New York Journal of Mathematics
 New York J. Math. 17 (2011) 601-617.
 Typicality of normal numbers with respect to the Cantor series expansion

Bill Mance

Abstract

Fix a sequence of integers $Q=\left\{q_{n}\right\}_{n=1}^{\infty}$ such that q_{n} is greater than or equal to 2 for all n. In this paper, we improve upon results by J. Galambos and F. Schweiger showing that almost every (in the sense of Lebesgue measure) real number in $[0,1)$ is Q-normal with respect to the Q-Cantor series expansion for sequences Q that satisfy a certain condition. We also provide asymptotics describing the number of occurrences of blocks of digits in the Q-Cantor series expansion of a typical number. The notion of strong Q-normality, that satisfies a similar typicality result, is introduced. Both of these notions are equivalent for the b-ary expansion, but strong normality is stronger than normality for the Cantor series expansion. In order to show this, we provide an explicit construction of a sequence Q and a real number that is Q-normal, but not strongly Q-normal. We use the results in this paper to show that under a mild condition on the sequence Q, a set satisfying a weaker notion of normality, studied by A. Rényi, 1956 , will be dense in $[0,1)$.

Contents

1. Introduction 601
2. Strongly normal numbers 604
2.1. Basic definitions and results 604
2.2. Construction of a number that is Q-normal, but not
strongly Q-normal of order 2
3. Random variables associated with normality 609
4. Typicality of normal numbers 612
5. Ratio normal numbers 616

References 616

1. Introduction

Definition 1.1. Let b and k be positive integers. A block of length k in base b is an ordered k-tuple of integers in $\{0,1, \ldots, b-1\}$. A block of length

[^0]k is a block of length k in some base b. A block is a block of length k in base b for some integers k and b.

Definition 1.2. Given an integer $b \geq 2$, the b-ary expansion of a real x in $[0,1)$ is the (unique) expansion of the form

$$
x=\sum_{n=1}^{\infty} \frac{E_{n}}{b^{n}}=0 . E_{1} E_{2} E_{3} \ldots
$$

such that E_{n} is in $\{0,1, \ldots, b-1\}$ for all n with $E_{n} \neq b-1$ infinitely often.
Denote by $N_{n}^{b}(B, x)$ the number of times a block B occurs with its starting position no greater than n in the b-ary expansion of x.

Definition 1.3. A real number x in $[0,1)$ is normal in base b if for all k and blocks B in base b of length k, one has

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{N_{n}^{b}(B, x)}{n}=b^{-k} \tag{1}
\end{equation*}
$$

A number x is simply normal in base b if (1) holds for $k=1$.
Borel introduced normal numbers in 1909 and proved that almost all (in the sense of Lebesgue measure) real numbers in $[0,1)$ are normal in all bases. The best known example of a number that is normal in base 10 is due to Champernowne [3]. The number

$$
H_{10}=0.123456789101112 \ldots
$$

formed by concatenating the digits of every natural number written in increasing order in base 10 , is normal in base 10 . Any H_{b}, formed similarly to H_{10} but in base b, is known to be normal in base b. Since then, many examples have been given of numbers that are normal in at least one base. One can find a more thorough literature review in [4] and [5].

The Q-Cantor series expansion, first studied by Georg Cantor in [9], is a natural generalization of the b-ary expansion.

Definition 1.4. $Q=\left\{q_{n}\right\}_{n=1}^{\infty}$ is a basic sequence if each q_{n} is an integer greater than or equal to 2 .

Definition 1.5. Given a basic sequence Q, the Q-Cantor series expansion of a real x in $[0,1$) is the (unique) expansion of the form

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} \frac{E_{n}}{q_{1} q_{2} \ldots q_{n}} \tag{2}
\end{equation*}
$$

such that E_{n} is in $\left\{0,1, \ldots, q_{n}-1\right\}$ for all n with $E_{n} \neq q_{n}-1$ infinitely often. We abbreviate (2) with the notation $x=0 . E_{1} E_{2} E_{3} \ldots$ with respect to Q.

Clearly, the b-ary expansion is a special case of (2) where $q_{n}=b$ for all n. If one thinks of a b-ary expansion as representing an outcome of repeatedly rolling a fair b-sided die, then a Q-Cantor series expansion may be thought of as representing an outcome of rolling a fair q_{1} sided die, followed by a fair q_{2} sided die and so on. For example, if $q_{n}=n+1$ for all n, then the Q-Cantor series expansion of $e-2$ is

$$
e-2=\frac{1}{2}+\frac{1}{2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\cdots
$$

If $q_{n}=10$ for all n, then the Q-Cantor series expansion for $1 / 4$ is

$$
\frac{1}{4}=\frac{2}{10}+\frac{5}{10^{2}}+\frac{0}{10^{3}}+\frac{0}{10^{4}}+\cdots
$$

For a given basic sequence Q, let $N_{n}^{Q}(B, x)$ denote the number of times a block B occurs starting at a position no greater than n in the Q-Cantor series expansion of x. Additionally, define

$$
Q_{n}^{(k)}=\sum_{j=1}^{n} \frac{1}{q_{j} q_{j+1} \ldots q_{j+k-1}}
$$

A. Rényi [7] defined a real number x to be normal with respect to Q if for all blocks B of length 1,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{N_{n}^{Q}(B, x)}{Q_{n}^{(1)}}=1 \tag{3}
\end{equation*}
$$

If $q_{n}=b$ for all n, then (3) is equivalent to simple normality in base b, but not equivalent to normality in base b. Thus, we want to generalize normality in a way that is equivalent to normality in base b when all $q_{n}=b$.

Definition 1.6. A real number x is Q-normal of order k if for all blocks B of length k,

$$
\lim _{n \rightarrow \infty} \frac{N_{n}^{Q}(B, x)}{Q_{n}^{(k)}}=1
$$

We say that x is Q-normal if it is Q-normal of order k for all k. A real number x is Q-ratio normal of order k if for all blocks B and B^{\prime} of length k, we have

$$
\lim _{n \rightarrow \infty} \frac{N_{n}^{Q}(B, x)}{N_{n}^{Q}\left(B^{\prime}, x\right)}=1
$$

x is Q-ratio normal if it is Q-ratio normal of order k for all positive integers k.

We make the following definitions:
Definition 1.7. A basic sequence Q is k-divergent if $\lim _{n \rightarrow \infty} Q_{n}^{(k)}=\infty$. Q is fully divergent if Q is k-divergent for all k. Q is k-convergent if it is not k-divergent.

