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Towards a generalisation of Noether’s
theorem to nonclassical Hopf–Galois

structures

Paul J. Truman

Abstract. We study the nonclassical Hopf–Galois module structure
of rings of algebraic integers in some extensions of p-adic fields and
number fields which are at most tamely ramified. We show that if L/K
is an unramified extension of p-adic fields which is H-Galois for some
Hopf algebra H then OL is free over its associated order AH in H.
If H is commutative, we show that this conclusion remains valid in
ramified extensions of p-adic fields if p does not divide the degree of
the extension. By combining these results we prove a generalisation of
Noether’s theorem to nonclassical Hopf–Galois structures on domestic
extensions of number fields.
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1. Introduction

Let L/K be a finite Galois extension of number fields or p-adic fields (for
some prime number p) with group G, and let OL and OK be the rings of
algebraic integers or valuation rings of L and K respectively. By the normal
basis theorem, L is a free module of rank one over the group algebra K[G].
The ring of algebraic integers (or valuation ring) OL is likewise a module
over the integral group ring OK [G], and Noether’s theorem identifies when
an analogous result holds at integral level: OL is free over OK [G] (for p-adic
fields) or locally free over OK [G] (for number fields) if and only if L/K is
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at most tamely ramified [6, Theorem 3]. By locally free we mean that for
each prime p of OK the completed ring of integers OL,p = OK,p ⊗OK

OL is
free over the completed integral group ring OK,p[G] = OK,p⊗OK

OK [G]. An
approach to studying wildly ramified extensions is to replace the integral
group ring with a larger order in K[G], called the associated order:

AK[G] = {α ∈ K[G] | α · x ∈ OL for all x ∈ OL}.

By construction AK[G] is the largest order in K[G] for which OL is a module,
and it is possible that OL will be a free (or locally free) AK[G]-module. In
the p-adic case Childs [2] provided a sufficient condition for this to occur
by exploiting the fact that K[G] is a Hopf algebra — his theorem is that
OL is a free AK[G]-module if the latter is a Hopf order in K[G]. The action
of the group algebra K[G] on a Galois extension L/K is a special case of
the more general concept of a Hopf–Galois structure on a finite separable
extension of fields. A given separable extension L/K may admit a number
of Hopf–Galois structures, each consisting of a Hopf algebra H such that L
is a H-Galois extension of K (for the definition see the following section).
If the extension is Galois then it admits at least one Hopf–Galois structure
with Hopf algebra K[G], and we call this the classical structure. We call any
other Hopf–Galois structures admitted by the extension nonclassical. A the-
orem of Greither and Pareigis reduces the enumeration of the Hopf–Galois
structures admitted by a given extension to a group theoretic problem, and
shows that the Hopf algebras all occur as “twisted” forms of certain group
algebras. To study the structure of OL relative to the various Hopf–Galois
structures admitted by the extension, we define within each Hopf algebra H
an associated order:

AH = {h ∈ H | h · x ∈ OL for all x ∈ OL}.

As with the group algebra K[G], for each Hopf algebra H which gives a
Hopf–Galois structure on the extension, AH is the largest order in H for
which OL is a module, and in fact AH is the only order in H over which OL

can be free (see [4, Proposition 12.5]). Childs’s theorem generalises to this
context - if L/K is a finite H-Galois extension of p-adic fields and AH is a
Hopf order in H then OL is a free AH -module. [4, Theorem 12.7]

The use of nonclassical Hopf–Galois structures has proven to be fruitful in
the study of wildly ramified extensions. For example, Byott [1] has exhibited
a class of wildly ramified Galois extensions L/K of p-adic fields for which
OL is not free over AK[G], its associated order in the classical structure with
Hopf algebra K[G], but is free over AH , its associated order in some Hopf
algebra H giving a nonclassical structure on the extension. So from the
point of view of describing OL, for these extensions the classical structure is
not the “correct” structure to use, and a nonclassical structure gives a more
satisfactory description of the ring of algebraic integers.
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On the other hand, little is known about the nonclassical Hopf–Galois
module structure of OL when L/K is a tamely ramified extension. For Galois
extensions, Noether’s theorem states that in the classical structure with
Hopf algebra K[G] we have AK[G] = OK [G] and that OL is free (for p-adic
fields) or locally free (for number fields) over OK [G], and for number fields
results such as the Hilbert–Speiser theorem describe the global structure of
OL over OK [G] in certain cases [8]. We might wonder whether analogous
results hold for any nonclassical structures admitted by the extension. The
purpose of this paper is to address the local question for certain classes of
extensions which are at most tamely ramified. In Sections 3 and 4 we prove
the following two theorems concerning p-adic fields:

