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Convex combinations of unitaries in
JB∗-algebras

Akhlaq A. Siddiqui

Abstract. We continue our recent efforts to exploit the notion of a
unitary isotope to study convex combinations of unitaries in an ar-
bitrary JB∗-algebra. Exact analogues of C∗-algebraic results, due to
R. V. Kadison, C. L. Olsen and G. K. Pedersen, are proved for general
JB∗-algebras. We show that if a contraction in a JB∗-algebra is a con-
vex combination of n unitaries, then it is also a mean of n unitaries.
This generalizes a well known theorem of Kadison and Pedersen. Our
methods also provide alternative proofs of other results for C∗-algebras.
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1. Introduction

In [17], B. Russo and H. A. Dye proved that the closed unit ball of any
C∗-algebra is the closed convex hull of the set of its unitary elements. They
also raised the question: Which operators lie in the purely algebraic convex
hull of the unitaries of a C∗-algebra? Subsequently, in 1984, L. T. Gardner
[5] obtained an elementary proof of the Russo–Dye theorem by proving that
every element of norm less than a half in a C∗-algebra is a convex com-
bination of unitaries. This result stimulated a number of mathematicians,
including R. V. Kadison, G. K. Pedersen, C. L. Olsen and M. Rørdam and
others, to study convex combinations of unitaries in C∗-algebras and related
unitary approximation theorems (see [7, 13, 14, 16]).

It is well known that JB∗-algebras are an important generalization of C∗-
algebras (see [24]). Hence, it is important to understand which results from
C∗-algebra theory extend to JB∗-algebras. There already is a substantial
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literature in this area. See, in particular, [25, 20, 19, 21, 22] for a sample
and further references.

In this paper, we build upon our earlier results from [20, 19, 22] to in-
vestigate convex combinations of unitaries in an arbitrary JB∗-algebra. We
present some interesting generalizations of certain C∗-algebra results due to
Kadison, Olsen and Pedersen [7, 14]. Our approach also provides alterna-
tive proofs to certain known results for C∗-algebras. We prove, in particular,
that the distance from any positive element to the set U(J ) of unitaries in
a JB∗-algebra J is attained at the unit element of J . We also prove that
if x ∈ (J )1 (closed unit ball of J ) with dist(x,U(J )) ≤ 2α and α < 1

2
then x ∈ αU(J ) + (1−α)U(J ). The proof requires a nontrivial application
of some of our results involving the Stone–Weierstrass Theorem and the
continuous functional calculus. In the last section, we obtain the inclusion

αU(J ) + (1− α)U(J ) ⊆ βU(J ) + (1− β)U(J )

for any 0 ≤ α ≤ β ≤ 1
2 ; this would lead us to JB∗-algebra analogues

of additional C∗-algebra results. In the sequel, we shall show that if a
contraction in a JB∗-algebra is a convex combination of n unitaries, then it
is also a mean of n unitaries. This generalizes known results for C∗-algebras
due to Kadison and Pedersen [7].

The concepts and notation that we shall use throughout the sequel are
consistent with our previous papers [19, 20, 21, 22].

We begin by recalling (from [6]) the concept of a homotope of a Jordan
algebra. Let J be a Jordan algebra and x ∈ J . The x-homotope, J[x] of J
is the Jordan algebra that consists of the same elements and linear structure
as J , but with the new product “ ·x” defined by the equation:

a·xb = {axb}, a, b ∈ J[x].

Here, and throughout, {pqr} denotes the Jordan triple product of p, q, r
defined in the Jordan algebra J by the formula:

{pqr} = (p ◦ q) ◦ r − (p ◦ r) ◦ q + (q ◦ r) ◦ p,

where ◦ stands for the original Jordan product in J .
An element x of a Jordan algebra J , with unit e, is said to be invertible

if there exists x−1 ∈ J , called the inverse of x, such that x ◦ x−1 = e and
x2 ◦ x−1 = x. The set of all invertible elements of unital Jordan J will be
denoted by Jinv. It is easy to see that any invertible element x acts as the
unit of the x−1-homotope J[x−1] of J . For an invertible element x of a unital
Jordan algebra J , the x−1-homotope J[x−1] of J is called the x-isotope of
J , and is denoted by J [x]. Any two isotopes of an associative algebra are
isomorphic to each other (see [6, p. 56]). Thus in the assiciative case, isotopy
basically just changes the unit element and does not produce new structures.
However, it may be convenient to change isotopes when performing certain
calculations; such an example is given in [12, p. 617]. But for a general
Jordan algebra, the process of forming isotopes may produce essentially
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different Jordan algebras (for examples, see [12, 10].) Fortunately, the set of
invertible elements in a unital Jordan algebra remains invariant on passage
to isotopes [20, Lemma 4.2].

A Jordan algebra J with product ◦ is called a Banach Jordan algebra if
there is a norm ‖.‖ on J such that (J , ‖.‖) is a Banach space and

‖a ◦ b‖ ≤ ‖a‖‖b‖.
If, in addition, J has unit e with ‖e‖ = 1 then J is called a unital Banach
Jordan algebra. Many elementary properties of Banach Jordan algebras are
similar to those of Banach algebras and their proofs are fairly routine [2, 4,
18, 23]. Throughout the sequel, we will only be considering unital Banach
Jordan algebras. The norm closure of the Jordan subalgebra J(x1, . . . , xr),
generated by x1, . . . , xr of Banach Jordan algebra J , will be denoted by
J (x1, . . . , xr). Let J be a complex unital Banach Jordan algebra and let
x ∈ J . As usual, the spectrum σJ (x) of x in J is defined by

σJ (x) = {λ ∈ C : x− λe is not invertible in J }.
In this note, we are interested in a special class of Banach Jordan algebras,

called JB∗-algebras ; these include all C∗-algebras as a proper subclass (see
[24, 26]). A complex Banach Jordan algebra J with involution ∗ (cf. [8, 9])
is called a JB∗-algebra if ‖{xx∗x}‖ = ‖x‖3 for all x ∈ J . It is easily seen
that ‖x∗‖ = ‖x‖ for all elements x of a JB∗-algebra (see [26], for instance).

There is a more tractable subclass of these algebras: Let H be any com-
plex Hilbert space and let B(H) denote the full algebra of bounded linear
operators on H. Then, any closed self-adjoint complex Jordan subalgebra of
B(H) is called a JC∗-algebra. A JB∗-algebra is also called a JC∗-algebra if
it is isometrically ∗-isomorphic to a JC∗-algebra. It is easily seen that every
JC∗-algebra is a JB∗-algebra; the converse generally is not true (cf. [2]).

An element x of a JB∗-algebra J is said to be self-adjoint if x∗ = x. A
self-adjoint element x of J is said to be positive (in J ) if its spectrum σJ (x)
is contained in the set of nonnegative real numbers. An element u ∈ J is
called unitary if u∗ = u−1.

If u ∈ U(J ) (the set of unitary elements in J ), then the isotope J [u] is
called a unitary isotope of J . It is well known (see [10, 3, 20]) that any
unitary isotope J [u] is a JB∗-algebra with u as its unit with respect to the
original norm and the involution ∗u defined by

x∗u = {ux∗u}.

Notice that for nonunitary x ∈ Jinv, the isotope J [x] of the JB∗-algebra J
may not be a JB∗-algebra with the “∗u” as involution.

Like invertible elements, the set of unitary elements in the (unital) JB∗-
algebra J is invariant on passage to unitary isotopes of J [20, Theorem 4.6]
and every invertible element x of a JB∗-algebra J is positive in the unitary
isotope J [u] of J , where u ∈ U(J ) is given by the usual polar decomposition
x = u|x| of x considered as an operator in the algebra B(H) of bounded linear
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operators on a suitable Hilbert space H [20, Theorem 4.12]. This is one of
the principal results we proved in [20]. The somewhat involved proof uses
the Stone–Weierstrass theorem and the standard functional calculus. In this
note, we shall make free use of this fact as one of our main tools.