Definition 1.8. A basic sequence Q is infinite in limit if $q_{n} \rightarrow \infty$.
For Q that are infinite in limit, it has been shown that the set of all x in $[0,1)$ that are Q-normal of order k has full Lebesgue measure if and only if Q is k-divergent [7]. Therefore, if Q is infinite in limit, then the set of all x in $[0,1)$ that are Q-normal has full Lebesgue measure if and only if Q is fully divergent. Suppose that Q is 1-divergent. Given an arbitrary nonnegative integer a, F. Schweiger [8] proved that for almost every x with $\epsilon>0$, one has

$$
N_{n}((a), x)=Q_{n}^{(1)}+O\left(\sqrt{Q_{n}^{(1)}} \cdot \log ^{3 / 2+\epsilon} Q_{n}^{(1)}\right) .
$$

J. Galambos proved an even stronger result in [10]. He showed that for almost every x in $[0,1)$ and for all nonnegative integers a,

$$
N_{n}^{Q}((a), x)=Q_{n}^{(1)}+O\left(\sqrt{Q_{n}^{(1)}}\left(\log \log Q_{n}^{(1)}\right)^{1 / 2}\right)
$$

We provide the following main results:
(1) A notion of strong Q-normality is provided and we construct an explicit example of a basic sequence Q and a real number that is Q-normal, but not strongly Q-normal (Theorem 2.15).
(2) (Theorem 4.9) If Q is a basic sequence that is infinite in limit and B is a block of length k, then for almost every real number x in $[0,1)$, we have

$$
N_{n}^{Q}(B, x)=Q_{n}^{(k)}+O\left(\sqrt{Q_{n}^{(k)}}\left(\log \log Q_{n}^{(k)}\right)^{1 / 2}\right)
$$

(3) If Q is infinite in limit, then almost every real number is Q-normal of order k if and only if Q is k-divergent (Theorem 4.11).
(4) If Q is k-convergent for some k, then the set of numbers that are Q-normal is empty (Proposition 5.1). If Q is infinite in limit, then the set of Q-ratio normal numbers is dense in $[0,1$) (Corollary 5.3).

Acknowledgements. I would like to thank Christian Altomare and Vitaly Bergelson for many useful conversations.

2. Strongly normal numbers

2.1. Basic definitions and results. In this section, we will introduce a notion of normality that is stronger than Q-normality. This notion of normality will arise naturally later in this paper and will be useful for studying the typicality of Q-normal numbers. We will first need to make definitions similar to those of $N_{n}^{Q}(B, x)$ and $Q_{n}^{(k)}$.

Given a real number $x \in[0,1)$, a basic sequence Q, a block B of length k, a positive integer $p \in[1, k]$, and a positive integer n, we will denote by $N_{n, p}^{Q}(B, x)$ the number of times that the block B occurs in the Q-Cantor series expansion of x with starting position of the form $j \cdot k+p$ for $0 \leq j<\frac{n}{k}$.

If n and k are positive integers, define

$$
\rho(n, k)=\lceil n / k\rceil-1=\max \left\{i \in \mathbb{Z}: i<\frac{n}{k}\right\} .
$$

Suppose that Q is a basic sequence and that n, p, and k are positive integers with $p \in[1, k]$. We will write

$$
Q_{n, p}^{(k)}=\sum_{j=0}^{\rho(n, k)} \frac{1}{q_{j k+p} q_{j k+p+1} \cdots q_{j k+p+k-1}} .
$$

Definition 2.1. Let k be a positive integer. Then a basic sequence Q is strongly k-divergent ${ }^{1}$ if for all positive integers p with $p \in[1, k]$, we have $\lim _{n \rightarrow \infty} Q_{n, p}^{(k)}=\infty$. A basic sequence Q is strongly fully divergent if it is strongly k-divergent for all k.

Given a real number $x \in[0,1)$, a basic sequence Q, a block B of length k, a positive integer $p \in[1, k]$, and a positive integer n, we will denote by $N_{n, p}^{Q}(B, x)$ the number of times the block B occurs in the Q-Cantor series expansion of x with positions of the form $j \cdot k+p$ for $0 \leq j<\frac{n}{k}$.
Definition 2.2. Suppose that Q is a basic sequence. A real number x in $[0,1)$ is strongly Q-normal of order k if for all blocks B of length $m \leq k$ and all $p \in[1, m]$, we have

$$
\lim _{n \rightarrow \infty} \frac{N_{n, p}^{Q}(B, x)}{Q_{n, p}^{(m)}}=1
$$

A real number x is strongly Q-normal if it is strongly Q normal of order k for all k.

We will use the following lemmas frequently and without mention:
Lemma 2.3. Given a real number $x \in[0,1)$, a basic sequence Q, a block B of length k, a positive integer $p \in[1, k]$, and a positive integer n, we have

$$
\begin{gathered}
N_{n, 1}^{Q}(B, x)+N_{n, 2}^{Q}(B, x)+\cdots+N_{n, k}^{Q}(B, x)=N_{n}^{Q}(B, x)+O(1) \text { and } \\
Q_{n, 1}^{(k)}+Q_{n, 2}^{(k)}+\cdots+Q_{n, k}^{(k)}=Q_{n}^{(k)}+O(1) .
\end{gathered}
$$

Proof. This follows directly from the definitions of $N_{n}^{Q}(B, x)$ and $Q_{n}^{(k)}$.

[^1]Lemma 2.4. If $g_{1}, g_{2}, \ldots, g_{n}$ are nonnegative functions on the natural numbers, then

$$
o\left(g_{1}\right)+o\left(g_{2}\right)+\cdots+o\left(g_{n}\right)=o\left(g_{1}+g_{2}+\cdots+g_{n}\right)
$$

Theorem 2.5. If Q is a basic sequence and x is strongly Q-normal of order k, then x is Q-normal of order k.

Proof. Let $m \leq k$ be a positive integer and let B be a block of length k. Since x is strongly Q-normal of k, we know that for all $p \in[1, m]$, $N_{n, p}^{Q}(B, x)=Q_{n, p}^{(k)}+o\left(Q_{n, p}^{(k)}\right)$. Thus, we see that

$$
\begin{aligned}
N_{n}^{Q}(B, x) & =\sum_{p=1}^{m} N_{n, p}^{Q}(B, x)=\sum_{p=1}^{m}\left(Q_{n, p}^{(k)}+o\left(Q_{n, p}^{(k)}\right)\right) \\
& =\sum_{p=1}^{m} Q_{n, p}^{(k)}+o\left(\sum_{p=1}^{m} Q_{n, p}^{(k)}\right)=Q_{n}^{(k)}+o\left(Q_{n}^{(k)}\right),
\end{aligned}
$$

so $\lim _{n \rightarrow \infty} \frac{N_{n}^{Q}(B, x)}{Q_{n}^{(k)}}=1$. Therefore, x is Q-normal of order k.
Corollary 2.6. Suppose that Q is a basic sequence. If x is strongly Q normal, then x is Q-normal.
2.2. Construction of a number that is Q-normal, but not strongly Q-normal of order 2. In this subsection, we will work towards giving an example of a basic sequence Q and a real number x that is Q-normal, but not strongly Q-normal of order 2. We will use the conventions found in [6].

