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The Riccati differential equation and a
diffusion-type equation

Erwin Suazo, Sergei K. Suslov
and José M. Vega-Guzmán

Abstract. We construct an explicit solution of the Cauchy initial value
problem for certain diffusion-type equations with variable coefficients
on the entire real line. The heat kernel is given in terms of elementary
functions and certain integrals involving a characteristic function, which
should be found as an analytic or numerical solution of a Riccati dif-
ferential equation with time-dependent coefficients. Some special and
limiting cases are outlined. Solution of the corresponding nonhomoge-
neous equation is also found.
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1. Introduction

In this paper we discuss a method to construct the explicit solution (the
time evolution operator is given explicitly as an integral operator) of the
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Cauchy initial value problem for the one-dimensional heat equation on the
entire real line

(1.1)
∂u

∂t
= Q

(
∂

∂x
, x, t

)
u,

where the right-hand side is a quadratic form Q (p, x) of the coordinate x and
the operator of differentiation p = ∂/∂x with time-dependent coefficients;
see equation (2.1) in Section 2. The corresponding heat kernel or funda-
mental solution is given explicitly by the formulas (2.16)–(2.23), which has
not been introduced in the literature before. The heat kernel is given in
terms of elementary functions and certain integrals involving a characteris-
tic function. This characteristic function is the solution of a second order
differential equation with function coefficients (2.13) that has been obtained
after certain substitutions from a Riccati differential equation (2.7). This
Riccati differential equation was obtained in the process of splitting the dif-
fusion equation in a system of ordinary differential equations (2.7)–(2.12).
In Section 3 we solve this system of equations, deriving the heat kernel
explicitly.

In Section 4 we prove the uniqueness of our solution for the Cauchy prob-
lem associated with (2.1) in the class of solutions satisfying the Tychonoff
condition, see (4.1). We assume that the variable coefficients in (2.1) satisfy
certain assumptions. The uniqueness is an immediate consequence of the
maximum principle for parabolic equations on bounded domains and the
extension method to unbounded domains introduced by M. Krzyzanski, see
[Krz45], [Krz59] and [Frie64].

The connection between stochastic differential equations and fundamental
solutions for certain parabolic equations (e.g., Feynman–Kac stochastic rep-
resentation [Frie64], [Mil77], [Cra09], [Goa06]) has been applied in financial
mathematics (e.g., probabilistic approach to pricing derivatives [Eth02]) and
mathematical biology (e.g., Kolmogorov differential equations for epidemic,
competition and predation processes [All07], [All03] and cable equations
[JNT83]). In Sections 5 and 6 we give several examples of these types of
equations included in our general equation (2.1), and finally in Section 7 the
solution of the corresponding nonhomogeneous equation is obtained with
the help of the Duhamel principle.

In [CLSS08], [CSS09], [CSS10], the case of a corresponding Schrödinger
equation is investigated and classified in terms of elementary solutions of a
characterization equation given by (2.13) below. These exactly solvable
cases may be of interest in a general treatment of the nonlinear evolu-
tion equations; see [Can84], [Caz03], [CH98], [Tao06] and references therein.
Moreover, these explicit solutions can also be useful when testing numerical
methods of solving the semilinear heat equations with variable coefficients.
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2. Solution of a Cauchy initial value problem: summary of
results

The fundamental solution (or heat kernel) of the diffusion-type equation
of the form

(2.1)
∂u

∂t
= a(t)

∂2u

∂x2
− (g(t)− c(t)x)

∂u

∂x
+
(
−b(t)x2 + f(t)x + d(t)

)
u,

where a(t), b(t), c(t), d(t), f(t), and g(t) are given real-valued functions of
time t only, can be found by a familiar substitution

(2.2) u = AeS = A(t)eS(x,y,t)

with

(2.3) A = A(t) =
1√

2πµ(t)

and

(2.4) S = S (x, y, t) = α(t)x2 + β(t)xy + γ(t)y2 + δ(t)x + ε (t) y + κ(t),

where α(t), β(t), γ(t), δ(t), ε(t), and κ(t) are differentiable real-valued func-
tions of time t only. Indeed,

(2.5)
∂S

∂t
= a

(
∂S

∂x

)2

− bx2 + fx + (cx− g)
∂S

∂x

provided

(2.6)
µ′

2µ
= −a

∂2S

∂x2
− d = −2α(t)a(t)− d(t).

