4.1] and [Hir03, Propo-
sition 16.3.8].

Theorem 3.3 (Hovey). There exists a functor C — C* such that the image
A* of any cofibrant A € C under this functor is a cosimplicial frame with
A*[0] = A.

There also exists a functor C — C*” such that the image A, of any
fibrant A € C under this functor is a simplicial frame with A.[0] = A.

Definition 3.4. A functor A — A* together with a functor A — A, satis-
fying the conditions of Theorem 3.3 is called a framing of C.
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The idea of the proof is to obtain the framing functor (—)* from a functo-
rial factorisation in C® as a cosimplicial framing: a cosimplicial frame on A
can be viewed as the factorisation of a certain map into a cofibration followed
by a trivial fibration. This map [*A — r*A, where [*A is a cosimplicial
object built from latching spaces and 7® A is the constant cosimplicial object
[Hov99, Example 5.2.4]. However, this factorisation has to be inductively
set up to ensure that the cosimplicial frame A* has the correct object in
level zero. This is [Hov99, Theorem 5.2.8].

This also means that two framings of the same object A € C are naturally
weakly equivalent in C?, see also [Hov99, Lemma 5.5.1]. Let A° be another
cosimplicial frame of A. We consider the commutative square

[*A —— A°

A* ——= oA

Because the left vertical arrow is a cofibration and the right one a trivial
fibration, there exists a lift in the diagram. Because of the 2-out-of-3 axiom
this lift is also a weak equivalence. Hence every framing can be compared
to the one obtained functorially.

The same is also true in the simplicial case if we view a simplicial frame
A, as the factorisation of the canonical map l¢A — 1A into a cofibration
that is a weak equivalence followed by a fibration in C2*.

Let us now look at a standard example of a framing.

Example 3.5. Let C be a simplicial category and A € C. Then
A® = A A[-],

i.e., the canonical cosimplicial object with A®[n] = A ® A[n], is a cosimpli-
cial frame for A by [Hir03, Proposition 16.1.3 and Proposition 16.6.4] and
[Hov99, Remark 5.2.10]. In particular, for a simplicial set K

A K2 Ax K.

Because any two framings of the same object A € C are weakly equivalent
(as shown above), for a cosimplicial frame B® and a simplicial set K we have
that

B*® K = B*[0] x K.

Dually, A, with Aq[n] = A2 is a simplicial frame for A [Hir03, Proposition
16.6.4]. Any simplicial frame B, will satisfy

BE ~ B,[0]¥.
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Together with the framing functors A — A* and A — A, of Theorem 3.3
one obtains bifunctors

—®— : CxsSet, —C, (AK)—AQK
map;(—,—) : C%? xC — sSety, (A,B)+— C(A* B)
(=) sSet? xC — C, (A K)— AK
map,(—,—) : C%? xC —sSets, (A,B)+— C(A,By)

Hovey shows in [Hov99, Theorem 5.4.9] that
—® —:C xsSet, — C

and
(=)) : sSet, xCP —s CP

(with the opposite model structure) have total left derived functors. How-
ever, these functors do not form a Quillen adjunction of two variables as the
two right adjoints map; and map, do not generally agree: they only agree
up to a zig-zag of weak equivalences in C [Hov99, Proposition 5.4.7].

However, this means the right derived mapping spaces R map; and R map,.
agree. Hence we at least have an adjunction of two variables

(— @ —, R(=)"7), Rmap(—, —)) : Ho(C) x Ho(sSet,) — Ho(C).

We also note that the functor — ® — is not, in general, associative. This
defect is also removed upon passage to the homotopy category. Hovey de-
tails the construction of a particular associativity weak equivalence and thus
comes to the following result [Hov99, Theorem 5.5.3].

Theorem 3.6 (Hovey). The framing functor of Theorem 3.3 makes Ho(C)
into a closed Ho(sSet,)-module category.

It is worth noting that for a simplicial model category C, the Ho(sSet)-
module structure coming from framings agrees with the Ho(sSet,)-module
structure derived from the simplicial structure [Hov99, Theorem 5.6.2].

4. FE-local cosimplicial frames

In this section we look at those framings that factor over E-local simpli-
cial sets and establish the E-local analogues of the known results from the
previous section.

The categories sSet, and Lg sSet, are identical as categories, so there is
still a bijection between cosimplicial objects in a category C and adjunctions
between C and Lg sSet, as before. However, we would like to look at those
adjunctions that respect the E-local model structure on simplicial sets rather
than the canonical one.

Definition 4.1. We say that A® € C2 is an E-local cosimplicial frame if

A*® — : LgsSet, &= C:C(A®% —)
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is a Quillen adjunction. We say that A, € CA”

if

is a E-local simplicial frame

A LpsSet® ¢ C(—, Ad)
is a Quillen adjunction.

In particular this means that an F-local cosimplicial frame is a cosimpli-
cial frame that factors over LgsSet,. We will use this definition later to
specify for which model categories the Ho(sSet,)-action from Theorem 3.6
factors over a Ho(Lg sSety)-action. Theorem 5.4 will say that this is the
case if and only if all mapping spaces are E-local, or equivalently, if and
only if every cosimplicial frame is F-local in the above sense.

Definition 4.2. We say that a model category C is E-familiar if every
cosimplicial frame A® € C? is also an E-local cosimplicial frame and also if
every simplicial frame A, € C2” is an E-local simplicial frame.

Corollary 4.3. Let C be an E-familiar model category. Then the framing
functor

c—co
of Theorem 3.3 assigns to each cofibrant A € C an E-local cosimplicial frame

A* with A*[0] = A.

Combining the framing functors A — A* and A — A, with the adjunc-
tions

A*: LgsSet, &= C:C(A*,—) and A, :LgsSet, == C:C(—,A,)
again gives rise to bifunctors

—®— : CxLgsSet, —C, (A K)—AQK
map;(—,—) : C? xC — LgsSet,, (A,B)~ C(A* B)
(=) o LpsSet? xC —C, (A,K)— AK
map,(—,—) : C? xC — LgsSety, (A,B)— C(A,B.).

It is now not difficult to establish an E-local analogue of the corresponding
results in the previous section. First, let us work towards derived functors
of the above.

Lemma 4.4. Let f : A* — B® be a morphism in C® and g : K — L a
morphism of simplicial sets. Consider the pushout-product

fOg:Q:=B"®K) [[ (A"®L) — B&L.
A*QK

Then fUg is a cofibration if both f and g are cofibrations. If f is a trivial
cofibration, then fOg is a trivial cofibration. If A* € C® is furthermore
cofibrant and g is a trivial cofibration, then fUg is a trivial cofibration.

Dually, consider a morphism p : Ae — Be of simplicial objects in C.
Then the map

Homp(g, p) : AL 5 AK X pK BE
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is a fibration if both p and g are. If in addition p is an acyclic fibration,
then so is Homp(g,p). If Be is fibrant, p is an acyclic fibration and g is a
fibration, then Homp(g, p) is an acyclic fibration.

Proof. For the case of g being a cofibration and f either a cofibration or
trivial cofibration this is [Hov99, Proposition 5.4.1] because the cofibrations
in LgsSet, and sSet, are the same.

Now let g : K < L be a trivial cofibration in LgsSet,. Then A®® — and
B* ® — are left Quillen functors between L sSet, and C by assumption, as
C is E-familiar. The rest of the proof proceeds the same way as [Hov99,
Proposition 5.4.3]. Since it is the pushout of a trivial cofibration, the map

B*®@K —Q

is a trivial cofibration. Since B*® K — B*®* ® L is also a trivial cofibration,
the cofibration Q — B® ® L must be trivial by the 2-out-of-3 axiom.

The case of (—)() follows by duality, analogously to [Hir03, Theorem
16.5.7). O

For the existence of a total left derived functor it suffices to show that the
functor sends trivial cofibrations between cofibrant objects to weak equiva-
lences [Hir03, Proposition 8.4.4]. Hence we arrive at the following.