Theorem 1.1. Let L/K be a finite unramified extension of p-adic fields and
let H be a Hopf algebra giving a Hopf–Galois structure on the extension.
Then OL is a free AH-module.

Theorem 1.2. Let L/K be a finite (not necessarily Galois) extension of
p-adic fields and let H be a commutative Hopf algebra giving a Hopf–Galois
structure on the extension. Suppose that p - [L : K]. Then OL is a free
AH-module.

In Section 5 we generalise these theorems slightly in order to study com-
pletions of extensions of number fields. We call a Galois extension L/K
of number fields domestic if no prime of OK lying above a prime number
dividing [L : K] ramifies in OL. By combining these generalized results we
obtain the following analogue of Noether’s theorem for nonclassical Hopf–
Galois structures on domestic extensions:

Theorem 1.3. Let L/K be a finite domestic extension of number fields and
let H be a commutative Hopf algebra giving a Hopf–Galois structure on the
extension. Then OL is a locally free AH-module.

In all of these cases we find that AH has an explicit description, analogous
at integral level to the description of H at field level afforded by the theorem
of Greither and Pareigis.

Acknowledgements. This work is based on the author’s Ph.D. thesis
‘Hopf–Galois Module Structure of Some Tamely Ramified Extensions’ (Uni-
versity of Exeter, 2009), written under the supervision of Dr. Nigel Byott.

2. Hopf–Galois structures

The notion of a Hopf–Galois structure is defined for certain extensions of
commutative rings. We shall be interested mainly in studying Hopf–Galois
structures on finite separable extensions of fields, but we give the definition
in this more general context. Let R be a commutative ring with unity, S an
R-algebra which is finitely generated and projective as an R-module, and H
an R-Hopf algebra which is finitely generated and projective as an R-module.
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We shall write ε : H → R for the counit of H and ∆ : H → H ⊗RH for the
comultiplication of H. We shall also make use of Sweedler notation

∆(h) =
∑
(h)

h(1) ⊗ h(2).

We say that S is an H-module algebra if S is an H-module and for all h ∈ H
and s, t ∈ S we have

h · (st) =
∑
(h)

(h(1) · s)(h(2) · t)

h · 1 = ε(h)1.

Definition 2.1. We say that S is an H-Galois extension of R (H-Galois
for short), or that H gives a Hopf–Galois structure on the extension, if S is
an H-module algebra and the R-linear map

j : S ⊗R H → EndR(S)

defined by

j(s⊗ h)(t) = s(h · t) for s, t ∈ S, h ∈ H

is an R-module isomorphism.

A given finite separable extension of fields L/K may admit a number
of Hopf–Galois structures. If the extension is Galois with group G then
it admits at least the classical structure with Hopf algebra K[G]. A theo-
rem of Greither and Pareigis allows for the enumeration of all Hopf–Galois
structures admitted by L/K. Let E/K be the normal closure of L/K. Let
G = Gal (E/K), G′ = Gal (E/L) and let X = {gG′ | g ∈ G} be the left
coset space of G′ in G. We shall write x for the coset xG′, and PermX
for the group of permutations of the finite set X. Define an embedding
λ : G→ PermX by left translation:

λ(g)(x) = gx for g ∈ G and x ∈ X.

