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Jordan type of a k[C), X Cy]-module

Semra Oztiirk Kaptanoglu

ABSTRACT. Let E be the elementary abelian group C, xCjp, k a field of
characteristic p, M a finite dimensional module over the group algebra
k[E] and J the Jacobson radical J of k[E]. We prove that the decom-
position of M when considered as a k[(1 4 z)]-module for a p-point = in
J is well defined modulo J?.
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1. Introduction

Throughout this note k£ denotes a field of characteristic p > 0, unless
it is stated otherwise, E denotes the elementary abelian p-group of rank
2, generated by a and b, i.e., E = C,xCp, = (a,b), and M denotes a finite
dimensional k[E]-module, M| i denotes M as a k[H]-module for a subgroup
H of units of k[E].

The set of indecomposable k[C)]-modules (up to isomorphism) consists
of the ideals of k[C):], namely,

t__
(1) k[Cyl], J, J%, . JP

where J is the Jacobson radical of k[C}:]. However, when a finite group G
contains F as a subgroup by Higman’s theorem there are infinitely many
indecomposable k[G]-modules (up to isomorphism) [Hi]. When p = 2, the
infinite set of indecomposable k[E]-modules is determined in [Bal, and a co-
homological characterization is given in [Ca]. However, when p > 3, there is
no classification for indecomposable k[E]-modules. Thus, alternative means

are used in the study of k[E]-modules so that new subcategories of modules
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are defined and characterized. For instance, information, namely the num-
ber of i-dimensional indecomposable k[E]-modules, for i = 1,...,p, in the
restriction of a k[E]-module at p-points led to the definition of the subcate-
gory of modules of constant Jordan type [CFP)].

The p-points of k[E] are elements z = a(a — 1) + S(b— 1) + w of J with
«, 3 in k, not both zero, and w € J? so that (1 + x) is cyclic group of
order p. For such an z, k[(1 + z)] = k[C},] = k[z]/(aP) is a subalgebra of
K[E] for which k[E]| 14y is free. This property distinguishes p-points form
arbitrary points of Jg. For a p-point z, the subgroup (1 4+ z) of the group
of units of k[E] is called a shifted cyclic subgroup (following [Cal]). For a
k[E]-module M and a p-point z, by (1) the decomposition of M|, into
indecomposable k[(1 4+ z)]-modules is as follows;

Ml<1+x>’£ (E[(1 + 2)])% @ (J)»—' @ (J2)ap*2 [ ) (Jp—l)m‘

Thus M | (144 is determined by the p-tuple a(x) = (a1,...,a,) where a;
denotes the number of the i-dimensional indecomposable k[(1 + x)]-module
JP~t for J = rad(k[(1 + x)]). Hence a k[E]-module M can be studied through
such p-tuples a(x) where x is a p-point.

Dade’s [Da] criterion was the first significant result which used p-points,
namely, for an arbitrary elementary abelian p-group E, a k[E]-module M is
free if and only if M| 1, is free for all shifted cyclic subgroups of k[E]. In
[CFS] modules for Cp, x C,,, especially modules of constant Jordan type, i.e.,
modules having the same a(x) for all p-points z, are studied thoroughly.

In fact, p-points are defined and studied in the much more general context
of finite group schemes in [FP]. Later, in [FPS] generic and maximal Jordan
types for modules are introduced and studied; this is followed by [CFP]
where modules of constant Jordan type are introduced. Recently, in [Ka]
this type of study has been generalized to include the restrictions of modules
to subalgebras of k[G] that are of the form k[(1 + )] = k[C], for t > 1,
and x € J is a p'-point. A p’-point of k[G] is an element of J defined
analogous to a p-point, yet they are much more intricate to characterize.
The p'-points led to the definition of modules of constant p’-Jordan type
and modules of constant pf-power Jordan type for an abelian p-group G.
Also, a filtration of modules of constant Jordan type by modules of constant
pt-power Jordan type is obtained. Studying modules by means of p-points
is an active research area, see also [Fr|, [BP], et al. The main result of this
article is a variation on that theme for k[E]-modules:

Theorem 1. If M is a finite dimensional k[E]-module, and x,y are elements
of J — J? with x =y (mod JP), then the kernels of ' and y* on M are the
same for all i > 1. In particular, M |14, and M |,y have the same
decomposition.

