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Isometric endomorphisms of free groups

Danny Calegari and Alden Walker

Abstract. An arbitrary homomorphism between groups is nonincreas-
ing for stable commutator length, and there are infinitely many (in-
jective) homomorphisms between free groups which strictly decrease
the stable commutator length of some elements. However, we show in
this paper that a random homomorphism between free groups is almost
surely an isometry for stable commutator length for every element; in
particular, the unit ball in the scl norm of a free group admits an enor-
mous number of exotic isometries.

Using similar methods, we show that a random fatgraph in a free
group is extremal (i.e., is an absolute minimizer for relative Gromov
norm) for its boundary; this implies, for instance, that a random element
of a free group with commutator length at most n has commutator length
exactly n and stable commutator length exactly n− 1/2. Our methods
also let us construct explicit (and computable) quasimorphisms which
certify these facts.
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1. Introduction

1.1. Stable commutator length. If G is a group, the commutator length
cl(g) of an element g ∈ G′ is the least number of commutators in G whose
product is g, and the stable commutator length is the limit limn→∞ cl(gn)/n.
Stable commutator length scl extends to a pseudo-norm on the space B1(G)
of formal real (group) 1-boundaries, and descends to a further quotient
BH

1 (G) := B1(G)/〈gn − ng, g − hgh−1〉, reflecting the fact that scl is ho-
mogeneous (by definition), and a class function. When G is hyperbolic, scl
is a norm on BH

1 (G) ([9], Thm. A′). The crucial properties of this pseudo-
norm in general are:

(characteristic) It is constant on orbits of Out(G).
(monotone) It is nonincreasing under homomorphisms between groups.

Of course the first property follows from the second.

1.2. Exotic isometries. If G admits a large group of automorphisms, the
characteristic property becomes very interesting. Perhaps the most interest-
ing example is the case of a free group F ; in this case, we obtain a natural
isometric action of Out(F ) on the normed space BH

1 (F ). In fact, the unit
ball in the scl norm on BH

1 (F ) is a polyhedron, and associated to every re-
alization of F as π1(S) for S a compact, oriented surface, there is a top
dimensional face πS of the unit ball whose stabilizer in Out(F ) is precisely
the mapping class group MCG(S); see [5, 6] for proofs of these facts.

There are many natural realizations of MCG(S) and Out(F ) as groups of
isometries of geometric spaces. Inevitably, these spaces admit essentially no
other isometries (up to finite index). For example, in the case of MCG(S)
acting on Teichmüller space, this is a famous theorem of Royden [20]. In
marked contrast to these examples, our first main result is that the scl unit
ball in BH

1 (F ) admits an enormous number of exotic isometries, and in fact
we show that a random homomorphism between free groups is almost surely
an isometry for stable commutator length:
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Random Isometry Theorem 3.16. A random homomorphism ϕ : Fk →
Fl of length n between free groups of ranks k, l is an isometry of scl with
probability 1−O(C(k, l)−n) for some constant C(k, l) > 1.

Here a random homomorphism of length n is one which sends the gener-
ators of Fk to randomly chosen elements of Fl of length at most n.

We remark that in [3] (Lem. 6.1) Bestvina–Feighn obtained partial re-
sults in the direction of this theorem. Explicitly, for any element w in a
free group F , and for any other free group F ′, they constructed many ho-
momorphisms ϕ : F → F ′ for which the commutator length (not the stable
commutator length) of ϕ(w) in F ′ is equal to the commutator length of w
in F . In fact, their technique implies (though they do not state this ex-
plicitly) that for each fixed w, a random homomorphism of length n has
this property with probability 1−O(C(w)−n). However the constant C(w)
they obtain definitely depends on w, and therefore they do not exhibit a
single homomorphism which is an isometry for commutator length for all w
simultaneously (in fact, our proof of the Isometry Theorem should be valid
with scl replaced by cl, but we have not pursued this).

A necessary condition for a homomorphism between free groups to be an
isometry for scl is for it to be injective. However, if k ≥ 3 then there are
many injective homomorphisms Fk → Fl that are not isometries; we give two
infinite classes of examples, namely Example 2.2 and Example 2.7. In fact,
we show (Proposition 2.9) that if Fk → Fl is an isometry, then the image of
Fk is necessarily self-commensurating in Fl; i.e., it is not properly contained
with finite index in any other subgroup. Of course, any injective homo-
morphism F2 → Fl has self-commensurating image. Extensive computer
evidence (and some theory) has led us to make the following conjecture:

Isometry Conjecture 4.1. Let ϕ : F2 → F be any injective homomor-
phism from a free group of rank 2 to a free group F . Then ϕ is an isometry
of scl.

1.3. Extremal fatgraphs and quasimorphisms. There is a duality the-
orem (Generalized Bavard duality; see [5] or [7] Thm. 2.79; also see [2])
relating stable commutator length to an important class of functions called
homogeneous quasimorphisms. If G is a group, a function φ : G → R is a
homogeneous quasimorphism if it satisfies φ(gn) = nφ(g) for every g ∈ G,
and if there is a least nonnegative number D(φ) (called the defect) so that
for all g, h ∈ G, there is an inequality

|φ(gh)− φ(g)− φ(h)| ≤ D(φ).

The space of homogeneous quasimorphisms on G is a vector space Q(G).
The subspace on which D vanishes is naturally isomorphic to H1(G;R), and
D defines a norm on Q/H1 making it into a Banach space.
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Generalized Bavard duality is the statement that for all chains
∑
tigi ∈

BH
1 (G) there is an equality

scl
(∑

tigi

)
= sup

φ

∑
i tiφ(gi)

2D(φ)
.

Because Q/H1 is a Banach space, for any chain Γ ∈ BH
1 (G) there exists a

φ for which equality holds — i.e., for which scl(Γ) = φ(Γ)/2D(φ). Such a
quasimorphism is said to be extremal for Γ.

It is a fundamental problem, given Γ, to exhibit an explicit φ which is
extremal for Γ. There are essentially no examples of (hyperbolic) groups
in which one knows how to answer this problem for more than a handful
of chains Γ. Upper bounds on scl are obtained for (integral) chains Γ by
exhibiting nΓ for some n as the oriented boundary of a homotopy class of
map S → K(G, 1) for some compact oriented surface S with no disk or
sphere components, and using the inequality

scl(Γ) = inf
S

−χ(S)

2n

(see [5] or [7], Prop. 2.10). A surface realizing scl(Γ) = −χ(S)/2n is said to
be extremal for Γ. For Γ in BH

1 (G) for an arbitrary group G, an extremal sur-
face need not exist. However, for a free group F , it turns out that extremal
surfaces always exist, and can be found by a polynomial time algorithm
(this is the Rationality Theorem from [5]; the algorithm is implemented by
the program scallop [11]). For any surface S and any homogeneous quasi-
morphism φ there is an inequality −χ(S)/2 ≥ scl(∂S) ≥ φ(∂S)/2D(φ). A
surface S and a quasimorphism φ certify each other as extremal (for ∂S) if
this inequality is an equality; i.e., if −χ(S)/2 = φ(∂S)/2D(φ).

In a free group, extremal (and other) surfaces bounding chains nΓ are
encoded combinatorially as labeled fatgraphs. The details of this labeling
are explained in §3.2, but the idea is just that the oriented edges of the
fatgraph Y are labeled by elements of F in such a way that changing the
orientation inverts the label; and then the oriented boundary of a surface
thickening S(Y ) of the fatgraph determines a finite collection of cyclic words
in F which should represent nΓ in BH

1 (F ).
Our second main result is that if we fix the topological type of a fatgraph

Ŷ , most labelings Y give rise to extremal surfaces, and moreover we can
explicitly construct (from the combinatorics of Y ) an extremal homogeneous
quasimorphism HY which certifies that S(Y ) and HY are extremal:

Random Fatgraph Theorem 5.10. For any combinatorial fatgraph Ŷ , if
Y is a random fatgraph over F obtained by labeling the edges of Ŷ by words
of length n, then S(Y ) is extremal for ∂S(Y ) and is certified by the extremal

quasimorphism HY , with probability 1 − O(C(Ŷ , F )−n) for some constant

C(Ŷ , F ) > 1.
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This implies that for any integer m, most words w in F with cl(w) ≤ m
satisfy cl(w) = m and scl(w) = m− 1/2.

To be useful in practice, it is important to have some idea of the size of
the constants C(Ŷ , F ) arising in the Random Fatgraph Theorem. In §5.6 we

tabulate the results of computer experiments for F = F2 and for trivalent Ŷ ;
the trivalent hypothesis significantly simplifies the construction of HY and
the verification of the certificate. The constants that arise are reassuringly
small, affirming the effectiveness of the Random Fatgraph Theorem.

2. Injective endomorphisms of free groups are not always
isometric

2.1. A question of Bardakov. If G is a group, and G′ is its commutator
subgroup, the commutator length of an element g ∈ G′ (denoted cl(g)) is the
least number of commutators in G whose product is g.

Bardakov [1] asked the following question:

Question 2.1 (Bardakov, [1] qn. 2). Let ϕ : F → F be an injective en-
domorphism of a nonabelian free group F . Does cl(g) = cl(ϕ(g)) for all
g ∈ F ′?

