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Lattice points close to families of surfaces,
nonisotropic dilations and regularity of

generalized Radon transforms

Alex Iosevich and Krystal Taylor

Abstract. We prove that if φ : Rd × Rd → R, d ≥ 2, is a homo-
geneous function, smooth away from the origin and having nonzero
Monge–Ampere determinant away from the origin, then

R−d#{(n,m) ∈ Zd × Zd : |n|, |m| ≤ CR;R ≤ φ(n,m) ≤ R+ δ}

. max{Rd−2+ 2
d+1 , Rd−1δ}.

This is a variable coefficient version of a result proved by Lettington,
2010, extending a previous result by Andrews, 1963, showing that if
B ⊂ Rd, d ≥ 2, is a symmetric convex body with a sufficiently smooth
boundary and nonvanishing Gaussian curvature, then

(∗) #{k ∈ Zd : dist(k,R∂B) ≤ δ} . max{Rd−2+ 2
d+1 , Rd−1δ}.

Furthermore, we shall see that the same argument yields a non-
isotropic analog of (∗), one for which the exponent on the right hand
side is, in general, sharp, even in the infinitely smooth case. This sheds
some light on the nature of the exponents and their connection with the
conjecture due to Wolfgang Schmidt on the distribution of lattice points
on dilates of smooth convex surfaces in Rd.
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1. Introduction

The problem of counting integer lattice points inside, on, and near con-
vex surfaces is a classical and time-honored problem in number theory and
related areas. See [5] and the references contained therein for a thorough de-
scription of this beautiful area. In this paper we shall focus on the problem
of counting integer lattice points in the neighborhood of variable coefficient
families of surfaces. It follows from a result of G. Andrews ([1]) that if
B ⊂ Rd, d ≥ 2, is a symmetric convex body with a strictly convex bound-
ary, then

(1.1) #{R∂B ∩ Zd} . Rd−2+
2
d+1 ,

where here and throughout, X . Y means that there exists a constant
C > 0 such that X ≤ CY . The implicit constant depends on B and the
dimension.

It is not known to what extent (1.1) is sharp, at least in higher dimensions.
In dimension two, one can show that there exists an infinite sequence of Rs
going to infinity, such that

(1.2) #{R∂B ∩ Z2} ≥ CεR
2
3
−ε

for any ε > 0. See, for example, [14] and [9]. It is important to note,
however, that the boundary of B in (1.2) is only C1,1 and not any smoother.

In dimensions three and higher, a deep and far-reaching conjecture due
to Wolfgang Schmidt ([17]) says that if the boundary of B is smooth and
has nonvanishing Gaussian curvature, then for any ε > 0,

(1.3) #{R∂B ∩ Zd} ≤ CεRd−2+ε.
See [7] for the discussion of related issues. In dimension two, even smooth-

ness does not lead to an analog of (1.3), even conjecturally, due to an example
due to Konyagin ([10]), who showed that there exists a smooth symmetric
convex curve Γ, with everywhere nonvanishing curvature, and a sequence of
dilates Rj →∞ such that

#{RjΓ ∩ Z2} &
√
Rj .

M. C. Lettington ([11]) recently extended Andrews’ result ((1.1) above)
by showing that

(1.4) #{k ∈ Zd : R ≤ ||k||B ≤ R+ δ} ≤ C max{Rd−2+
2
d+1 , Rd−1δ},

where C is a universal constant, and

||x||B = inf{t > 0 : x ∈ tB}.
It is worth noting that in Lettington’s result, δ is independent of the di-
rection. We state his result in this form because it fits into our context
a bit better. Lettington also needs ∂B to have a tangent hyper-plane at
every point and that any two-dimensional cross section through the normal
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consists of a plane curve with continuous radius of curvature bounded away
from zero and infinity.

If the boundary of B is smoother, Lettington’s bound can be improved in
the following way. Let

NB(R) = #{RB ∩ Zd}.
Define the discrepancy function, DB(R) by the equation

NB(R) = |B|Rd +DB(R).

Suppose we have a bound

(1.5) |DB(R)| / Rd−2+αd

for some αd > 0.1 It follows that

|NB(R+ δ)−NB(R)|(1.6)

=
∣∣|B|(R+ δ)d +DB(R+ δ)− |B|Rd −DB(R)

∣∣
≤
∣∣|B|(R+ δ)d − |B|Rd

∣∣+ |DB(R+ δ)|+ |DB(R)|

/ Rd−1δ +Rd−2+αd ,

which is an improvement over (1.4) if αd <
2
d+1 .

Indeed, Wolfgang Müller ([13]) proves that (1.5) holds with

αd =
d+ 4

d2 + d+ 2
if d ≥ 5; α4 =

6

17
and α3 =

20

43
.

