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Inhomogeneous approximation
by coprime integers

Alan Haynes

Abstract. This paper addresses a problem recently raised by Laurent
and Nogueira about inhomogeneous Diophantine approximation with
coprime integers. A corollary of our main theorem is that for any irra-
tional α ∈ R and for any γ ∈ R and ε > 0 there are infinitely many pairs
of coprime integers m,n such that

|nα−m− γ| ≤ 1/|n|1−ε.
This improves upon previously known results, in which the exponent of
approximation was at best 1/2.
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1. Introduction

Dirichlet’s theorem in Diophantine approximation asserts that for any
irrational α ∈ R there are infinitely many m,n ∈ Z for which

|nα−m| ≤ 1

|n|
.

The inhomogeneous version of this result, proved by Minkowski, is that for
any irrational α ∈ R and for any γ ∈ R \ (αZ+Z) there are infinitely many
m,n ∈ Z for which

|nα−m− γ| ≤ 1

4|n|
.
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The reader is advised to consult the Cambridge Tract by Cassels [2] for a
nice account of Minkowski’s theorem (see also [6, Theorem IV.9.1]).

In this paper we address the problem of obtaining analogous results with
m and n coprime. In the homogeneous case there is little need to pause
for thought, since any common factors can be dispensed with immediately
without significantly changing the problem. However in the inhomogeneous
case the situation is more delicate. The best known analogue of Dirichlet’s
theorem in this general setting is a recent result of Laurent and Nogueira,
who proved in [5] that for any irrational α ∈ R and for any γ ∈ R, there are
infinitely many pairs of coprime integers m and n such that

|nα−m− γ| ≤ c

|n|1/2
,

where c is a constant depending only on α and γ. Their proof relies on
estimates for the density of orbits of points in R2 under the action of SL2(Z).
In this paper, using a different approach, we obtain the following result.

Theorem 1. Let c > 2
√

log 2. For any irrational α ∈ R and for any γ ∈ R
there are infinitely many pairs of coprime integers m,n such that

(1) |nα−m− γ| ≤
exp(c

√
log |n|)
|n|

.

As n → ∞ the function exp(c
√

log n) grows asymptotically more slowly
than any power of n, and so we have the following immediate corollary.

Corollary 1. For any irrational α ∈ R and for any γ ∈ R and ε > 0 there
are infinitely many pairs of coprime integers m,n such that

|nα−m− γ| ≤ 1

|n|1−ε
.

Our method uses only elementary techniques and it seems plausible that
by a refinement one might be able to replace the right hand side of (1) by
c′/|n|. This would clearly be best possible, apart from the determination of
the best constant c′.

2. Preliminary results

2.1. Continued fractions. We write the simple continued fraction expan-
sion of an irrational real number α as

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

= [a0; a1, a2, a3, . . . ],

where a0 is an integer and a1, a2, . . . is a sequence of positive integers
uniquely determined by α. The rational numbers

pk
qk

= [a0; a1, . . . , ak], k ≥ 0,
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are the principal convergents to α, and it is assumed that pk and qk are
coprime and that qk > 0 for all k. For k ≥ 0 we also write

Dk = qkα− pk.

We have by the basic properties of continued fractions that for k ≥ 1,

(2) pk+1 = ak+1pk + pk−1, qk+1 = ak+1qk + qk−1,

(3) pkqk−1 − qkpk−1 = (−1)k+1, and

(4) (−1)kDk = |qkα− pk| ≤
1

qk+1
.

For fixed irrational α we can use the greedy algorithm to represent any
natural number uniquely as a weighted sum of the qk’s, where the kth weight
does not exceed ak+1. This is made precise by the following lemma.

Lemma 1 ([6, Section II.4]). Suppose α ∈ R is irrational. Then for every
n ∈ N there is a unique integer M ≥ 0 and a unique sequence {ck+1}∞k=0 of
integers such that qM ≤ n < qM+1 and

n =
∞∑
k=0

ck+1qk,(5)

with 0 ≤ c1 < a1, 0 ≤ ck+1 ≤ ak+1 for k ≥ 1,

ck = 0 whenever ck+1 = ak+1 for some k ≥ 1, and

ck+1 = 0 for k > M.

Furthermore we can construct a similar expansion for real numbers by
using the Dk’s in place of the qk’s. In what follows {x} denotes the fractional
part of a real number x.