The answer to Bardakov’s question is no. We give two infinite families
of examples to substantiate this claim. The first family of examples use
some facts from the theory of 3-manifold topology, and were inspired by a
conversation with Geoff Mess.

Example 2.2 (Complex of curves; [7], Ex. 4.44). Let H be a handlebody
of genus 3. Let γ be an essential simple closed curve in ∂H, dividing ∂H
into two subsurfaces S1, S2 of genus 1 and 2 respectively. The inclusions
Si → ∂H are necessarily π1-injective, though the inclusions Si → H are
typically not. However, Dehn’s lemma (see [14]) says that if Si → H is not
injective, there is an essential simple closed curve γ in Si that bounds an
embedded disk in H.

The set of isotopy classes of essential simple closed curves in ∂H are
the vertices of a graph C(∂H) called the complex of curves. Two vertices
are joined by an edge in this complex if and only if they are represented
by disjoint curves in ∂H. If we declare that each edge has length 1, the
graph C(∂H) becomes a (path) metric space, with distance function d(·, ·).
Let C(H) denote the subset of vertices consisting of essential simple closed
curves in ∂H that bound disks in H.

It is known ([15], Thm. 2.7) that there exist pseudo-Anosov mapping
classes ψ of ∂H so that for any α ∈ C(∂H) the iterates ψn(α) satisfy
d(ψn(α), C(H))→∞. If β is an arbitrary essential loop in S2 then d(β, γ) ≤
1, since β and γ = ∂S2 are disjoint. If ψ is as above, and n is such that
d(ψn(γ), C(H)) ≥ 2, then d(ψn(β), C(H)) ≥ 1 for all essential simple closed
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curves β in S2. It follows from Dehn’s lemma that the inclusion ψn(S2)→ H
is π1-injective.

Let F = π1(S2), a free group of rank 4, and let g ∈ F ′ be the conjugacy
class associated to the loop ∂S2. A simple degree argument implies that
cl(g) 6= 1 and therefore cl(g) = 2. Let ϕ : F → F be the endomorphism
induced by the inclusion S2 → ψn(S2) → H composed with any injective
homomorphism π1(H) → F . Since the image of g in π1(H) is represented
by ∂S1, this image is a commutator. Hence cl(ϕ(g)) = 1.

2.2. Stable commutator length. If G is a group, and g ∈ G′, the stable
commutator length of g (denoted scl(g)) is the limit

scl(g) := lim
n→∞

cl(gn)/n.

Stable commutator length is a more interesting and subtle invariant than
commutator length, and is connected to a broader range of mathemati-
cal subjects, such as hyperbolic geometry, topology, symplectic dynamics,
bounded cohomology, etc. See [7] for a systematic introduction.

It is convenient to extend the definition of (stable) commutator length to
finite formal sums of elements. Suppose gi are a finite collection of elements
in G whose product is in G′. Define cl(

∑
gi) to be the minimum of the

commutator length of any product
∏
i g
hi
i of conjugates of the gi, and define

scl(
∑
gi) to be the limit of cl(

∑
gni )/n as n→∞.

It is shown in [5], §2.4 (also see [7], §2.6) that scl extends to a pseudo-
norm on B1(G), the vector space of real group 1-boundaries (in the sense
of the bar complex in group homology), and vanishes on the subspace H
spanned by chains of the form gn − ng for g ∈ G,n ∈ Z and g − hgh−1 for
g, h ∈ G (note that H includes all torsion elements). Thus scl descends to
a pseudo-norm on the quotient space BH

1 := B1/H. When G is a Gromov
hyperbolic group (for example, when G is free), scl defines a genuine norm
on BH

1 (G); this follows from [9], Thm. A′ (the separation theorem).
If G is a group in which (nontorsion) elements are not infinitely divisible,

it is convenient to think of an element of BH
1 as a (homologically trivial)

finite formal real linear combination of primitive conjugacy classes. Such
objects arise frequently in low-dimensional geometry, e.g., in the Selberg
trace formula, or in Thurston’s theory of train tracks.

Definition 2.3. A homomorphism between groups ϕ : G→ H is isometric
if sclG(Γ) = sclH(ϕ(Γ)) for all Γ ∈ BH

1 (G).

Note that an isometric homomorphism between free groups is necessarily
injective.

Example 2.4. Any automorphism is isometric.

Example 2.5. An inclusion G → H that admits a section H → G is
isometric.
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Example 2.6. An endomorphism of a free group that sends every generator
to a nontrivial power of itself is isometric ([8], Cor. 3.16).

Our next family of examples depend on the main theorems of [6], and we
refer the reader to that paper for details.

Example 2.7 (Nongeometric covers). Let F be a free group, and let G be a
finite index subgroup of F . Let i : G→ F denote the inclusion. A realization
of a free group is a conjugacy class of isomorphism G→ π1(Σ) where Σ is a
compact, connected, oriented surface (necessarily with boundary). Associ-
ated to a realization there is a well-defined chain ∂Σ ∈ BH

1 (G). Say that a
realization G→ π1(Σ) is geometric if there is a realization F → π1(S) and a
finite cover Σ→ S inducing i : G→ F . For a geometric realization, i takes
the equivalence class of the chain ∂Σ to the class of the chain [F : G] · ∂S,
and there are equalities:

− χ(Σ)/2 = sclG(∂Σ) = sclF (i∗∂Σ)

= [F : G] · sclF (∂S) = −[F : G] · χ(S)/2.

However, if G → π1(Σ) is nongeometric, it is always true that there is a
strict inequality

sclG(∂Σ) > sclF (i∗∂Σ)

so that such i∗ are never isometric; see Proposition 2.9 below.
Note if the rank of G is even, there are many nongeometric realizations for

which ∂Σ is connected. This gives many negative examples to Bardakov’s
question, since if scl(ϕ(g)) < scl(g) for some element g and some ϕ, then
necessarily cl(ϕ(gn)) < cl(gn) for some n.

Note that every finite index subgroup G of F does in fact admit nonge-
ometric realizations; hence G → F is never isometric. Such an inclusion
can be further composed with another injective homomorphism to produce
many examples.

Definition 2.8. A finitely generated subgroup G < F is self-commensura-
ting in F if there is no finitely generated subgroup E < F with G proper of
finite index in E.

We summarize this example in a proposition.

Proposition 2.9. If G→ F is an isometric homomorphism between finitely
generated free groups, then the image of G is self-commensurating in F .

The proof of this proposition is somewhat technical, depending on the
main results of [6]. However, as the proposition is not used elsewhere in the
article, the reader who is not familiar with [6] may skip it.

Proof. Let G → E be a proper inclusion of finite index between finitely
generated free groups. We show G → E is not isometric, and therefore
neither is G→ F .
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Let G → π1(Σ) be a nongeometric realization; i.e., Σ does not cover a
realization of F . It is easy to see that every realization of a free group is
extremal for its boundary; i.e., Σ is extremal for ∂Σ in G, so

sclG(∂Σ) = −χ(Σ)/2

(for the definition of an extremal surface, look ahead to §3.1). Let H be a

subgroup of G of finite index, normal in E. There is a realization H → π1(Σ̃)

for some finite cover Σ̃ of Σ, and Σ̃ is extremal for ∂Σ̃ inH. SinceH → π1(Σ̃)
is geometric with respect to G, there is an equality

sclH(∂Σ̃) = sclG(∂Σ̃) = −χ(Σ̃)/2.

On the other hand, since G → π1(Σ) is not geometric with respect to

E, neither is H → π1(Σ̃). Since H is normal in E, there is some e ∈ E
which acts by conjugation on H as an outer automorphism e∗ of H not in

MCG(Σ̃). By [6] Thm. A the classes ∂Σ̃ and e∗∂Σ̃ projectively intersect the
interiors of different top dimensional faces of the scl norm ball of H, and

therefore sclH(∂Σ̃+e∗∂Σ̃) < 2∂Σ̃. Since scl is a norm, there is an inequality

sclE(∂Σ̃) =
sclH(

∑
e∈E/H e∗∂Σ̃)

[E : H]
< sclH(∂Σ̃) = sclG(∂Σ̃)

(see [7], Cor. 2.81) and we are done. �

An interesting special case of Example 2.7 is to take F = F2 and G to
be index 2. Any realization G → π1(Σ) has sclG(∂Σ) = 1, and therefore
any nongeometric realization produces an integral chain in BH

1 (F ) with
scl < 1. Figure 1 is a histogram showing the distribution of sclF (i∗∂Σ)
on 7500 “random” realizations of G→ π1(Σ) for a four-punctured sphere Σ.

1
2

3
4

5
6 1

Figure 1. Histogram showing distribution of scl(i∗∂Σ) for
7500 realizations of G

This figure suggests the following conjecture:



ISOMETRIC ENDOMORPHISMS OF FREE GROUPS 721

Conjecture 2.10 (Interval conjecture). The set of values of scl on integral
chains in BH

1 (F2) contains every rational number in the interval [3/4, 1].