It is not difficult to check that in each case, αd <
2
d+1 .

The purpose of this paper is two-fold. We extend Lettington’s estimate
to a variable coefficient setting where generalized Radon transforms play the
dominant role. In the process, we give a reasonably short Fourier analytic
proof of (1.4) under more stringent smoothness assumptions on ∂B than the
ones used by Lettington, but less stringent than those needed by Müller.
We shall also see that the same argument yields a certain multi-parameter
analog of (1.4), one for which the exponent d − 2 + 2

d+1 in (1.4) cannot
be improved, even in the infinitely smooth case. We shall also obtain a
nonisotropic variant of (1.5) where, once again, the exponent d − 2 + 2

d+1
cannot be improved, even in the infinitely smooth case. This sheds some
light on the nature of the exponents and further illustrates the depth of
Schmidt’s conjecture (1.3). Our main results, initially stated in an isotropic
setting, are the following.

Theorem 1.1. Let φ : Rd × Rd → R be a homogeneous function of degree

one, Cb
d
2
c+1 away from the origin. Suppose that

(1.7) ∇xφ(x, y) 6= ~0 and ∇yφ(x, y) 6= ~0

1Here and throughout, X / Y , with the controlling parameter R, if for every ε > 0
there exists Cε > 0 such that |X| ≤ CεRεY .



814 ALEX IOSEVICH AND KRYSTAL TAYLOR

in a neighborhood of the sets

{x ∈ B : φ(x, y) = t}, {y ∈ B : φ(x, y) = t},
where, B denotes the unit ball. Suppose further that the Monge–Ampere
determinant of φ, (introduced by Phong and Stein in [15] in the Euclidean
setting), given by

(1.8) det

(
0 ∇xφ

−(∇yφ)T ∂2φ
dxj−1dyi−1

)
,

does not vanish on the set {(x, y) ∈ B ×B : φ(x, y) = t} for any t > 0.
Then

(1.9) q−d#{(n,m) ∈ Zd × Zd : |n|, |m| ≤ Cq; q ≤ φ(n,m) ≤ q + δ}

. max{qd−2+
2
d+1 , qd−1δ},

for C a positive constant dependent on φ.

Corollary 1.2. Let B be a bounded symmetric convex body. Suppose that

∂B is Cb
d
2
c+1 and has everywhere nonvanishing Gaussian curvature. Then

(1.4) holds.

Corollary 1.2 follows from Theorem 1.1 by first observing that if ∂B is

Cb
d
2
c+1 and has everywhere nonvanishing Gaussian curvature, then φ(x, y) =

||x− y||B satisfies the Monge–Ampere assumption in (1.8) above, as can be
demonstrated by a direct calculation. This gives us (1.9). We then observe
that if φ(x, y) = ||x− y||B and R = q, the left hand side in (1.9) equals the
left hand side of (1.4). This completes the proof of the corollary, assuming
Theorem 1.1.

1.1. Nonisotropic formulation and sharpness of exponents. We are
going to prove the following, more general, version of Theorem 1.1.

Theorem 1.3. Let φ : Rd × Rd → R be a Cb
d
2
c+1 function away from the

origin satisfying the quasi-homogeneity condition

φ(qα1x1, · · · , qαdxd, qα1y1, ..., q
αdyd) = qβφ(x, y),

where
∑d

j=1 αj = d, αj ≤ 2d
d+1 , and αj , β > 0. Suppose further that the

Monge–Ampere determinant of φ, given in (1.8), does not vanish for all
t 6= 0, and that the nondegeneracy assumption (1.7) holds. Then

(1.10) q−d#{(n,m) ∈ Zd × Zd : ∀j, |nj |, |mj | ≤ Cqαj ; |φ(n,m)− qβ| ≤ δ}

. max{qd−2+
2
d+1 , qd−βδ},

for a positive constant C dependent on φ.

Theorem 1.1 follows from Theorem 1.3 by taking β = αj ≡ 1.
Once again, in the case when φ(n,m) = φ0(n−m), we get a nonisotropic

analog of Corollary 1.2.
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1.1.1. Sharpness of exponents. To see that Theorem 1.3 is, in general,
sharp, let

φ(x, y) = (xd − yd)− (x1 − y1)2 − · · · − (xd−1 − yd−1)2,(1.11)

α1 = · · · = αd−1 =
d

d+ 1
, αd = β =

2d

d+ 1
.

It is not hard to see that with this φ,

q−d#{(n,m) ∈ Zd × Zd : ∀j, |nj |, |mj | ≤ Cqαj ;φ(n,m) = q
2d
d+1 }

≈ qd−2+
2
d+1 ,

and thus Theorem 1.3 is sharp. We note that in a discrete two-dimensional
setting, this type of a construction was used by Pavel Valtr ([20]) to give
an example of a family of points and translates of a fixed convex curve
with everywhere nonvanishing curvature for which the exponent given by
the Szemeredi–Trotter incidence theorem cannot be improved. See also [8]
where Valtr example is explored in a continuous setting of the Falconer
distance conjecture.