Equating the coefficients of all admissible powers of xmyn with 0 ≤ m+n ≤ 2
gives the following system of ordinary differential equations

dα

dt
+ b(t)− 2c(t)α− 4a (t) α2 = 0,(2.7)

dβ

dt
− (c(t) + 4a(t)α(t))β = 0,(2.8)

dγ

dt
− a(t)β2(t) = 0,(2.9)

dδ

dt
− (c(t) + 4a(t)α(t)) δ = f(t)− 2α(t)g(t),(2.10)

dε

dt
+ (g(t)− 2a(t)δ(t))β(t) = 0,(2.11)

dκ

dt
+ g(t)δ(t)− a (t) δ2(t) = 0,(2.12)

where (2.7) is the Riccati nonlinear differential equation; see, for example,
[HS69], [Mol02], [Rai64], [RM08], [Wat44] and references therein.
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We have

4aα′ + 4ab− 2c (4aα)− (4aα)2 = 0, 4aα = −2d− µ′

µ

from (2.7) and (2.6), and the substitution

4aα′ = −2d′ − µ′′

µ
+
(

µ′

µ

)2

+
a′

a

(
2d +

µ′

µ

)
results in the second order linear equation

(2.13) µ′′ − τ(t)µ′ − 4σ (t) µ = 0

with

(2.14) τ(t) =
a′

a
+ 2c− 4d, σ (t) = ab + cd− d2 +

d

2

(
a′

a
− d′

d

)
.

As we shall see later, equation (2.13) must be solved subject to the initial
data

(2.15) µ (0) = 0, µ′ (0) = 2a (0) 6= 0, d(0) = 0

in order to satisfy the initial condition for the corresponding Green function;
see the asymptotic formula (2.24) below for a motivation. Then, the Riccati
equation (2.7) can be solved by the back substitution (2.6).

We shall refer to Equation (2.13) as the characteristic equation and its
solution µ(t), subject to (2.15), as the characteristic function. The special
case (2.13) contains the generalized equation of hypergeometric type, whose
solutions are studied in detail in [NU88]; see also [AAR99], [NSU91], [ST08],
and [Wat44].

Thus, the Green function (fundamental solution or heat kernel) is explic-
itly given in terms of the characteristic function

(2.16) u = K (x, y, t) =
1√

2πµ(t)
eα(t)x2+β(t)xy+γ(t)y2+δ(t)x+ε(t)y+κ(t).

Here

(2.17) α(t) = − 1
4a(t)

µ′(t)
µ(t)

− d(t)
2a (t)

,

(2.18) β(t) =
1

µ(t)
exp

(∫ t

0
(c (τ)− 2d (τ)) dτ

)
,

γ(t) = − a(t)
µ(t)µ′(t)

exp
(

2
∫ t

0
(c (τ)− 2d (τ)) dτ

)
(2.19)

− 4
∫ t

0

a (τ) σ (τ)
(µ′ (τ))2

(
exp

(
2
∫ τ

0
(c (λ)− 2d (λ)) dλ

))
dτ,
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(2.20) δ(t) =
1

µ(t)
exp

(∫ t

0
(c (τ)− 2d (τ)) dτ

)
∫ t

0
exp

(
−
∫ τ

0
(c (λ)− 2d (λ)) dλ

)
·
((

f (τ) +
d (τ)
a (τ)

g (τ)
)

µ (τ) +
g (τ)
2a (τ)

µ′ (τ)
)

dτ,

(2.21) ε(t) = −2a(t)
µ′(t)

δ(t) exp
(∫ t

0
(c (τ)− 2d (τ)) dτ

)
− 8

∫ t

0

a (τ) σ (τ)
(µ′ (τ))2

exp
(∫ τ

0
(c (λ)− 2d (λ)) dλ

)
(µ (τ) δ (τ)) dτ

+ 2
∫ t

0

a (τ)
µ′ (τ)

exp
(∫ τ

0
(c (λ)− 2d (λ)) dλ

)(
f (τ) +

d (τ)
a (τ)

g (τ)
)

dτ,

κ(t) = −a(t)µ(t)
µ′(t)

δ2(t)− 4
∫ t

0

a (τ) σ (τ)
(µ′ (τ))2

(µ (τ) δ (τ))2 dτ(2.22)

+ 2
∫ t

0

a (τ)
µ′ (τ)

(µ (τ) δ (τ))
(

f (τ) +
d (τ)
a (τ)

g (τ)
)

dτ

with

(2.23) δ (0) =
g (0)
2a (0)

, ε (0) = −δ (0) , κ (0) = 0.