In fact, it is not known whether the set of values of scl on integral chains
in any free group is dense in any interval, though it is known that this set
is not discrete (see [8], Thm. 4.7).

Example 2.11. Let us look more closely at a single 2-parameter family.
Let a, b, c generate an F3, and let ϕ : F3 → F2 take a → a, b → b2, c →
b−1ab. There is a Z2 in Aut(F3) given by (m,n) : (a, b, c) → (abm, b, bnc).
The image of the chain a + b + c + a−1c−1b−1 in BH

1 (F3) maps to a +
b2 + b−1ab + a−1b−1a−1b−1. Precomposing with (m,n) produces the chain
ab2m + b2 + b2n−1ab + b−2ma−1b−1a−1b−1−2n. Applying the automorphism
a→ aB, b→ b of F2 to the image gives a chain which in BH

1 (F2) is equal to

wm,n := ab2m−1 + ab2n−1 + b2 + a−2b−2m−2n.

This is an example of a (2-parameter) surgery family, as defined in [8].
Computing s(m,n) := scl(wm,n) therefore reduces to the analysis of an
explicit linear family of integer programming problems. Such problems are
in general beyond the reach of computer experiments, but this particular
family of examples is barely within reach of a rigorous analysis, and well
within reach of a heuristic analysis, implemented by the program sssf [23].

45/46
41/42 17/23

37/38 31/42 19/23
33/34 14/19 17/21 20/23

29/30 25/34 31/38 6/7 41/46
25/26 11/15 14/17 33/38 37/42 21/23

21/22 19/26 4/5 29/34 17/19 19/21 10/11
17/18 8/11 21/26 13/15 15/17 8/9 71/84 43/46

13/14 13/18 9/11 11/13 6/7 31/34 35/38 13/14 317/368
9/10 5/7 7/9 19/22 23/26 9/10 29/34 33/38 37/42 41/46

5/6 7/10 11/14 5/6 89/110 107/130 5/6 143/170 161/190 179/210 197/230
1 3/4 4/5 6/7 8/9 10/11 12/13 14/15 16/17 18/19 20/21 22/23

Table 1. Values of s(m,n) for 0 ≤ n ≤ m ≤ 11

Table 1 gives the value of s(m,n) for 0 ≤ n ≤ m ≤ 11, and is included to
give the reader an indication of the variety of values of

scl(ϕm,n(a+ b+ c+ a−1c−1b−1))

possible in even a simple family of nonisometric injections ϕm,n : F3 → F2.

Examples 2.2 and 2.7 show that it is quite easy to construct injective
homomorphisms between free groups that are not isometric. However, we
will show in §3 that a random homomorphism between free groups is isomet-
ric, and we further conjecture (and provide evidence to suggest) that every
injective endomorphism of a free group of rank 2 is isometric.
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3. Homomorphisms between free groups are usually
isometric

In this section we describe a certain small cancellation condition guaran-
teeing that a homomorphism between free groups is isometric. This condi-
tion is very similar to the condition C ′(1/12) studied in small cancellation
theory (see, e.g., [16], Ch. V), and is generic, in a sense to be made precise
in the sequel. However, proving that this condition suffices to guarantee
isometry depends on some technology developed in the papers [5, 8], and a
careful inductive argument.

3.1. Surfaces. If G is a group, let X be a K(G, 1). Conjugacy classes in
G correspond to free homotopy classes of loops in X.

Let gi ∈ G be a set of elements, and let Γ :
∐
i S

1
i → X be a corresponding

set of loops. A map of a compact, oriented surface f : S → X is admissible
for Γ if there is a commutative diagram

∂S −−−−→ S

∂f

y f

y∐
i S

1
i

Γ−−−−→ Σ

and an integer n(S) for which ∂f∗[∂S] = n(S)[
∐
i S

1
i ] in H1. The map is

monotone if ∂S →
∐
i S

1
i is homotopic to an orientation-preserving cover

(equivalently, if every component of ∂S wraps with positive degree around
its image).

Lemma 3.1 ([7], Prop. 2.74). Let g1, · · · , gm be conjugacy classes in G,
represented by Γ :

∐
i S

1
i → X. Then

scl

(∑
i

gi

)
= inf

S

−χ−(S)

2n(S)

where the infimum is taken over all surfaces S and all maps f : S → X
admissible for Γ.

The notation χ−(S) means the sum of Euler characteristics
∑

i χ(Si)
taken over those components Si of S with χ(Si) ≤ 0. By [7], Prop. 2.13
it suffices to restrict to monotone admissible surfaces. An admissible sur-
face S is extremal if equality is achieved.

3.2. Fatgraphs. In free groups, most admissible surfaces — and certainly
all extremal ones — can be represented in an essentially combinatorial way,
that is convenient for small cancellation arguments. This combinatorial
encoding is very similar to a method developed by Culler [12], though it is
more or less equivalent to the theory of diagrams over surfaces developed
by Schupp [21].

A fatgraph Y is a graph in which each vertex has valence at least 3,
together with a cyclic ordering of the edges incident at each vertex. Such a
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b b A

B B a

a

b

A

A

B
a

a

B

B

A

b

b

Figure 2. Part of a thickened fatgraph over F2 near a 3-
valent vertex

graph can be thickened to a surface S(Y ) (or just S is Y is understood) in
such a way that Y embeds in S(Y ) as a deformation retract (one also says
Y is a spine in S(Y )). A fatgraph Y is oriented if S(Y ) is oriented. In the
sequel we assume all our fatgraphs are oriented. Note that χ(Y ) = χ(S(Y )).

One can arrange for the deformation retraction S(Y ) → Y to be locally
injective on ∂S(Y ). The preimages of the arcs of Y give ∂S(Y ) a natural
cellular structure, in such a way that arcs of ∂S(Y ) map isomorphically to
arcs of Y , and vertices of ∂S(Y ) map to vertices of Y . Two arcs of ∂S
mapping to the same edge of Y are said to be paired.

A fatgraph Y over F is an oriented fatgraph in which each arc of ∂S(Y )
is labeled with a reduced, nontrivial element of F in such a way that paired
arcs have labels which are inverse in F , and consecutive arcs (reading around
∂S) are reduced; see Figure 2 for part of a fatgraph over F2 near a 3-valent
vertex (in this figure and elsewhere, we frequently adopt the notation A for
a−1 and so on). For such a fatgraph, ∂S is labeled by a finite collection of
cyclically reduced cyclic words in F , so we can (and do) think of the oriented
boundary ∂S as an element of BH

1 (F ), which we denote ∂S(Y ).
The basic fact we use is the following lemma, which is a restatement

of [12], Thm. 1.4 in the language of fatgraphs. Note that Culler proves
his theorem only for surfaces with connected boundary, but his argument
generalizes with no extra work (an equivalent statement, valid for surfaces
with disconnected boundary, is also proved in [5], Lem. 3.4; also see [7] §4.3
for a discussion and references).

Lemma 3.2 (Culler [12], Thm. 1.4 (fatgraph lemma)). Let S be an admis-
sible surface bounding a chain Γ. Then after possibly compressing S a finite
number of times (thereby reducing −χ−(S) without changing ∂S) there is a
fatgraph Y over F with S(Y ) = S.

In the sequel Ŷ will usually denote an abstract (unlabeled) fatgraph, and
Y will denote a labeled one.
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3.3. scl and word length. In a free group F with a fixed generating set,
every element is represented by a unique reduced word, and every conjugacy
class is represented by a unique cyclically reduced cyclic word.

Define |Γ| = min
∑
|gi|, where | · | denotes word length in F , and the

minimum is taken over all representatives Γ =
∑
gi of the class Γ in BH

1 .
Note that if we take each gi to be primitive and cyclically reduced, and insist
that no gi is conjugate to the inverse of some gj (in which case we could
cancel gi and gj), then |Γ| =

∑
|gi|. In other words, any expression of Γ as∑

gi either satisfies |Γ| =
∑
|gi|, or can be reduced in an “obvious” way.

Lemma 3.3. Let Γ be an integral chain in BH
1 (F ). Then scl(Γ) ≤ |Γ|/2.

Proof. In fact we prove the stronger statement that cl(Γ) ≤ |Γ|/2. By the
definition of commutator length of a chain, it suffices to prove this in the
case that Γ is a single word g ∈ F ′. This means that every generator x
appears in g as many times as x−1 appears. Each such pair of letters can
be canceled at the cost of a commutator, and the result follows. �

The bound in Lemma 3.3 is not sharp. With more work, we obtain a
sharp estimate. The following lemma appeals at one point to a covering
trick used in [8]; since the trick is not used elsewhere in this paper, we refer
the reader to [8] for details.

Lemma 3.4. Let Γ be an integral chain in BH
1 (F2). Then scl(Γ) ≤ |Γ|/8.