Given a block $B,|B|$ will represent the length of B. Given nonnegative integers $l_{1}, l_{2}, \ldots, l_{n}$, at least one of which is positive, and blocks $B_{1}, B_{2}, \ldots, B_{n}$, the block $B=l_{1} B_{1} l_{2} B_{2} \ldots l_{n} B_{n}$ will be the block of length $l_{1}\left|B_{1}\right|+\cdots+l_{n}\left|B_{n}\right|$ formed by concatenating l_{1} copies of B_{1}, l_{2} copies of B_{2}, through l_{n} copies of B_{n}. For example, if $B_{1}=(2,3,5)$ and $B_{2}=(0,8)$, then $2 B_{1} 1 B_{2} 0 B_{2}=(2,3,5,2,3,5,0,8)$. We will need the following definitions:
Definition 2.7. A weighting μ is a collection of functions $\mu^{(1)}, \mu^{(2)}, \mu^{(3)}, \ldots$ with $\sum_{j=0}^{\infty} \mu^{(1)}(j)=1$ such that for all $k, \mu^{(k)}:\{0,1,2, \ldots\}^{k} \rightarrow[0,1]$ and $\mu^{(k)}\left(b_{1}, b_{2}, \ldots, b_{k}\right)=\sum_{j=0}^{\infty} \mu^{(k+1)}\left(b_{1}, b_{2}, \ldots, b_{k}, j\right)$.
Definition 2.8. The uniform weighting in base b is the collection λ_{b} of functions $\lambda_{b}^{(1)}, \lambda_{b}^{(2)}, \lambda_{b}^{(3)}, \ldots$ such that for all k and blocks B of length k in base b

$$
\begin{equation*}
\lambda_{b}^{(k)}(B)=b^{-k} \tag{4}
\end{equation*}
$$

Definition 2.9. Let p and b be positive integers such that $1 \leq p \leq b$. A weighting μ is (p, b)-uniform if for all k and blocks B of length k in base p, we have

$$
\begin{equation*}
\mu^{(k)}(B)=\lambda_{b}^{(k)}(B)=b^{-k} \tag{5}
\end{equation*}
$$

Given blocks B and y, let $N(B, y)$ be the number of occurrences of the block B in the block y.
Definition 2.10. Let ϵ be a real number such that $0<\epsilon<1$ and let k be a positive integer. Assume that μ is a weighting. A block of digits y is (ϵ, k, μ)-normal ${ }^{2}$ if for all blocks B of length $m \leq k$, we have

$$
\begin{equation*}
\mu^{(m)}(B)|y|(1-\epsilon) \leq N(B, y) \leq \mu^{(m)}(B)|y|(1+\epsilon) \tag{6}
\end{equation*}
$$

For the rest of this subsection, we use the following conventions. Given sequences of nonnegative integers $\left\{l_{i}\right\}_{i=1}^{\infty}$ and $\left\{b_{i}\right\}_{i=1}^{\infty}$ with each $b_{i} \geq 2$ and a sequence of blocks $\left\{x_{i}\right\}_{i=1}^{\infty}$, we set

$$
\begin{gather*}
L_{i}=\left|l_{1} x_{1} \ldots l_{i} x_{i}\right|=\sum_{j=1}^{i} l_{j}\left|x_{j}\right|, \tag{7}\\
q_{n}=b_{i} \text { for } L_{i-1}<n \leq L_{i}, \tag{8}
\end{gather*}
$$

and

$$
\begin{equation*}
Q=\left\{q_{n}\right\}_{n=1}^{\infty} . \tag{9}
\end{equation*}
$$

Moreover, if $\left(E_{1}, E_{2}, \ldots\right)=l_{1} x_{1} l_{2} x_{2} \ldots$, we set

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} \frac{E_{n}}{q_{1} q_{2} \ldots q_{n}} . \tag{10}
\end{equation*}
$$

Given $\left\{q_{n}\right\}_{n=1}^{\infty}$ and $\left\{l_{i}\right\}_{i=1}^{\infty}$, it is assumed that x and Q are given by the formulas above.

Definition 2.11. A block friendly family is a 6 -tuple

$$
W=\left\{\left(l_{i}, b_{i}, p_{i}, \epsilon_{i}, k_{i}, \mu_{i}\right)\right\}_{i=1}^{\infty}
$$

with nondecreasing sequences $\left\{l_{i}\right\}_{i=1}^{\infty},\left\{b_{i}\right\}_{i=1}^{\infty},\left\{p_{i}\right\}_{i=1}^{\infty}$ and $\left\{k_{i}\right\}_{i=1}^{\infty}$ of nonnegative integers for which $b_{i} \geq 2, b_{i} \rightarrow \infty$ and $p_{i} \rightarrow \infty$, such that $\left\{\mu_{i}\right\}_{i=1}^{\infty}$ is a sequence of $\left(p_{i}, b_{i}\right)$-uniform weightings and $\left\{\epsilon_{i}\right\}_{i=1}^{\infty}$ strictly decreases to 0.

Definition 2.12. Let $W=\left\{\left(l_{i}, b_{i}, p_{i}, \epsilon_{i}, k_{i}, \mu_{i}\right)\right\}_{i=1}^{\infty}$ be a block friendly family. If $\lim k_{i}=K<\infty$, then let $R(W)=\{0,1,2, \ldots, K\}$. Otherwise, let $R(W)=\{0,1,2, \ldots\}$. A sequence $\left\{x_{i}\right\}_{i=1}^{\infty}$ of $\left(\epsilon_{i}, k_{i}, \mu_{i}\right)$-normal blocks of nondecreasing length is said to be W-good if for all k in R, the following three conditions hold:

$$
\begin{gather*}
\frac{b_{i}^{k}}{\epsilon_{i-1}-\epsilon_{i}}=o\left(\left|x_{i}\right|\right) ; \tag{11}\\
\frac{l_{i-1}}{l_{i}} \cdot \frac{\left|x_{i-1}\right|}{\left|x_{i}\right|}=o\left(i^{-1} b_{i}^{-k}\right) ; \tag{12}
\end{gather*}
$$

[^2]\[

$$
\begin{equation*}
\frac{1}{l_{i}} \cdot \frac{\left|x_{i+1}\right|}{\left|x_{i}\right|}=o\left(b_{i}^{-k}\right) . \tag{13}
\end{equation*}
$$

\]

We now state a key theorem of [6].
Theorem 2.13. Let W be a block friendly family and $\left\{x_{i}\right\}_{i=1}^{\infty}$ a W-good sequence. If $k \in R(W)$, then x is Q-normal of order k. If $k_{i} \rightarrow \infty$, then x is Q-normal.

If b and w are positive integers where b is greater than or equal to 2 and $w \geq 3$ is odd, then we let $C_{b, w}$ be one of the blocks formed by concatenating all the blocks of length w in base b in such a way that there are at least twice as many copies of the block (0) at odd positions as the block (1). For example, we could pick

$$
\begin{aligned}
C_{2,3} & =1(0,0,0) 1(1,0,1) 1(0,1,0) 1(0,0,1) 1(0,1,1) 1(1,0,0) 1(1,1,0) 1(1,1,1) \\
& =(0,0,0,1,0,1,0,1,0,0,0,1,0,1,1,1,0,0,1,1,0,1,1,1)
\end{aligned}
$$

which has 9 copies of (0) at the odd positions and 3 copies of (1) at the odd positions. Note that $\left|C_{b, w}\right|=w b^{w}$. The next lemma is proven identically to Lemma 4.2 in [6]:
Lemma 2.14. If $K<w$ and $\epsilon=\frac{K}{w}$, then $C_{b, w}$ is $\left(\epsilon, K, \lambda_{b}\right)$-normal.
Theorem 2.15. ${ }^{3}$ There exists a basic sequence Q and a real number x such that x is Q-normal, but not strongly Q-normal of order 2 .