Finally, we call a subgroup N of PermX regular if |N | = |X| and N acts
transitively on X. We can now state the theorem of Greither and Pareigis:

Theorem 2.2 (Greither and Pareigis). There is a bijection between regular
subgroups N of PermX normalised by λ(G) and Hopf–Galois structures on
L/K. If N is such a subgroup, then G acts on the group algebra E[N ] by
acting simultaneously on the coefficients as the Galois automorphisms and
on the group elements by conjugation via the embedding λ. The Hopf algebra
giving the Hopf–Galois structure corresponding to the subgroup N is

H = E[N ]G = {z ∈ E[N ] | gz = z for all g ∈ G} .
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Such a Hopf algebra acts on the extension L/K as follows: if
∑
n∈N

cnn ∈ H

(with cn ∈ E a priori), then

(1)

(∑
n∈N

cnn

)
· x =

∑
n∈N

cn(n−1(1G))x.

Proof. See [4, Theorem 6.8]. �

The Hopf algebras produced by Theorem 2.2 inherit the Hopf algebra
structure maps from the group algebra E[N ], and are therefore cocommu-
tative. Such a Hopf algebra is commutative precisely when the group N
is abelian. Since all the fields we shall study have characteristic zero, all
the Hopf algebras we shall study are separable K-algebras (see [10, (11.4)]).
The normal basis theorem generalises to H-Galois extensions of fields: if
L/K is such an extension then L is a free H-module of rank one (see [4,
(2.16)]). For extensions of local or global fields, it is natural to investigate
analogous results at integral level. To study the structure of OL relative
to the Hopf–Galois structure with corresponding Hopf algebra H we define
within H the associated order of OL:

AH = {h ∈ H | h · x ∈ OL for all x ∈ OL}.
As noted in the introduction, AH is the largest order in H for which OL is a
module. We are particularly interested in establishing whether OL is a free
(or locally free) AH -module. In the p-adic case we have already mentioned
Childs’ theorem. We call an order Λ in a K-Hopf algebra H a Hopf order if
Λ is an OK-Hopf algebra with operations induced from H.

Theorem 2.3 (Childs). Let L/K be a finite H-Galois extension of p-adic
fields. If the associated order AH is a Hopf order in H, then OL is a free
AH-module.

Proof. See [4, Theorem 12.7]. �

We also state the following, which comes from integral representation
theory. We recall that since we are concerned with fields of characteristic
zero, a Hopf algebra H produced by Theorem 2.2 is separable. It follows
(see [5, Proposition 26.10]) that if H is commutative then it has a unique
maximal order.

Proposition 2.4. Let L/K be an H-Galois extension of p-adic fields for a
commutative Hopf algebra H. If AH is the unique maximal order in H then
OL is a free AH-module.

Proof. Since AH is the unique maximal order in H, [5, Theorem 26.12]
implies that OL is AH -projective. Since K is a p-adic field and L is a free
H-module, we may apply [9, Theorem 18.10], and conclude that OL is a free
AH -module. �
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We end this section by considering a special order inside a Hopf algebra
produced by the theorem of Greither and Pareigis (Theorem 2.2). Sup-
pose that L/K is an extension of p-adic fields or number fields with Galois
closure E, and that L/K is H-Galois for some Hopf algebra H. Then by
Theorem 2.2, we have that H = E[N ]G for N some regular subgroup of
PermX normalised by λ(G). Within this algebra, we shall study the order
OE [N ]G.

Proposition 2.5. We have OE [N ]G ⊆ AH .

Proof. Let z ∈ OE [N ]G. Then z ∈ OE [N ], so we may write

z =
∑
n∈N

cnn

with cn ∈ OE . Since z ∈ H, the action of z on an element x ∈ L is given by
equation (1). Now for each n ∈ N , any group element representing n−1(1G)
is a Galois automorphism of E, so if x ∈ OL then n−1(1G)x ∈ OE . Therefore
for x ∈ OL we have

z · x =
∑
n∈N

cnn
−1(1G)x ∈ OE .

Since also z · x ∈ L, we have that z · x ∈ OE ∩L = OL, whence z ∈ AH . �

The proofs in this paper involve showing that under appropriate condi-
tions we have locally the reverse inclusion.