Proof. Let Γ =
∑
gi and by abuse of notation, suppose each gi is repre-

sented by a cyclically reduced word. Suppose without loss of generality that
there are at most |Γ|/2 letters equal to one of a or A. After applying the
automorphism a→ ab, b→ b sufficiently many times, we obtain a new chain
Γ′ =

∑
hi with at most |Γ|/2 letters equal to one of a or A, but with no a2

or A2 in any of the cyclic words hi.
Let Y be a fatgraph with ∂S(Y ) = Γ′, and let S = S(Y ). We can

decompose S into a collection of at most |Γ|/2 rectangles pairing up a’s
and A’s, together with some subsurface S′ with at most |Γ| corners, and
edges alternating between segments of ∂S labeled by powers of b, and edges
corresponding to proper arcs in S.

Counting as in [8], each rectangle contributes 0 to the “orbifold Euler
characteristic” of S, and each corner of S′ contributes −1/4. The total
contribution is therefore at most |Γ|/4, so −χ−(S) ≤ |Γ|/4 − χ(S′). Now,
it is possible that χ(S′) < 0, but since S′ has boundary components labeled
by elements of the abelian group 〈b〉, we can pass to a finite cover of S′ and
compress so that χ(S′) can be made “projectively” as close to 0 as desired;
this is explained in detail in [8], §3.3. Hence scl(Γ) = scl(Γ′) ≤ |Γ|/8, as
claimed. �

In fact, it is not much more work to extend this lemma to free groups of
arbitrary finite rank. Let F be freely generated by x1, . . . , xn; if Γ ∈ BH

1 (F ),

we denote by |Γ|i the number of times that xi and x−1
i appear in Γ.
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Proposition 3.5. With notation as above, we have an inequality

scl(Γ) ≤ |Γ| −maxi |Γ|i
4

for any Γ ∈ BH
1 (F ).

Proof. Without loss of generality, we may assume that maxi |Γ|i = |Γ|n.
As in the proof of Lemma 3.4, we may cut out all rectangles corresponding
to matched pairs of x1 and x−1

1 . What is left is an immersed subsurface
S′ of S. An essential immersed subsurface of an extremal surface is also
extremal, by [6]. Consequently S′ is extremal for its boundary Γ′, which lies
in BH

1 (〈x2, . . . , xn〉). We therefore have the inequality scl(Γ) ≤ scl(Γ′) +
|Γ|1/4. Repeating this argument n− 1 times yields

scl(Γ) ≤ scl(Γ′′) + |Γ|1/4 + · · ·+ |Γ|n−1/4

where scl(Γ′′) = 0, since Γ′′ ∈ BH
1 (〈xn〉). The proof follows. �

Example 3.6. The bound in Proposition 3.5 is sharp, which we show by
a family of examples. We first recall the free product formula ([7], §2.7),
which says that if G1 and G2 are arbitrary groups, and gi ∈ G′i have infinite
order, then sclG1∗G2(g1g2) = sclG1(g1) + sclG2(g2) + 1/2.

Now, let F be freely generated by x1, . . . , xn as above, and define

wn = [x1, x2][x3, x4] · · · [xn−1, xn]

if n is even, and

wn = [x1, x2][x3, x4] · · · [xn−4, xn−3]xn−2xn−1xnx
−1
n−1xnx

−1
n−2x

−2
n

if n is odd.
For each i, we have scl([xi, xi+1]) = 1

2 . Moreover, using scallop ([11])

one can check that scl(xn−2xn−1xnx
−1
n−1xnx

−1
n−2x

−2
n ) = 1. The free product

formula then shows that scl(wn) = (n− 1)/2, so Proposition 3.5 is sharp for
all n.

3.4. Small cancellation condition; first version. A homomorphism be-
tween free groups is determined by the values of the generators, which can
be taken to be reduced words. In this section and the next, we define combi-
natorial conditions on these words which guarantee that the homomorphism
is an isometry of scl.

For the sake of clarity, we first discuss a severe condition which makes the
proof of isometry easier. Then in §3.5 we discuss a weaker condition which
is generic (in a certain statistical sense, to be made precise) and which also
implies isometry, though with a slightly more complicated proof.

Definition 3.7. Let A be a set, and let F (A) be the free group on A. Let
U be a subset of F (A) with U ∩U−1 = ∅, and let S denote the set U ∪U−1.
We say that U satisfies condition (SA) if the following is true:

(SA1) If x, y ∈ S and y is not equal to x−1, then xy is reduced.
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(SA2) If x, y ∈ S and y is not equal to x or x−1, then any common subword
s of x and y has length strictly less than |x|/12.

(SA3) If x ∈ S and a subword s appears in at least two different positions
in x (possibly overlapping) then the length of s is strictly less than
|x|/12.

Let B be a set, and ϕ : B → U a bijection. Extend ϕ to a homomorphism
ϕ : F (B)→ F (A). We say ϕ satisfies condition (SA) if U satisfies condition
(SA).

Note that except for condition (SA1), this is the small cancellation con-
dition C ′(1/12). We will show the following:

Proposition 3.8. Let ϕ : F (B) → F (A) be a homomorphism satisfying
condition (SA). Then ϕ is an isometry of scl.

Condition (SA1) for ϕ means that if g is a cyclically reduced word in
F (B), then the word in F (A) obtained by replacing each letter of g by its
image under ϕ is also cyclically reduced. This condition is quite restrictive
— in particular it implies that |A| ≥ |B|, and even under these conditions
it is not “generic” — but we will show how to dispense with it in §3.5.
However, its inclusion simplifies the arguments in this section.

Example 3.9. The set {aa, bb} satisfies (SA1). The set {ab, ba} satisfies
(SA1).

Suppose ϕ : F (B) → F (A) satisfies condition (SA), and let Y be a fat-
graph with ∂S(Y ) in the image of ϕ, i.e., such that ∂S(Y ) is a collection of
cyclically reduced words of the form ϕ(g). By condition (SA1), each ϕ(g)
is obtained by concatenating words of the form ϕ(x±) for x ∈ B. We call
these subwords segments of ∂S(Y ), as distinct from the decomposition into
arcs associated with the fatgraph structure.

Definition 3.10. A perfect match in Y is a pair of segments ϕ(x), ϕ(x−1)
contained in a pair of arcs of ∂S(Y ) that are matched by the pairing. A
partial match in Y is a pair of segments ϕ(x), ϕ(x−1) containing subsegments
s, s−1 in “corresponding” locations in ϕ(x) and ϕ(x−1) that are matched by
the pairing.

The existence of a perfect match will let us replace Y with a “simpler”
fatgraph. This is the key to an inductive proof of Proposition 3.8. The next
lemma shows how to modify a fatgraph Y to promote a partial match to a
perfect match.

Lemma 3.11. Suppose Y contains a partial match. Then there is Y ′ con-
taining a perfect match with S(Y ′) homotopic to S(Y ) and ∂S(Y ) = ∂S(Y ′).

Proof. The fatgraph Y can be modified by a certain local move, illustrated
in Figure 3.

This move increases the length of the paired subsegments by 1. Perform
the move repeatedly to obtain a perfect match. �
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Figure 3. A local move to replace a partial match with a
perfect match

Remark 3.12. The move illustrated in Figure 3 actually occurs as the
phenomenon of branch migration in molecules of DNA, especially in certain
4-valent junctions known as Holliday junctions. See, e.g., [18].

Each vertex v of Y of valence |v| contributes (|v| − 2)/2 to −χ(Y ), in the
sense that −χ(Y ) =

∑
v(|v| − 2)/2. Since each vertex v of Y is in the image

of |v| vertices in ∂S, we assign a weight of (|v| − 2)/2|v| to each vertex of
∂S.

Lemma 3.13. Let Y be a fatgraph with ∂S(Y ) = ϕ(Γ) and suppose that ϕ
satisfies (SA). Then either Y contains a partial match, or −χ(Y ) > |Γ|.

Proof. Observe that ∂S(Y ) decomposes into |Γ| segments, corresponding
to the letters of Γ. Suppose Y does not contain a partial match. Then since
each vertex contributes (|v|−2)/2|v| to −χ(Y ), it suffices to show that each
segment of ∂Y contains at least six vertices in its interior.

Suppose not. Then some segment ϕ(x) of ∂Y contains a subsegment s of
length at least |ϕ(x)|/6 that does not contain a vertex in its interior. Either
s contains a possibly smaller subsegment s′ which is paired with some entire
segment ϕ(y), or at least half of s is paired with some s−1 in some ϕ(y).
In either case, since s is not a partial match by hypothesis, we contradict
either (SA2) or (SA3).

Thus each segment contributes at least 7× ((3−2)/2 ·3) = 7/6 to −χ(Y ),
and the lemma is proved. �

We now give the proof of Proposition 3.8.

Proof. Suppose ϕ : F (B)→ F (A) satisfies (SA) but is not isometric.
Let Y be a fatgraph with ∂S(Y ) = ϕ(Γ) so that

scl(ϕ(Γ)) ≤ −χ(S(Y ))/2 < scl(Γ)

(the existence of such a Y follows from §3.2; for instance, we could take Y
to be extremal). We will construct a new Y ′ with ∂S(Y ′) = ϕ(Γ′) satisfying



728 DANNY CALEGARI AND ALDEN WALKER

scl(ϕ(Γ′)) ≤ −χ(S(Y ′))/2 < scl(Γ′), and such that Y ′ is shorter than Y . By
induction on the size of Y we will obtain a contradiction.