This theorem is a generalization of Lemma 6.4 in [Ca] which states that
M (144 is free if and only if M|, is free which makes the rank variety,
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VE(M), of M well defined. The rank variety is defined as points z in J/J? at
which M |14,y is not free. Likewise, Theorem 1 makes the following subset
of J/JPx(NU{0})P, denoted by Jtg (M), called the Jordan set of M, well
defined.
Ttp(M) = {(@,6) | 5 € /7).

The Jordan set of M is an invariant of the module finer than its rank variety.
Although it is possible for two nonisomorphic k[E]-modules to have the same
Jordan set, the Jordan set may distinguish two nonisomorphic modules. The
Jordan set of M was first defined in [Oz] and used in [Kal], under the name
multiplicities set of M, to distinguish some types of k[Cyx Cy]-modules.

The significance of J/J? in the modular representation theory of elemen-
tary abelian p-groups, especially when the freeness of a module is concerned,
is manifested in Dade’s Theorem, in the definition of the rank variety, etc.
By our theorem it becomes clear that J/JP has a significance as well for the
Jordan decompostion of a module at a p-point z in J, for instance in the
study of modules of constant Jordan type. At this point there is a need for
a “geometric” interpretation for .J/JP similar to that of .J/J2.

When stated in terms of matrices our theorem takes the following form.

Corollary 2. Let A, B be commuting nilpotent nonzero matrices over k
with AP = 0, BP = 0. If X = f(A,B), Y = g(A, B) for polynomials
fy g € k[z1, z2] with no constant term, having at least one linear term and
f — g in the ideal (21, 22)P, then null(X?) = null(Y?) for all i. In particular,
A and B have the same Jordan canonical form.

2. A lemma

The formula in Lemma 3(i) below for counting the Jordan blocks of a
given size in the Jordan canonical form of a nilpotent matrix is used in the
proof of Theorem 1.

Lemma 3. Let X be a dxd matriz over a field F and a; denote the number
of txt Jordan blocks in the Jordan form of X. Suppose that X® = 0. Then

(i) a; = rank(X'1) — 2rank(X?) + rank(X')  for 1<t <s,

(i) Z a; = #{Jordan blocks in X} = rank(X") — rank(X) = null(X),
1=1

(iii) rank(X") = > (t—r)a.

r+1<t<s

Proof. In the course of the proof of this lemma we will use the notation
a(i) to denote a; in order not to use too small indices. Note also that (ii)
follows from (i). To prove (i) and (iii), without loss of generality, assume
that X is in Jordan canonical form. Since X® = 0, X consists of Jordan
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blocks of sizes less than or equal to s. Thus
(7))
X =
[jﬂ@a(l)
where [j;] denotes the txt upper triangular Jordan block with zero eigenvalue,
and @ a(t) in the exponent denotes the multiplicity of [j;] in X. Hence
d=7;_;ta(t) and rank(X) = >, ., rank([ji]) a(t). Note that
t—r, ifr<t
0, if r > t.

rank([j;]") = {

Thus rank([j;]") # 0 if and only if ¢ > r + 1 and

rank([jr41]") = 1,
rank([jr+2]") = 2,

rank([js]") = s —r.
Therefore

rank(X") = ) a(t)(rank([ji]"))

1<t<s
=0+---+0+a(r+1)+2a(r+2)+...+(s—7r)a(s)

= > (t—r)a(t).

r+1<t<s

In particular, for 7 = s — 1, when computing rank(X*~!) the only possibly
nonzero rank in the summation is rank([js]*~!) = 1. Hence one obtains

rank(X*71) = a(s).