We have used integration by parts in order to resolve the singularities of
the initial data; see Section 3 for more details. Then the corresponding
asymptotic formula is

K (x, y, t) =
eS(x,y,t)√
2πµ (t)

(2.24)

∼ 1√
4πa (0) t

exp

(
−(x− y)2

4a (0) t

)
exp

(
g (0)
2a (0)

(x− y)
)

as t → 0+. Notice that the first term on the right hand side is a familiar
heat kernel for the diffusion equation with constant coefficients (cf. Eq. (6.2)
below).

By the superposition principle, we obtain the solution of the Cauchy initial
value problem

(2.25)
∂u

∂t
= Qu, u (x, t)|t=0 = u0 (x)

on the infinite interval −∞ < x < ∞ with the general quadratic form
Q (p, x) in (2.1) as follows:

(2.26) u (x, t) =
∫ ∞

−∞
K (x, y, t) u0 (y) dy = Hu (x, 0) .
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This yields a solution explicitly in terms of an integral operator H acting on
the initial data provided that the integral converges and one can interchange
differentiation and integration (for example if α, γ < 0 and δ = κ = ε = 0
in (2.16)). This integral is essentially the Laplace transform.

In a more general setting, solution of the initial value problem at time t0

(2.27)
∂u

∂t
= Qu, u (x, t)|t=t0

= u (x, t0)

on an infinite interval has the form

(2.28) u (x, t) =
∫ ∞

−∞
K (x, y, t, t0) u0 (y, t0) dy = H (t, t0) u (x, t0)

with the heat kernel given by

(2.29) K (x, y, t, t0)

=
1√

2πµ (t, t0)
eα(t,t0)x2+β(t,t0)xy+γ(t,t0)y2+δ(t,t0)x+ε(t,t0)y+κ(t,t0).

The function µ(t) = µ (t, t0) is a solution of the characteristic equation (2.13)
corresponding to the initial data

(2.30) µ (t0, t0) = 0, µ′ (t0, t0) = 2a (t0) 6= 0, d(0) = 0.

If {µ1, µ2} is a fundamental solution set of Equation (2.13), then

(2.31) µ (t, t0) =
2a (t0)

W (µ1, µ2)
(µ1 (t0) µ2 (t)− µ1(t)µ2 (t0))

and

(2.32) µ′ (t, t0) =
2a (t0)

W (µ1, µ2)
(
µ1 (t0) µ′2(t)− µ′1(t)µ2 (t0)

)
,

where W (µ1, µ2) is the value of the Wronskian at the point t0.
Equations (2.17)–(2.22) are valid again but with the new characteristic

function µ (t, t0) . The lower limits of integration should be replaced by t0.
Conditions (2.23) become

(2.33) δ (t0, t0) = −ε (t0, t0) =
g (t0)
2a (t0)

, κ (t0, t0) = 0

and the asymptotic formula (2.24) should be modified as follows

K (x, y, t, t0) =
eS(x,y,t,t0)√
2πµ (t, t0)

(2.34)

∼ 1√
4πa (t0) (t− t0)

exp

(
− (x− y)2

4a (t0) (t− t0)

)

· exp
(

g (t0)
2a (t0)

(x− y)
)

.

We leave the details to the reader.
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3. Derivation of the heat kernel

Here we obtain the above formulas (2.17)–(2.22) for the heat kernel. The
first equation is a direct consequence of (2.6) and our Equation (2.8) takes
the form

(3.1) (µβ)′ = (c− 2d) (µβ) ,

whose particular solution is (2.18).
From (2.9) and (2.18) one gets

(3.2) γ(t) =
∫

a(t)
µ2 (t)

e2h(t) dt, h(t) =
∫ t

0
(c (τ)− 2d (τ)) dτ

and integrating by parts

(3.3) γ(t) = −
∫

ae2h

µ′
d

(
1
µ

)
= −ae2h

µµ′
+
∫ (

ae2h

µ′

)′
dt

µ
.

But the derivative of the auxiliary function

(3.4) F (t) =
a(t)
µ′(t)

e2h(t)

is

(3.5) F ′(t) =
(a′ + 2h′a) e2hµ′ − ae2hµ′′

(µ′)2
= −4σaµ

(µ′)2
e2h = −4σµ

µ′
F

in view of the characteristic equation (2.13)–(2.14). Substitution into (3.3)
results in (2.19).

Equation (2.10) can be rewritten as

(3.6)
(
µe−hδ

)′
= µe−h (f − 2αg) , h =

∫ t

0
(c− 2d) dτ

and its direct integration gives (2.20).
We introduce another auxiliary function

(3.7) G(t) = µ(t)δ(t)e−h(t)

with the derivative given by (3.6). Then Equation (2.11) becomes
dε

dt
= − g

µ
eh +

2aδ

µ
eh

and

(3.8) ε(t) = −
∫

g

µ
eh dt + 2

∫
aG

µ2
e2h dt.