By Lemma 3.3 and Lemma 3.13, Y contains a partial match, and by
Lemma 3.11 we can modify Y without affecting ∂S(Y ) or χ(Y ) so that it
contains a perfect match. A perfect match cobounds a rectangle in S = S(Y )
that can be cut out, replacing S with a “simpler” surface S′ for which ∂S′

is also in the image of ϕ. By Lemma 3.2, there is some surface S′′ with
−χ(S′′) ≤ −χ(S′) and ∂S′′ = ∂S′, and a fatgraph Y ′ with S(Y ′) = S′′.

In the degenerate case that S′′ is a disk, necessarily S is an annulus,
and both boundary components of S consist entirely of perfect matches;
hence Γ = g + g−1 and scl(Γ) = scl(ϕ(Γ)) = 0 in this case, contrary
to hypothesis. Otherwise ∂S′′ = ∂S′ = ϕ(Γ′) for some Γ′, and satisfies
−χ(S(Y ′)) ≤ −χ(S′) = −χ(S(Y ))− 1.

On the other hand, Γ can be obtained from Γ′ by gluing on a pair of
pants; hence scl(Γ) ≤ scl(Γ′) + 1/2. We have the following “diagram of
inequalities” from which we deduce scl(ϕ(Γ′)) ≤ −χ(S(Y ′))/2 < scl(Γ′) as

scl(ϕ(Γ)) ≤ −χ(S(Y ))/2 < scl(Γ)

scl(ϕ(Γ′)) + 1/2≤ −χ(S(Y ′))/2 + 1/2 scl(Γ′) + 1/2

≤ ≥
claimed. Since each reduction step reduces the length of ∂S(Y ), we obtain
a contradiction. �

3.5. Most homomorphisms between free groups are isometries. In
this section we weaken condition (SA), allowing partial cancellation of ad-
jacent words ϕ(x) and ϕ(y). Providing we quantify and control the amount
of this cancellation, we obtain a new condition (A) (defined below) which
holds with high probability, and which implies isometry.

If two successive letters x, y in a fatgraph do not cancel, but some suffix
of ϕ(x) cancels some prefix of ϕ(y), we encode this pictorially by adding a
tag to our fatgraph. A tag is an edge, one vertex of which is 1-valent. The
two sides of the tag are then labeled by the maximal canceling segments in
ϕ(x) and ϕ(y). If Γ is a chain, and Y is a fatgraph with ∂S(Y ) equal to
the cyclically reduced representative of ϕ(Γ), then we can add tags to Y to
produce a fatgraph Y ′ so that ∂S(Y ′) is equal to the (possibly unreduced)
chain ϕ(Γ).

Definition 3.14. Let A be a set, and let F (A) be the free group on A.
Let U be a subset of F (A) with U ∩ U−1 = ∅, and let S denote the set
U ∪U−1. We say that U satisfies condition (A) if there is some nonnegative
real number T such that the following is true:

(A1) The maximal length of a tag is T .
(A2) If x, y ∈ S and y is not equal to x or x−1, then any common subword

s of x and y has length strictly less than (|x| − 2T )/12.
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(A3) If x ∈ S and a subword s appears in at least two different positions
in x (possibly overlapping) then the length of s is strictly less than
(|x| − 2T )/12.

Let B be a set, and ϕ : B → U a bijection. Extend ϕ to a homomorphism
ϕ : F (B) → F (A). We say ϕ satisfies condition (A) if U satisfies condition
(A).

Notice that condition (SA) is a special case of condition (A) when T = 0.

Proposition 3.15. Let ϕ : F (B) → F (A) be an homomorphism between
free groups satisfying condition (A). Then ϕ is an isometry of scl. That is,
scl(Γ) = scl(ϕ(Γ)) for all chains Γ ∈ BH

1 (F (B)). In particular, scl(g) =
scl(ϕ(g)) for all g ∈ F (B)′.

Proof. The proof is essentially the same as that of Proposition 3.8, except
that we need to be slightly more careful computing χ(Y ). We call the edges
in a tag ghost edges, and define the valence of a vertex v to be the number
of nonghost edges incident to it. Then −χ(Y ) =

∑
v(|v| − 2)/2 where the

sum is taken over all “interior” vertices v — i.e., those which are not the
endpoint of a tag.

The proof of Lemma 3.13 goes through exactly as before, showing that
either Y contains a partial match, or −χ(Y ) > |Γ|. To see this, simply
repeat the proof of Lemma 3.13 applied to Y with the tags “cut off”. Partial
matches can be improved to perfect matches as in Lemma 3.11. Note that
this move might unfold a tag.

If Y is a fatgraph with ∂S(Y ) = ϕ(Γ) and scl(ϕ(Γ)) ≤ −χ(S(Y ))/2 <
scl(Γ), we can find a perfect match and cut out a rectangle, and the induction
argument proceeds exactly as in the proof of Proposition 3.8. �

Fix k, l integers ≥ 2. We now explain the sense in which a random
homomorphism from Fk to Fl will satisfy condition (A). Fix an integer
n, and let Fl(≤ n) denote the set of reduced words in Fl (in a fixed free
generating set) of length at most n. Define a random homomorphism of
length ≤ n to be the homomorphism ϕ : Fk → Fl sending a (fixed) free
generating set for Fk to k randomly chosen elements of Fl(≤ n) (with the
uniform distribution).

Theorem 3.16 (Random Isometry Theorem). A random homomorphism
ϕ : Fk → Fl of length n between free groups of ranks k, l is an isometry of
scl with probability 1−O(C(k, l)−n) for some constant C(k, l) > 1.

Proof. By Proposition 3.15 it suffices to show that a random homomor-
phism satisfies condition (A) with sufficiently high probability.

Let u1, · · · , uk be the images of a fixed free generating set for Fk, thought
of as random reduced words of length ≤ n in a fixed free generating set
and their inverses for Fl. First of all, for any ε > 0, we can assume with
probability at least 1 − O(C−n) for some C that the length of every ui is
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between n and (1 − ε)n. Secondly, the number of reduced words of length
εn is (approximately) (2l− 1)εn, so the chance that the maximal length of a
tag is more than εn is at least 1− O(C−n). So we restrict attention to the
ϕ for which both of these condition hold.

If (A2) fails, there are indices i and j and a subword s of ui of length
at least n(1 − 3ε)/12 ≥ n/13 (for large n) so that either s or s−1 is a
subword of uj . The copies of s± are located at one of at most n different
places in ui and in uj ; the chance of such a match at one specific location

is approximately (2l − 1)−n/13, so the chance that (A2) fails is at most

k2n2(2l − 1)−n/13 = O(C−n) for suitable C.
Finally, if (A3) fails, there is an index i and a subword s of ui of length

at least n/13 that appears in at least two different locations. It is possible
that s overlaps itself, but in any case there is a subword of length at least
|s|/3 that is disjoint from some translate. If we examine two specific disjoint
subsegments of length n/39, the chance that they match is approximately

(2l−1)−n/39. Hence the chance that (A3) fails is at most kn2(2l−1)−n/39 =
O(C−n) for suitable C. Evidently C depends only on k and l. The lemma
follows. �

Corollary 3.17. Let k, l ≥ 2 be integers. There are (many) isometric
homomorphisms ϕ : Fk → Fl.

Lemma 3.18. Let F be a finitely generated free group. The following hold:

(1) If there are integral chains Γ1,Γ2 in BH
1 (F ) such that scl(Γi) = ti,

then there is an integral chain Γ in BH
1 (F ) with scl(Γ) = t1 + t2.

(2) If there are elements g1, g2 in F ′ such that scl(gi) = ti, then there is
an element g ∈ F ′ with scl(g) = t1 + t2 + 1/2.

Proof. Let F1, F2 be copies of F , and let σi : F → Fi be an isomorphism.
Then in case (1) the chain σ1(Γ1) +σ2(Γ2) in F1 ∗F2 has scl equal to t1 + t2,
and in case (2) the element σ1(g1)σ2(g2) has scl equal to t1 + t2 + 1/2; see
[7], §2.7. Now choose an isometric homomorphism from F1 ∗F2 to F , which
exists by Corollary 3.17. �

Corollary 3.19. Let F be a countable nonabelian free group. The image
of F ′ under scl contains elements congruent to every element of Q mod Z.
Moreover, the image of F ′ under scl contains a well-ordered sequence of
values with ordinal type ωω.

Proof. These facts follow from Lemma 3.18 plus the Denominator Theorem
and Limit Theorem from [8]. �

4. Isometry conjecture

Conjecture 4.1 (Isometry conjecture). Let ϕ : F2 → F be any injective
homomorphism from a free group of rank 2 to a free group F . Then ϕ is
isometric.
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Remark 4.2. Since free groups are Hopfian by Malcev [17], any homomor-
phism from F2 to a free group F is either injective, or factors through a cyclic
group. Furthermore, since F2 is not proper of finite index in any other free
group, every F2 in F is self-commensurating, and therefore no counterexam-
ple to the conjecture can be constructed by the method of Proposition 2.9.