3. Unramified extensions

Throughout this section, we let L/K be a finite unramified extension of
p-adic fields. Then L/K is automatically Galois, with cyclic Galois group,
say G. By the theorem of Greither and Pareigis (Theorem 2.2), a Hopf
algebra H giving a Hopf–Galois structure on L/K is of the form L[N ]G for
N some regular subgroup of PermG normalised by λ(G). We shall show that
AH = OL[N ]G, and that this is a Hopf order in H, which by Theorem 2.3
implies that OL is a free AH -module. We begin with a technical result:

Proposition 3.1. We have

OL[N ]G ⊗OK
OL = OL[N ].

Proof. Since L/K is unramified, the extension OL/OK of commutative
rings is a Galois extension with group G in the sense of [3], and so we
may apply Galois descent. By Morita theory (see [5, Section 3D]) there is
an equivalence of categories between the category of left OK-modules and
the category of left EndOK

(OL)-modules given by the base change functor
X → OL ⊗OK

X. Since OL/OK is a Galois extension with group G, the
inverse to this functor is the fixed module functor M →MG (see [4, Section
2.12]). Applying this to the EndOK

(OL)-module OL[N ] yields the result. �
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We now use this result to show that if L/K is an unramified extension of p-
adic fields and H = L[N ]G is a Hopf algebra giving a Hopf–Galois structure
on the extension then we have the reverse inclusion to Proposition 2.5.

Proposition 3.2. We have AH = OL[N ]G.

Proof. By Proposition 2.5, OL[N ]G ⊆ AH . On the other hand, since L/K

is unramified, we have that OL ⊗OK
OL
∼= O

[L:K]
L , and this is the ring of

integers of L⊗K L ∼= L[L:K]. The group N acts on L[L:K] by permuting the
components, and so the L-algebra H ⊗K L ∼= L[N ] acts on L ⊗K L. The
associated order of OL ⊗OK

OL in L[N ] is OL[N ]. Since AH ⊗OK
OL also

acts on OL ⊗OK
OL, we conclude that

AH ⊗OK
OL ⊆ OL[N ].

So by Proposition 3.1 we have

AH ⊗OK
OL ⊆ OL[N ]G ⊗OK

OL,

and therefore

AH ⊆ OL[N ]G.

Hence AH = OL[N ]G. �

We now use this explicit description of AH to show that AH is in fact a
Hopf order. Again we employ Galois descent:

Proposition 3.3. The associated order AH is a Hopf order in H.

Proof. By Proposition 3.2, AH = OL[N ]G. Note that the action of G on the
OL-Hopf algebra OL[N ] is via Hopf algebra homomorphisms; this follows
from the proof of the theorem of Greither and Pareigis (see [4, Theorem
6.8]). Since OL/OK is a Galois extension of commutative rings with group
G the OL-module homomorphisms giving the Hopf algebra structure on
OL[N ] induce structure maps on OL[N ]G with the same properties (see [4,
Section 2.12]). This implies that OL[N ]G is an OK-Hopf algebra. �

In fact, in this case OL[N ]G is the minimal Hopf order in H = L[N ]G,
since OL[N ] is the minimal Hopf order in L[N ]. We now restate and prove
Theorem 1.1:

Theorem 3.4. Let L/K be a finite unramified extension of p-adic fields
and let H = L[N ]G be a Hopf algebra giving a Hopf–Galois structure on the
extension. Then AH = OL[N ]G and OL is a free AH-module.

Proof. By Proposition 3.2 we have AH = OL[N ]G, and by Proposition 3.3
this is a Hopf order in H. Now apply Theorem 2.3. �
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4. Maximal associated orders

Throughout this section we let L/K be a finite (not necessarily Galois)
extension of p-adic fields with Galois closure E, and suppose that p - [L : K].
We shall consider Hopf–Galois structures admitted by L/K for which the
corresponding Hopf algebra H is commutative. We recall that since K
has characteristic zero, H is a separable K-algebra, and so this implies
that H has a unique maximal order. In the notation established prior to
Theorem 2.2, we have that H = E[N ]G for some abelian regular subgroup
N of PermX normalised by λ(G). In particular we note that |N | = [L : K].
We show that in this case AH coincides with the unique maximal order in H.
When this occurs, it follows by Proposition 2.4 that OL is a free AH -module.