Corollary 4.5. Let C be an E-familiar model category. Then the functors
—®—:Cx LgsSet, — C
and
(=) : L sSet, xCP —s CP
possess total left derived functors.
To distinguish between the derived functors of
—®—:CxsSety, — C and — ®—:C x LgsSet, — C

we denote the latter by ®%.
Let C be an E-familiar model category. Together with [Hov99, Theorem
5.4.9] we obtain:

Corollary 4.6. The above derives to an adjunction of two variables
(— @k —, R(—)7), Rmap(—, —)) : Ho(LgsSet,) x Ho(C) — Ho(C).

We recall that a closed module structure on a category consists of an
adjunction of two variables, a unit isomorphism and an associativity iso-
morphism, see Definition 2.3. In our case, the above corollary is the first
major step towards the following theorem. For this, we first need to state a
lemma like [Hov99, Lemma 5.5.2]. In fact, there is nothing to prove in our
case, as a cofibrant replacement functor in sSet, is also one in Lg sSet.,.
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Lemma 4.7. Let C be E-familiar and A € C cofibrant. Let A®* and B® be
cosimplicial frames for A. If two maps

f:A*— B*
agree on level zero, then their derived natural transformations
A* 9L K — B* oL K
agree.

Theorem 4.8. The framing given in Corollary 4.3 makes the homotopy cat-
egory of any E-familiar model category into a Ho(Lg sSet)-module. More-
over, the module action of Ho(sSet,) given in Theorem 3.6 factors over this
Ho(Lg sSety)-action.

Proof. The proof follows the steps of the nonlocal version [Hov99, Theorem
5.5.3] but with different derived functors and derived products. Hence we
are not going to spell out every detail.
Remember that in a monoidal model category with product ®, the derived
product is defined via
Xeoly=Qx®QYy

where @ is the cofibrant replacement functor.

The first step of [Hov99, Theorem 5.5.3] is constructing a weak equivalence
inC

a:A® (K xL)— (ARK)® L

which is natural in L. Because an F-local framing is in particular a framing,
we can use this weak equivalence for our purposes.

In the nonlocal case Hovey then defines the associativity isomorphism as
the composite

rart: QA®QQK x QL) Y% 0A® (QK x QL) % (QA® QK)® QL

-1
WD 0(QA® QK) ® QL
where ¢ : QX — X is the cofibrant replacement map, both in C and
L sSet,. The model categories sSet, and Lg sSet, have the same cofibra-
tions and trivial fibrations. Thus, we can choose the cofibrant replacement
functor in Lg sSet, to be the same as in sSet,. Hence we define our E-local
associativity isomorphism to be simply 7 as above.

After defining this, one needs to show that 7 is also natural in A and K.
(It is easy to read from the construction in [Hov99, Theorem 5.5.3] that 7 is
ntaural in L.) Then, one further needs to prove that it satisfies the fourfold
associativity and unit conditions, see Definition 2.3. The idea for each of
these steps is the same: we write down the necessary diagrams and see that
they do not necessarily commute strictly in C. However, they commute in C
in degree zero, so by Lemma 4.7, they commute up to homotopy and hence
in Ho(C).
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We are now ready to prove that the Ho(sSet,)-action on Ho(C) factors
over this Ho(Lg sSet,)-action. The total left derived functor of a left Quillen
functor F'is defined via applying F' to the cofibrant replacement of an object.
Since the cofibrant replacement functors in sSet, and Lg sSet, agree, we see
immediately that the diagram

—L—

Ho(C) x Ho(sSet,)

idHo(C) XL(id)l /
,®é,

Ho(C) x Ho(Lg sSet,)

Ho(C)

commutes and satisfies the necessary associativity and unit conditions. [J

5. E-familiar model categories

It is not difficult to find some obvious examples of E-familiar model cat-
egories.

Lemma 5.1. Let C be a simplicial model category. Then C is E-familiar if
and only if it is a Lg sSet,-module category.

Proof. We saw at the end of Section 3 that in the case of C being simplicial
the bifunctors — ® —, (=)(-), map,(—, —), map,(—, —) defined via framings
agree with the tensor, cotensor and mapping space functors of the simplicial
structure. Most importantly, in the simplicial case the left mapping space
functor

map,;(A, B) = C(A*, B)
and right mapping space functor

map, (A, B) = C(A, By)

agree. Hence Corollary 4.5 provides a L sSet,-model category structure if
and only if C is F-familiar. ([

Corollary 5.2. The model category of E-local simplicial sets (Lg sSets) and
the model category of E-local spectra (LgS) are E-familiar.

The following shows that the notion of an E-familiar model category
indeed generalises the concept of Lg sSet,.-model categories.

Proposition 5.3. If C is E-familiar and simplicial, then the Ho(Lg sSet.)-
module structure from Theorem 4.8 agrees with the Ho(Lg sSety)-module
structure derived from the Lg sSet.-model category structure.

Proof. We are going to show that the identity
id : Ho(C) — Ho(C)

is a Ho(Lg sSet,)-module functor. Here, the domain Ho(C) is equipped
with the Ho(Lg sSet.)-action given by the derived Lg sSet,-model category
structure. We give the target Ho(C) the Ho(Lg sSet,)-module structure
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coming from framings. To show that the identity is a Ho(L g sSet,)-module
functor we need a natural isomorphism

ALK — A" oL K

satisfying two coherence diagrams [Hov99, Definition 4.1.7]. (Again, the
first ®§ is part of the Lg sSet.-model category structure while the second
one is coming from framings.)

Now let A € C. We remember from Example 3.5 that

AR A[-]
is an E-local framing on A, and that
(AR A[-]) @ K 2 AL K.

Hence by Section 3 and [Hov99, Lemma 5.5.1], there is an isomorphism in
Ho(C)

0 ALK 2 (A Al-) 9k K — A*®L K
which is natural both in A and K.

The first of the two coherence diagrams contains the two actions of the
unit and is obvious since A* ® A[0] = A. Consider the second diagram:

(AR A[-]) 0 K) 9p L — (A* @ K) @p L

|

(A®Al-]) ®F (K @ L)

|

A" L (K ok L)

(A* ®L K)* ®L L.
The upper left corner agrees with the framing
(A® Al-]) @% K) @ A[-] e c®

evaluated on L, so both clockwise and counterclockwise composition are
maps of cosimplicial frames that obviously agree in degree 0. So by Lem-
ma 4.7, the above diagram commutes in Ho(C), which is what we wanted to
prove. ([

We now provide an important characterisation of E-familiarity.

Theorem 5.4. The following are equivalent.

(1) The model category C is E-familiar.

(2) The canonical Ho(sSet,)-module structure on Ho(C) factors over a
Ho(Lg sSety)-module structure.

(3) The mapping spaces Rmap(—, —) are E-local.
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Proof. We first show the equivalence of (1) and (2). One direction is pre-
cisely Theorem 4.8. As for the converse, remember that C is E-familiar by
definition if every framing is also an E-local framing. This means that for
every cosimplicial frame A®, the functor A®* ® — sends F.-isomorphisms in
simplicial sets to weak equivalences in C. But this is exactly the case if we
ask for the Ho(sSet)-module structure to factor over Ho(Lg sSet.).

Now we turn to the equivalence of (2) and (3). One direction is straight-
forward: if C is E-familiar, then

C(X*®,—):C — LgsSet,

is a right Quillen functor for a cosimplicial frame X*®. Hence it sends fibrant
objects to fibrant objects. Since E-fibrant simplicial sets are automatically
local, C(X*,Y) and hence Rmap(X,Y’) are E-local.