Integrating the second term by parts one gets∫
aG

µ2
e2h dt = −

∫
aG

µ′
e2h d

(
1
µ

)
= −

∫
FG d

(
1
µ

)
(3.9)

= −FG

µ
+
∫

(FG)′

µ
dt,
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where

(FG)′ = F ′G + FG′(3.10)

= −4aσµ

(µ′)2
(µδ) eh +

aµ

µ′
ehf +

dµ

µ′
ehg +

1
2
geh

in view of (3.5) and (3.6). Then substitution (3.10) into (3.9) allows us to
cancel the divergent integrals. As a result one can resolve the singularity
and simplify expression (3.8) to its final form (2.21).

Finally, by (2.12) and (3.7)

(3.11) κ(t) = −
∫

gδ dt +
∫

aG2

µ2
e2h dt,

where the last integral can be transformed as follows

(3.12)
∫

aG2

µ2
e2h dt = −

∫
FG2 d

(
1
µ

)
= −FG2

µ
+
∫ (

FG2
)′

µ
dt

with (
FG2

)′ = F ′G2 + 2FGG′ = (FG)′ G + FGG′(3.13)

= −4aσµ

(µ′)2
(µδ)2 +

2aµ

µ′
(µδ) f +

2dµ

µ′
(µδ) g + µgδ.

Substitution (3.12)–(3.13) into (3.11) gives our final expression (2.22).
The details of derivation of the asymptotic formula (2.24) are left to the

reader.

4. Uniqueness of the Cauchy problem

In this section we prove the uniqueness of the solution (2.26) of the Cauchy
initial value problem (2.25) in the class of solutions satisfying the Tychonoff
condition

(4.1) |u(x, t)| ≤ B2 exp(B1x
2)

for some positive constants B1 and B2. The uniqueness is a direct conse-
quence of using the maximum principle for parabolic equations on bounded
domains and the extension method to unbounded domains introduced by
M. Krzyzanski, see [Krz45], [Krz41]; we follow the presentation of [Frie64].
For the sake of clarity we outline the proof for our equation.

We also will use the following assumption on the coefficients:

Assumption A. a(t) > 0, b(t), c(t), d(t), f(t) and g(t) are continous func-
tions in [T0,T1].

We define the operator

(4.2) Lu = a(t)
∂2u

∂x2
+ b1 (x, t) u + c1 (x, t)

∂u

∂x
− ∂u

∂t
,

where b1 (x, t) = c(t)x− g(t), c1 (x, t) = −b(t)x2 + d(t) + f(t)x.
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We will need the following proposition:

Proposition 4.1. If the initial data u(x, 0) satisfies (4.1) on R, then (2.26)
satisfies

(4.3) |u(x, t)| ≤ M2 exp(M1x
2)

for some positive constants M1, M2 with M1 + γ(t) < 0, µ(t) > 0 for all t
in [T0,T1].

This proposition is a consequence of the integral

(4.4)
∫ ∞

−∞
e−ay2+2by dy =

√
π

a
eb2/a, a > 0.

We will also use the following lemma:

Lemma 4.2. Let S be the operator defined by

(4.5) Su = a(t)
∂2u

∂x2
+ b (x, t) u + c (x, t)

∂u

∂x
− ∂u

∂t
,

with a(t) > 0, b (x, t) continous in R×(T0,T1] and c(x, t) bounded from above.
If Su ≤ 0 in R× (T0,T1], u(x, 0) > 0 in R and

(4.6) lim inf
|x|→∞

u(x, t) > 0

uniformly with respect to t (T0 6 t 6 T1), then u(x, t) > 0 in R× [T0,T1].

Now, we are ready to prove uniqueness, as follows:

Theorem 4.3. If the initial data u0(x) ≥ 0 satisfies (4.1) on R, there exists
a unique solution to the Cauchy problem

Lu = 0, (x, t) in R× (T0,T1](4.7)

u(x, 0) = u0(x), x in R
in the class of solutions satisfying (4.1).

We sketch the proof. Because c1(x, t) is not bounded we will apply the
lemma to an alternative operator L and a function υ, see (4.18), (4.8) below.

First, we verify that we can apply the lemma to υ defined by

(4.8) υ =
u

F
.

For this we define the function

(4.9) F (x, t) = exp
(

kx2

1− ν1t
+ ν2t

)
, 0 ≤ t ≤ 1

2ν1

where k > M1 is fixed. Using Assumption A we can find M such that

(4.10) |a(t)| ≤ M, |b1(x, t)| ≤ M(x + 1), |c1(x, t)| ≤ M(x2 + 1).