Proof. Let $x_{1}=(0,1), b_{1}=2$, and $l_{1}=0$. For $i \geq 2$, let $x_{i}=C_{2 i,(2 i+1)^{2}}$, $b_{i}=2 i$, and $l_{i}=(2 i)^{9 i+8}$. Set $\epsilon_{1}=1 / 2, k_{1}=1, p_{1}=2$ and $\mu_{1}=\lambda_{2}$. For $i \geq 2$, put $\epsilon_{i}=1 /(2 i+1), k_{i}=2 i+1, p_{i}=b_{i}, \mu_{i}=\lambda_{2 i}$, and

$$
W=\left\{\left(l_{i}, b_{i}, p_{i}, \epsilon_{i}, k_{i}, \mu_{i}\right)\right\}_{i=1}^{\infty} .
$$

Thus, since $x_{i}=C_{b, w}$ where $b=2 i$ and $w=(2 i+1)^{2}, x_{i}$ is $\left(\epsilon_{i}, k_{i}, \lambda_{b_{i}}\right)$-normal by Lemma 2.14.

In order to show that $\left\{x_{i}\right\}$ is a W-good sequence we need to verify (11), (12), and (13). Since $k_{i} \rightarrow \infty$, we let k be an arbitrary positive integer. We will make repeated use of the fact that $\left|x_{i}\right|=(2 i+1)^{2} \cdot(2 i)^{(2 i+1)^{2}}$. We first verify (11):

$$
\lim _{i \rightarrow \infty}\left|x_{i}\right| /\left(\frac{(2 i)^{k}}{\frac{1}{2(i-1)+1}-\frac{1}{2 i+1}}\right)=\lim _{i \rightarrow \infty} \frac{2(2 i+1)^{2} \cdot(2 i)^{(2 i+1)^{2}}}{(2 i)^{k} \cdot\left(4 i^{2}-1\right)}=\infty .
$$

[^3]We next verify (12). Since $l_{i-1} / l_{i}<1,(2 i-1)^{2} /(2 i+1)^{2}<1$ and

$$
\left(1-\frac{1}{i}\right)^{(2 i+1)^{2}}<e^{-2(2 i+1)}
$$

we have

$$
\begin{aligned}
\lim _{i \rightarrow \infty} \frac{\frac{l_{i-1}}{l_{i}} \cdot \frac{x_{i-1}}{x_{i}}}{i^{-1}(2 i)^{-k}} & \leq \lim _{i \rightarrow \infty} i \cdot(2 i)^{k} \cdot 1 \cdot \frac{(2 i-1)^{2}}{(2 i+1)^{2}} \cdot \frac{(2 i-2)^{(2 i-1)^{2}}}{(2 i)^{(2 i+1)^{2}}} \\
& \leq \lim _{i \rightarrow \infty} i(2 i)^{k} \cdot 1 \cdot\left(1-\frac{1}{i}\right)^{(2 i+1)^{2}} \cdot(2 i-2)^{-8 i} \\
& \leq \lim _{i \rightarrow \infty} i(2 i+1)^{k} e^{-2(2 i+1)}(2 i-2)^{-8 i}=0
\end{aligned}
$$

Lastly, we verify (13). Since $(2 i+3)^{2} /(2 i+1)^{2} \leq 2,(1+2 /(2 i+1))^{8 i}<e^{8}$, and

$$
\left(1+\frac{2}{2 i+1}\right)^{(2 i+1)^{2}}<2 e^{2(2 i+1)}
$$

we have

$$
\begin{aligned}
\lim _{i \rightarrow \infty} \frac{\frac{1}{l_{i}} \cdot \frac{\left|x_{i+1}\right|}{\left|x_{i}\right|}}{(2 i)^{-k}} & =\lim _{i \rightarrow \infty}(2 i)^{-9 i-8+k} \cdot \frac{(2 i+3)^{2}}{(2 i+1)^{2}} \cdot \frac{(2 i+2)^{(2 i+3)^{2}}}{(2 i)^{(2 i+1)^{2}}} \\
& \leq \lim _{i \rightarrow \infty}(2 i)^{-9 i-8+k} \cdot 2 \cdot\left(1+\frac{1}{i}\right)^{(2 i+1)^{2}} \cdot(2 i+2)^{(8 i+8)} \\
& \leq \lim _{i \rightarrow \infty} 4 e^{2(2 i+1)}\left(1+\frac{1}{i}\right)^{8 i+8}(2 i)^{-i+k} \\
& \leq \lim _{i \rightarrow \infty} 4 e^{2(2 i+1)+8} \cdot(2 i)^{-i+k}=0
\end{aligned}
$$

Since $\lambda_{b_{i}}$ is $\left(p_{i}, b_{i}\right)$-uniform, $\left\{x_{i}\right\}$ is a W-good sequence and by Theorem 2.13, x is Q-normal.

Since the length of each block x_{i} is even, so there will always be at least twice as many copies of the block (0) as the block (1) in any initial segment of digits of x, so x is not strongly Q-normal of order 2 .

3. Random variables associated with normality

For this section, we must recall a few basic notions from probability theory. Given a random variable X, we will denote the expected value of X as $\mathrm{E}[X]$. We will denote the variance of X as $\operatorname{Var}[X]$. Lastly, $\mathrm{P}(X=j)$ will represent the probability that $X=j$.

We consider x as a random variable which has uniform distribution on the interval $[0,1)$. If $x=0 . E_{1}(x) E_{2}(x) E_{3}(x) \ldots$ with respect to Q, then we consider $E_{1}(x), E_{2}(x), E_{3}(x), \ldots$ to be random variables. So for all n, we
have

$$
\mathrm{P}\left(E_{n}(x)=j\right)= \begin{cases}\frac{1}{q_{n}} & \text { if } 0 \leq j \leq q_{n}-1 \\ 0 & \text { if } j \geq q_{n} .\end{cases}
$$

Lemma 3.1. If Q is a basic sequence, then the random variables $E_{1}(x)$, $E_{2}(x), E_{3}(x), \ldots$ are independent.