Going back to Wolfgang Schmidt’s conjecture (1.3), we see that our ex-
ample above clearly shows that isotropic dilations are absolutely necessary
for the conjecture to hold. Using nonisotropic dilations, the conjectured
exponent d− 2 may be as bad as d− 2 + 2

d+1 . These observations suggests
that there is a delicate interplay between the smoothness of the boundary
and the structure of dilations which should prove to be a fruitful field of
investigation in the sequel.

Acknowledgements. The authors are grateful to M. Huxley, M. Letting-
ton and D. H. Phong for several very helpful remarks on this paper.

2. Proof of the main result (Theorem 1.3)

The argument below is motivated, to a significant degree, by Falconer’s
argument in [3]. See also [4] and [12]. See [6] and [2] where Sobolev bounds
for generalized Radon transforms are used to obtain geometric and geometric
combinatorial conclusions.

Set

µq(x) = q−dq
d2

s

∑
a∈Zd

d∏
j=1

ψ0

(
aj
qαj

)
ψ0

(
q
d
s

(
xj −

aj
qαj

))
,

where ψ0 is a smooth symmetric function which is identically equal to 1 on
the unit ball and equal to 0 outside of the interval (−C,C) for a positive
constant C > 2.

Let Eq denote the support of µq. Notice that µq(B(x, q−
d
s )) ∼ q−d for

x ∈ Eq.
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We show that

(2.1) µq × µq({(x, y) : |φ(x, y)− 1| ≤ q−
d
s }) . q−

d
s

for d+1
2 ≤ s < d.

It is an immediate consequence of this estimate that

q−d#{(n,m) ∈ Zd × Zd : ∀j, |nj |, |mj | ≤ Cqαj ; |φ(n,m)− qβ| ≤ δ}

. max{qd−2+
2
d+1 , qd−βδ}.

Indeed, letting N(A, γ) denotes the number of balls of radius γ needed to
cover a set A and letting ταq x = (qα1x1, . . . , q

αdxd), we get

µq × µq({(x, y) : |φ(x, y)− 1| ≤ q−
d
s }

∼ q−2dN({(x, y) ∈ Eq × Eq : |φ(x, y)− 1| ≤ q−
d
s }, q−

d
s )

∼ q−2dN({(u, v) ∈ ταq (Eq)× ταq (Eq) : |φ(u, v)− qβ| ≤ qβ−
d
s }, qβ−

d
s )

∼q−2d#({(n,m) ∈ Zd × Zd : ∀j, |nj |, |mj | ≤ Cqαj , |φ(n,m)− qβ| ≤ qβ−
d
s }).

If δ ≤ qβ−
2d
d+1 then result follows immediatley by setting s = d+1

2 . Other-

wise, choose d+1
2 ≤ s < d so that δ = qβ−

d
s .

To show (2.1), we begin by rewriting the left hand side of the inequality
as

µq × µq({(x, y) : |φ(x, y)− 1| ≤ q−
d
s })

=

∫∫
{|φ(x,y)−1|≤q−

d
s }
ψ(x, y)dµq(y)dµq(x)

where ψ is a smooth function with compact support which is centered at
the origin.

Define

(2.2) Tqf(x) = q
d
s

∫
{|φ(x,y)−1|≤q−

d
s }
f(y)ψ(x, y)dy.

Then the left hand side of (2.1) can be written as 〈Tqµq, µq〉, and it remains

to show that, for d+1
2 ≤ s < d,

〈Tqµq, µq〉 . 1.

By the Cauchy–Schwarz inequality,

(2.3) 〈Tqµq, µq〉 ≤
∥∥(T̂qµq(·)× | · |

d−s
2 )
∥∥
2
×
∥∥(µ̂q(·)| · |

s−d
2 )
∥∥
2

= I × II.

The remainder of the paper is dedicated to showing that terms I and
II are bounded. As we point out above, this implies (2.1) which, in turn,
implies Theorem 1.3.
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2.1. Estimation of the first term in (2.3).

Lemma 2.1. Denote the s-dimensional energy of µq by Is(µq) (see, for
instance, [21]). Then

Is(µq) = ‖(µ̂q(·)| · |
s−d
2 )‖22 . 1.

To prove the lemma, observe that

(2.4)

∫
|µ̂q(ξ)|2|ξ|s−ddξ =

∫∫
|x− y|−sdµq(x)dµq(y).

We expand the right hand side of (2.4) using the definition of µq. In doing

so, we introduce the summation over a ∈ Zd and a′ ∈ Zd.