Furthermore if 0 ≤ t ≤ 1/2ν1 we can choose ν1 and ν2 such that

(4.11)
LF

F
≤ 0.
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To see this we observe that

(4.12)
∂F

∂t
=
(
− kx2(−ν1)

(1− ν1t)2
+ ν2

)
exp

(
kx2

1− ν1t
+ ν2t

)

(4.13) b1(x, t)
∂F

∂x
=

2k

1− ν1t
b1(x, t)x exp

(
kx2

1− ν1t
+ ν2t

)

(4.14) c1(x, t)F = c1(x, t) exp
(

kx2

1− ν1t
+ ν2t

)

(4.15) a(t)
∂2F

∂x2
=

4k

1− ν1t
a(t)x2 exp

(
kx2

1− ν1t
+ ν2t

)
+

2k

1− ν1t
a(t).

Therefore
LF

F
=

4k

1− ν1t
a(t)x2 +

2k

1− ν1t
a(t) +

2k

1− ν1t
b1(x, t)x + c1(x, t)− ν1kx2

(1− ν1t)2
− ν2

using (4.10), 0 ≤ t ≤ 1/2ν1 and 1 ≤ 1/(1− ν1t) ≤ 2. Thus

(4.16)
LF

F
≤ (16k2M + 8kM + M − ν1k)x2 + 8kM + M − ν2.

So, we can choose ν1 and ν2 for (4.11) to follow.
Since u(x, t) ≥ −M2 exp(M1x

2) in R× [T0, T1] and 0 ≤ 1/2 ≤ 1−ν1t ≤ 1,
we have

lim inf
|x|→∞

υ (x, t) = lim inf
|x|→∞

exp
(
− kx2

1− ν1t
− ν2t

)
u (x, t)

≥ lim inf
|x|→∞

−M2 exp
(
− kx2

1− ν1t

)
exp(−ν2t) exp(M1x

2) = 0.

The last equality follows from observing that 0 ≤ 1/(1 − ν1t) ≤ 2, −k ≥
−k/(1− ν1t), so M1 − k/(1− ν1t) ≤ M1 − k ≤ 0. We have proved that

(4.17) lim inf
|x|→∞

υ (x, t) ≥ 0

uniformly with respect to t, 0 ≤ t ≤ 1/2ν1.
Second, it is easy to see that υ satisfies the equation

(4.18) Lυ = a(t)
∂2υ

∂x2
+ b (x, t)

∂υ

∂x
+ c (x, t) υ − ∂υ

∂t
= f

where

(4.19) f =
Lu

F
≤ 0; b1 = b1 + 2

a(t)
F

∂F

∂x
; c =

LF

F
.

We observe that Lυ ≤ 0 follows from the hypothesis that Lu ≤ 0. Further-
more by (4.16), c ≤ 0. We can apply the lemma above and thus conclude
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that υ(x, t) ≥ 0 in R× [0, 1/2ν1]. The same is therefore true for u(x, t). We
can now proceed step by step to prove the positivity of u(x, t) in R× [T0,T1].

Now we are ready to prove uniqueness. Let’s prove that if u satisfies (4.1)
and Lu = 0; ϕ = 0, then u ≡ 0. Since u(x, t) ≥ −M2 exp(M1x

2), Lu = 0
in R × (T0,T1) and u(x, 0) ≥ 0 implies u(x, t) ≥ 0 in R × [T0,T1]. Similarly
−u(x, t) ≥ −M2 exp(M1x

2), L(−u) = 0 in R × (T0,T1) and u(x, 0) ≥ 0
implies −u(x, t) ≥ 0 in R× [T0,T1]. Therefore we have u(x, t) ≡ 0.

Finally, if we assume that u1 and u2 are solutions of (4.7) and if we define
w = u1− u2, then

Lw = Lu1 − Lu2 = 0(4.20)

w(x, 0) = u1(x, 0)− u2(x, 0) = ϕ(x)− ϕ(x) = 0.

Then by the argument above w = 0 and so u1 = u2.
As a consequence our solution (2.26) is a unique solution under the con-

ditions of the theorem above.