Proof. Suppose n_{1} and n_{2} are distinct positive integers and $0 \leq F_{j}<q_{j}-1$ for all j. Then

$$
\begin{aligned}
& \mathrm{P}\left(E_{n_{1}}(x)=F_{n_{1}}, E_{n_{2}}(x)=F_{n_{2}}\right) \\
& \quad=\lambda\left(\left\{x \in[0,1): E_{n_{1}}(x)=F_{n_{1}} \text { and } E_{n_{2}}(x)=F_{n_{2}}\right\}\right) \\
& \quad=\frac{1}{q_{n_{1}} q_{n_{2}}}=\frac{1}{q_{n_{1}}} \cdot \frac{1}{q_{n_{2}}}=\mathrm{P}\left(E_{n_{1}}(x)=F_{n_{1}}\right) \cdot \mathrm{P}\left(E_{n_{2}}(x)=F_{n_{2}}\right) .
\end{aligned}
$$

Suppose that Q is a basic sequence, b is a natural number, B is a block of length k, and $m=i k+p$ is an integer with $p \in[0, k-1]$. We set

$$
\begin{gathered}
\zeta_{b, n}^{Q}(x)= \begin{cases}1 & \text { if } E_{n}(x)=b \\
0 & \text { if } E_{n}(x) \neq n,\end{cases} \\
\zeta_{B, i, p}^{Q}(x)= \begin{cases}1 & \text { if } E_{i k+p, k}(x)=B \\
0 & \text { if } E_{i k+p, k}(x) \neq B,\end{cases} \\
F_{m}^{(k)}=\mathrm{E}\left[\zeta_{B, i, p}^{Q}(x)\right], \quad V_{m}^{(k)}=\operatorname{Var}\left[\zeta_{B, i, p}^{Q}(x)\right], \quad t_{n, p}^{(k)}=\sum_{i=0}^{\rho(n, k)} V_{i k+p}^{(k)} .
\end{gathered}
$$

Lemma 3.2. For all non-negative integers b, the random variables $\zeta_{b, 1}^{Q}(x)$, $\zeta_{b, 2}^{Q}(x), \zeta_{b, 3}^{Q}(x), \ldots$ are independent.
Proof. This follows directly from Lemma 3.1 as the random variables $E_{1}(x)$, $E_{2}(x), E_{3}(x), \ldots$ are independent.
Lemma 3.3. If $B=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ is a block of length k, then

$$
\zeta_{B, i, p}^{Q}(x)=\zeta_{b_{1}, i k+p}^{Q}(x) \cdot \zeta_{b_{2}, i k+p+1}^{Q}(x) \cdots \zeta_{b_{k}, i k+p+k-1}^{Q}(x) .
$$

Proof. By definition,

$$
\zeta_{B, i, p}^{Q}(x)= \begin{cases}1 & \text { if } E_{i k+p, k}=B \\ 0 & \text { if } E_{i k+p, k} \neq B .\end{cases}
$$

In other words, $\zeta_{B, i, p}^{Q}(x)=1$ if

$$
\zeta_{b_{1}, i k+p}^{Q}(x)=\zeta_{b_{2}, i k+p+1}^{Q}(x)=\cdots=\zeta_{b_{k}, i k+p+k-1}^{Q}(x)=1
$$

and $\zeta_{B, i, p}^{Q}(x)=0$ otherwise.

Corollary 3.4. For all blocks $B=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ of length k and nonnegative integers $p_{1}, p_{2} \in[1, k], i_{1}$, and i_{2} with $\left(i_{1}, p_{1}\right) \neq\left(i_{2}, p_{2}\right)$, the random variables $\zeta_{B, i_{1}, p_{1}}^{Q}(x)$ and $\zeta_{B, i_{2}, p_{2}}^{Q}(x)$ are independent.

Proof. Using Lemma 3.2 and Lemma 3.3, we see that

$$
\begin{aligned}
& \mathrm{E}\left[\zeta_{B, i_{1}, p_{1}}^{Q}(x) \cdot \zeta_{B, i_{2}, p_{2}}^{Q}(x)\right] \\
& =\mathrm{E}\left[\left(\Pi_{j=0}^{k-1} \zeta_{b_{j}, i_{1} k+p_{1}+j}^{Q}(x)\right) \cdot\left(\Pi_{j=0}^{k-1} \zeta_{b_{j}, i_{2} k+p_{2}+j}^{Q}(x)\right)\right] \\
& =\left(\Pi_{j=0}^{k-1} \mathrm{E}\left[\zeta_{b_{j}, i_{1} k+p_{1}+j}^{Q}(x)\right]\right) \cdot\left(\Pi_{j=0}^{k-1} \mathrm{E}\left[\zeta_{b_{j}, i_{2} k+p_{2}+j}^{Q}(x)\right]\right) \\
& =\mathrm{E}\left[\Pi_{j=0}^{k-1} \zeta_{b_{j}, i_{1} k+p_{1}+j}^{Q}(x)\right] \cdot \mathrm{E}\left[\Pi_{j=0}^{k-1} \zeta_{b_{j}, i_{2} k+p_{2}+j}^{Q}(x)\right] \\
& =\mathrm{E}\left[\zeta_{B, i_{1}, p_{1}}^{Q}(x)\right] \cdot \mathrm{E}\left[\zeta_{B, i_{2}, p_{2}}^{Q}(x)\right] .
\end{aligned}
$$

Lemma 3.5. If $B=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ is a block of length k, then

$$
\begin{gathered}
F_{m}^{(k)}=\frac{1}{q_{i k+p} q_{i k+p+1} \ldots q_{i k+p+k-1}} \text { and } \\
V_{m}^{(k)}=\frac{1}{q_{i k+p} q_{i k+p+1} \ldots q_{i k+p+k-1}}-\left(\frac{1}{q_{i k+p} q_{i k+p+1} \ldots q_{i k+p+k-1}}\right)^{2} .
\end{gathered}
$$

Proof. We first compute the expected value of $\zeta_{B, i, p}^{Q}(x)$. By Lemma 3.2 and Lemma 3.3, we see that

$$
\begin{aligned}
\mathrm{E}\left[\zeta_{B, i, p}^{Q}(x)\right] & =\mathrm{E}\left[\zeta_{b_{1}, i k+p}^{Q}(x) \cdot \zeta_{b_{2}, i k+p+1}^{Q}(x) \cdots \zeta_{b_{k}, i k+p+k-1}^{Q}(x)\right] \\
& =\mathrm{E}\left[\zeta_{b_{1}, i k+p}^{Q}(x)\right] \cdot \mathrm{E}\left[\zeta_{b_{2}, i k+p+1}^{Q}(x)\right] \cdots \mathrm{E}\left[\zeta_{b_{k}, i k+p+k-1}^{Q}(x)\right] \\
& =\frac{1}{q_{i k+p}} \cdot \frac{1}{q_{i k+p+1}} \cdots \frac{1}{q_{i k+p+k-1}} \\
& =\frac{1}{q_{i k+p} q_{i k+p+1} \cdots q_{i k+p+k-1}} .
\end{aligned}
$$

Next, we recall that $\operatorname{Var}\left[\zeta_{B, i, p}^{Q}(x)\right]=\mathrm{E}\left[\zeta_{B, i, p}^{Q}(x)^{2}\right]-\mathrm{E}\left[\zeta_{B, i, p}^{Q}(x)\right]^{2}$. Since $\zeta_{B, i, p}^{Q}(x)$ may only be 0 or 1 , we see that $\left(\zeta_{B, i, p}^{Q}(x)\right)^{2}=\zeta_{B, i, p}^{Q}(x)$, so
$\operatorname{Var}\left[\zeta_{B, i, p}^{Q}(x)\right]$

$$
=\frac{1}{q_{i k+p} q_{i k+p+1} \cdots q_{i k+p+k-1}}-\left(\frac{1}{q_{i k+p} q_{i k+p+1} \cdots q_{i k+p+k-1}}\right)^{2} .
$$

Lastly, we remark that $Q_{n, p}^{(k)}=\sum_{i=0}^{\rho(n, k)} F_{i k+p}^{(k)}$ by Lemma 3.5 and will use this fact frequently and without mention.