The isotropic case. To motivate the argument for the general (noniso-
tropic) case which follows, we first look at the proof of this lemma in the
isotropic case, the regime where αj = 1 for all 1 ≤ j ≤ d. In this case, (2.4)
becomes

q−2dq
2d2

s

∑
a,a′∈Zd

ψ0

(
a

q

)
ψ0

(
a′

q

)

·
∫∫

ψ0

(
q
d
s

(
x− a

q

))
ψ0

(
q
d
s

(
y − a′

q

))
|x− y|−sdxdy.

When a = a′, the above quantity is certainly bounded. Indeed, if a = a′

then both x and y lie the same ball of radius ∼ q−
d
s , and integrating with

spherical coordinates gives the desired result.
In the case that a 6= a′, we reduce our problem of bounding (2.4) to

bounding

(2.5) qsq−2d
∑

a,a′∈Zd
ψ0

(
a

q

)
ψ0

(
a′

q

)
|a− a′|−s.

To accomplish this, we break the sum into dyadic shells. For a fixed
a′ ∈ Zd with |a′| ≤ Cq, set

Am = {a ∈ Zd : 2m ≤ |a− a′| < 2m+1}

where 0 ≤ m ≤ log dCqe. We use the fact that #(Am) ∼ 2md.
Now∑
a∈Zd

ψ0

(
a

q

)
|a− a′|−s ∼

∑
m

∑
a∈Am

|a− a′|−s .
∑
m

2m(d−s) ∼ q(d−s).

Plugging this calculation into (2.5) and summing in a′ ∈ Zd with |a′| ≤ Cq,
we see that (2.4) . 1.
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The general (nonisotropic) case in two dimensions. For greater clar-
ity, before we proceed to the nonisotropic case for general d, we look at the
specific case when d = 2. We again break the sum over a, a′ ∈ Z2 into the
sum over the diagonal and the sum away from the diagonal. When a = a′,
we use the same technique as above.

In the case that a 6= a′, set

I(a, a′) =

∫∫ 2∏
j=1

ψ0

(
q

2
s

(
xj −

aj
qαj

))
ψ0

(
q

2
s

(
yj −

a′j
qαj

))
|x− y|−sdxdy.

Then (2.4) becomes

(2.6) q−4q
8
s

∑ 2∏
j=1

ψ0

(
aj
qαj

)
ψ0

(
a′j
qαj

)
I(a, a′)

where the sum is taken over a 6= a′, both in Z2.
We seek and upper bound for |x− y|−s. Since a 6= a′, then either a1 = a′1

and a2 6= a′2 (case 1), a1 6= a′1 and a2 = a′2 (case 2), or a1 6= a′1 and a2 6= a′2
(case 3). The first two cases are handled similarly and we omit the proof of
case 2.

Case 1:

|x− y| ∼ |x1 − y1|+ |x2 − y2| ≥ q−α2 |a2 − a′2|.
Now

I(a, a′) . q−
8
s qsα2 |a2 − a′2|−s.

Thus, (2.6) is bounded above by

(2.7) q−4qsα2
∑ 2∏

j=1

ψ0

(
aj
qαj

)
ψ0

(
a′j
qαj

)
|a2 − a′2|−s

where the sum is taken over a2 6= a′2, both in Z, and over a1 = a′1 in Z.
Fix a′2 ∈ Z with |a′2| ≤ Cqα2 and set

Am = {a2 ∈ Z : 2m ≤ |a2 − a′2| < 2m+1}

where 0 ≤ m ≤ log dCqα2e. We use the fact that #(Am) ∼ 2m. We have∑
a2∈Z

ψ0

(
a2
qα2

)
|a2 − a′2|−s ∼

∑
m

∑
a2∈Am

|a2 − a′2|−s .
∑
m

2m(1−s) ∼ 1.

Now,

(2.7) ≤ q−4qsα2qα1qα2

which is bounded by 1 as α2 ≤ 2
s and α1 + α2 = 2.

Case 3:

|x− y|−s ≥ q
s(α1+α2)

2 |a1 − a2|−
s
2 |a′1 − a′2|−

s
2 .



LATTICE POINTS CLOSE TO FAMILIES OF SURFACES 819

As a consequence, (2.6) is bounded above by

(2.8) q−4q
s(α1+α2)

2

∑ 2∏
j=1

ψ0

(
aj
qαj

)
ψ0

(
a′j
qαj

)
|a1 − a′1|−

s
2 |a2 − a′2|−

s
2 .

The sum here is taken over a2 6= a′2 and a1 6= a′1 all in Z. For a fixed a2 ∈ Z
with |a′2| ≤ Cqα2 , let Am be as in case 1.

Now∑
a2∈Z

ψ0

(
a2
qα2

)
|a2− a′2|−

s
2 ∼

∑
m

∑
a∈Am

|a2− a′2|−
s
2 .