Proposition 4.1. The integral group ring OE [N ] is the unique maximal
order in E[N ].

Proof. This follows easily from [5, Proposition 27.1]. In fact OE [N ] is the
only order in E[N ]. �

We now show that taking the fixed points of E[N ] under the action by G
preserves this maximality, so that OE [N ]G is the unique maximal order in
H = E[N ]G.

Proposition 4.2. Let G act on the group algebra E[N ] by acting on E as
Galois automorphisms and on N by conjugation via the embedding λ. Then
OE [N ]G is the unique maximal order in the K-algebra E[N ]G.

Proof. Since E has characteristic zero andN is abelian, E[N ]G has a unique
maximal order. Since p - |N |, the maximal OE order in E[N ] is OE [N ]
by Proposition 4.1. Denote by M the maximal order in E[N ]G, and let
x ∈ M. Then x is integral over OK in E[N ]G, so x is integral over OE

in E[N ], whence x ∈ OE [N ]. So x ∈ E[N ]G ∩ OE [N ] = OE [N ]G, and so
OE [N ]G = M. �

Proposition 4.3. The associated order AH is the unique maximal order in
H.

Proof. By Proposition 4.2, OE [N ]G is the unique maximal order in H. On
the other hand, by Proposition 2.5 OE [N ]G ⊆ AH . So OE [N ]G = AH is the
unique maximal order in H. �

We now restate and prove Theorem 1.2

Theorem 4.4. Let L/K be a finite (not necessarily Galois) extension of
p-adic fields and let H be a commutative Hopf algebra giving a Hopf–Galois
structure on the extension. Suppose that p - [L : K]. Then AH = OL[N ]G

and OL is a free AH-module.

Proof. By Proposition 4.3 we have that AH = OE [N ]G and that this is the
unique maximal order in H. Now apply Proposition 2.4. �
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5. Consequences for number fields

In this section we consider a finite extension of number fields L/K. We
shall prove results analogous to those in Sections 3 and 4 which will give us
information about the local structure of OL as a module over its associated
order AH in a Hopf algebra H giving a nonclassical Hopf–Galois structure
on the extension.

If p is a prime of OK and A is a K-algebra then we shall write Ap for the
Kp-algebra A ⊗K Kp, and similarly for orders in A. We then have that Lp

is an Hp-Galois extension of Kp, and we seek to study the completed ring of
integers OL,p over the completed associated order AH,p. In general Lp is not
a local field but a finite product of local fields - we have the isomorphism

Lp
∼=
∏
P|p

LP,

where the product is taken over the prime ideals P of OL which lie above
p and each LP is a p-adic field. We have an analogous decomposition at
integral level. (see [7, (2.16)].)

Since the results quoted in Theorem 2.3 and Proposition 2.4 are applicable
only to extensions of local fields, we require generalisations of these results
in order to proceed. The appropriate generalisation of Proposition 2.4 is
straightforward:

Proposition 5.1. Let L/K be an extension of number fields which is H-
Galois for a commutative Hopf algebra H, and let p be a prime of OK . If
AH,p is the unique maximal order in Hp then OL,p is a free AH,p-module.

Proof. This is essentially the same as the proof of Proposition 2.4. �

To state the appropriate generalisation of Childs’ theorem (Theorem 2.3)
we need a generalisation of the notion of tameness, due to Childs ([4, (13.1)]).
Let H be a Hopf algebra (over an arbitrary commutative ring R) and S an
R-algebra which is finitely generated and projective as an R-module, and
which is an H-module algebra. We call an element θ ∈ H a left integral if
for all h ∈ H we have hθ = ε(h)θ, where ε : H → R is the counit map.
We say that S is an H-tame extension of R if the following conditions are
satisfied:

(1) {s ∈ S | hs = ε(h)s for all h ∈ H} = R.
(2) rankR(S) = rankR(H).
(3) S is a faithful H-module.
(4) There exists a left integral θ of H satisfying θS = R.