4. Typicality of normal numbers

We will need the following:
Theorem 4.1. ${ }^{4}$ Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables. Assume that there exists a constant $c>0$ such that $\left|X_{j}\right|<c$ for all j. Let $G_{j}=E\left[X_{j}\right], U_{j}=\operatorname{Var}\left[X_{j}\right]$, and $t_{n}=\sum_{j=1}^{n} U_{j}$. If $t_{n} \rightarrow \infty$, then, with probability one,

$$
\limsup _{n \rightarrow \infty} \frac{X_{1}+X_{2}+\cdots+X_{n}-G_{1}-G_{2}-\ldots G_{n}}{\sqrt{2 t_{n} \log \log t_{n}}}=1
$$

Corollary 4.2. Under the same assumptions of Theorem 4.1, with probability one,

$$
X_{1}+X_{2}+\cdots+X_{n}=G_{1}+G_{2}+\cdots+G_{n}+O\left(t_{n}^{1 / 2}\left(\log \log t_{n}\right)^{1 / 2}\right) .
$$

We will also need the Borel-Cantelli Lemma:
Theorem 4.3 (The Borel-Cantelli Lemma). If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$, then $P\left(A_{n}\right.$ i.o. $)=0$.

Given a basic sequence Q, we will define $t_{n, p}^{(k)}=\sum_{i=0}^{\rho(n, k)} V_{j k+p}^{(k)}$.
Lemma 4.4. If Q is a basic sequence and n, k, and p are positive integers with $p \in[1, k]$, then

$$
\frac{1}{2} Q_{n, p}^{(k)} \leq t_{n, p}^{(k)}<Q_{n, p}^{(k)}
$$

Proof.

$$
\begin{aligned}
t_{n, p}^{(k)} & =\sum_{i=0}^{\rho(n, k)}\left(\frac{1}{q_{i k+p} q_{i k+p+1} \cdots q_{i k+p+k-1}}-\left(\frac{1}{q_{i k+p} q_{i k+p+1} \cdots q_{i k+p+k-1}}\right)^{2}\right) \\
& <\sum_{i=0}^{\rho(n, k)} \frac{1}{q_{i k+p} q_{i k+p+1} \cdots q_{i k+p+k-1}}=\sum_{i=0}^{\rho(n, k)} F_{i k+p}^{(k)}=Q_{n, p}^{(k)} .
\end{aligned}
$$

To show the other direction of the inequality, we recall that since Q is a basic sequence, $q_{m} \geq 2$ for all m, so for all i

$$
\begin{aligned}
& \sum_{i=0}^{\rho(n, k)}\left(\frac{1}{q_{i k+p} q_{i k+p+1} \cdots q_{i k+p+k-1}}-\left(\frac{1}{q_{i k+p} q_{i k+p+1} \cdots q_{i k+p+k-1}}\right)^{2}\right) \\
& \geq \sum_{i=0}^{\rho(n, k)}\left(\frac{1}{q_{i k+p} q_{i k+p+1} \cdots q_{i k+p+k-1}}-\frac{1}{2^{k}}\left(\frac{1}{q_{i k+p} q_{i k+p+1} \cdots q_{i k+p+k-1}}\right)\right) \\
& \geq \sum_{i=0}^{\rho(n, k)} \frac{1}{2} \cdot \frac{1}{q_{i k+p} q_{i k+p+1} \cdots q_{i k+p+k-1}}=\frac{1}{2} Q_{n, p}^{(k)} .
\end{aligned}
$$

[^4]Lemma 4.5. If Q is infinite in limit and B is a block of length k, then for almost every real number x in $[0,1)$, we have

$$
\begin{equation*}
N_{n, p}^{Q}(B, x)=Q_{n, p}^{(k)}+O\left(\sqrt{Q_{n, p}^{(k)}}\left(\log \log Q_{n, p}^{(k)}\right)^{1 / 2}\right) \tag{14}
\end{equation*}
$$

Proof. We consider two cases. The first case is when $\lim _{n \rightarrow \infty} Q_{n, p}^{(k)}<\infty$. We see that

$$
\lim _{n \rightarrow \infty} Q_{n, p}^{(k)}=\lim _{n \rightarrow \infty} \sum_{i=0}^{\rho(n, k)} \mathrm{P}\left(\zeta_{B, i, p}^{Q}=1\right)<\infty
$$

so by Theorem 4.3, we have $\mathrm{P}\left(\zeta_{B, i, p}^{Q}=1\right.$ i.o. $)=0$. Thus, for almost every $x \in[0,1), \lim _{n \rightarrow \infty} N_{n, p}^{Q}(B, x)<\infty$ and (14) holds.

Second, we consider the case where $\lim _{n \rightarrow \infty} Q_{n, p}^{(k)}=\infty$. By Lemma 4.4, we have $\lim _{n \rightarrow \infty} t_{n, p}^{(k)} \geq \lim _{n \rightarrow \infty} Q_{n, p}^{(k)}=\infty$. Note that

$$
N_{n, p}^{Q}(B, x)=\sum_{i=0}^{\rho(n, k)} \zeta_{B, i, p}(x) .
$$

By Corollary 4.2,

$$
N_{n, p}^{Q}(B, x)=\sum_{i=0}^{\rho(n, k)} F_{i k+p}^{(k)}+O\left(\sqrt{t_{n, p}^{(k)}}\left(\log \log t_{n, p}^{(k)}\right)^{1 / 2}\right)
$$

for almost every $x \in[0,1)$. By Lemma 4.4, $t_{n, p}^{(k)}<Q_{n, p}^{(k)}$, so the lemma follows.

Lemma 4.5 allows us to prove the following results on strongly normal numbers:

Theorem 4.6. Suppose that Q is strongly k-divergent and infinite in limit. Then almost every $x \in[0,1)$ is strongly Q-normal of order k.