∑
m

2m(1− s
2
) ∼ qα2(1− s2 ).

Likewise, ∑
a1∈Z

ψ0

(
a1
qα1

)
|a1 − a′1|−

s
2 . qα1(1− s2 ).

Therefore

(2.8) . q−4qs
α1+α2

2 qα1+α2qα1(1− s2 )qα2(1− s2 ) . 1.

The general (nonisotropic) case in all dimensions. We are now ready
to present the general case. We again break the sum over a, a′ ∈ Zd into the
sum over the diagonal and the sum away from the diagonal. When a = a′,
(2.4) becomes

q−2dq
2d2

s

∑
a∈Zd

d∏
j=1

ψ0

(
aj
qαj

)∫∫
ψ0

(
q
d
s

(
xj −

aj
qαj

))

· ψ0

(
q
d
s

(
yj −

aj
qαj

))
|x− y|−sdxdy

and we use the same technique as above to show that this is bounded.
In the case that a 6= a′, then aj 6= a′j for at least one choice of 1 ≤ j ≤ d.

Let i ≥ 1 denote the number of coordinates for which aj 6= a′j . In the
language of coding theory this means that the Hamming distance between
a and a′ is i. Choose a permutation of {1, ..., d}, call it σ, such that aσ(j) 6=
a′σ(j) for 1 ≤ j ≤ i and aσ(j) = a′σ(j) for i < j ≤ d.

Set

I(a, a′) =

∫∫ d∏
j=1

ψ0

(
q
d
s

(
xσ(j) −

aσ(j)

qασ(j)

))

· ψ0

(
q
d
s

(
yσ(j) −

a′σ(j)

qασ(j)

))
|x− y|−sdxdy.

Then (2.4) becomes

(2.9) q−2dq
2d2

s

∑ d∏
j=1

ψ0

(
aσ(j)

qασ(j)

)
ψ0

(
a′σ(j)

qασ(j)

)
I(a, a′)
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where the sum is taken over aσ(j) 6= a′σ(j) both in Z, for 1 ≤ j ≤ i, and over

aσ(j) = a′σ(j) in Z, for i < j ≤ d.

We observe that

(2.10) |x− y|−s ≤ i−s
i∏

j=1

(
|aσ(j) − a′σ(j)|

qασ(j)

)− s
i

.

Certainly

|x− y| ∼
i∑

j=1

|xσ(j) − yσ(j)|

and

|xσ(j) − yσ(j)| ∼
|aσ(j) − a′σ(j)|

qασ(j)
.

Combining these observations with the fact that the arithmetic mean
dominates the geometric mean2 verifies (2.10).

Now

I(a, a′) . q−
2d2

s

i∏
j=1

(
|aσ(j) − a′σ(j)|

qασ(j)

)− s
i

.

Thus, (2.9) is bounded above by
(2.11)

q−2d
∑ d∏

j=1

ψ0

(
aσ(j)

qασ(j)

)
ψ0

(
a′σ(j)

qασ(j)

) i∏
j=1

(
|aσ(j) − a′σ(j)|

qασ(j)

)− s
i


where the sum is taken over aσ(j) 6= a′σ(j) both in Z, for 1 ≤ j ≤ i, and over

aσ(j) = a′σ(j) in Z, for i < j ≤ d.

Summing in aσ(j), for (i+ 1) ≤ j ≤ d, we see that it suffices to show that

(2.12)

q−2dqασ(i+1)+···+ασ(d)
∑ i∏

j=1

ψ0

(
aσ(j)

qασ(j)

)
ψ0

(
a′σ(j)

qασ(j)

)(
|aσ(j) − a′σ(j)|

qασ(j)

)− s
i

. 1

where the sum is taken over aσ(j) 6= a′σ(j) both in Z, for 1 ≤ j ≤ i.
For 1 ≤ j ≤ i, we show that

(2.13)
∑

aσ(j),a
′
σ(j)
∈Z

aσ(j) 6=a′σ(j)

ψ0

(
aσ(j)

qασ(j)

)
ψ0

(
a′σ(j)

qασ(j)

)(
|aσ(j) − a′σ(j)|

qασ(j)

)− s
i

. qασ(j)(1+
s
i
), for s ≥ i,

2We simply mean the classical inequality (A1 ·A2 · · · · ·An)
1
n ≤ A1+A2+···+An

n
.
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and that when s < i, the left hand side of (2.13) is bounded by q2ασ(j) .
Taking (2.13) for granted, we may complete the proof of the lemma. In-

deed, recalling that αj ≤ d
s , we conclude that for s ≥ i

(2.12) . q−2dqασ(i+1)+···+ασ(d)
i∏

j=1

qασ(j)(1+
s
i
) ≤ 1.