Since any free group admits an injective homomorphism into F2, and since
scl is monotone nonincreasing under any homomorphism between groups, to
prove Conjecture 4.1 it suffices to prove it for endomorphisms ϕ : F2 → F2.

Remark 4.3. In view of Example 2.7, rank 2 cannot be replaced with rank
3 in Conjecture 4.1.

Conjecture 4.1 has been tested experimentally on all cyclically reduced
homologically trivial words of length 11 in F2, and all endomorphisms F2 →
F2 sending a→ a and b to a word of length 4 or 5. It has also been tested on
thousands of “random” longer words and homomorphisms. The experiments
were carried out with the program scallop ([11]), which implements the
algorithm described in [5] and [7].

In order to give some additional evidence for the conjecture beyond the
results of §3.5, we prove it in a very specific (but interesting) case for which
the small cancellation conditions (SA) and (A) do not hold.

Proposition 4.4. The homomorphism ϕ : F2 → F2 defined on generators
a, b by ϕ(a) = abA, ϕ(b) = b is an isometry.

Proof. The proof is by induction, following the general strategy of the proof
of Proposition 3.8 and Proposition 3.15, but with a more complicated com-
binatorial argument. As in the proof of those propositions, we assume to the
contrary that there is some Γ and a fatgraph Y with ∂S(Y ) = ϕ(Γ) so that
scl(ϕ(Γ)) ≤ −χ(S(Y ))/2 < scl(Γ). If we can find a partial match in Y , then
we can cut out a rectangle and get a simpler fatgraph Y ′ and a chain Γ′ so
that scl(ϕ(Γ′)) ≤ −χ(S(Y ′))/2 < scl(Γ′), and we will be done by induction.
We show now that such a partial match must exist.

Note that each consecutive string am in Γ gives rise to a string of the
form abmA in Γ′, and each bm in Γ gives rise to a string of the form bm. We
call copies of b or B in ϕ(Γ) of the first kind fake, and copies of b or B in
ϕ(Γ) of the second kind real. Every b (real or fake) must pair with some B
(real or fake) in Y . If a real b pairs with a real B, or a fake b with a fake B,
then we obtain a partial match, which can be improved to a perfect match
by Lemma 3.11, and then cut out, completing the induction step.

So we assume to the contrary that there are no partial matches, and every
real b pairs a fake B and conversely. Assume for the moment that Γ has no
subwords that are powers of the generators (these are called abelian loops in
[8], and we use this terminology in what follows). Then each string of real b’s
or B’s in ϕ(Γ) is followed by a and preceded by A, whereas each string of fake
b’s or B’s in ϕ(Γ) is followed by A and preceded by a. Moreover, each a is
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followed by a fake b or B, and preceded by a real b or B. These facts together
imply that each a or A in ϕ(Γ) is contained in an edge of length exactly 1.
From this we obtain a lower bound on −χ(S(Y )), as follows. If Γ contains
n segments of the form am and n of the form bm, then (assuming there are
no abelian loops), there are exactly n edges of Y which pair a single a with
an A. Removing these edges leaves a fatgraph with no 1-valent edges, since
a edges are never adjacent at a vertex. Hence each such edge contributes at
least 1 to −χ, and we obtain the inequality −χ(S(Y ))/2 ≥ n/2.

However, we claim that the form of Γ implies that scl(Γ) ≤ n/2, contrary
to hypothesis. This shows that there is a partial match after all, and there-
fore Y can be simplified. But by induction this shows that no such Γ and
Y can exist, and the proposition will be proved.

The inequality scl(Γ) ≤ n/2 follows easily from the method of [8] (in
fact, the stronger inequality scl(Γ) ≤ (n − 1)/2 (achieved for Γ = abAB)
is true, but we do not need this). In §3 of that paper, it is shown that for
Γ of the desired form, scl(Γ) = miny∈Y n/2− (κA(y) + κB(y))/2, where κA
and κB are certain piecewise linear nonnegative functions, and y ranges over
a certain rational convex polyhedron Y . The desired inequality (and the
proof) follows, ignoring abelian loops.

Each abelian loop of Γ reduces the count of a edges in Y by 1, but ([7],
p. 9) also reduces the upper bound on scl(Γ) by 1/2. In other words:

scl(Γ) = min
y∈Y

n/2−#{abelian loops}/2− (κA(y) + κB(y))/2

so the desired inequality holds in this case too. �

Example 4.5. In [8] §4.1 it is shown that scl(am +Bm + aBAm+1bm+1) =
(2m − 1)/2m for m ≥ 2. Under ϕ, the image of am and Bm cancel, and
one obtains the identity scl([a, b][a,Bm+1]) = (2m − 1)/2m for m ≥ 2.
This family of words is discussed in [7] §4.3.5 and an explicit collection
of bounding surfaces exhibited. Proposition 4.4 certifies these surfaces as
extremal.

Example 4.6. The homomorphism ϕ arises naturally as the inclusion of F2

as a factor in F∞, the first term in a short exact sequence F∞ → F2 → Z,
where the F2 → Z kills one of the generators. It is not true that inclusions
of bigger factors Fn in F∞ are isometric. For example, scl([a, b][c, d]) = 3/2,

but scl([a, ab][ab
2
, ab

3
]) = 1.

5. Labelings of a fatgraph are usually extremal

In this section, we show that for an arbitrary topological fatgraph Ŷ ,
a random labeling of its edges by words of length n is extremal for its
boundary with probability 1 − C−n. Notice that such a labeling defines
a random groupoid homomorphism from the edge groupoid of Ŷ to a free
group F . Such a groupoid homomorphism in turn induces a homomorphism
from π1(Ŷ ) to F , but such a homomorphism will never satisfy property (A)
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if Ŷ has more than one vertex, since the generators of π1(Ŷ ) necessarily map

to words in F with big overlaps, corresponding to common subedges of Ŷ .
One significant feature of our construction is that the proof that a typical

labeling Y of Ŷ is extremal comes together with a certificate, in the form
of a (dual) extremal quasimorphism. Producing explicit extremal quasi-
morphisms for given elements is a fundamental, but very difficult problem,
and as far as we know this is the first example of such a construction for
“generic” elements (in any sense) in a hyperbolic group.

The construction of the extremal quasimorphism dual to a “generic” fat-
graph is somewhat involved; however, there is a special case where the con-
struction is extremely simple, namely that of trivalent fatgraphs. Therefore
we first present the construction and the proofs in the case of trivalent fat-
graphs, deferring a discussion of more general fatgraphs to §5.5.

5.1. Quasimorphisms. Recall that if G is a group, a quasimorphism is a
function φ : G → R for which there is a least nonnegative number D(φ)
(called the defect) so that for all g, h ∈ G there is an inequality

|φ(gh)− φ(g)− φ(h)| ≤ D(φ).

A quasimorphism is further said to be homogeneous if it satisfies φ(gn) =
nφ(g) for all g ∈ G and all integers n.

If φ is an arbitrary quasimorphism, its homogenization φ is defined to be
the limit φ(g) := limn→∞ φ(gn)/n. It is a fact that φ with this definition is
a homogeneous quasimorphism, with D(φ) ≤ 2D(φ). See [7], §2.2.

Rhemtulla [19], and then later Brooks [4], gave an elementary construction
of quasimorphisms on free groups, which we refer to as counting quasimor-
phisms. For a word w ∈ F , define the big counting function Cw by the
formula

Cw(v) = number of copies of w in v.

Then Hw = Cw − Cw−1 is a quasimorphism, called the big counting quasi-
morphism for w. The function Hw counts the difference between the number
of copies of w and of w−1 in a given word, and its homogenization Hw counts
the difference between the number of copies in the associated cyclic word.
For such functions one has D(Hw) = 2D(Hw).

Following Epstein–Fujiwara [13], we define a variant on this construction
as follows. For a given set S ⊆ F , denote by S−1 the set of inverses of
elements of S, and define the small counting function cS by

cS(v) = maximal number of disjoint copies of elements of S in v.

So for example, c{ab, ba, bb}(abba) = 2. Define hS := cS− cS−1 to be the small
counting quasimorphism for S.

A significant property of small counting quasimorphisms (by contrast with
the big counting quasimorphisms) is that there is a universal bound on their
defect, which (except in rare cases) is sharp.
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Lemma 5.1. For any S ⊆ F , we have D(hS) ≤ 3 and D(hS) ≤ 6.

Proof. There is a standard method to estimate defect of counting quasi-
morphisms and their variants, which we describe. First, note that hS is
antisymmetric, i.e., hS(w) = −hS(w−1) for all w ∈ F . This is a property
that will be shared by all the quasimorphisms we consider in the sequel.

Now, given any g, h there are reduced words k, l,m so that the words
kL, lM,mK are all reduced, and represent gh, g−1, h−1 respectively. We
think of the words k, l,m as the labels on the incoming edges on a tripod Y
(thought of as an especially simple kind of fatgraph) and observe that the
oriented boundary ∂S(Y ) = kL+ lM +mK. Since hS is antisymmetric, it
suffices to compute hS(kL+ lM +mK).