Now let us look at the converse. We have to show that C(X*®, —) sends
fibrations in C to E-fibrations of simplicial sets. By [Dug01, Corollary A.2]
it suffices to show that C(X*®, —) sends fibrations between fibrant objects to
E-fibrations. Since

C(X*, —):C — sSet,
is a right Quillen functor, it sends fibrant objects in C to fibrant objects
in sSet,. By assumption, C(X*®,Y) is also E-local for fibrant Y. Hence
by Corollary 1.3, C(X*®,Y) is E-fibrant. Since sSet,-fibrations between FE-
fibrant objects are E-fibrations (see for example the proof of Proposition 3.2
in [Roi07]),
C(X*®,—):C — LgsSet,

preserves fibrations between fibrant objects. O

We have to note that E-familiarity is certainly not an invariant of the
homotopy category of a model category alone. For example, take the K-
local stable homotopy category Ho(L;S) localised at an odd prime. (By K,
we mean complex topological K-theory.) By [Frad6] this possesses at least
one “exotic model”. This means that this homotopy category can be realised
by at least one model category which is not Quillen equivalent to K ;)-local
spectra. It was noted in [Roi07] that every framing on such an algebraic
model will be trivial, whereas the framings on LS are clearly nontrivial.
Indeed, [Roi07] shows that an exotic model can be detected entirely by the
action of the generator

a1 € 71'5;_3([/18) =7Z/p

via framings. We will investigate this in more detail in Section 9.

6. Stable frames

It is worthwhile to ask whether stable model categories provide framings
with more interesting and useful structure. One natural task would be
investigating the possibility of replacing simplicial sets, sSet,, by sequential
spectra, S, in all of the previous sections if C is stable. A first step towards
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this was undertaken by Schwede and Shipley [SS02] where they show the
“Universal Property of Spectra”.

Theorem 6.1 (Schwede—Shipley). Let C be a stable model category and X
a fibrant and cofibrant object of C. Then there is a Quillen adjunction

XAN—=:87=C:Map(X,—)
such that X NS =2 X.

Fabian Lenhardt later generalised this to the context of stable framings
in [Lenll1]. He specifies the category of adjunctions

S—¢C

and characterises those which give rise to Quillen adjunctions, giving a no-
tion of stable (cosimplicial) frames. He then proceeds to show that each
cofibrant-fibrant object in C possesses such a stable frame. Finally he de-
scribes how for stable C, these constructions equip Ho(C) with the structure
of a closed Ho(S)-module category. In order to E-localise these results, let
us give the most important definitions and results of [Len11] first.

For this, it is not always necessary to assume C to be stable, but we are
going to do so for the rest of this section for convenience.

We remember that the category of adjunctions

sSet, =—= C

is equivalent to cosimplicial objects C*. We are now going to describe the
category that is equivalent to adjunctions

S—C.

First of all, let X € C® be a cosimplicial frame. We are going to define
the suspension XX of X as the cosimplicial object corresponding to the
adjunction X A (— x S1).

Definition 6.2. A X-cospectrum is a sequence of objects X,, € C* together
with structure maps

X — Xn1.
A morphism of Y-cospectra consists of a sequence of morphisms in C* that

are compatible with the structure maps. The resulting category is denoted
CA (D).

Furthermore, C2(X) can be equipped with a useful model structure, see
[Lenll, theorem 3.11]. The following result is Theorem 3.7 of that paper.

Theorem 6.3 (Lenhardt). The category C2(X) is equivalent to the category
of adjunctions

S&=C.
The image of a cospectrum X under this equivalence is denoted by

(X A —,Map(X,—)).
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The key to this is the following idea. Precomposing an adjunction
L:ST=C:R
with the adjunctions
F, :sSet, == S:ev,
(see [Lenll, Definition 2.1]) for n > 0 gives a sequence of adjunctions
L, :sSet, == C: R,.

Each of these is characterised by a cosimplicial object X,, € C®. These give
the “level spaces” of a cospectrum X € C2(X).
Further, there are natural transformations

Tn i LpoX — Lp_q

and their adjoints
Mt Ry — Qo R,,
see [Lenll, Proposition 3.4]. These give rise to morphisms of cosimplicial
sets
E)(n — anla
which are the structure maps of the cospectrum X.

Lenhardt’s Proposition 3.4 says that an adjunction (L, R) as above is
uniquely determined by either the L,, and 7, or the R,, and n,,, which proves
his Theorem 3.7 as quoted above.

He continues by characterising those cospectra that give rise to Quillen
adjunctions in [Lenll, Section 6].

Proposition 6.4 (Lenhardt). The adjunction
XAN—:87=C:Map(X,—)
is a Quillen adjunction if and only if:

e Fach X, is a cosimplicial frame.
e The structure maps X, — X,_1 are weak equivalences.

Such a cospectrum X is called a stable frame.
Furthermore, each object in C possesses a framing [Lenl11, Theorem 6.3]:

Theorem 6.5. Let A € C be a fibrant and cofibrant. Then there is a stable
frame X with Xop =X NS = A.

In particular this implies Schwede’s and Shipley’s Universal Property of
Spectra.

Unfortunately, stable frames cannot be chosen with such good functo-
rial properties as their unstable analogues, as is noted by [Lenll, Remark
6.4]. The problem is of a categorical nature and arises whenever C is not
a simplicial model category. While the suspension functor ¥ of Ho(C) can
be realised via the use of framings S' ® —, the adjoint of this functor is
unlikely to be €. This seems to seems to prevent one from being able make
a functorial construction of stable frames.
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The central structural result is a stable version of Theorem 3.6, it appears
as [Lenll, Theorem 7.3].

Theorem 6.6 (Lenhardt). Let C be a stable model category. Via stable
frames, Ho(C) becomes a closed Ho(S)-module category.

Just as framings in sSet, provide a generalisation of a simplicial model
category structure, a stable framing does the analogue for spectral model
categories. By “spectral model category” we mean a S*-model category,
where S* denotes symmetric spectra. Symmetric spectra are Quillen equiv-
alent to sequential spectra via the Quillen equivalence

ViSe&=S8UU
where the right adjoint U is forgetting the symmetric action, see [HSS00,
Proposition 4.2.4]. As with sequential spectra, there is a free spectrum
and evaluation adjunction (F>,ev,) between simplicial sets and symmetric

spectra, see [HSS00, Definition 2.1.7]. It factors over the nonsymmetric case
as

FF
sSety —~ S*
Fy \%
evy U
S.

With this we can write down what framings in spectral model categories look
like and observe that framings are indeed a generalisation of the spectral
structure.

Example 6.7. If C is a spectral model category and X € C is fibrant and
cofibrant, then we have a Quillen adjunction

XA—:8% = C:Map(X,—)
which is part of the spectral structure. Precomposing with the adjunction
(V,U) as described above gives an adjunction

S&= s =
which we are also going to denote by (X A—, Map(X, —)). We can now easily

describe the corresponding cospectrum X. Its n'* level, X,, € C2, is the
cosimplicial set corresponding to the adjunction

X A F,(—) :sSet, &= C:ev, oMap(X, —)
and the structure maps
XX, — Xpo1
are obtained via applying the functor X A — to the natural transformation
F,o¥X — F,_1.

This natural transformation induces the trivial map in level n—1 and below,
and the identity in level n and above. When evaluated on a simplicial set
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K, it gives a weak equivalence of sequential spectra. Hence the structure
maps

YXn=XANF,0YX — XAF,_1=X1
are weak equivalences of cosimplicial objects in C, as required.

Thus the cospectrum X defines a stable frame with Xo9 = X. By
uniqueness of stable frames [Lenll, Proposition 4.7], every stable frame
Y on an object X € C will agree, up to homotopy, with the Quillen pair
(X AN —,Map(X, —)) given by the spectral structure.

We can put this example in a context with even higher structure, the
following result appears as [Lenll, Theorem 7.4].

Theorem 6.8. Let C be a spectral model category. Then the Ho(S) module
structure derived from the spectral structure agrees with the Ho(S)-module
structure coming from framings as in Theorem 6.6.

For this, we remember that although the category of sequential spectra
S is not a monoidal model category, the stable homotopy category Ho(S)
is monoidal. Further, S and symmetric spectra S* are Quillen equivalent,
hence Ho(S*) = Ho(S). This result is also a special case (the one where
E. = 7,) of Proposition 7.6.

7. E-familiarity and stable model categories

We are now interested in E-local versions of those results. The central
application we have in mind is obtaining a “Universal Property of E-local
spectra” analogous to Theorem 6.1.