2. Convex combinations of unitaries

We continue using our earlier results on unitary isotopes to study con-
vex combinations of unitaries in an arbitrary JB∗-algebra. The following
definition is inspired by [7]:

Definition 2.1. Let J be a unital JB∗-algebra and let x ∈ J . We define
two numbers uc(x) and um(x) by

uc(x) = min

n : x =
n∑

j=1

αjuj with uj ∈ U(J ), αj ≥ 0,

n∑
j=1

αj = 1

 ,

um(x) = min

n : x =
1
n

n∑
j=1

uj , uj ∈ U(J )

 .

If x has no decomposition as a convex combination of elements of U(J ), we
define uc(x) to be ∞.

Remark 2.2. From this definition, it is clear that uc(x) ≤ um(x) and
uc(x) = um(x) = ∞ whenever ‖x‖ > 1. In [22, Theorem 2.3], the author
proved that for general JB∗-algebra J there exist ui ∈ U(J ), i = 1, 2, . . . , n
satisfying x = 1

n

∑n
i=1 ui whenever ‖x‖ < 1−2n−1 with n ≥ 3 (for the special

case of C∗-algebra, see [7, Theorem 2.1]). Thus, um(x) < ∞ whenever
‖x‖ < 1.

The following result is clear from [15, 4.3.10] and also from the facts given
in [8, exercises 4.6.16 and 4.6.31]. The same facts are used in [7, Lemma 6
and Corollary 11].

Lemma 2.3. Let x be a self-adjoint element of a C∗-algebra A. If λ ∈
σA(x), then there exists a pure state ρ of A such that ρ(x) = λ and ρ(yx) =
ρ(y)ρ(x) for all y ∈ A. �

The next lemma extends [19, Lemma 4.1] and [7, Lemma 6]. Notice that
the authors used [7, Lemma 6] as a principal tool in their paper:

Lemma 2.4. Let x be any self-adjoint element of a unital JB∗-algebra J
and α ∈ [0, 1

2 ]. Define Iα to be the set [−1, 1] \ (−(1 − 2α), (1 − 2α)). Then
σJ (x) ⊆ Iα if and only if x = αu1 + (1− α)u2 for some u1, u2 ∈ U(J ).

Proof. Assume x = αu1 + (1 − α)u2 with u1, u2 ∈ U(J ). Then u∗i =
u−1

i for i = 1, 2 and hence, by [20, Corollary 2.5], the JB∗-subalgebra
J (e, u1, u2, u

−1
1 , u−1

2 ) of J generated by the identity element e, u1, u2 and
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their inverses is a JC∗-algebra. Let J (e, u1, u2, u
−1
1 , u−1

2 ) be embedded into
B(H) for some Hilbert space H. Clearly, x ∈ J (e, u1, u2, u

−1
1 , u−1

2 ).
Suppose that λ ∈ σJ (x). Since x is self-adjoint, [20, Lemma 2.1(v)] gives

σJ (e,u1,u2,u−1
1 ,u−1

2 )(x) = σB(H)(x),

so that λ ∈ σB(H)(x). Hence, by Lemma 2.3, there exists a pure state ρ
of B(H) such that ρ(x) = λ and ρ(yx) = ρ(y)ρ(x) for every y ∈ B(H). In
particular, ρ(u∗2x) = ρ(u∗2)ρ(x). Since ρ is a pure state, ρ has norm 1,

1− 2α = (1− α)− α

≤ |(1− α)ρ(e)| − |αρ(u∗2u1)|
≤ |ρ(αu∗2u1 + (1− α)e)|
= |ρ(u∗2(αu1 + (1− α)u2))|
= |ρ(u∗2x)|(by our hypothesis)

= |ρ(u∗2)ρ(x)| = |ρ(u∗2)| |ρ(x)| ≤ |λ|.

But |λ| ≤ ‖x‖ = ‖αu1−(1−α)u2‖ ≤ 1. Therefore, λ ∈ Iα by its construction.
Thus, σJ (x) ⊆ Iα.

