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Jordan blocks and strong irreducibility

Chunlan Jiang and Rongwei Yang

Abstract. An operator is said to be strongly irreducible if its com-
mutant has no nontrivial idempotent. This paper first shows that if an
operator is not strongly irreducible then the set of idempotents in its
commutant is either finite or uncountable. The second part of the paper
focuses on the Jordan block which is a well-known class of irreducible
operators, and determines when a Jordan block is strongly irreducible.
This work is an interplay of operator theory and complex function the-
ory.
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1. Introduction

Let H denote a complex, separable, infinite dimensional Hilbert space and
L(H) denote the set of all bounded linear operators acting on H. For an
operator T , ranT denotes its range and kerT denotes its kernel. T is said to
be strongly irreducible (simply denoted by (SI)), if A′(T ), the commutant of
T , has no nontrivial idempotent. Clearly, every strongly irreducible operator
is irreducible. In the case T is not strongly irreducible, a set of idempotent
elements P = {Pi}ni=1, n < ∞, is called a unit finite decomposition of T if
the following conditions are satisfied:

(1) Pi ∈ A′(T ).
(2) PiPj = 0 for i 6= j.
(3)

∑n
i=1 Pi = I.

If, in addition, for each i = 1, 2, . . . , n, T |ranPi is stronly irreducible, then
we call P a unit finite (SI) decomposition of T . Suppose T has finite (SI)
decomposition. Further, if for any two unit finite (SI) decompositions of T ,
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say P = {Pi}ni=1 and O = {Oi}mi=1, we have m = n and O is a permutation
of P, then we say that T has unique (SI) decomposition.

A useful tool for the study of strong irreducibility is the Rosenblum op-
erator τTiTj defined by

τTiTj (X) = TiX −XTj , Ti, Tj , X ∈ L(H).

For reference on this subject, we refer the readers to [3] and [4].
On the Hardy space over the unit disk H2(D), multiplication by coordi-

nate function z is the unilateral shift, and its invariant subspace is of the
form θH2(D), where θ is an inner function ([2]). The compression S(θ) of
the unilateral shift to the quotient space N := H2(D)	 θH2(D) is called a
Jordan block. To be precise,

S(θ)f = PNzf, f ∈ N,
where PN is the projection from H2(D) onto N . Study of the unilateral
shift and the Jordan block is a solid foundation for the development of
nonselfadjoint operator theory ([1], [6]). A well-known fact is that every
Jordan operator S(θ) is irreducible, in other words, the commutant A′(S(θ))
has no nontrivial projections.

In Section 2, we study the cardinality of the set of idempotents for non-
strongly irreducible operators, and in Section 3, we study how the strong
irreducibility of a Jordan block S(θ) is dependent on θ.

2. The cardinality of idempotents in A′(T )

If Q is an idempotent, then its range ranQ is closed. In fact, it is not
hard to check that ranQ = ker(I−Q). For an idempotent Q ∈ A′(A), ranQ
will be called a Banach reducing subspace for T . The following is the main
theorem of this section.

Theorem 1. The number of Banach reducing subspaces of any operator in
L(H) is either finite or uncountably infinite. The former case occurs if and
only if the operator is similar to the direct sum of finitely many strongly
irreducible operators

n∑
i=1

⊕Ti

with ker τTiTj = {0} for any i 6= j. In this case, the number of Banach

reducing subspaces is 2n.

We will need the following lemmas to prove the theorem.

Lemma 2. Assume that an operator T in L(H) is similar to the direct sum
of finitely many strongly irreducible operators

n∑
i=1

⊕Ti.



JORDAN BLOCKS AND STRONG IRREDUCIBILITY 621

Then the following assertions are equivalent:

(a) The (SI) decomposition of T is unique.
(b) ker τTiTj = {0} for any i 6= j, i, j = 1, 2, . . . , n.

(c) The number of Banach reducing subspace is 2n.

Proof. (b)⇒(a). Without loss of generality, we assume that

T =
n∑
i=1

⊕Ti, Ti∈L(H).

To verify uniqueness, we only need to show that every idempotent P in
A′(T ) has form:

P =

n∑
i=1

⊕δiIi,

where δi = 0 or 1, and Ii is the identity operator on Hi.
Since ker τTiTj = {0}, every idempotent P in A′(T ) can be written as

P =
n∑
i=1

⊕Pi,

where Pi∈A′(Ti). To see this point, we write

P =


P11 P12 · · · P1n−1 P1n

P21 P22 · · · P2n−1 P2n
... · · · . . . · · ·

...