For r = s—2, (since rank([js]*~2) = 2) there are only two possibly nonzero
terms in the summation, hence

rank(X°72) = a(s — 1) 4 2a(s),

By substituting the resulting formulas for a(s — 1) and a(s) in the formula
for rank(X*~3), one obtains

a(s —2) = rank(X*73) — 2a(s — 1) — 3a(s)
= rank(X*7?) — 2rank(X*?%) + rank(X*71).
This suggests the formula
a(s — i) = rank(X*~0F)) — 2 rank(X*7%) + rank(X*~C7Y) for 0 <i <s.
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The proof is by induction on ¢ in the above formula. Having seen that it is
true for ¢ = 1,2 and 3, suppose the above equality holds for all 1 < ¢ < r.
To prove it for r 4+ 1, recall that

rank(X*~ 0T = rank(X°72) = Z rank([7,]°~ DN a(t)
s—(r+1)<t<s

= Y (t-(s—(r+1)—1))a()

s—(r+1)<t<s
=a(s—(r+1))+2a(s—r)+3a(s—(r—1))
+o+(s=(s=(r+1)—1))a(s).
Therefore
a(s — (r+1)) = rank(X*~ D=1 _24(s —r) = 3a(s — (r — 1))
—4da(s—(r—2))—---—(r+2)a(s).

By the induction hypothesis, one obtains

,_g
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(
-3 [ rank(X*7") — 2 rank(Xs_(r_l)) + rank(XS—(T—Q))]
(

—14 rank(Xsf(T*l)) —2 rank(XS*(T*Q)) + rank(Xsf(rffS))]

- ( rank(X ™73 — 2 rank(x e~ (= (r=2))
+ rank(Xs_(T—("—l)))]
—(r+1) [ rank(XS*(’“*(T*))) _ 2rank(XS*(Tf(r—1))))
— (r +2) rank(X >~ ==y,
Thus one obtains
a(s — (r+1))
= rank(X* DY) — 2 rank(X D) 4 (4 — 3) rank(X57)
+ ( -2+ (=3)(-2) - 4] rank(X°~ "Dy 4.4
+ ( —r+(—(r+1))(-2)—(r+ 2)] rank(X*1)
= rank(XS—(r+2)) _9 rank(Xs—(r-H)) + rank(X*T). -
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3. Proof of Theorem 1

In the following discussion to simplify the notation we use J for rad(k[E]).
Note that J?P~1 = 0.

Let X, Y be the matrices which represent the action of x, y, and also
let A, B denote the matrices repesenting the actions of a — 1 and b — 1,
on M respectively. Note that J = (A4, B) and J?’~! = 0. Since X and Y
commute, if null(X) = null(Y), then null(X?) = null(X?) for every i > 1.

Claim. null(X) = null(Y).

Proof. Since the situation is symmetric with respect to X and Y, it is
sufficient to show that null(X) C null(Y"). By the hypothesis on x and y we
can write Y = X +w(A, B) with X = aA+ B+c(A, B) for some v € k, for
a, B in k not both 0, ¢(A, B) in J? but not containing any terms with more
than p— 1 factors, i.e., can only contain yA'B7 with i+j in {2,...,p—1} as
a term, and w(A, B) containing only terms with at least p factors. Since the
situation is symmetric with respect to A and B, without loss of generality
assume that a # 0.
Suppose Xm = 0 for some nonzero m in M. Then

(2) —(aA+ BB)m = ¢(A, B)m,
(3) Ym = w(A, B)m.
Multiplying (2) with AP~2BP~1 we get

—AP2BP~ YA 4 BB)m = APT2BP71¢(A, Bym € J*"'m = 0.
Since a # 0, we have AP~ BP~lm = 0, and hence, J??~2m = 0. Multiplying
(2) with AP=3BP~1 gives

—AP3BP YA 4 BB)m = APT3BP¢(A, Bym € J*#7%m = 0.
Hence AP~2BP~1m = 0 as a # 0. Similarly, multiplying (2) with AP~2BP~2
gives that AP~!BP~2m;m = 0. Thus J?3m = 0. Using J?3m = 0, and
multiplying (2) with the terms AP~2BP=3 AP=3BP=2 AP=4BP~! we obtain
that J?~4m = 0. Then by induction on [ in J?~¢, for 2 <1 < p, we obtain
that JPm = 0. Hence by (3) Ym € JPm = 0 proving the claim. O

Thus by the above remarks we have null(X?) = null(Y?).
The second statement of the theorem follows from the formula
a; = rank(X 1) — 2rank(X?) + rank(X**1)
given in Lemma 3(i). Since null(X?) = null(Y?), we have rank(X?) =
rank(Y?) for all i. Hence each Jordan block occurs with the same multi-
plicity in the Jordan form of X and Y. That is, M|,y and M|, have
the same decomposition. O
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