For s < i, taking (2.13) for granted, we recall that
∑d

j=1 αj = d to
conclude that

(2.12) . q−2dqασ(i+1)+···+ασ(d)
i∏

j=1

q2ασ(j) ≤ 1.

This completes the proof of the lemma modulo the proof of (2.13).
We now prove (2.13).
Fix a′σ(j) ∈ Z such that a′σ(j) ≤ Cq

ασ(j) . Set

Am = {aσ(j) ∈ Z : 2m ≤ |aσ(j) − a′σ(j)| < 2m+1}

where 0 ≤ m and 2m+1 = dCqασ(j)e.
Then ∑

aσ(j)∈Z

aσ(j) 6=a′σ(j)

ψ0

(
aσ(j)

qασ(j)

)
|aσ(j) − a′σ(j)|

− s
i .

∑
m

∑
Am

|aσ(j) − a′σ(j)|
− s
i

.
∑
m

2m(1− s
i
).

If s ≥ i, then
∑

m 2m(1− s
i
) . 1, and so

∑
aσ(j),a

′
σ(j)
∈Z

aσ(j) 6=a′σ(j)

ψ0

(
aσ(j)

qασ(j)

)
ψ0

(
a′σ(j)

qασ(j)

)(
|aσ(j) − a′σ(j)|

qασ(j)

)− s
i

. qασ(j)(1+
s
i
).

If s < i, then
∑

m 2m(1− s
i
) . qα(1−

s
i
), and so

∑
aσ(j),a

′
σ(j)
∈Z

aσ(j) 6=a′σ(j)

ψ0

(
aσ(j)

qασ(j)

)
ψ0

(
a′σ(j)

qασ(j)

)(
|aσ(j) − a′σ(j)|

qασ(j)

)− s
i

. q2ασ(j) .

This completes the proof of the lemma.
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2.2. Estimation of the second term in (2.3). It remains to show that

(2.14)
∥∥(T̂qµq(·)× | · |(d−s)/2)

∥∥
2
. 1,

when s ≥ d+1
2 . Since the Monge–Ampere determinant of φ does not vanish

on the set

{(x, y) : φ(x, y) = t}
for t > 0, φ satisfies the Phong–Stein rotational curvature condition on this
set ([15], [16]), and thus

(2.15) Tq : L2(Rd)→ L2
d−1
2

(Rd)

with constants uniform in t and q. See also [19] and [18] for the background
and a thorough description of these are related estimates.

We shall deduce (2.14) from the following result.

Proposition 2.2. Let f be a Schwartz class function with with finite s-di-
mensional energy, as defined in Lemma 2.1, for d+1

2 ≤ s < d. Suppose that
||f ||1 ≤ C for some uniform constant C > 0. Then

(2.16) ‖(T̂qf(·)× | · |(d−s)/2)‖2 . 1.

3. Proof of Proposition 2.2

We fix positive Schwartz class functions η0(ξ) supported in the ball {|ξ| ≤
4} and η(ξ) supported in the spherical shell

{1 < |ξ| < 4} with ηj(ξ) = η(2−jξ), j ≥ 1,

and

η0(ξ) +
∞∑
j=1

ηj(ξ) = 1.

Define the Littlewood–Paley piece of f (see e.g. ([19])), denoted by fj for
j ≥ 0, by the relation

f̂j(ξ) = f̂(ξ)ηj(ξ).

Now the left hand side of Proposition 2.2 can be written as

(3.1)
∑
j≥0

∑
k≥0

∫
T̂qfj(ξ)T̂qfk(ξ)|ξ|d−sdξ.

We handle the sums in (3.1) in three steps. First, we fix j ≥ 0 and consider
the case when j = k. Second, we consider the more general scenario where
|j − k| ≤ 2L. This second step follows as a simple consequence of the first.
Finally, we handle the case when |j − k| > 2L. Here L is some positive
number to be determined.

The proof of the following lemma is provided following the proof of Propo-
sition 2.2 and can be found in both [2] and [6].
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Lemma 3.1. Let ηl be as above. Then for any M > 0, there exists a
constant Cm > 0 and an L = LM > 0 so that

|T̂qfj(ξ)|ηl(ξ) ≤ CM2−M(max{j,l})

whenever |j − l| > L.

Case 1: j = k. We first establish that (3.1) holds when j = k. That is,

(3.2)
∑
j≥0

∫
|T̂qfj(ξ)|2|ξ|d−sdξ . 1.

To see this, decompose the integral by writing the left hand side of (3.2)
as

(3.3)
∑
j≥0

∑
l≥0

∫
ηl(ξ)|T̂qfj(ξ)|2|ξ|d−sdξ.