Pn−11 Pn−12
. . . Pn−1n−1 Pn−1n

Pn1 Pn2 · · · Pnn−1 Pnn

 .
Since P∈A′(T ), PT = TP , and hence PijTi = TiPij . Since ker τTiTj = 0 for
i 6= j, Pij = 0 for i 6= j.

Now, by P 2 = P , we must have P 2
i = Pi, i = 1, 2, . . . , n. Since Ti is

strongly irreducible, Pi = Ii or Pi = 0.
(a)⇒(b). Let

T =

n∑
i=1

⊕Ti on H =
n∑
i=1

⊕Hi

be the unique (SI) decomposition of T . Next we prove ker τTiTj = {0} for

any i 6= j. For this, otherwise, assume that there is a nonzero operator Y
such that Y Ti = TjY , where 1≤i < j < n. For any scalar λ let

Mλ = {0⊕ · · ·⊕ x ⊕0⊕ · · · 0⊕ λY x ⊕ · · ·⊕0 : x∈Hi}.
ith jth

Since the (SI) decomposition of T is unique and finite, the number of
reducing spaces of T is finitely many. But the Mλ’s are distinct Banach re-
ducing subspaces of T . This contradicts to our assumption. This completes
our proof that (a)⇒(b).
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(b)⇒(c) and (c)⇒(b) are obvious. �

Lemma 3. Let P be a minimal idempotent of A′(T ). Then T |ranP is
strongly irreducible.

Proof. Otherwise, T |ranP can be written as direct sum of two operators,
i.e.,

T |ranP = T1+̇T2.

This shows that P is not minimal. �

Proof of Theorem 1. Assume that an operator T has a countably infinite
number of Banach reducing subspaces.

Claim. For every idempotent P∈A′(T ), there exists a minimal idempotent
Q∈A′(T ) such that ranQ⊂ ranP .

Proof. Otherwise, we can find a sequence of idempotents {Pn}∞n=1 in A′(T )
satisfying ranPn% ranPn+1. Set Qi = Pi − Pi+1, i = 1, 2, 3, . . . . Then each
Qi is a nonzero idempotent in A′(T ). Set

Q = {Qi; i≥1; Qi = Pi − Pi+1∈A′(T )}
and let Λ1 and Λ2 be subsets of the set of positive integers N satisfying
Λ1∩Λ2 = ∅. Also let

QΛ1 =
∨
λ∈Λ1

ranQλ, QΛ2 =
∨
λ∈Λ2

ranQλ.

Then QΛ1 and QΛ2 are different Banach reducing subspaces. Note that Λ is
a infinite set. This implies that number of Banach reducing subspaces of T
can not be countably infinite. This verifies our claim. �

By the claim and our assumption, we can find a sequence {Qi}li=1 of
minimal idempotents of A′(T ) such that

l∑
i=1

Qi = I and QiQj = 0

for any i 6= j. If l =∞, we can induce that the number of Banach reducing
subspaces of T can not be countably infinite by imitating the proof of the
claim. This shows that T can only be written as the direct sum of finite
many strongly irreducible operators, i.e., we can find finitely many minimal
idempotents {Qi}ni=1 in A′(T ) such that

n∑
i=1

Qi = I and QiQj = 0

for any i 6= j. Without loss of generality, assume that

T =
n∑
i=1

⊕Ti on H =
n∑
i=1

⊕ ranQi.
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Then Ti’s are strongly irreducible by Lemma 3. By our assumption and
Lemma 2, there exist Ti and Tj such that ker τTiTj 6= {0}. Repeating the

proof of Lemma 2, we can infer that the number of Banach reducing sub-
spaces of T can not be countably infinite. This contradicts to our assumption
on T .

This completes the proof of Theorem 1. �

3. Strong irreducibility of Jordan blocks

As we mentioned earlier, for every Jordan block S(θ), the commutant
A′(S(θ)) has no nontrivial projections. So a natural question is whether
A′(S(θ)) has nontrivial idempotents, i.e., whether S(θ) is strongly irre-
ducible.

A key concept in this study is corona decomposition. An inner function
θ is said to have a corona decomposition if θ can be decomposed as θ1θ2,
where θ1 and θ2 are nonconstant inner functions such that

|θ1(z)|+ |θ2(z)| ≥ ε, ∀z ∈ D
for some positive constant ε.

For every g ∈ H∞(D), we define an operator

Sgf = PNgf, f ∈ N.
Clearly, Sz is the Jordan operator S(θ). It is also not hard to see that g ∈
θH∞(D) if and only if Sg = 0. Sarason’s Theorem describes the commutant
A′(S(θ)):

Sarason’s Theorem ([5]). A bounded linear operator A commutes with Sz
on N if and only if A = Sg for some g ∈ H∞(D), and this g can be picked
such that ‖g‖∞ = ‖A‖.