We refer to the 3-valent vertex of the tripod as the junction. By the
definition of small counting functions, if k, L and kL are all reduced words,
then 0 ≤ cS(kL − k − L) ≤ 1, since any collection of disjoint S-words in k
and L produces such a collection in kL not crossing the junction, whereas
any collection of disjoint S-words in kL contains at most one that crosses
the junction. Symmetrizing, |hS(kL−k−L)| ≤ 1. But then we can compute

|hS(kL+ lM +mK)|
= |hS(kL− k − L) + hS(lM − l −M) + hS(mK −m−K)| ≤ 3.

Homogenizing multiplies the defect by at most 2, and the lemma is proved.
�

It is the sharpness of this estimate that will allow us to use small counting
quasimorphisms to calculate scl exactly.

5.2. Labeling fatgraphs. We use the notation Ŷ for an abstract (unla-

beled) fatgraph, and Y for a labeling of Ŷ by words in F ; i.e., a fatgraph
over F (see §3.2). A labeling of length n is a reduced labeling for which
every edge of Y is a word of length n.

By our convention, boundary words in ∂S(Y ) must be cyclically reduced.
For a labeling in which boundary words are not reduced, one can “fold”
adjacent canceling letters to produce tags as in §3.5. One can then either
cut off tags, or think of them as “ghost” edges to be ignored. Note that
folding in this sense is a restricted kind of folding in the sense of Stallings
[22], since the folding must respect the cyclic ordering of edges incident to a
vertex. Hence a fatgraph which is completely folded (equivalently, for which
∂S(Y ) is cyclically reduced) is not a priori π1-injective.

5.3. The vertex quasimorphism construction. In this section, we con-
struct a (counting) quasimorphism on F from a fatgraph Y over F . We will
call this the vertex quasimorphism of Y . We will see that this vertex quasi-
morphism is typically extremal for ∂S(Y ).

Define a set σY on a labeled fatgraph Y over F as follows: every bound-
ary component of S(Y ) decomposes into a union of arcs, and each arc is
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labeled by an element of F . Between each pair of arcs is a vertex of ∂S(Y )
(associated to a vertex of Y ). For each vertex of Y and each pair of incident
arcs with labels u and v (u comes into the vertex; v leaves it), decompose u
and v into u = u1u2, v = v1v2, where usually we expect u1 and u2 to each
be approximately half the length of u, and similarly for v1, v2, v, and add
the word u2v1 to the set σY . There is some flexibility here in the phrase
“about half the length” which will not affect our later arguments; in fact
this flexibility indicates possible other constructions, in which the pieces
have different sizes, bounded length, etc.

A vertex quasimorphism for Y is a small counting quasimorphism of the
form hσY . See Figure 4 for an example. In this figure, σY is the set

σY = {bbAb, aBAA, aaaa, AbAA, AbaB, BBaB}.
Note that we have not broken the edges exactly in half, or even in the same
place on either side.

a

B B

aA

b b

A

b A b A

B a B a

A

A A

b
a

a a

B

Figure 4. The vertex quasimorphism construction on a
thrice-punctured sphere.

Lemma 5.2. If no element of σ−1
Y appears in the boundary ∂S(Y ), then

there is an inequality hσY (∂S(Y )) ≥
∑

v |v|, where the sum is taken over all
vertices v, and |v| is the valence of the vertex v.

Proof. Note that since the components of ∂S(Y ) are cyclic words (rather
than words), it only makes sense to apply the homogenized functions c and
h to them.

Since no element of σ−1
Y appears in ∂S(Y ), we have cσ−1

Y
(∂S(Y )) = 0,

so hσY (∂S(Y )) = cσY (∂S(Y )). For every vertex of Y and for each incident
edge, we have a word in σY . By construction, these words do not overlap in
the boundary chain ∂S(Y ), so the value of cσY (∂S(Y )) is at least as big as∑

v |v|. �
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Remark 5.3. Note that it is possible for a strict inequality in Lemma 5.2,
since there may be many different ways to put disjoint copies of elements of
σY in ∂S(Y ). However, if Y is trivalent and σY satisfies the hypotheses of
the lemma, then there is an equality hσY (∂S(Y )) is equal to three times the
number of vertices of Y .

5.4. Trivalent fatgraphs are usually extremal. We say that a fatgraph
Y over F satisfies condition (SB) if there is a choice of σY as above so that
no element of σ−1

Y appears in ∂S(Y ).

Lemma 5.4. If a trivalent labeled fatgraph Y satisfies condition (SB), then
both S(Y ) and hσY are extremal for the boundary ∂S(Y ), and certify each
other.

Proof. For a trivalent graph, h̄σY (∂S(Y )) ≥ 3V , where V is the number
of vertices, by Lemma 5.2. By Bavard duality, and Lemma 5.1 there is an
inequality

scl(∂S(Y )) ≥ 3V

2D(h̄σY )
≥ 3V

4D(hσY )
≥ V

4
.

On the other hand, since Y is trivalent, the number of edges is 3V/2, so
χ(S(Y )) = −V/2. Hence we get a chain of inequalities

scl(∂S(Y )) ≥ 3V

2D(h̄σY )
≥ V

4
=
−χ(S(Y ))

2
≥ scl(∂S(Y )).

Hence each of these inequalities is actually an equality, and the lemma fol-
lows. �

We now show that condition (SB) is generic in a strong sense. Given Ŷ ,
we are interested in the set of Y with ∂S(Y ) reduced obtained by labeling

the edges of Ŷ by words of length at most n. For each n, this is a finite set,
and we give it the uniform distribution.

Proposition 5.5. For any combinatorial trivalent fatgraph Ŷ , if Y is a
random fatgraph over F obtained by labeling the edges of Ŷ by words of
length n, then S(Y ) is extremal for ∂S(Y ) and is certified by some extremal

quasimorphism hσY , with probability 1 − O(C(Ŷ , F )−n) for some constant

C(Ŷ , F ) > 1.

Proof. The constant C(Ŷ , F ) depends only on the number of vertices of Ŷ .
We make use of some elementary facts about random reduced strings in free
groups.

If we label the edges of Ŷ with random reduced words of length n, it is true
that there may be some small amount of folding necessary in order to obtain
a fatgraph with ∂S(Y ) cyclically reduced. However, the expected amount
of letters to be folded is a constant independent of n, which is asymptot-
ically insignificant, and may be safely disregarded here and elsewhere for
simplicity.
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Now consider some element w of σY under some random labeling. The
fatgraph Y over F will satisfy condition (SB) with the desired probability if
the probability that w−1 appears (as a subword) in ∂S(Y ) is C−n, because
the number of elements of σY is fixed (note that we are using the elementary
but useful fact in probability theory that the maximum probability of a
conjunction of extremely rare events is well approximated by assuming the
events are independent).

If w−1 appears in ∂S(Y ), then at least half of it must appear as a subword
of one of the edges of Y , so the probability that w−1 appears in ∂S(Y ) is
certainly smaller than the probability that the prefix or suffix of w of length
n/2 appears as a subword of an edge of Y . Let k denote the number of

edges of Ŷ . The probability that a subword of length n/2 appears in a word

of length n is approximately (n/2)rank(F )−n/2, so, as we must consider
each edge and its inverse, the probability that w−1 appears is smaller than
2k(n/2)rank(F )−n/2. By replacing rank(F ) by a slightly smaller constant,
we may disregard the (n/2) multiplier, and the lemma is proved. �

5.5. Higher valence fatgraphs. For fatgraphs with higher valence ver-
tices, the construction of a candidate extremal quasimorphism is significantly
more delicate.

For m ≥ 3 let Km be the complete graph on m vertices. Label the vertices
0, 1, 2, · · · ,m− 1. Define a weight wm on directed edges (i, j) of Km by the
formula wm(i, i+ k) = 3− (6k/m) where indices are taken mod m.

Lemma 5.6. The function wm(i, i+k) := 3−(6k/m) is the unique function
on directed edges of Km with the following properties:

(1) It is antisymmetric: wm(i, j) = −wm(j, i).
(2) It satisfies the inequality |wm(i, j)| ≤ 3− 6/m for all distinct i, j.
(3) For every distinct triple i, j, k, there is an equality

wm(i, j) + wm(j, k) + wm(k, i) = ±3

where the sign is positive if the natural cyclic order on i, j, k is pos-
itive, and negative otherwise.

(4) It satisfies wm(i, i+ 1) = 3− 6/m for all i.

Proof. Only uniqueness is not obvious. If we think of wm as a simplicial 1-
cochain on the underlying simplicial structure on the regular m− 1 simplex
then condition (3) determines the coboundary δwm, so wm is unique up
to the coboundary of a function on vertices. But condition (4) says this
coboundary is zero. �

For x a reduced word in F , parameterize x proportional to arclength as
the interval [−1, 1], and let x[−t, t] denote the smallest subword containing
the interval from x(−t) to x(t). Fix some small ε > 0 and define the stack
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function Sx to be the following integral of big counting functions:

Sx =
1

1− ε

∫ 1

ε
Cx[−t,t]dt

The ε correction term ensures that the length of the shortest word in the
support of S is at least ε|x|. If x is quite long, this word will also be quite
long, and ensure that there are no “accidents” in what follows. The constant
ε we need is of order 1/(maxv |v|); we leave it implicit in what follows, and
in practice ignore it.