5. Special initial data

In the case u (x, 0) = u0 = constant, our solution (2.26) takes the form

u (x, t)(5.1)

=
∫ ∞

−∞
K (x, y, t) u0 dy

= u0
eα(t)x2+δ(t)x+κ(t)√

2πµ(t)

∫ ∞

−∞
e(β(t)x+ε(t))y+γ(t)y2

dy

=
u0√
−2µγ

exp

((
4αγ − β2

)
x2 + 2 (2γδ − βε) x + 4γκ− ε2

4γ

)
,

provided γ(t) < 0 with the help of an elementary integral (4.4).
The details of taking the limit t → 0+ in (5.1) are left to the reader.
When u (x, 0) = δ (x− x0) , where δ (x) is the Dirac delta function, one

gets formally

(5.2) u (x, t) =
∫ ∞

−∞
K (x, y, t) δ (y − x0) dy = K (x, x0, t) .

Thus, in general, the heat kernel (2.16) provides an evolution of this initial
data, concentrated originally at a point x0, into the entire space for a suitable
time interval t > 0. K (x, x0, t) may be thought as the temperature at (x, t)
caused by an initial burst of heat at (x0, 0)

6. Some examples

Now let us consider several elementary solutions of the characteristic
equation (2.13); more complicated cases may include special functions, like
Bessel, hypergeometric or elliptic functions [AAR99], [NU88], [Rai60], and



236 ERWIN SUAZO, SERGEI K. SUSLOV AND JOSÉ M. VEGA-GUZMÁN

[Wat44]. We encourage the reader to verify our formula with the examples
presented in this section; for each case under consideration one must first
solve the characteristic equation (2.13) subject to (2.14)–(2.15) and then one
must find the expressions (2.17)–(2.23) to obtain explicitly the FS (2.16).
Among important elementary cases of our general expressions for the Green
function (2.16)–(2.22) are the following:

Example 1. For the traditional diffusion equation

(6.1)
∂u

∂t
= a

∂2u

∂x2
, a = constant > 0

the heat kernel is

(6.2) K (x, y, t) =
1√
4πat

exp

(
−(x− y)2

4at

)
, t > 0.

Equation (5.1) gives the steady solution u0 = constant for all times t ≥ 0.
See [Can84] and references therein for a detailed investigation of the classical
one-dimensional heat equation.

Example 2. In mathematical models of the nerve cell, certain dendritic
branches can also be treated as equivalent cylinders in their transient re-
sponse. A dendritic branch is typically modeled using the cylindrical cable
equation. Understanding of the cable equation can bring insights on the dy-
namics of structural deformation to surrounding neurons that could affect
voltage propagation. In fact the cable equation can be used to model the
effects of an aneurysm on transmission of electrical signals in a dendrite. If
we consider the cable equation on an infinite cylinder:

(6.3) τ
∂u

∂t
= λ2 ∂2u

∂x2
+ u,

then the fundamental solution is given by

(6.4) K(x, y, t) =
√

τet/τ

√
4πλ2t

exp

(
−τ (x− y)2

4λ2t

)
, t > 0.

Example 3. We consider the Fokker–Planck equation

(6.5)
∂u

∂t
=

∂2u

∂x2
+ x

∂u

∂x
+ u.

The fundamental solution is given by

(6.6) K(x, y, t) =
1√

2π(1− e−2t)
exp

(
−
(
x− e−ty

)2
2(1− e−2t)

)
.

Example 4. Now let’s consider the equation

(6.7)
∂u

∂t
= a

∂2u

∂x2
+ (g − kx)

∂u

∂x
,
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with g ≥ 0, k > 0. The case g = 0 corresponds to the heat equation
with linear drift [Mil77] and in stochastic differential equations this equation
corresponds to the Kolmogorov forward equation associated to the regular
Ornstein–Uhlenbeck process [Cra09]. The characteristic equation associated
to (6.7) is

(6.8) µ′′ + 2kµ′ = 0

with solution µ(t) = ak−1
(
1− e−2kt

)
= 2ak−1e−kt sinh kt and the corre-

sponding fundamental solution is given by

K(x, y, t) =

√
ke

kt
2√

4πa sinh(kt)
exp

(
−

e−kt
(
g
(
ekt + 1

)
+ k

(
x− ekty

))2
4ak sinh(kt)

)
,

so our solution matches the one found in [Cra09] using Lie symmetries of
parabolic PDEs.

Example 5. The diffusion-type equation

(6.9)
∂u

∂t
= a

∂2u

∂x2
+ fxu,

where a > 0 and f are constants (see [Fey05], [Fey205], [Fey49a], [Fey49b],
[FH65], [CLSS08] and references therein regarding to similar cases of the
Schrödinger equation), has the the characteristic function of the form µ =
2at. The heat kernel is

(6.10) K (x, y, t) =
1√
4πat

exp

(
−(x− y)2

4at

)
exp

(
f

2
(x + y) t +

af2

12
t3
)

provided t > 0. Evolution of the uniform initial data u (x, 0) = u0 = constant
is given by

(6.11) u (x, t) = u0e
fxt+af2t3/3.