Definition 7.1. We say that a X-cospectrum X is an E-local stable frame
if

XAN—:LgS & C:Map(X,—)
is a Quillen adjunction. We further say that the model category C is stably
E-familiar if every stable frame is also an E-local stable frame.

Let us first make some immediate observations following this definition,
Lemma 7.2. Any LpS>-model category is stably E-familiar.

Proof. This follows from Example 6.7 in combination with Theorem 7.8.
O

Lemma 7.3. Any stably E-familiar model category is also E-familiar.

Proof. We must show that for pair of any objects X and Y in C the sim-
plicial set Rmap(X,Y") is E-local. For Z a cospectrum there is an equality
of functors

evo(Map(Z,—)) = map(Z, —)o = map(Zp, —) : C — sSet, .
Hence, on homotopy categories, there is an isomorphism of functors
RevgoRMap(—, —) = Rmap(—, —) : Ho(C)?? x Ho(C) — Ho(sSet.).
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Since R Map(—, —) takes values in Ho(LgS) and Revg can also be thought
of as a functor from Ho(LgS) to Ho(Lg sSet,), it follows that for any X
and Y in C, Rmap(X,Y’) must be an E-local simplicial set. O

By wX we denote any stable frame on X. (This is consistent with
Lenhardt’s notation.) We also note that the bifunctor

CxLgS —C, (X,A)—wXANA

possesses a total left derived functor. Since this is very similar to [Lenll,
Corollary 6.6] and our previous work in Section 4, we omit the proof. We
denote this derived functor by /\g.

Lemma 7.4. Let C be a simplicial and stably E-familiar model category.
Further, let

F.G: X —Y
be two maps of stable frames X and Y on C that agree on the sphere S.
Then the derived natural transformations

X ALy pL
induced by F and G agree.

Again, this requires no proof, we simply note that this uses [Lenl1, Corol-
lary 4.11]. We see that a cofibrant replacement functor in S is automatically
a cofibrant replacement functor in LgS.

Now that we have established some of the properties that a stably FE-
familiar model category possesses, we can turn to the stable analogues of
Theorem 4.8, Proposition 5.3 and Theorem 5.4.

Theorem 7.5. Let C be stably E-familiar, then Ho(C) is a Ho(LgS)-module
category. Moreover, a stable model category C is stably E-familiar if and only
if the Ho(S)-module structure given by Theorem 6.8 factors over this module
structure.

Proof. We need to construct an associativity isomorphism
XA (KAELD) — (XALK)ALL

that is natural in X € C and K,L € S* and satisfies various coherence
conditions, see our previous work in Theorem 4.8. We begin with X € C
being fibrant and cofibrant. By K we denote the stable frame construction
for a spectral category introduced in Example 6.7.

Now consider the stable frames

WX A (KA —)and wwX AK)A—.
Note that the first functor is a stable frame via composition of Quillen

functors. They are both stable frames on the object wX A K € C, so by
[Lenll, Theorem 6.10] we get a weak equivalence, natural in L,

a:wX AN (KAL) — wwXAK)AL,
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remembering that K A L = K A L. As in [Hov99, Theorem 5.5.3] we define
our associativity isomorphism as the composite

T wQX AQQK AQL) Y wQX A QK A QL) % w(wQX AQK) A QL)

7 QWX AQE) AQL).

To show the necessary naturality and coherence conditions, we employ the
same strategy as in previous proofs: we write down diagrams in C that do
not necessarily commute. But since they commute in bidegree (0,0), we
can use [Lenll, Theorem 6.10 (b)] and deduce that they commute in Ho(C),
which is what we are really after.

The first diagram shows naturality in X. Let X — Y be a morphism
between fibrant and cofibrant objects in C, then we have the diagram below,
which will not usually commute:

WX A(KA-)—wwXAK)A -

| |

WY A(K A=) —=wwY AK) A —.

Both clockwise and counterclockwise composites agree on the sphere spec-
trum S, so by [Lenll, Theorem 6.10 and Corollary 6.11] the above diagram
commutes in Ho(C), which we wanted to show. Naturality in K is proved
in a very similar fashion, so we omit it.

Next, we prove fourfold associativity similarly to [Hov99, Theorem 5.5.3]
using [Lenl1, Corollary 6.11]. The fourfold associativity diagram is

WX Ne (B AT A-)) —2

(Di

wX AL (KANL)A =) (5)

N

w(wX AL (KAL) AL - & wwwX Al K)AL L) AE -

wwX AEK)AE (LA -)

The map (1) is the identity on wX applied to the associativity isomorphism
in Ho(S). (We note that we discussed in Section 6 how the framing action
agrees with the action derived from the spectral model structure.) The map
(2) is any map covering the identity of wX AL (K A L) and the map (3) is
wT /\g —, that is, any map of framings covering 7.

Now we turn to the clockwise maps, evaluated on the sphere S, (4) is just
7 and (5) is any map covering the identity on (wX AL K) AL L.

If we evaluate each on the sphere then both the clockwise and anticlock-
wise composites are just applications of 7. Hence on homotopy categories
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these two composite maps agree. It follows that, as natural transforma-
tions of functors on homotopy categories, the diagram commutes, which is
precisely the statement that four-fold associativity is coherent. ([

We can also ask if a Quillen adjunction between stably E-familiar model
categories is compatible with the Ho(LgS)-actions on the homotopy cate-
gories. the answer is Lemma 9.8, which shows that any Quillen pair will be
compatible.

The next theorem establishes that E-local stable frames are indeed a
generalisation of LpS™-model category structures.

Proposition 7.6. Let C be a LpS™-model category. The Ho(LgS)-module
structure on Ho(C) induced by stable framings agrees with the Ho(LgS)-
module structure given by the LpS>-model category structure.

Proof. We show that the identity
id : Ho(C) — Ho(C)

is a Ho(LgS)-module functor, similar to what we did in Proposition 5.3.
Here, the domain has the Ho(LgS)-action that is derived from the LpS™
model category structure. The module structure on the codomain is induced
by E-local stable frames.

This means we have to construct a natural isomorphism

XN K — wX AR K

where the first product is part of the LpS™-structure and wX is a stable
framing for X € C.

We saw in Example 6.7 that there is a framing X on the object X using
the spectral structure that agrees with X /\g —. So, by [Lenll, Proposition
4.7], there is a map extending the identity on level (0,0) to a map of stable
framings. By Lemma 7.4, this induces the desired isomorphism above.

We have to show that it satisfies the necessary coherence conditions.
Again, the unit condition is easily seen. Now we consider the diagram

(XANK)ANL——w(XANK)AL

|

XA (KAL)

|

WXAN(KANL)— w(wX AK)AL.

The functor (X A K) A — agrees with the functor (X A K) A —, which is a
stable frame for the object X A K € C. But so is w(wX A K) A —. Together
with Lemma 7.4 we hence see that the clockwise and counterclockwise com-
positions in the above diagram commute in Ho(C), which is what we wanted
to prove. O
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Recall that a localisation functor Lg is smashing if the map
X — XALES

is an E-localisation for any spectrum X. Examples of smashing localisations
include the Johnson—Wilson theories F(n), which we are going to talk about
in more detail in Section 9. A example of a localisation that is not smashing
is localising with respect to a Morava K-theory, K(n). In the case of a
smashing localisation there is a relatively simple criterion for being stably
E-familiar.

Proposition 7.7. Let E be a homology theory for which Lg is smashing.
Then C is stably E-familiar if and only if the map

XAXN: X=Z2ZXAS— XALES

is a weak equivalence in C for all stable frames X.

If, furthermore, C has a set of small weak generators G, then C is stably
E-familiar if and only if the map Y — Y AP LgS is a weak equivalence for
eachY € G.

Proof. The “only if” part is obvious: the map A : S — LgS is an E-
equivalence. So if C is stably E-familiar, X A A is a weak equivalence in C
by definition.

Conversely, assume that X A A is a weak equivalence. To show that
C is stably E-familiar we need to show that the functor X A — sends E-
equivalences to weak equivalences in C. Let f : K — L be an F-equivalence
of spectra. Then the following diagram commutes:

XAK— M xAL

Nl iw

XANLESANK)——= XN (LESAL).