Then we have:

Proposition 5.2. If AH,p is a Hopf order in Hp and OL,p is an AH,p-tame
extension of OK,p then OL,p is a free AH,p-module.

Proof. See [4, Theorem 13.4]. �
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We can now prove analogues of the results in Sections 3 and 4 for comple-
tions of extensions of number fields. We begin with completions at an un-
ramified prime p. Motivated by Proposition 3.2 we consider the OK,p-order

OL,p[N ]G in the completed Hopf algebra Hp. Note that in this proposition
we do not require that H be commutative.

Proposition 5.3. Let L/K be a finite Galois extension of number fields with
group G, and suppose L/K is H-Galois for the Hopf algebra H = L[N ]G.
Let p be a prime of OK which is unramified in OL. Then the order OL,p[N ]G

is a Hopf order in Hp.

Proof. Since p is unramified in OL, the completed ring of integers OL,p is a
Galois extension of OK,p. The proof now follows that of Proposition 3.3. �

Theorem 5.4. Let L/K be a finite Galois extension of number fields with
group G, and suppose L/K is H-Galois for the Hopf algebra H = L[N ]G.
Let p be a prime of OK which is unramified in OL. Then AH,p = OL,p[N ]G

and OL,p is a free AH,p-module.

Proof. By Proposition 5.3, OL,p[N ]G is a Hopf order in Hp. We note that
the trace element

θ =
∑
n∈N

n

is a left integral of OL,p[N ]G, and since p is unramified in OL there exists

an element t ∈ OL,p such that θ · t = 1. Thus OL,p is an OL,p[N ]G-tame

extension of OK,p, and so OL,p is a free OL,p[N ]G-module. Thus AH,p =

OL,p[N ]G. �

Corollary 5.5. Under the same assumptions as Theorem 5.4, OL,p is free
over AH,p for all primes p of OK which are unramified in OL. Thus in
order to determine whether OL is a locally free AH-module, it is sufficient
to consider the structure of OL,p over AH,p for each of the (finitely many)
primes p which are ramified in OL.

Now we consider the situation analogous to that considered in Section 4.

Proposition 5.6. Let L/K be a finite (not necessarily Galois) extension
of number fields with Galois closure E. Suppose L/K is H-Galois for some
commutative Hopf algebra H = E[N ]G. Let p be a prime of OK which lies
above a prime number p - [L : K]. Then OE,p[N ]G is the unique maximal
order in Hp.

Proof. Let M denote the unique maximal order in H, so that Mp is the
unique maximal order in Hp, and let x ∈ Mp. Then x ∈ Ep[N ]G, so x ∈
Ep[N ]. We have an isomorphism

Ep[N ] ∼=
∏
P|p

EP[N ],
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where the product is taken over the prime ideals P of OL lying abve p, and
each factor on the right is a group algebra over a p-adic field whose residue
characteristic is coprime to |N |. Applying Proposition 4.1 to each factor on
the right, we see that the image of x under the isomorphism above lies in
the product ∏

P|p

OE,P[N ] ∼= OE,p[N ],

and so x ∈ OE,p[N ] ∩ Ep[N ]G = OE,p[N ]G. Therefore Mp = OE,p[N ]G. �

Proposition 5.7. Retain the assumptions of Proposition 5.6. Then the
completed associated order AH,p is the unique maximal order in Hp.

Proof. By Proposition 5.6, OE,p[N ]G is the unique maximal order in Hp.

On the other hand, by Proposition 2.5 OE,p[N ]G ⊆ AH,p. So OE,p[N ]G =
AH,p and this is the maximal order in Hp. �

Theorem 5.8. Let L/K be a finite (not necessarily Galois) extension of
number fields with Galois closure E, and let G = Gal (E/K). Suppose that
L/K is H-Galois for some commutative Hopf algebra H = E[N ]G. Suppose
that p is a prime of OK lying above a prime number p - [L : K]. Then
AH,p = OE,p[N ]G and OL,p is a free AH,p-module.