Example 6. The initial value problem for the following diffusion-type equa-
tion with variable coefficients

∂u

∂t
=(6.12)

a

(
∂2u

∂x2
− x2u

)
+ ω

(
cosh ((2a− 1) t) xu + sinh ((2a− 1) t)

∂u

∂x

)
,

where a > 0 and ω are two constants, was solved in [LS07] by using the
eigenfunction expansion method and a connection with the representations
of the Heisenberg–Weyl group N(3). Here we apply a different approach.
The solution of the characteristic equation

(6.13) µ′′ − 4a2µ = 0
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is µ = sinh (2at) and the corresponding heat kernel is given by

K (x, y, t)(6.14)

=
1√

2π sinh (2at)
exp

(
−
(
x2 + y2

)
cosh (2at)− 2xy

2 sinh (2at)

)

· exp
(

2ω
x sinh (t/2) + y sinh ((2a− 1/2) t)

sinh (2at)
sinh

(
t

2

))
· exp

(
−2ω2 cosh (2at)

sinh (2at)
sinh4

(
t

2

))
· exp

(
ω2

2

(
t− 2 sinh t +

1
2

sinh (2t)
))

, t > 0.

Indeed, by (2.17)–(2.19)

(6.15) α = γ = − cosh (2at)
2 sinh (2at)

, β =
1

sinh (2at)
.

In this case

fµ +
g

2a
µ′ = ω (cosh ((2a− 1) t) sinh (2at)− sinh ((2a− 1) t) cosh (2at))

= ω sinh t

and Equation (2.20) gives

(6.16) δ = ω
cosh t− 1
sinh (2at)

= 2ω
sinh2 (t/2)
sinh (2at)

.

By (2.21)

ε = ω
1− cosh t

sinh (2at) cosh (2at)
+ 2aω

∫ t

0

1− cosh τ

cosh2 (2aτ)
dτ(6.17)

+ ω

∫ t

0

cosh ((2a− 1) τ)
cosh (2aτ)

dτ,

where the integration by parts gives

2a

∫ t

0

1− cosh τ

cosh2 (2aτ)
dτ = (1− cosh t)

sinh (2at)
cosh (2at)

+
∫ t

0

sinh (2aτ)
cosh (2aτ)

sinh τ dτ.

Thus

ε = ω (1− cosh t)
cosh (2at)
sinh (2at)

+ ω

∫ t

0

sinh (2aτ) sinh τ + cosh ((2a− 1) τ)
cosh (2aτ)

dτ

and an elementary identity

(6.18) sinh (2at) sinh t + cosh ((2a− 1) t) = cosh (2at) cosh t

leads to an integral evaluation. Two other identities

cosh (2at) cosh t− sinh (2at) sinh t = cosh ((2a− 1) t) ,(6.19)
cosh (2at)− cosh ((2a− 1) t) = 2 sinh (t/2) sinh ((2a− 1/2) t)(6.20)
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result in

ε = ω
cosh (2at)− cosh ((2a− 1) t)

sinh (2at)
(6.21)

= 2ω
sinh (t/2) sinh ((2a− 1/2) t)

sinh (2at)
.

In a similar fashion,

(6.22) κ = −2ω2 sinh4 (t/2)
cosh (2at)
sinh (2at)

+
1
2
ω2

(
t− 2 sinh t +

1
2

sinh (2t)
)

,

and Equation (6.14) is derived. In the limit ω → 0 this kernel also gives
a familiar expression in statistical mechanics for the density matrix for a
system consisting of a simple harmonic oscillator [FH65].

Example 7. The case a = 1/2 corresponds to the equation

(6.23)
∂u

∂t
=

1
2

(
∂2u

∂x2
− x2u

)
+ ω xu

and the heat kernel (6.14) is simplified to the form

K (x, y, t) =

eω2t/2

√
2π sinh t

exp

−
(
(x− ω)2 + (y − ω)2

)
cosh t− 2 (x− ω) (y − ω)

2 sinh t

 ,

when t > 0. A similar diffusion-type equation

(6.24)
∂u

∂t
=

1
2

(
∂2u

∂x2
+ x2u

)
+ ω xu

can be solved with the aid of the kernel

K (x, y, t)

=
e−ω2t/2

√
2π sin t

exp

−
(
(x + ω)2 + (y + ω)2

)
cos t− 2 (x + ω) (y + ω)

2 sin t


provided 0 < t < π/2. We leave the details to the reader.