By assumption, the vertical maps are weak equivalences in C. Since E is
smashing, the spectra LpS A K and LS A L are E-local. The map f is an
E-equivalence, so it also induces an FE-equivalence between LpS A K and
LgSA L. But E-equivalences between E-local spectra are m,-isomorphisms.
We know that X A— sends 7m,-isomorphisms to weak equivalences in C, so the
bottom horizontal arrow in the above diagram is also a weak equivalence.
By the 2-out-of-3 axiom the top horizontal arrow is also a weak equivalence,
as required.

The second statement follows since any element of Ho(C) can be built
from the generators via coproducts and triangles, which are preserved by
NE. O

We now state the central characterisation of stable E-familiarity.

Theorem 7.8. A model category C is stably E-familiar if and only if every
homotopy mapping spectrum Map(X,Y) is an E-local spectrum.
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Proof. The “only if” part is simple: Map(X,Y") sends sends fibrant objects
to E-fibrant spectra, and those are local.

As for the converse, assume that Map(X,Y') is E-local for fibrant Y. The
functor

Map(X,—):C — S
preserves trivial fibrations, so
Map(X,—):C — LgS

also does. Thus we still need to show that Map(X, —) preserves fibrations.
This is done in the following four steps, similar to [Roi07, Proposition 3.2].

(1) The functor Map(X, —) preserves fibrant objects.

(2) The functor Map(X, —) sends fibrations to level fibrations.

(3) In LgS, level fibrations between fibrant objects are fibrations.

(4) If a functor that preserves trivial fibrations also preserves fibrations
between fibrant objects, it is a right Quillen functor.

The fibrant objects of LgS are the E-local 2-spectra. For fibrant Y, the
spectrum Map(X,Y") is an Q-spectrum by construction. Further, it has been
assumed to be E-local, so (1) is satisfied. The second point is again satisfied
by construction as

Map(X, Y)n = map(Xn, Y)

with X,, a cosimplicial frame. The third point has been proved explicitly
in [Roi07, Proposition 3.2]. Finally, (4) is Corollary A.2 in [Dug01]. This
completes the proof. O

Composition of morphisms in C makes R Map(X,Y) into a module spec-
trum over RMap(X, X). (Here, we mean ring and module objects in the
stable homotopy category rather than referring to structured ring spectra in
the underlying model categories.) Since module spectra over E-local spectra
are again E-local, provided F is a ring spectrum, [Rav84, Proposition 1.17],
we can also state the following.

Corollary 7.9. If E is a ring spectrum, then a model category C is stably
E-familiar if and only if the spectra R Map(X, X) are E-local for all X € C.

Note that if Lg is smashing, then LgS is a ring spectrum and Lg = Lz, s,
so the above holds for all smashing localisations.

For the special case & = K(g), this criterion was the key point in the
main result of [Roi07]. We are going to investigate this relation further in
Subsection 9.1.

We can also conclude that being stably FE-familiar is invariant under
Quillen equivalence.

Lemma 7.10. Let F : C == D : G be a Quillen equivalence. Then C is
stably E-familiar if and only if D is.
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Proof. The heart of this proposition is Theorem 7.8, along with the fact
that if there is a m,-isomorphism of spectra f: X — Y then X is E-local if
and only if Y is. Thus we must show that the mapping spectra of these two
categories agree. The key input to this is [Len11, Theorem 7.3] which states
that the functor LF is a Ho(S)-module functor.

Take C' € C and D € D, then by a standard adjunction argument the
spectra RMap(LF(C), D) and RMap(C, RG(D)) are weakly equivalent.

Now we have all the pieces ready. If D is stably E-familiar, then take any
pair of objects C1, Co in C. Since we have a Quillen equivalence, the unit of
the derived adjunction, id — RGLF, induces a weak equivalence of spectra

RMap(Cy,C2) — RMap(Cy, RGLF(C3)) ~ RMap(LF(C4), LF(C2)).

The right hand side of the above is which is E-local as D is stably E-familiar.
Thus all mapping spectra of C are E-local.

Conversely, assume that C is stably FE-familiar, then for any D; and
Dy of D the mapping spectrum RMap(D;, Dy) is weakly equivalent to
RMap(LFRG(D1), D) as the counit of the derived adjunction is a weak
equivalence. By adjunction as before we can conclude that R Map(D1, Ds) is
stably equivalent to the E-local spectrum RMap(RG(D;), RG(D2)). Thus
all mapping spectra of D are E-local. O

Unfortunately, “stable” together with “FE-familiar” does not imply “stably
E-familiar”. We are going to look at the difference in the next section.

8. “Stable and E-familiar” versus “Stably E-familiar”

We are now going to investigate the difference between E-familiar model
categories that are also stable and stably E-familiar model categories. As
a reminder, an E-familiar model category C is a model category where all
cosimplicial frames

sSet, = C

factor over E-local simplicial sets
LgsSet, — C.

A stably E-familiar model category is a model category where all stable
frames

S&=¢C
factor over E-local sequential spectra

Unfortunately, those two notions are not equivalent. We saw that a stably
E-familiar model category is also E-familiar in Lemma 7.3, it is stable by
definition. However, the converse is not true. The difference can be seen
in the mapping spectra. We saw in Theorem 7.8 that a model category is
stably F-familiar if and only if its mapping spectra are E-local. If the model
category is only E-familiar and not stably E-familiar it only implies that the
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level spaces of each mapping spectrum are F-local. Although it also implies
that the structure maps in the mapping spectra are weak equivalences, this
is not enough to deduce that a spectrum is F-local. For example, it does not
hold for E = HZ/p as the colimit of p-complete groups is not necessarily
p-complete.

Applying [Hov01], or [Sch97] to the model category Lg sSet, we obtain a
model category of sequential spectra in LgsSet,. This model structure is
denoted S(Lg sSet.). The key to defining this model structure is the functor

Q:§—S

which is the composition of a levelwise E-fibrant replacement functor and a
fibrant replacement functor of sequential spectra. Recall from [Sch97] that
the levelwise E-fibrant replacement functor R;, is defined on a spectrum X
as follows: (R;X)o is the E-fibrant replacement of Xy in LgsSet,. Then
one considers the factorisation of the trivial map

X, ]_[ S(RXpo1) — (R X)) — *
Xk

to obtain an E-fibrant space (R;X); along with a levelwise E-equivalence
nx: X — RlX .

Definition 8.1. A map f of spectra is a Q-equivalence if and only if Qf is
a levelwise weak equivalence in sSet,.

It is not hard to see that the class of QQ-equivalences is the class of maps
f such that R;f is a m,-isomorphism of spectra.

Definition 8.2. The model category of spectra in LpgsSety, denoted by
S(Lg sSet,), is a model structure on the category S defined as follows.

e Weak equivalences are the Q-equivalences.

e Cofibrations are the cofibrations of S.

e Fibrations are those maps that have the RLP with respect to cofi-
brations that are also Q-equivalences.

By [Hov01l, Theorem 8.11], this defines a model structure. Its fibrant
objects, known as U -spectra, are the spectra whose spaces are E-fibrant and
whose structure maps are weak equivalences of simplicial sets.

Lemma 8.3. There is a Quillen pair between spectra in L g sSet, and E-local
spectra.

id : S(LgsSety) &= LgS :id.
Proof. The cofibrations are the same for both model categories. We now

show that a Q-equivalence is an F-equivalence. If f: X — Y is a Q-
equivalence, then R;f is a m,-isomorphism, hence R;f is an E-equivalence.
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Now consider the following commutative diagram:

77)(2X*>R1X

| |

ny Y — R)Y.

The maps nx and ny are levelwise E-equivalences, so they are also E-
equivalences. Thus f must also be a F-equivalence by the two-out-of-three
property. O

Lemma 8.4. Let C be an E-familiar and stable model category. Let X be
a cofibrant and fibrant object of C. Then the Quillen pair

XAN—=:87C:Map(X,—)
resulting from stable frames gives a Quillen pair
X A —:8(LgsSety) == C : Map(X, —).