The following is the main result of this section.

Theorem 4. S(θ) is not strongly irreducible if and only if θ has a corona
decomposition.

Proof. We first prove the sufficiency. If θ has a corona decomposition θ1θ2,
then by the corona theorem, there exist h1, h2 ∈ H∞(D) such that

θ1h1 + θ2h2 = 1.

Let gi = θihi, i = 1, 2. Clearly, at least one of g1 and g2 is not in θH2(D).
Without loss of generality we assume g1 is not in θH2(D). Then Sg1 is not
equal to zero or the identity operator, and one checks that

S2
g1 − Sg1 = Sg21−g1

= Sg1(g1−1)

= −Sθh1h2
= 0.
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This means S(θ) is not strongly irreducible.
Next we prove the necessity. If there exists a nontrivial idempotent A ∈

A′(S(θ)), then by Sarason’s theorem A = Sg for some g ∈ H∞(D) with
‖g‖∞ = ‖A‖, and moreover S2

g − Sg = 0. It then follows that

g(g − 1) = g2 − g = θf

for some f ∈ H∞(D). Let p1h1 be the inner-outer factorization of g and
p2h2 be the inner-outer factorization of 1− g, then

p1h1 + p2h2 = 1,

and hence

|p1(z)|+ |p2(z)| ≥ ε, ∀z ∈ D
for some positive constant ε. It is clear that θ is a factor of p1p2. Now let

θ1 = gcd(p1, θ),

and θ2 = θ/θ1. Then θ2 is a factor of p2, and it follows that

|θ1(z)|+ |θ2(z)| ≥ |p1(z)|+ |p2(z)| ≥ ε, ∀z ∈ D.

So θ1θ2 is a corona decomposition of θ. �

Intuitively speaking, an inner function θ has a corona decomposition if
and only if the zeros of θ in the maximal ideal space are not connected.

Example 5. zn and e−
1+z
1−z have no corona decomposition and hence the

corresponding Jordan blocks are (SI). If θ is Blaschke product with at least
two different zeros, then one checks that it has a corona decomposition
(though the decomposition may not be unique), and therefore the associated
Jordan block is not (SI).

We point out that the proof of Theorem 4 in fact constructs a correspond-
ing idempotent for each factor in the corona decomposition, for example
Sθ1h1 corresponds to θ1 and Sθ2h2 corresponds to θ2. In simple cases, this
correspondence enables one to count the number of idempotents in A′(S(θ)).

Example 6. Let

θ(z) =
n∏
i=1

λi − z
1− λ̄iz

be a finite Blaschke product with distinct zeros. Counting 1 and itself, θ
has 2n factors. So there are 2n idempotents (including the trivial ones) in
A′(S(θ)). In the case when θ is an infinite Blaschke product, it has 2∞

many different corona decompositions, and hence has uncountably many
idempotents. This observation somewhat illustrates the spirit of Theorem 1.

Moreover, the ranks of the idempotents can also be determined. Let θ1θ2

be a corona decomposition of θ and h1, h2 ∈ H∞(D) be such that

θ1h1 + θ2h2 = 1.
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For simplicity, we denote θ1h1 by g. Since Sg is an idempotent, ran(I−Sg) =
ker(Sg) as remarked at the beginning of Section 2. It is well-known in this
case

H2(D)	 θH2(D) = span
{

(1− λiz)−1 : i = 1, 2, . . . , n
}
.

So for every f ∈ H2(D)	 θH2(D),

〈Sgf, (1− λiz)−1〉 = 〈gf, (1− λiz)−1)〉
= g(λi)f(λi)

= θ1(λi)h1(λi)f(λi).

So if θ1(λi) = 0 then (1−λiz)−1 is orthogonal to ran(Sg), and it follows that

dim ran(Sg) ≤ n− |Z(θ1)|,
where Z(f) stands for the zero set of f inD and |E| stands for the cardinality
of E. Similarly, we have

dim ker(Sg) = dim ran(I − Sg) ≤ n− |Z(θ2)|.
Adding the above two inequalities, we have

n = dim ran(Sg) + dim ker(Sg)

≤ 2n− |Z(θ1)| − |Z(θ2)|
= n,

and it follows that

dim ran(Sg) = n− |Z(θ1)|, dim ker(Sg) = n− |Z(θ2)|.
So in conclusion, the idempotent corresponding to the factor θ1 has rank
n − |Z(θ1)|. When θ1 has n − 1 zeros, the corresponding idempotent is
minimal.
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