Next, fix j ≥ 0 and consider both the sum over l ≥ 0 such that |j− l| ≤ L
and the sum over l > 0 such that |j − l| > L, where L is some positive
number to be determined. That is,

(3.3) =
∑
j≥0

∑
l≥0

|j−l|≤L

∫
ηl(ξ)|T̂qfj(ξ)|2|ξ|d−sdξ

+
∑
j≥0

∑
l≥0

|j−l|>L

∫
ηl(ξ)|T̂qfj(ξ)|2|ξ|d−sdξ.

=I + II.

For |j − l| ≤ L, we use the support conditions for ηl and the mapping
properties of Tq to write

I ∼
∑
j≥0

∑
l≥0

|j−l|≤L

2l(1−s)
∫
ηl(ξ)|T̂qfj(ξ)|2|ξ|d−1dξ

.
∑
j≥0

∑
l≥0

|j−l|≤L

2l(1−s)
∫
|f̂j(ξ)|2dξ

≤
∑
j≥0

∑
l≥0

|j−l|≤L

2(j−L)(1−s)
∫
|f̂j(ξ)|2dξ

≤ (2L+ 1)2−L(1−s)
∑
j≥0

2j(1−s)
∫
|f̂j(ξ)|2dξ.
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Since (1 − s) ≤ (s − d), when d+1
2 ≤ s < d, and since f̂j(ξ) is supported

where |ξ| ∼ 2j then

I ≤ (2L+ 1)2−L(1−s)
∑
j≥0

2j(s−d)
∫
|f̂j(ξ)|2dξ.

∼ (2L+ 1)2−L(1−s)
∑
j≥0

∫
|f̂j(ξ)|2|ξ|s−ddξ

∼ (2L+ 1)2−L(1−s)
∫
|f̂(ξ)|2|ξ|s−ddξ.

Finally, since f has finite s-dimensional energy when d+1
2 ≤ s < d, then

I . 1.
To bound II, use Lemma 3.1 to write

II .
∑
j

∑
l≥0

|j−l|>L

2−M(max{j,l})
∫
ηl(ξ)|ξ|d−sdξ.

Since ηl is compactly supported, we conclude that II . 1 thus finishing the
proof of the first case.

Case 2: |j−k| ≤ 2L. We now proceed to bounding (3.1) when |j−k| ≤ 2L.
We have∑

j≥0

∑
k≥0

|j−k|≤2L

∫
T̂qfj(ξ)T̂qfk(ξ)|ξ|d−sdξ

≤
∑
j≥0

∑
k≥0

|j−k|≤2L

(∫
|T̂qfj(ξ)|2|ξ|d−sdξ

) 1
2
(∫
|T̂qfk(ξ)|2|ξ|d−sdξ

) 1
2

=
∑
|i|≤2L

∑
j≥0

(∫
|T̂qfj(ξ)|2|ξ|d−sdξ

) 1
2
(∫
|T̂qfj+i(ξ)|2|ξ|d−sdξ

) 1
2

≤
∑
|i|≤2L

∑
j≥0

∫
|T̂qfj(ξ)|2|ξ|d−sdξ

 1
2
∑
j≥0

∫
|T̂qfj+i(ξ)|2|ξ|d−sdξ

 1
2

. 1,

where we have applied the Cauchy–Schwarz inequality twice and applied
(3.2).

Case 3: |j−k| > 2L. We now show that (3.1) is bounded when |j−k| > 2L.
We again decompose the integral by writing∑

l≥0

∑
j≥0

∑
|j−k|>2L

∫
ηl(ξ)T̂qfj(ξ)T̂qfk(ξ)|ξ|d−sdξ.
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Since |j − k| > 2L, then either |j − l| > L or |k− l| > L. Therefore, we may
use Lemma 3.1 to finish case 3.

In more detail, assume |j − l| > L. Then

ηl(ξ)|T̂qfj(ξ)| . 2−M{j,l}.

If |k − l| > L, then

ηl(ξ)|T̂qfk(ξ)| . 2−M{j,l},

otherwise we use the observation that, for a fixed l, {k : |k − l| ≤ L} is a
finite set.

This completes the proof of estimate (2.1) and hence the proof of the
theorem up to the proof of Lemma 3.1.

4. Proof of Lemma 3.1

Recall from (2.2),

Tqfj(x) = q
d
s

∫
{y∈Rd:|φ(x,y)−1|≤q−

d
s }
fj(y)ψ(x, y)dy.

By Fourier inversion

Tqfj(x) =

∫∫∫
{y∈Rd:|φ(x,y)−1|≤q−

d
s }
eiy·ζeis·(φ(x,y)−1)

· ψ(x, y)f̂j(ζ)ψ̂0(sq
− d
s )dydζds,

where ψ0 is a smooth compactly supported function centered at the ori-
gin and the change in the order of integration can be justified by Fubini’s
Theorem.