Proof. We will prove that Map(X,—) is a right Quillen functor from C
to LpsSet,. We know that it preserves trivial fibrations by adjunction
as S and S(LgsSet,) have the same cofibrations. Thus we are left with
showing that Map(X, —) preserves fibrations. We follow the proof of [R0i07,
Proposition 3.2]. Recall from [Dug01, Corollary 6.2] that it suffices to show
that Map(X, —) takes fibrations between fibrant objects of C to fibrations
of S(Lg sSety).

First we note that Map(X, —) takes fibrations of C to levelwise fibrations
of S(LgsSety): the n'" level space of the spectrum Map(X,Y) is given
by Map(X,,Y), where X,, € C? is the cosimplicial set representing the
adjunction

X A Fp(—) :sSety &= C: Map(X, —)p.
The model category C is E-familiar, so

X, A — :sSet, &= C: Map(X,,—)

factors over E-local simplicial sets by assumption. In particular, the functor
Map(X,,, —) preserves fibrations. Hence Map(X, —) sends fibrations to level
fibrations in S(Lg sSet.).

Secondly, for fibrant Y, Map(X,Y’) is an {2-spectrum, since Map(X, —) is
a right Quillen functor from C to §. Thirdly a levelwise fibration between
fibrant objects of S(Lg sSet,) is a fibration. (For this statement, follow the
proof of [Roi07, Proposition 3.2], remembering that a QQ-equivalence between
U-spectra is a m,-isomorphism.)

Combining these three points we see that for fibrant Y € C, Map(X,Y)
is a U-spectrum. So if f:Y — Z is a fibration between fibrant objects
of C, then Map(X, f) is a levelwise fibration between fibrant objects of
S(LE sSet,) and the result follows. O
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Remark 8.5. With the same method as in the previous section, we could
now also show the following: If C is an E-familiar stable model category
then Ho(C) is a closed Ho(S(Lg sSet,))-module category. However, since
not much is known about the category Ho(S(Lg sSet,)), we would rather
concentrate on investigating the case of Ho(LgS)-module categories.

We now give an example where an FE-familiar and stable model category
C is stably E-familiar.

Lemma 8.6. Let R be a subring of the rationals. Then the stable model
category of spectra in H R-local simplicial sets, S(Ly gsSety), is the same
as the stable model category of H R-local spectra, Lyt gS.

Proof. We know that these categories have the same cofibrations and that
in each case a weak equivalence between fibrant objects is a m,-isomorphism
of spectra in simplicial sets. If we can show that they have the same fibrant
objects, then it follows that the weak equivalences are the same.

By [SS02, Lemma 4.1] a fibrant object of Ly grS is an Q-spectrum whose
homotopy groups are R-local. The fibrant objects of S(Ly g sSets) are the
U-spectra, i.e., ()-spectra where every level is a H R-fibrant simplicial set. If
a spectrum X is fibrant in Ly gS then each space must be H R-local, hence
X is also a U-spectrum. Conversely, for large n, the n* homotopy group of
an H R-local space is R-local. Hence the homotopy groups of a U-spectrum
are R-local. Thus any U-spectrum is fibrant in Ly gS. O

Corollary 8.7. A model category C is stably H R-familiar if and only if it
is H R-familiar and stable.

9. Examples and applications

We dedicate the final section of this paper to examples and applications
of the technical work done in the previous sections. We will see how we can
use E-local stable framings in the context of rigidity in the sense of [Sch07]
and [Roi07]. Then another application will study stably E-familiar model
categories in terms of an action of the stable homotopy groups of the E-local
spheres. Finally, we can use all of this to classify algebraic E-familiar model
categories. Let us start with some immediate consequences.

Some homology theories that are of crucial importance to stable homotopy
theory are the chromatic Johnson-Wilson theories F(n) with

E(n)« = Zg)[vi,v2, ..., vn, v, v = 2p" =2
as well as the Morava K-theories K (n) with
K(n), = Z/plvn, v, Y.

Note that the prime p is absent from notation, and by convention, E(0) =
K (0) = HQ. These homology theories and their Bousfield localisations pro-
vide important structural information about the stable homotopy category.
For example, they are linked with periodicity and nilpotency phenomena.
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Also, the “chromatic convergence” theorem says that for a fixed prime p,
Ho(L g(,)S) gives a better and better approximation of the stable homotopy
category as n increases. The “thick subcategory theorem” says that the
Ho(L k(S ) are the “atomic” localisations of the stable homotopy category.
Finally, there is the chromatic pullback square linking the E(n) with the
K (n). Details can be found in [Rav92]. It is worth noting that E(1) is the
Adams summand of p-local complex K-theory, so localising with respect to
E(1) agrees with p-local K-localisation.

As there are plenty of known results about the relations between the
E(n) and K(n) (see [Rav84]), we can easily draw some first conclusions.
For example, for a spectrum X one has

LK(n)LE(nfl)X >~ k.

Thus, a stably F(n — 1)-familiar model category cannot be stably K(n)-
familiar. One can also see that “stably E(n—1)-familiar” also implies “stably
E(n)-familiar”. Also, any stably K (n)-familiar model category is also stably
E(n)-familiar.

9.1. Rigidity questions. In recent years, Schwede showed that the stable
homotopy category is homotopically determined by its triangulated struc-
ture only — every stable model category C with Ho(C) triangulated equiv-
alent to Ho(S) is automatically Quillen equivalent to S, see [Sch07]. Of
course, this started the question of which other stable model categories are
“rigid” in this sense.

Rigidity question Let C be a stable model category. Assuming that there
is an equivalence of triangulated categories

® : Ho(LgS) = Ho(C),
are LpS and C Quillen equivalent?

To gain knowledge about the deeper structure of the stable homotopy
category, the second author started considering the rigidity of chromatic
Bousfield localisations of the stable homotopy category. For p = 2, the re-
sult was that the E(1)-local stable homotopy category is rigid [Roi07]. On
the other hand, Franke showed in [Fra96] that for p > 2, the E(1)-local
stable homotopy category possesses at least one “exotic model”. Although
the statements of the results in [Sch07] and [Roi07] look similar, the com-
putational methods employed are quite different. We are going to see how
these results and some elements of their proofs fit into the framework of sta-
ble E-familiarity. We restrict ourselves to the case of smashing localisations
L to make sure that the E-local sphere is a compact generator [HPS97,
Theorem 3.5.2].

So what obvious obstructions are there for a model category C to be
Quillen equivalent to some LpS? For example, Lemma 7.10 tells us that
C has to be stably E-familiar. In the case of Schwede’s proof for £ = S,
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this condition is trivial, but for other F this becomes a highly complicated
computation. The second author could attempt this for E(1) as in this
range the telescope conjecture holds, giving a computable criterion for when
a spectrum is E(1)-local. The core computation (using specific relations
in m.(Lk,S) ) was to show that every mapping spectrum Map(X,Y) is
K (9)-local [Roi07, Lemma 3.3]. In our words, this showed that C is stably
K (g)-familiar. So in the case of E' = K|y, being stably E-familiar actually
only depended on the triangulated structure of Ho(C), which cannot be
expected in the general case.

Given a stable model category C, the first big step towards a Quillen
equivalence with LgS is the construction of a Quillen functor. We can
specify what this functor has to be when localising at E is smashing.

Lemma 9.1. The following are equivalent when localisation at E is smash-
mng.
o There is a Quillen equivalence F : LS =—= C : G.
e WXA—:LpS 7 C:Map(wX,—) is a Quillen equivalence for X a
fibrant-cofibrant replacement of F(LgS) and wX a stable frame on
X.

Proof. If C is Quillen equivalent to LgS, it is automatically stably FE-
familiar by Lemma 7.10. Since F' and wX A — agree on the E-local sphere,
their derived functors agree by Lemma 7.4. Hence one is a Quillen equiva-
lence if and only if the other is. O

Using this, we see that if one has a triangulated equivalence between
Ho(LgS) and Ho(C), that comes from a Quillen functor, then it is deter-
mined by the image of the E-local sphere.