Example 8. Following the case of exactly solvable time-dependent Schrö-
dinger equation found in [MCS07], we consider the diffusion-type equation
of the form

(6.25)
∂u

∂t
= cosh2 t

∂2u

∂x2
+ sinh2 t x2u +

1
2

sinh 2t

(
2x

∂u

∂x
+ u

)
.

The corresponding characteristic equation

(6.26) µ′′ − 2 tanh t µ′ + 2µ = 0
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has two linearly independent solutions

µ1 = cos t sinh t + sin t cosh t,(6.27)

µ2 = sin t sinh t− cos t cosh t(6.28)

with the Wronskian W (µ1, µ2) = 2 cosh2 t, and the first one satisfies the
initial conditions (2.15). The heat kernel is

K (x, y, t)(6.29)

=
1√

2π (cos t sinh t + sin t cosh t)

· exp

((
y2 − x2

)
sin t sinh t + 2xy −

(
x2 + y2

)
cos t cosh t

2 (cos t sinh t + sin t cosh t)

)
provided 0 < t < T1 ≈ 0.9375520344, where T1 is the first positive root of
the transcendental equation tanh t = cot t. Then γ(t) < 0 and the integral
(2.26) converges for suitable initial data.

Example 9. A similar diffusion-type equation

(6.30)
∂u

∂t
= cos2 t

∂2u

∂x2
+ sin2 t x2u− 1

2
sin 2t

(
2x

∂u

∂x
+ u

)
has the characteristic equation of the form

(6.31) µ′′ + 2 tan t µ′ − 2µ = 0

with the same solution (6.27). It appeared in [MCS07] and [CLSS08] for a
special case of the Schrödinger equation. The corresponding heat kernel has
the same form (6.29) but with x and y interchanged:

K (x, y, t) =
1√

2π (cos t sinh t + sin t cosh t)

· exp

((
x2 − y2

)
sin t sinh t + 2xy −

(
x2 + y2

)
cos t cosh t

2 (cos t sinh t + sin t cosh t)

)
provided 0 < t < T2 ≈ 2.347045566, where T2 is the first positive root of the
transcendental equation tanh t = − cot t. We leave the details for the reader.

7. Solution of the nonhomogeneous equation

A diffusion-type equation of the form

(7.1)
(

∂

∂t
−Q(t)

)
u = F,

where Q stands for the second order linear differential operator in the right-
hand side of Equation (2.1) and F = F (t, x, u) , can be rewritten formally as
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an integral equation (the Duhamel principle; see [Caz03], [CH98], [LSU68],
[Lev07], [SS08], [Tao06] and references therein)

(7.2) u (x, t) = H (t, 0) u (x, 0) +
∫ t

0
H (t, s) F (s, x, u) ds.

Operator H (t, s) is given by (2.28). When F does not depend on u, one
gets a solution of the nonhomogeneous equation (7.1).

Indeed, a formal differentiation gives

(7.3)
∂u

∂t
=

∂

∂t
H (t, 0) u (x, 0) +

∂

∂t

∫ t

0
H (t, s) F (s, x, u) ds,

where

(7.4)
∂

∂t

∫ t

0
H (t, s) F (s, x, u) ds

= H (t, t) F (t, x, u) +
∫ t

0

∂

∂t
H (t, s) F (s, x, u) ds

and we assume that H (t, t) is the identity operator. Also

(7.5) Q(t)u = Q(t)H (t, 0) u (x, 0) +
∫ t

0
Q(t)H (t, s) F (s, x, u) ds

and (
∂

∂t
−Q(t)

)
u =

(
∂

∂t
−Q(t)

)
H (t, 0) u (x, 0) + F(7.6)

+
∫ t

0

(
∂

∂t
−Q(t)

)
H (t, s) F (s, x, u) ds,

where

(7.7)
(

∂

∂t
−Q(t)

)
H (t, s) = 0, 0 ≤ s < t

by construction of the operator H (t, s) in (2.28). This completes our formal
proof. A rigorous proof will be given elsewhere.
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[NSU91] Nikiforov, A.F.; Suslov, S.K.; Uvarov, V.B. Classical orthogonal poly-
nomials of a discrete variable. Translated from the Russian. Springer Series
in Computational Physics. Springer–Verlag, Berlin, New York, 1991. xvi+374
pp. ISBN: 3-540-51123-7. MR1149380 (92m:33019), Zbl 0743.33001.

[NU88] Nikiforov, A.F.; Uvarov, V.B. Special functions of mathematical physics.
A unified introduction with applications. Translated from the Russian
and with a preface by Ralph P. Boas. With a foreword by A. A.
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