Conversely, suppose σJ (x) ⊆ Iα. As x is self-adjoint, the JB∗-subalgebra
J (e, x) of J generated by x and the unit e is a C∗-algebra (see [20, Remark
2.6]). So, by [7, Lemma 6], x = αu1 + (1 − α)u2 for some unitaries u1 and
u2 in J (e, x) and hence in J . �

Remark 2.5. Explicit formulae for the unitaries u1, u2 appearing in the
converse part of the above proof can be given as follows:

Case (i). If α = 0, then x is a symmetry (a self-adjoint unitary) and so
u1 = ie and u2 = x work. (Of course, any unitary can be taken for u1, in
this case).

Case (ii). If α = 1
2 then u1 = x + i(e− x2)

1
2 and u2 = x− i(e− x2)

1
2 (seen

the proof of [19, Lemma 2.11]).

Case (iii). If 0 < α < 1
2 then x is invertible (as 0 6∈ σJ (x) in this case) and

so with a = 1
2α−1(x − (1 − 2α)x−1), b = 1

2(1 − α)−1(x + (1 − 2α)x−1) and
c = (1− α)−1(e− a ◦ a)

1
2 = α−1(e− b ◦ b)

1
2 , we can take

u1 = a + i(1− α)c and u2 = b− iαc .

For this, we observe that

αu1 + (1− α)u2 = αa + (1− α)b

=
1
2
(x− (1− 2α)x−1) +

1
2
(x + (1− 2α)x−1) = x.
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Further,

u∗1u1 = a2 + (1− α)2c2 = a2 + (e− a2) = e,

u∗2u2 = b2 + α2c2 = b2 + (e− b2) = e.

Similarly, u1u
∗
1 = e and u2u

∗
2 = e.

Using Lemma 2.4, we generalize [14, Lemma 2.1] to JB∗-algebras:

Theorem 2.6. Let J be a JB∗-algebra and x ∈ J with ‖x‖ ≤ ε < 1. Then
for each u ∈ U(J ) there exist u1, u2 ∈ U(J ) such that u + x = u1 + εu2.

Proof. Let P = J (u, x, x∗u) be the JC∗-subalgebra of the JB∗-algebra
J [u], generated by its identity u, x and x∗u . As ‖x‖ < 1, u + x is in-
vertible by [20, Lemma 2.1(iii)]. So, by [20, Theorem 4.12], there exists a
unitary v ∈ P such that u + x is positive (and invertible) in the isotope
P [v]. Hence by the functional calculus of positive elements inf σJ [v](u+x) =
‖(u + x)−1v‖−1. Moreover, by using the geometric series representation
(u + x)−1v =

∑∞
n=0(−x)n (see [20, Lemma 2.1(iii)]), we get

‖(u + x)−1v‖−1 =

∥∥∥∥∥
∞∑

n=0

(−x)n

∥∥∥∥∥
−1

≥

( ∞∑
n=0

‖xn‖

)−1

=
(

1
1− ‖x‖

)−1

= 1− ‖x‖ ≥ 1− ε, as ‖x‖ ≤ ε.

Of course, sup σJ [v](u + x) ≤ 1 + ε. So, σJ [v](u + x) ⊆ [1− ε, 1 + ε]. Hence,
σJ [v](y) ⊆ [1−ε

1+ε , 1] with y = (1 + ε)−1(u + x).
Taking α = ε(1+ ε)−1 we see that σJ [v](y) ⊆ [1− 2α, 1] (indeed, 1− 2α =

1 − 2ε(1 + ε)−1 = 1+ε−2ε
1+ε ). Hence, by Lemma 2.4, y = αv1 + (1 − α)v2

for some v1, v2 ∈ U(J [v]). Thus, by [20, Theorem 4.6], the required result
follows with u1 = v2 and u2 = v1. �

3. Distance from a positive element to the unitaries

Here, we prove that the distance from any positive element to the set of
unitaries is attained at the unit element of the JB∗-algebra. As consequence
of this fact and Lemma 2.4, we will obtain a precise analogue of [7, Corollary
11] for general JB∗-algebras (see Corollary 3.4 below) that also provides an
alternative proof of the corresponding result for C∗-algebras.