Proof. Let B be a block of length $m \leq k$ and $p \in[1, m]$. Then by Lemma 4.5, for almost every $x \in[0,1)$, we have that

$$
N_{n, p}^{Q}(B, x)=Q_{n, p}^{(m)}+O\left(\sqrt{Q_{n, p}^{(m)}}\left(\log \log Q_{n, p}^{(m)}\right)^{1 / 2}\right)
$$

so

$$
\frac{N_{n, p}^{Q}(B, x)}{Q_{n, p}^{(m)}}=1+O\left(\frac{\sqrt{Q_{n, p}^{(m)}}\left(\log \log Q_{n, p}^{(m)}\right)^{1 / 2}}{Q_{n, p}^{(m)}}\right) .
$$

However, Q is strongly k-divergent, so $Q_{n, p}^{(m)} \rightarrow \infty$ and

$$
\lim _{n \rightarrow \infty} \frac{N_{n, p}^{Q}(B, x)}{Q_{n, p}^{(m)}}=\lim _{n \rightarrow \infty}\left(1+O\left(\frac{\sqrt{Q_{n, p}^{(m)}}\left(\log \log Q_{n, p}^{(m)}\right)^{1 / 2}}{Q_{n, p}^{(m)}}\right)\right)=1
$$

Since there are finitely many choices of m and p and only countably many choices of B, the result follows.

Corollary 4.7. If Q is strongly fully divergent and infinite in limit, then almost every real $x \in[0,1)$ is strongly Q-normal.

We now work towards proving a result much stronger than Corollary 4.7 on the typicality of Q-normal numbers. We will need the following lemma in addition to Lemma 4.5:

Lemma 4.8. If Q is a basic sequence and k and p are positive integers with $p \in[1, k]$, then

$$
\begin{aligned}
& \sum_{p=1}^{k}\left(Q_{n, p}^{(k)}+O\left(\sqrt{Q_{n, p}^{(k)}}\left(\log \log Q_{n, p}^{(k)}\right)^{1 / 2}\right)\right) \\
&=Q_{n}^{(k)}+O\left(\sqrt{Q_{n}^{(k)}}\left(\log \log Q_{n}^{(k)}\right)^{1 / 2}\right)
\end{aligned}
$$

Proof. We first note that

$$
\sum_{p=1}^{k} Q_{n, p}^{(k)} \leq Q_{n}^{(k)}+\left(Q_{n}^{(k)}-Q_{n-k}^{(k)}\right)
$$

Since $Q_{n}^{(k)}-Q_{n-k}^{(k)} \leq(k+1) 2^{-k} \rightarrow 0$, we see that

$$
\begin{equation*}
\sum_{p=1}^{k} Q_{n, p}^{(k)}=Q_{n}^{(k)}+o(1) \tag{15}
\end{equation*}
$$

Next, note that

$$
\begin{equation*}
\sum_{p=1}^{k} \sqrt{Q_{n, p}^{(k)}}\left(\log \log Q_{n, p}^{(k)}\right)^{1 / 2} \leq k \sqrt{\sum_{p=1}^{k} Q_{n, p}^{(k)}}\left(\log \log \sum_{p=1}^{k} Q_{n, p}^{(k)}\right)^{1 / 2} \tag{16}
\end{equation*}
$$

By (15) and (16),

$$
\begin{equation*}
\sum_{p=1}^{k} O\left(\sqrt{Q_{n, p}^{(k)}}\left(\log \log Q_{n, p}^{(k)}\right)^{1 / 2}\right)=O\left(\sqrt{Q_{n}^{(k)}}\left(\log \log Q_{n}^{(k)}\right)^{1 / 2}\right) \tag{17}
\end{equation*}
$$

Thus, the lemma follows by combining (15) and (17).

Theorem 4.9. If Q is a basic sequence that is infinite in limit and B is a block of length k, then for almost every real number x in $[0,1)$, we have

$$
N_{n}^{Q}(B, x)=Q_{n}^{(k)}+O\left(\sqrt{Q_{n}^{(k)}}\left(\log \log Q_{n}^{(k)}\right)^{1 / 2}\right)
$$

Proof. We first note that

$$
\begin{equation*}
N_{n}^{Q}(B, x)=\sum_{p=1}^{k} N_{n, p}(B, x)+O(1) \tag{18}
\end{equation*}
$$

Thus, by (18) and Lemma 4.5, for almost every $x \in[0,1$), we have

$$
\begin{equation*}
N_{n}^{Q}(B, x)=\sum_{p=1}^{k}\left(Q_{n, p}^{(k)}+O\left(\sqrt{Q_{n, p}^{(k)}}\left(\log \log Q_{n, p}^{(k)}\right)^{1 / 2}\right)\right)+O(1) \tag{19}
\end{equation*}
$$

Thus, the theorem follows by applying Lemma 4.8 to (19).
We recall the following standard result on infinite products:
Lemma 4.10. If $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers such that $0 \leq a_{n}<1$ for all n, then the infinite product $\prod_{n=1}^{\infty}\left(1-a_{n}\right)$ converges if and only if the sum $\sum_{n=1}^{\infty} a_{n}$ is convergent.

Theorem 4.11. Suppose that Q is a basic sequence that is infinite in limit. Then almost every real number in $[0,1)$ is Q-normal of order k if and only if Q is k-divergent.

Proof. First, we suppose that Q is k-divergent. Then by Theorem 4.9, for almost every $x \in[0,1)$, we have

$$
\lim _{n \rightarrow \infty} \frac{N_{n}^{Q}(B, x)}{Q_{n}^{(k)}}=\lim _{n \rightarrow \infty} \frac{Q_{n}^{(k)}+O\left(\sqrt{Q_{n}^{(k)}}\left(\log \log Q_{n}^{(k)}\right)^{1 / 2}\right)}{Q_{n}^{(k)}}=1
$$

We now suppose that Q is k-convergent. We will now use similar reasoning to that found in [7]. Set $B=(0,0, \ldots, 0)$ (k zeros). We will show that the set of real numbers in $[0,1)$ whose Q-Cantor series expansion does not contain the block B has positive measure. Call this set V. We see that

$$
\lambda(V)=\prod_{n=1}^{\infty}\left(1-\frac{1}{q_{n} q_{n+1} \cdots q_{n+k-1}}\right)
$$

Set $a_{n}=q_{n} q_{n+1} \cdots q_{n+k-1}$. Since Q is k-convergent, we have $\sum a_{n}<\infty$. Thus, $\lambda(V)>0$ by Lemma 4.10.

Corollary 4.12. Suppose that Q is a basic sequence that is infinite in limit. Then almost every real number in $[0,1)$ is Q-normal if and only if Q is fully divergent.

5. Ratio normal numbers

We are now in a position to compare the prevelance of Q-normal numbers to Q-ratio normal numbers, depending on properties of the basic sequence Q. In particular, we will show that if Q is infinite in limit, then the set of Q-ratio normal numbers is dense in $[0,1)$ even though the set of Q-normal numbers may be empty. Suppose that Q is a k-convergent basic sequence and define

$$
\begin{equation*}
Q_{\infty}^{(k)}=\lim _{n \rightarrow \infty} Q_{n}^{(k)}<\infty \tag{20}
\end{equation*}
$$

Proposition 5.1. If Q is a basic sequence that is k-convergent for some k, then the set of Q-normal numbers is empty.
Proof. We make the observation that since $q_{n} \geq 2$ for all $n, Q_{\infty}^{(k)} \leq \frac{1}{2} Q_{\infty}^{(k-1)}$ for all k. Thus, there exists a $K>0$ such that for all $k>K$, we have $Q_{\infty}^{(k)}<1$. Thus, no blocks of length $k>K$ can occur in any Q-normal number and the set of Q-normal numbers is empty.