Remark 5.7. The function Sx is actually a finite rational sum of ordinary
big counting functions, since x[−t, t] takes on only finitely many values.
We can make it into a genuine integral by first applying the (isometric)
endomorphism ϕm to F which takes every generator to its mth power, and
then taking limm→∞ ϕ

∗
mSϕm(x) in place of Sx. However, this is superfluous

for our purposes here.

We are now in a position to define the quasimorphism HY .

Definition 5.8. Let Y be a fatgraph over F , and suppose that every edge
has length ≥ 2n. For each vertex v, denote the set of oriented subarcs in ∂Y
of length n ending at v by xi(v), where the index i runs from 0 to |v|−1 and
the cyclic order of indices agrees with the cyclic order of edges at v. Denote
the inverse of xi(v) by Xi(v).

Then define

HY =
∑
v

∑
i,i+k%|v|

(3− (6k/|v|))(Sxi(v)Xi+k(v) − Sxi+k(v)Xi(v))

(note that the factor 3− (6k/|v|) is w|v|(i, i+ k) from Lemma 5.6).

Let σ denote a word of the form xi(v)Xj(v) or its inverse. In other words,
the σ are the words in the support of HY . Now say that Y satisfies condition
(B) if, whenever some σ[a, b] appears as a subword of some other σ′, or some
σ[a, b] or its inverse appears twice in σ, then (b−a) is not too big — explicitly,
(b− a) < 6/4(maxv |v|). Hereafter we denote δ := 6/4(maxv |v|).

Lemma 5.9. Suppose Y satisfies condition (B). Then D(HY ) ≤ 3.

Proof. Condition (B) says that if two distinct σ, σ′ overlap a junction on
one side of a tripod, then Sσ, Sσ′ each contributes at most δ to the defect. So
we can assume that on at least one side, there is a unique σ = xi(v)Xj(v)
with a subword of definite size that overlaps a junction. Again, without
loss of generality, we can assume that the junction is at σ(t) where t ∈
[−1 + δ, 1 − δ]. By condition (B), if σ′ on another side has a subword of
definite size that overlaps the junction, it either contributes at most δ, or
else we must have σ′ = xk(v)Xi(v) or σ′ = xj(v)Xk(v). So the only case
to consider is when the three incoming directed edges at the junction are
suffixes of xi(v), xj(v), xk(v) of length 1 ≥ s ≥ t ≥ u ≥ 0 respectively. But
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in this case the total contribution to the defect is u(w|v|(i, j) + w|v|(j, k) +
w|v|(k, i)) + (t− u)w|v|(i, j). Since |w|v|(i, j) +w|v|(j, k) +w|v|(k, i)| = 3 and
|w|v|(i, j)| < 3, this defect is ≤ 3, as claimed. �

Theorem 5.10 (Random fatgraph theorem). For any combinatorial fat-

graph Ŷ , if Y is a random fatgraph over F obtained by labeling the edges
of Ŷ by words of length n, then S(Y ) is extremal for ∂S(Y ) and is certified

by the extremal quasimorphism HY , with probability 1 − O(C(Ŷ , F )−n) for

some constant C(Ŷ , F ) > 1.

Proof. The argument is a minor variation on the arguments above, so we
just give a sketch of the idea.

It suffices to show that a random Y satisfies condition (B) with probability
1−O(C−n) for some C. But this is obvious, since the xi(v) are independent,
and for any constant κ > 0, two random words in F of length n do not have
overlapping segments of length bigger than κn, and a random word of length
n does not have a segment of length bigger than κn that appears twice, in
either case with probability 1−O(C−n). �

Remark 5.11. Since χ(S(Y )) ∈ Z, ∂S(Y ) satisfies scl(∂S(Y )) ∈ 1
2Z. On

the other hand, Theorem 5.10 does not imply anything about the structure
of scl for generic chains of a particular length. A random homologically
trivial word (or chain) in a hyperbolic group of length n has scl of size
O(n/ log n) (see [10]), so a random homologically trivial word of length n
conditioned to have genus bounded by some constant, will be very unusual.

In fact, computer experiments suggest that the expected denominator of
scl(w) is a proper function of the length of a (random) word w.

There are only finitely many distinct combinatorial fatgraphs with a given
Euler characteristic, so if we specialize Ŷ to have a single boundary com-
ponent (recall this depends only on the combinatorics of Ŷ and not on any
particular immersion), then then we see that for any integer m there is a
constant C depending on m so that a random word of length n conditioned
to have commutator length at most m has commutator length exactly m
and scl = m− 1/2, with probability 1−O(C−n).

5.6. Experimental data. Our main purpose here is to give an experimen-
tal check of our results and to estimate the constants C(Ŷ , F ). However, it
is worth mentioning that vertex quasimorphisms provide quickly verifiable
rigorous (lower) bounds on scl.

5.6.1. Fast rigorous lower bounds on scl. Although not every chain
admits an extremal surface which is certified by a vertex quasimorphism, it
happens much more frequently that a vertex quasimorphism certifies good
lower bounds on scl. For example, if Y is not trivalent, a quasimorphism of
the form h̄σY will never be extremal; but if the average valence of Y is close
to 3, the lower bound one obtains might be quite good.
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4 11

1

12

− log(P (fail))

label length

Figure 5. A plot of − log of the failure rate for random la-
belings of lengths between 4 and 11, plotted for each trivalent
fatgraph with four vertices. Each dot represents 500, 000 tri-
als. The fatgraphs themselves are arranged left to right, top
to bottom in decreasing order of − log of failure at length
11, so the tripod in the lower right is the “hardest” to find
vertex quasimorphisms for. The pictures were created using
wallop [24].

Because verifying condition (B) requires only checking the (non)-existence
of certain words as subwords of the boundary ∂S(Y ), plus a small cancella-
tion condition, it is possible to certify the defect of a vertex quasimorphism in
polynomial time. This compares favorably to the problem of computing the
defect of an arbitrary linear combination of big counting quasimorphisms
(or even a single big counting quasimorphism) for which the best known
algorithms are exponential.

Example 5.12. It is rare for (short) words or chains to admit extremal
trivalent fatgraphs. A cyclic word is alternating if it contains no a±2 or b±2

substring; for example, baBABAbaBabA is alternating, with scl = 5/6. An
extremal fatgraph for an alternating word necessarily has all vertices of even
valence, since the edge labels at each vertex must alternate between one of
a± and one of b±.

5.6.2. Experimental calculation of constants C(Ŷ , F ). While certi-
fying a vertex quasimorphism is easy, finding one is much harder. To verify
our asymptotic results, we can be content with breaking the edges of the
fatgraph into uniform pieces and checking whether condition (B) is satis-
fied. However, for a given fatgraph, it might be the case (and usually is)
that while a naive assignment of words for HY fails, a more careful choice
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succeeds. To check whether there is any vertex quasimorphism is (naively)
exponential, and this makes large experiments difficult.

However for trivalent fatgraphs, condition (SB) on σY is much simpler. In
particular, whether or not a collection of words satisfies (SB) depends only
on the (local) no-overlap condition, plus the “constant” condition of certain
words not appearing in ∂S(Y ). This makes this a priori infeasible problem of
checking whether there is any vertex quasimorphism for a particular fatgraph
possible with the use of a “meet-in-the-middle” time-space tradeoff.

Using this method, we can experimentally estimate the best possible con-
stants C(Ŷ , F ), at least in the case of trivalent Ŷ . Figure 5 shows some
data on the likelihood that a random labeling of a trivalent fatgraph with
four vertices admits a vertex quasimorphism. The linear dependence of
− log(P (fail)) on label length is evident. We can calculate a best fit slope and
y-intercept for these lines, which gives a best fit line of 1.47336n− 1.42772,
or equivalently, P (success) = 1 − 4.16918(4.36387)−n. Note that the lower
right graph is the least likely to admit a vertex quasimorphism; this is heuris-
tically reasonable, since self-loops at vertices handicap the graph by forc-
ing a shorter length on some words in σY . A best fit for this line yields
P (success) ≥ 1− 82.3971(3.19827)−n.

5.6.3. Using homomorphisms to improve success rate. When a par-
ticular labeling Y does not admit a vertex quasimorphism, it might still be
possible to find an extremal quasimorphism by applying a homomorphism
φ to Y . If (the folded fatgraph) φ(Y ) admits an extremal vertex quasimor-
phism Hφ(Y ), and folding does not change the Euler characteristic of the

fatgraph, then the quasimorphism φ∗Hφ(Y ) is extremal for ∂S(Y ).
Because the edges of φ(Y ) are no longer random (and in particular, dis-

tinct edge labels will necessarily share long common subwords), it is not clear
that applying a homomorphism will affect our success rate. In fact, it turns
out to help significantly, especially for shorter labelings. Figure 6 shows
− log of the failure rate for a particular fatgraph compared with − log of
the failure rate after applying many random homomorphisms. We decrease
the probability of failure by a factor of about 5. Interestingly, changing the
length of the homomorphism or the number of homomorphisms that we try
does not seem to significantly alter our success with this procedure.
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