Theorem 3.1. Let x be a positive noninvertible element of the unital JB∗-
algebra J with ‖x‖ ≤ 1. Then dist(x,U(J )) = ‖e− x‖.
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Proof. Clearly, 0 ∈ σJ (x) and so 1 ∈ σJ (e − x). Also, e − x ≥ 0 because
x ≥ 0 and ‖x‖ ≤ 1. Therefore, 1 ∈ σJ (e−x) ⊆ [0, 1]. Hence, γJ (e−x) = 1.
But γJ (e− x) = ‖e− x‖ since e− x ≥ 0. Therefore, ‖e− x‖ = 1.

Now, let ‖u − x‖ < ‖e − x‖ for some u ∈ U(J ). Then, ‖u − x‖ < 1.
Therefore, by [20, Theorem 4.4, Lemma 2.1(iii)], x is invertible in J [u].
But by [20, Lemma 4.2(ii)], J [u]

inv = Jinv. Hence, x is invertible in J ; a
contradiction. Thus, ‖e − x‖ ≤ ‖u − x‖,∀u ∈ U(J ) and so the required
result follows. �

Obviously, the above proof does not work if x is invertible. However, the
same conclusion can be obtained without assuming the noninvertibility of
x:

Theorem 3.2. Let x be a positive element of unital JB∗-algebra J . Then

‖x− e‖ = dist(x,U(J )) ≤ ‖x + e‖.

Proof. Let u ∈ U(J ). Then the JB∗-subalgebra J (e, x, u, u∗), generated
by x, u, u∗ = u−1 and unit e of J is a unital JC∗-algebra by the Shirshov–
Cohn theorem with inverses (cf. [11]). Considering J (e, x, u, u∗) a JC∗-
subalgebra of the C∗-algebra B(H), for some Hilbert space H, we see that
x is positive and u is unitary in B(H). Therefore, by [1, Theorem 3.1],
‖x− e‖ ≤ ‖x− u‖ ≤ ‖x + e‖. Thus, the required result follows. �

Corollary 3.3. For all x ∈ Jinv, ‖x − u‖ = dist(x,U(J )) where u ∈ U(J )
is given by the polar decomposition x = u|x| of x considered in a suitable
B(H).

Proof. By [20, Theorem 4.12], x is positive in the isotope J [u] with unit
u. Hence, ‖x−u‖ = dist(x,U(J [u])) = dist(x,U(J )) by above Theorem 3.2
and [20, Theorem 4.6]. �

Now, we are able to obtain the following extension of the above mentioned
C∗-algebra result due to Kadison and Pedersen (namely, [7, Corollary 11]).
The proof we give exploits some of our previous results and standard con-
tinuous functional calculus.

Corollary 3.4. Let J be a JB∗-algebra with identity element e. Let x ∈
(J )1 be such that dist(x,U(J )) ≤ 2α with α < 1

2 . Then

x ∈ αU(J ) + (1− α)U(J ).

Proof. Let β be any number such that α < β < 1
2 . Since dist(x,U(J )) ≤

2α, there exists unitary u ∈ U(J ) such that ‖x− u‖ < 2β < 1. So, by [20,
Theorem 4.4, Lemma 2.1(iii)], x is invertible in the unitary isotope J [u] and
hence x ∈ Jinv by [20, Lemma 4.2(ii)]. Then, by Corollary 3.3,

(1) ‖x− v‖ = dist(x,U(J ))

where v ∈ U(J ) is given by the polar decomposition x = v|x| in some B(H).
So that ‖x−v‖ ≤ 2α ≤ 2β. By [20, Theorem 4.12], x is positive in the isotope
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J [v] in which v is the unit. Therefore, by the continuous functional calculus,
σJ [v](x) ⊆ [1 − 2β, 1]. Notice that the existence of J [v] and the positivity
of x in J [v] with (1) depend only on the invertibility of x in J . So that
σJ [v](x) ⊆ [1− 2α, 1]. Hence, by Lemma 2.4, x = αw1 + (1−α)w2 for some
w1, w2 ∈ U(J [v]). Thus, by [20, Theorem 4.6], x ∈ αU(J )+(1−α)U(J ). �

4. Means of unitaries

In this section, we extend [7, Corollary 10] to general JB∗-algebras, which
in turn would lead us to the JB∗-algebra analogues of [7, Corollary 12,
Theorem 14] and the conclusion that every element in the convex hull of n
unitaries in a JB∗-algebra is the arithmetic mean of n unitaries in the same
algebra (an exact analogue of [7, Corollary 15]).