So

T̂qfj(ξ) =

∫∫∫∫
{y∈Rd:|φ(x,y)−1|≤q−

d
s }
e−ix·ξeiy·ζeis·(φ(x,y)−1)

· ψ(x, y)f̂j(ζ)ψ̂0(sq
− d
s )dydζdsdx,

and therefore

T̂qfj(ξ)ηl(ξ) =

∫
Ijl(ξ, ζ, s)f̂(ζ)ψ̂0(sq

− d
s )dζds

where
(4.1)

Ijl(ξ, ζ, s) = ηl(ξ)ηj(ζ)

∫∫
{y:|φ(x,y)−1|≤q−

d
s }
ei[s·(φ(x,y)−1)+y·ζ−x·ξ]ψ(x, y)dydx.

Computing the critical points, (x, y), of the phase function in (4.1), we
see that

s∇xφ(x, y) = ξ and s∇yφ(x, y) = −ζ.
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The compact support of ψ along with the nonzero gradient condition from
(1.7) implies that

|∇xφ(x, y)| ≈ |∇yφ(x, y)| ≈ 1.

More precisely, the upper bound follows from smoothness and compact sup-
port. The lower bound follows from the fact that a continuous nonnegative
function achieves its minimum on a compact set. This minimum is not zero
because of the condition (1.7).

It follows that

(4.2) |ξ| ≈ |ζ|

when we are near critical points. However, by comparing the support of ηl
with that of ηj when |j − l| > L we see that the integrand is supported
away from critical points as (4.2) no longer holds. This implies that for each
noncritical point, (x, y), either

(4.3) s∇xφ(x, y) 6= ξ or s∇yφ(x, y) 6= −ζ.

Notice that this condition may vary with the choice of (x, y). This will not,
however, ultimately affect the argument due to the smoothness of φ and
the presence of the compact function ψ in the integrand. That is, we may
restrict our attention to an open set containing a fixed noncritical point on
which one of the equations holds, by restricting the support of ψ. Then we
may repeat the argument over finitely many such open sets.

Without loss of generality, assume that l > j.
Consider the case that |s| >> |ξ| (i.e |s| ≥ c|ξ| with a sufficiently small

constant c > 0). We observe that, since |∇xφ(x, y)| ≈ 1, ∃h so that

| ∂φ∂xh (x, y)| ≈ 1.

It is immediate that e−ix·ξeis·(φ(x,y)−1) is an eigenfunction of the differen-
tial operator

L =
1

i(s ∂φ∂xh − ξh)

∂

∂xh
.

We will integrate by parts in (4.1) using this operator. The expression
that we get after performing this procedure M times is

|Ijl(ξ, ζ, s)| . sup
x,y

∣∣∣∣s ∂φ∂xh − ξh
∣∣∣∣−M .

Notice, ∣∣∣∣s ∂φ∂xh − ξh
∣∣∣∣ & ∣∣∣∣ ∣∣∣∣s ∂φ∂xh

∣∣∣∣− |ξh| ∣∣∣∣ ≈ |s| > |ξ|.
So,

|Ijl(ξ, ζ, s)| . |ξ|−M . 2−Ml.

In the case that |s| << |ξ| (i.e |s| ≤ c|ξ| with a sufficiently small constant
c > 0), we observe that, since |ξ| ∼ 1, ∃h′ so that |ξh′ | ∼ |ξ| ∼ 1. We notice
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that e−ix·ξeis·(φ(x,y)−1) is an eigenfunction of the differential operator

L =
1

i(s ∂φ
∂xh′
− ξh′)

∂

∂xh′

and we again integrate by parts in (4.1) using this operator. The expression
that we get after performing this procedure M times is

|Ijl(ξ, ζ, s)| . sup
x,y

∣∣∣∣s ∂φ∂xh′ − ξh′
∣∣∣∣−M .

Notice, ∣∣∣∣s ∂φ∂xh′ − ξh′
∣∣∣∣ & ∣∣∣∣ ∣∣∣∣s ∂φ∂xh′

∣∣∣∣− |ξ| ∣∣∣∣ ≈ |ξ|
and we again conclude that

|Ijl(ξ, ζ, s)| . |ξ|−M . 2−Ml.

Last, we consider the case when |s| ∼ |ξ| ∼ 2l. By (4.3), ∃h such that

|s| ≈ |s∇xφ(x, y)| ≈ |s|
∣∣∣∣ ∂φ∂yh

∣∣∣∣
and we notice that e−ix·ξeis·(φ(x,y)−1) is an eigenfunction of the differential
operator

L =
1

i(s ∂φ∂yh − ζh)

∂

∂yh
.

The result once again follows by repeated integration by parts. This
concludes the proof of the lemma.
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