Proof. By Proposition 5.6 and Proposition 5.7 we have that

AH,p = OL,p[N ]G

and that this is the unique maximal order in Hp. Now apply Proposition 5.1.
�

We obtain Theorem 1.3 by combining these results. Recall that a Galois
extension L/K of number fields is called domestic if no prime of OK lying
above a prime number dividing [L : K] ramifies in OL.

Theorem 5.9. Let L/K be a finite domestic extension of number fields.
Suppose that L/K is H-Galois for some commutative Hopf algebra H. Then
AH = OL[N ]G and OL is a locally free AH-module.

Proof. By Theorem 5.4, we have that if p is a prime of OK which is unrami-
fied in OL then AH,p = OL,p[N ]G and OL,p is a free AH,p-module. Suppose p
is a prime of OK which is ramified in OL. Then p lies above a prime number
p, and since L/K is domestic, we have p - [L : K]. We may therefore apply
Theorem 5.8, and conclude that AH,p = OL,p[N ]G and that OL,p is a free
AH,p-module. �

As a particular example, we have:

Corollary 5.10. Let L/K be a finite Galois extension of number fields of
prime power degree which is at most tamely ramified. Suppose that L/K is
H-Galois for some commutative Hopf algebra H. Then OL is a locally free
AH-module.
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Proof. By Corollary 5.9, it is sufficient to observe that since L/K has prime
power degree, the assumption that it is tamely ramified is equivalent to the
assumption that it is domestic. �
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[7] Fröhlich, A. ; Taylor, M. J. Algebraic number theory. Cambridge Studies in
Advanced Mathematics, 27. Cambridge University Press, Cambridge, 1993. xiv+355
pp. ISBN: 0-521-43834-9. MR1215934 (94d:11078), Zbl 0744.11001.

[8] Hilbert, D. Die theorie der algebraischen zahlen. Gesammelte Abhandlungen, 1
(1965), 63–363.

[9] Reiner, Irving. Maximal orders. London Mathematical Society Monographs, No. 5.
Academic Press, London-New York, 1975. xii+395 pp. MR0393100 (52 #13910), Zbl
0305.16001.

[10] Waterhouse, William C. Introduction to affine group schemes. Graduate Texts in
Mathematics, 66. Springer-Verlag, New York-Berlin, 1979. xi+164 pp. ISBN: 0-387-
90421-2. MR0547117 (82e:14003), Zbl 0442.14017.

School of Computing and Mathematics, Keele University, UK
P.J.Truman@Keele.ac.uk

This paper is available via http://nyjm.albany.edu/j/2011/17-34.html.

http://www.ams.org/mathscinet-getitem?mr=1469668
http://www.emis.de/cgi-bin/MATH-item?0889.11040
http://www.ams.org/mathscinet-getitem?mr=0906809
http://www.emis.de/cgi-bin/MATH-item?0632.12013
http://www.ams.org/mathscinet-getitem?mr=0195922
http://www.emis.de/cgi-bin/MATH-item?0143.05902
http://www.ams.org/mathscinet-getitem?mr=1767499
http://www.emis.de/cgi-bin/MATH-item?0944.11038
http://www.ams.org/mathscinet-getitem?mr=0632548
http://www.emis.de/cgi-bin/MATH-item?0469.20001
http://www.ams.org/mathscinet-getitem?mr=0717033
http://www.emis.de/cgi-bin/MATH-item?0501.12012
http://www.ams.org/mathscinet-getitem?mr=1215934
http://www.emis.de/cgi-bin/MATH-item?0744.11001
http://www.ams.org/mathscinet-getitem?mr=0393100
http://www.emis.de/cgi-bin/MATH-item?0305.16001
http://www.emis.de/cgi-bin/MATH-item?0305.16001
http://www.ams.org/mathscinet-getitem?mr=0547117
http://www.emis.de/cgi-bin/MATH-item?0442.14017
http://nyjm.albany.edu/j/2011/17-34.html

	1. Introduction
	2. Hopf–Galois structures
	3. Unramified extensions
	4. Maximal associated orders
	5. Consequences for number fields
	References