Corollary 9.2. If the triangulated equivalence
¢ : Ho(LgS) — Ho(C)

is realised by a Quillen functor, then it is realised uniquely up to natural
transformations that are objectwise weak equivalences.

Corollary 9.3. The Quillen self-equivalences LS — LgS correspond to
the Picard group Pic(LgS).

Proof. By Lemma 9.1, every Quillen equivalence is of the form (wX A
—,Map(wX,—)) for X € LgS a fibrant and cofibrant spectrum. By the
uniqueness of framings (Lemma 7.4), such an adjunction agrees with the
Quillen pair (X A —, Map(X,—)) from Example 6.7. In the second pair, A
denotes the smash product of spectra. Hence, (X A —, Map(X, —)) provides
a Quillen equivalence if and only if X € Pic(LgS). O

With the results of Section 7, we can reduce the question of whether a
functor is a Quillen equivalence to studying a mapping spectrum, a technique
related to Morita theory.



544 DAVID BARNES AND CONSTANZE ROITZHEIM

Proposition 9.4. A stable model category C and LgS are Quillen equivalent
if and only if the map

LS — RMap(X, X)
is a me-isomorphism for X a fibrant-cofibrant compact generator of C.

Proof. The “only if” direction is immediate. We note that as X is a com-
pact generator of C, the functor R Map(X, —) reflects isomorphisms. Then
X /\é — and RMap(X, —) are inverse equivalences of categories if and only
if the map
Y — RMap(X, X AL'Y)

is an isomorphism in Ho(LgS) for all Y. Now for a compactly generated
triangulated category, checking this is a standard argument [Roi07, Theorem
4.2]. The full subcategory of those Y such that the above map is a weak
equivalence is closed under exact triangles and coproducts. It contains the
sphere by assumption. But any full subcategory of Ho(LgS), that contains
the sphere and is closed under coproducts and exact triangles, is Ho(LgS)
itself. This means that the above map is an isomorphism for all Y, which is
what we wanted to prove. O

By adjunction, the above condition is equivalent to showing that
(1) X AL — 8,55 — [X, X¢

is an isomorphism, cf. Proposition 9.10 in the next subsection. Both
Schwede in the case of £ =S, and the second author for £ = E(1), proved
this by exploiting the relations in 7, (LgS). Using induction, Schwede re-
duces the question to elements in m,(S) that have Adams filtration one
[Sch01]. For odd primes, this is just oy € mop—3(S). Schwede shows that
X AV ay # 0 using extended powers of the mod-p Moore spectrum.

For p = 2, the elements of Adams filtration 1 are the Hopf maps n, v
and . As v and ¢ can be constructed from 7 using Toda bracket relations
(which are preserved under exact functors), it can be reduced further to
studying X AL n only. Multiplication by 2 on the mod-2 Moore spectrum
M is not only nonzero but also factors over 7. Since this information is also
preserved by exact functors, it can be deduced that

XAln#0in [X, X]¢=7/2

for any C with Ho(C) ~ Ho(S(2)). Together with the inductive argument
this shows that (1) is an isomorphism.

For E = E(1) and p = 2, the question is also reduced to the behaviour
of n € m(Lp1)S). But rather than using Adams filtration, the reduction
exploits vi-periodicity in the mod-2 homotopy groups.

For p > 2 the question is again reduced to a;. But since for odd primes
(L E(l)S) is not equipped with the same density of relations as for p = 2,
X AL aq = 0 is possible, allowing space for exotic models [R0i07, Theorem
6.8].
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To summarize: when Lg is smashing, C is Quillen equivalent to Ho(LgS)
if and only if:
e (C is stably E-familiar.
e S— RMap(X, X) is an E-equivalence.

If these properties only depend on the triangulated structure of Ho(C) ~
Ho(LgS), then Ho(LgS) is rigid.

9.II. Modular rigidity. We can also use stable frames to look at the rigid-
ity question from a different angle. How much homotopical information can
be seen by the Ho(S)-module structure coming from stable frames? The
answer is that for F-local spectra, the module structure encodes all rele-
vant information. One could say that “Ho(LgS) is rigid as a Ho(S)-module
category”.

Theorem 9.5. Let Lg be a smashing localisation and
® : Ho(LgS) — Ho(C)

be an equivalence of triangulated categories. Then the following are equiva-
lent.

o O is the derived functor of a Quillen equivalence.
e & is a Ho(S)-module functor.

Proof. We know that Quillen functors induce Ho(S)-module functors. For
the other implication, assume that we have an equivalence of triangulated
categories
® : Ho(LgS) — Ho(C).

By [SS03, Theorem 3.1.1], C is Quillen equivalent to a category of module
spectra over a ring spectrum R. Its Bousfield localisation LgR is still a ring
spectrum. Let us now consider the category of LgR-module spectra. We
arrive at the following situation.

P

Ho(LgS) Ho(R-mod)

x lLE

Ho(LgR-mod).
By [EKMM97, Proposition VIII.3.2],
Ho(L g R-mod) = Ho(R-mod)[E~"],

i.e., Ho(LgR-mod) is Ho(R-mod) with the E,-isomorphisms formally in-
verted. Because @ is assumed to be a Ho(S)-module functor, it sends E,-
isomorphisms to E,-isomorphisms, as does its inverse ®~!. It follows that
&~ must factor over Ho(LgR-mod), giving an inverse to ®’. So now we
know that if ® is a Ho(S)-module equivalence, then it also induces an equiv-
alence

Ho(LgS) = Ho(LgS)[E~'] — Ho(R-mod)[E™].
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Consequently, @' is a triangulated equivalence, and so is
Lg : Ho(R-mod) — Ho(LgR-mod).

So C, R-mod and LgR-mod are all Quillen equivalent. Since LgR is obvi-
ously F-local and L is smashing, the category LpR-mod is an L pS-model
category. Thus, C is stably E-familiar.

As C is stably E-familiar, we can now consider Quillen functors

XAN—:LgS—C for X €C.

Take X = ®(LgS). Remember that ® is a Ho(S)-module functor and that
X AE— =X AL —. Then

X AL — =®(L,S) A — = d(L,SAE ) = d(-).

This means that X A — is a Quillen functor with left derived functor ®,
which is what we wanted to prove. ([l

This means that for Lg smashing, all higher homotopy information of
LEgS is encoded in the stable frames.

9.II1. Linearity and uniqueness. A major application of framings is us-
ing them to define an action of the stable homotopy groups of spheres on
the morphism groups of the homotopy category of a stable model category.
In [SS02], Schwede and Shipley define this 7, (S)-action and show how it can
be used to examine whether a stable model category is Quillen equivalent
to the category of spectra.

We are going to use our work on E-local framings to investigate whether
a stably F-familiar model category C is Quillen equivalent to the category of
E-local spectra LS, in the case that localisation at E is smashing. There,
the action of .S passes through m,(LgS), which is an advantage, as in
many cases m«LgS is better understood, more computable and more highly
structured than 7.S.

First of all, let R, be a graded ring. We say that a triangulated cate-
gory T is R.-linear if 7 has an action of R, which is compatible with the
triangulated structure, i.e., there are bilinear pairings

R.ANT(X,)Y) — T(X[n],Y)

for all X,Y € 7T which are unital, associative, central and compatible with
the shift in 7 [SS02, Definition 2.2].

An R.-exact functor is a functor of triangulated categories which is com-
patible with the R,-action, see [SS02, Definition 2.2].

Example 9.6. Let M be a monoidal triangulated category with unit I and
T a module over this category. Then we see that the module action makes
every group 7T (A, B) into a M(I, I)-linear category.

For T = Ho(C) and M = Ho(S), this recovers [SS02, Construction 2.4].
If C is a stably E-familiar model category, the above construction makes
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Ho(C) into a m,(LEgS)-linear category. Furthermore, the ring m.(S) acts on
[X,Y]¢ via the localisation map . (S) — 7.(LgS).