If $B=\left(b_{1}, b_{2}, \cdots, b_{k}\right)$ is a block of length k, we write

$$
\max (B)=\max \left(b_{1}, b_{2}, \cdots, b_{k}\right) .
$$

If $E=\left(E_{1}, E_{2}, \cdots\right)$, then set $E_{n, k}=\left(E_{n}, E_{n+1}, \cdots, E_{n+k-1}\right)$.
Proposition 5.2. If $Q=\left\{q_{n}\right\}_{n=1}^{\infty}$ is infinite in limit, then there exists a real number that is Q-ratio normal.
Proof. Let $Q^{\prime}=\left\{q_{n}^{\prime}\right\}_{n=1}^{\infty}$ be any fully divergent basic sequence that is infinite in limit. Then we know that there exists a Q^{\prime}-normal number by Corollary 4.12. Let $x=0 . E_{1}^{\prime} E_{2}^{\prime} E_{3}^{\prime} \ldots$ with respect to Q^{\prime} be Q^{\prime}-normal and let $E^{\prime}=\left(E_{1}^{\prime}, E_{2}^{\prime}, \ldots\right)$. Set

$$
M_{k}=\min \left\{m: q_{n}>k \forall n \geq m\right\}
$$

$E_{n}=\min \left(E_{n}^{\prime}, q_{n}-1\right)$, and $E=\left(E_{1}, E_{2}, \ldots\right)$. Suppose that B and B^{\prime} are two blocks of length k and let $l=\max \left(\max (B), \max \left(B^{\prime}\right)\right)+2$.

Thus, if $n>M_{l}$, then $E_{n, k}^{\prime}=B$ is equivalent to $E_{n, k}=B$ and $E_{n, k}^{\prime}=$ B^{\prime} is equivalent to $E_{n, k}=B^{\prime}$. Since x is Q^{\prime}-normal, there are infinitely many occurences of every block. Additionally, $E_{n} \leq q_{n}-1$ for all n, so $\sum_{n=1}^{\infty} \frac{E_{n}}{q_{1} q_{2} \ldots q_{n}}$ is Q-ratio normal.
Corollary 5.3. If Q is infinite in limit, then the set of numbers that are Q-ratio normal is dense in $[0,1)$.

References

[1] Altomare, C., Mance, B. Cantor series constructions contrasting two notions of normality. Monatsh. Math. 164 (2011), 1-22.
[2] Besicovitch, A. S. The asymptotic distribution of the numerals in the decimal representation of the squares of the natural numbers. Math. Z. 39 (1935), no. 1, 146-156. MR1545494, Zbl 0009.20002.
[3] Champernowne, D. G. The construction of decimals normal in the scale of ten. J. London Math. Soc. 8 (1933), 254-260. Zbl 0007.33701
[4] Drmota, Michael; Tichy, Robert F. Sequences, discrepancies and applications. Lecture Notes in Mathematics, 1651. Springer-Verlag, Berlin 1997. xiv+503 pp. ISBN: 3-540-62606-9. MR1470456 (98j:11057), Zbl 0877.11043.
[5] Kuipers, L.; Niederreiter, Harald. Uniform distribution of sequences. Pure and Applied Mathematics. Wiley-Interscience, New York-London-Sydney, 1974. xiv+390 pp. MR0419394 (54 \#7415), Zbl 0281.10001.
[6] Mance, Bill. Construction of normal numbers with respect to the Q-Cantor series representation for certain Q. Acta Arith. 148 (2011), no. 2, 135-152. MR2786161, Zbl 05876316.
[7] Rényi, Alfréd. On the distribution of the digits in Cantor's series. Mat. Lapok 7 (1956), 77-100. MR0099968 (20 \#6404), Zbl 0075.03703.
[8] Schweiger, F. Über den Satz von Borel-Rényi in der Theorie der Cantorschen Reihen. Monatsh. Math. 74 (1970), 150-153. MR0268150 (42 \#3049), Zbl 0188.35103.
[9] G. Cantor. Über die einfachen Zahlensysteme. Zeitschrift für Math. und Physik 14 (1869), 121-128 pp. JFM 02.0085.01.
[10] Galambos, János. Representations of real numbers by infinite series. Lecture Notes in Mathematics, 502. Springer-Verlag, Berlin-New York, 1976. vi+146 pp. MR568141 (58 \#27873), Zbl 0322.10002.
[11] Vervaat, Wim. Success epochs in Bernoulli trials (with applications in number theory). Math. Centre Tracts, 42. Mathematisch Centrum, Amsterdam, 1972. iii +166 pp. MR328989 (48 \#7331), Zbl 0267.60003.

Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, OH 43210-1174
mance@math.ohio-state.edu
This paper is available via http://nyjm.albany.edu/j/2011/17-26.html.

[^0]: Received April 21, 2011.
 2010 Mathematics Subject Classification. 11K16, 11A63.
 Key words and phrases. Cantor series, normal numbers.

[^1]: ${ }^{1}$ It is not true that k-divergent basic sequences must be strongly k-divergent. The following example of a 2-divergent basic sequence that is not strongly 2 -divergent was suggested by C. Altomare (verbal communication): let the basic sequence $Q=\left\{q_{n}\right\}$ be given by

 $$
 q_{n}=\left\{\begin{array}{lll}
 \max \left(2,\left\lfloor n^{1 / 4}\right\rfloor\right) & \text { if } n \equiv 0 & (\bmod 4) \\
 \max \left(2,\left\lfloor n^{1 / 4} \cdot \log ^{2} n\right\rfloor\right) & \text { if } n \equiv 1 & (\bmod 4) \\
 \max \left(2,\left\lfloor n^{3 / 4}\right\rfloor\right) & \text { if } n \equiv 2 & (\bmod 4) \\
 \max \left(2,\left\lfloor n^{3 / 4} \cdot \log ^{2} n\right\rfloor\right) & \text { if } n \equiv 3 & (\bmod 4) .
 \end{array}\right.
 $$

[^2]: ${ }^{2}$ Definition 2.10 is a generalization of the concept of (ϵ, k)-normality, originally due to Besicovitch [2].

[^3]: ${ }^{3}$ Theorem 2.13 may be used to construct other explicit examples of Q-normal numbers that satisfy some unusual conditions. Given a basic sequence Q, we say that x is Q distribution normal if the sequence $\left\{q_{1} q_{2} \cdots q_{n} x\right\}_{n}$ is uniformly distributed mod 1. [1] uses Theorem 2.13 to give an example of a basic sequence Q and a real number x such that x is Q-normal, but $q_{1} q_{2} \cdots q_{n} x(\bmod 1) \rightarrow 0$, so x is not Q-distribution normal.

[^4]: ${ }^{4}$ See, for example, [11].