We need the following result:

Lemma 4.1. Let J be a JB∗-algebra with unit e and let u ∈ J . Then
J (e, u, u∗) is a unital C∗-algebra.

Proof. By Jacobson’s Theorem [6], any Jordan algebra is integrally power
associative, provided the inverses involved exist. It follows that J (e, u, u∗)
is a C∗-algebra by [20, Lemma 2.1, Corollary 2.5]. �

Next, we prove a JB∗-algebra analogue of [7, Corollary 10]; observe that
[7, Corollary 10] is used in our proof.

Theorem 4.2. Let J be a unital JB∗-algebra . Then for any 0 ≤ α ≤ β ≤
1
2 , αU(J ) + (1− α)U(J ) ⊆ βU(J ) + (1− β)U(J ).

Proof. Let u1, u2 be arbitrary but fixed elements of U(J ). By [20, Theorem
4.4], the isotope J [u1] is a JB∗-algebra with identity element u1. By [20,
Theorem 4.6],

(2) U(J ) = U(J [u1]).

In particular, u2 ∈ U(J [u1]). Let J (u1, u2, u
−1u1
2 ) denote the norm closed

Jordan subalgebra of J [u1], generated by the unitary u2, its inverse u
−1u1
2

and the unit u1. By Lemma 4.1, J (u1, u2, u
−1u1
2 ) is a C∗-algebra. Moreover,

we see that

αu1 + (1− α)u2 ∈ αU(J (u1, u2, u
−1u1
2 )) + (1− α)U(J (u1, u2, u

−1u1
2 )).

Hence, by [7, Corollary 10], there exist unitaries u3, u4 in the C∗-algebra
J (u1, u2, u

−1u1
2 ) such that

(3) αu1 + (1− α)u2 = βu3 + (1− β)u4.

From Equation (2), we deduce U(J (u1, u2, u
−1u1
2 )) ⊆ U(J ). In particular,

u3, u4 ∈ U(J ). This together with (3) gives the required result. �
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Now, proceeding on the lines of [7], one can easily obtain the JB∗-algebra
analogues of certain results due to Kadison and Pedersen (namely, [7, Corol-
lary 12, Theorem 14 and its Corollary 15]): the proofs of these results as
they appeared in [7] for C∗-algebras work well in the general case after ap-
propriate translation of the terms for JB∗-algebras and using Theorem 4.2
in place of [7, Corollary 10]:

Corollary 4.3. Let J be a unital JB∗-algebra . Then, for any nonnegative
real numbers α1, α2, α1U(J ) + α2U(J ) ⊆ β1U(J ) + β2U(J ) provided the
point (β1, β2) lies on the line segment joining (α1, α2) to (α2, α1) in the plane
R2.

Proof. The result follows from Theorem 4.2 (see the proof of [7, Corollary
12]). �

The next result extends Corollary 4.3 from two to any positive integer
number of unitaries.

Theorem 4.4. Let J be a unital JB∗-algebra and (α1, . . . , αn) ∈ <n

(Euclidean n-space) be such that each αj ≥ 0. Let (β1, . . . , βn) ∈ coK (the
convex hull of K), where

K = {(απ(1), . . . , απ(n)) : π is a permutation on {1, . . . , n}}.
Then

∑n
j=1 αjU(J ) ⊆

∑n
j=1 βjU(J ).

Proof. The proof is immediate from Corollary 4.3 and [7, Lemma 13] (see
the proof of [7, Theorem 14]). �

We conclude with the following strict analogue of [7, Corollary 15]):

Corollary 4.5. Any convex combination of unitaries in a unital JB∗-algebra
is the mean of same number of unitaries in the algebra. Hence, um(x) =
uc(x).

Proof. Immediate from Theorem 4.4 (see the proof of [7, Corollary 15]). �

Acknowledgement. Author is indebted to Martin A. Youngson for his
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