Remark 9.7. One might want to study stable model categories whose ho-
motopy categories are m,(LgS)-triangulated, but this notion has a difficulty.
Let C be such a model category, then one would want the action of 7. (LgS)
on homotopy classes of maps (coming from the m,(LgS)-triangulation) to
be related to the map

[Sv LES}‘E X [Xv Y]g - [X7Y i~ LES]E

that comes from stable framings. The only way of achieving a suitably useful
relation seems to be requiring that for any Y the map Y — Y AL LS is a
weak equivalence. In the smashing case, which is the one of greatest interest,
this is precisely the condition that C be stably E-familiar.

Lemma 9.8. A Quillen pair between stably E-familiar model categories
induces an adjunction of closed Ho(LgS)-modules on homotopy categories.

Proof. Take a Quillen pair between stably E-familiar model categories
F:C&=D:G
then the categories Ho(C) and Ho(D) are closed Ho(LgS)-modules by The-
orem 7.5. We want to show that the derived adjunction
LF : Ho(C) == Ho(D) : RG

is an adjunction of closed Ho(LgS)-modules. By [Hov99, Definition 4.1.14],
this amounts to showing that LF is a Ho(LgS)-module functor. So we need
a natural isomorphism, in Ho(D)

m:LF(X) N K — LF(X AL K)
for any X € Ho(C) and K € Ho(LgS), which satisfies associativity and

unital coherence conditions. By [Lenll, Theorem 7.3|, the functor LF is a
Ho(S)-module functor. Let

m': LF(X)\' K — LF(X A\F K)

be the associativity isomorphism of this structure. We can choose m’ to be
equal to m, since the cofibrant replacement functor of LgS can be chosen
to agree with that of S. It remains to show that this m is natural on the
category Ho(LgS). Take an FE-equivalence f:L — K, and consider the
diagram

L NG/ L
LE(X)NE L LE(X) N\ K
lm/ im/
LF(1nE
LF(X AL L) UreD) LF(X AL K).

By naturality of m’ on Ho(S) this diagram commutes. The top and bottom
horizontal maps are isomorphisms, so the analogous diagram involving f~*
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commutes. This shows that m = m’ is a natural isomorphism on Ho(LgS).
The coherence conditions follow immediately. ([

Corollary 9.9. A Quillen pair between stably E-familiar model categories
is m(LES)-linear.

We can now use this 7, (LgS)-action to study whether a stably E-familiar
stable model category C is Quillen equivalent to LS. For this we need to
restrict ourselves to smashing localisations in order to guarantee that the
E-local sphere is still a small weak generator [HPS97, Theorem 3.5.2].

We can easily state an E-local version of [SS02, Theorem 5.3]. The proof
is obviously going to be extremely similar to the original, so we omit it and
refer to Schwede’s and Shipley’s version. The only difference being using
the fact that in a stably E-familiar model category, mapping spectra are
E-local.

Proposition 9.10. Let C be a stably E-familiar model category. Then the
following are equivalent.

(1) There is a chain of Quillen equivalences between C and LgS.

(2) There is a w«(LES)-linear equivalence between Ho(C) and Ho(LgS).

(3) The model category C has a small weak generator X for which [ X, X<
is freely generated as a w.(LgS)-module by the identity of X.

(4) The homotopy category Ho(C) has a cofibrant-fibrant small weak gen-
erator X for which LgS — Map(X, X) is a weak equivalence of
spectra.

Furthermore if X is a cofibrant and fibrant object of C which satisfies either
of the last two conditions then the adjunction (X A—, Map(X, —) is a Quillen
equivalence between C and LgS.

9.IV. Algebraic model categories. Another interesting class of model
categories to consider is the class of algebraic model categories. An algebraic
model category is a Ch(Z)-model category, where Ch(Z) denotes the model
category of chain complexes of abelian groups. Sometimes this is also called
a dg-model category, cf. [SS03]. We would like to investigate what stably
E-familiar algebraic model categories look like. The mapping spectra of
algebraic model categories carry some special structure: they are products
of Eilenberg—-MacLane spectra. Together with some knowledge of Bousfield
localisations of Eilenberg—MacLane spectra we can draw some interesting
conclusions.

Lemma 9.11. Let C be an algebraic model category. Then for each X,Y €
C, the mapping spectrum Map(X,Y") is a product of Filenberg-MacLane
spectra.

Proof. Because of the enrichment over chain complexes, Map(X,Y) is not
only a spectrum of simplicial sets, but also a spectrum of simplicial abelian
groups. It is known that these are products of Eilenberg—MacLane spectra,
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see, e.g., [GJ99, Proposition I11.2.20] or [DS07, Section 2.6]. More specifi-
cally,

Map(X,Y) ~ [ H([X,Y]$) = ] H(H. Y))). 0
n>0 n>0

Recently, Gutiérrez computed the Bousfield localisation of Eilenberg—
MacLane spectra with respect to important homology theories E [Gut10].

Theorem 9.12 (Gutiérrez). Let G be an abelian group. Then:
® LgmyHG >~ forn > 1.
o LpmyHG = LugHG for all n.

Corollary 9.13. There are no algebraic stably K(n)-familiar model cate-
gories forn > 1.

Corollary 9.14. Let C be an algebraic model category. Then C is stably
E(n)-familiar if and only if C is HQ-familiar, i.e., rational.

From this we can conclude immediately that Lg,)S and Lg,)S are not
algebraic for n > 1. But the computations of Gutiérrez reach even further,
allowing us to classify algebraic LgS for all E.

Theorem 9.15. The category of E-local spectra LgS is algebraic if and
only if Lg = Luo.

Proof. Let o € m,(LgS), X,Y € LgS. Then, by adjunction, the following
diagram commutes:

Z

[S, LERMap(X,Y)]® — [S, RMap(X,Y)]FeS —~ pvr —— [X,Y]EBS
S, LyRMap(X,Y)]S —= [S, R Map(X,Y)]|LeS —~ o (XS,

By Lemma 9.11, RMap(X,Y) is a product of Eilenberg-MacLane spec-
tra. By [Gut10, Corollary 4.2], the E-localisation of an Eilenberg—-MacLane
spectrum is again a product of Eilenberg-MacLane spectra. So for degree
reasons, precomposition with « in the above diagram is trivial unless « is
in degree zero.

In particular, this is true for X =Y = LgS. Remembering that the action
of homotopy groups is unital, this implies that [S,S]*#° is concentrated in
degree zero only. This means that

LgS=HR for some R.
As localisation is idempotent,
LpHR=HR.
y [Gut10, Theorem 3.5] we further have
LpHR=LyugcHR
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where G is either Z/P or Zp for some set of primes P. Thus, in our case
localisation is either P-localisation or P-completion. But we know that
the P-complete sphere can never have its homotopy concentrated in one
degree. And it is the same for the P-local sphere unless P-completion is
rationalisation, leaving us with the only possible case R = Q.

Now it is only left to prove that if LgS = HQ, then Lg is rationalisation.
We know that S — HQ is an E-equivalence. Consequently, the cofibre of
this map, C, is F-acyclic. If we consider the cofibre sequence

M(n) — C % C

where M (n) is the mod-n Moore spectrum, we see that M (n) must also be
FE-acyclic. Putting this into the cofibre sequence

E-" E—EANM(n)~x

we see that multiplication by n is an isomorphism on £ for all n, hence F
must be rational.

If a spectrum FE is rational, then it is a module spectrum over the rational
sphere HQ. However, module spectra over Eilenberg—-MacLane spectra are
again Eilenberg-MacLane spectra. This means that F is a wedge of shifts
of products of HQ and consequently, L = Ly . O

This result fits in nicely with the long-known result that Ho(LgS) is
equivalent to the derived category of rational chain complexes. This state-
ment was improved in [Shi07] which proves that LS is Quillen equivalent
to Ch(Q).

We now have a good understanding of how Ho(LgS) can act on the
homotopy category of a stable model category and we have related this to
actions of Ho(Lg sSet,). When Lg is smashing we applied this knowledge
to questions of rigidity and proven a uniqueness statement for Ho(LgS).
Finally we have studied actions of Ho(LgS) on algebraic model categories
and seen that this action always passes through Ho(LygS).
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