Lemma 2 ([6, Theorem II.6.1]). Suppose α ∈ R \Q has continued fraction
expansion as above. For any γ ∈ [−{α}, 1−{α})\(αZ+Z) there is a unique
sequence {bk+1}∞k=0 of integers such that

γ =

∞∑
k=0

bk+1Dk,(6)

with 0 ≤ b1 < a1, 0 ≤ bk+1 ≤ ak+1 for k ≥ 1, and

bk = 0 whenever bk+1 = ak+1 for some k ≥ 1.

The relevance of these expansions to inhomogeneous approximation is
explained by the following result, which can be deduced from the arguments
in [6, Section II.6] (a rigorous proof can also be found in [1], which should
soon be available electronically).

Lemma 3. Let α ∈ R \Q and suppose that γ ∈ [−{α}, 1−{α}) \ (αZ+Z).
Choose an integer n ∈ N and, referring to the expansions (5) and (6), write



252 ALAN HAYNES

δk+1 = ck+1 − bk+1 for k ≥ 0. If δk+1 = 0 for all k < m and some m ≥ 4
then ∣∣∣∣∣nα−

M∑
k=0

ck+1pk − γ

∣∣∣∣∣ ≤ 3 max(1, |δm+1|)
qm+1

.

Finally we will use the well known fact that

pk−1
qk−1

< α <
pk
qk

for k odd,(7)

and we will also need the following inhomogeneous version of this fact.

Lemma 4. Suppose α ∈ R \Q and γ ∈ [−{α}, 1− {α}) \ (αZ + Z). Then,
using the notation of Lemma 2, if m ≥ 4 and bm+1 6= 0 we have that

(8) sgn

( ∞∑
k=m

bk+1Dk

)
= (−1)m.

Proof. We have from (4) that sgn(Dk) = (−1)k for k ≥ 1. Therefore the
terms in (8) with opposite sign to Dm, when added together, are no larger
in absolute value than

|am+2Dm+1 + am+4Dm+3 + · · · | .

By (2) this expression is equal to

|(Dm+2 −Dm) + (Dm+4 −Dm+2) + (Dm+6 −Dm+4) + · · · | = |Dm|,

and this shows that

(−1)m

( ∞∑
k=m

bk+1Dk

)
≥ 0.

Furthermore the assumption that γ 6∈ (αZ+Z) means that there cannot be
equality in this inequality, so we are finished. �

2.2. Estimates from elementary number theory. In what follows µ
denotes the Möbius function, ϕ the Euler-phi function, ω(n) the number
of distinct prime factors of n, π(x) the number of primes ≤ x, and (m,n)
the greatest common divisor of m and n. The letter p, without a sub-
script, will always denote a prime number (not to be confused with the
quantities pk coming from continued fractions). We will use the Landau and
Vinogradov asymptotic notation with the standard meaning for the symbols
�,�, O(·), o(·), and ∼, and all implied constants will be universal unless
otherwise indicated. All summations are restricted to positive integers.

For use in what follows we remind the reader of two well known results
of Mertens (see [4, Theorems 427, 428]), that∑

p≤x

1

p
∼ log log x, and(9)



INHOMOGENEOUS APPROXIMATION BY COPRIME INTEGERS 253∏
p≤x

(
1− 1

p

)
∼ e−γ

log x
,(10)

where γ is Euler’s constant. It follows from (10) (see [4, Theorem 328]) that

(11)
ϕ(n)

n
� 1

log log n
.

Next we prove a lemma about pairs of coprime integers in simultaneous
arithmetic progressions.

Lemma 5. Suppose m,n, r, s ∈ N satisfy (r, s) = 1 and nr−ms 6= 0. Then
there is a universal constant κ > 0 such that for any A ∈ N with

A > κ log log (max(3, |ms− nr|)) 2ω(ms−nr),

we can find an integer 1 ≤ b ≤ A such that

(m+ br, n+ bs) = 1.

Proof. Assume without loss of generality, by reversing the roles of the rele-
vant variables if necessary, that nr−ms > 0. Write N(A) = N(m,n, r, s, A)
for the number of integers 1 ≤ b ≤ A such that (m + br, n + bs) = 1. By
Möbius inversion we have

N(A) =
∑
b≤A

∑
d|(m+br,n+bs)

µ(d).

For each integer d in the inner sum which divides (m + br, n + bs) we can
write m+br = ed and n+bs = fd, and by reversing the order of summation
we obtain

N(A) =
∑
d∈N

µ(d)
∑
e,f

1,(12)

where the inner sum is over pairs of integers e and f which satisfy the
conditions

1 ≤ e ≤ (m+Ar)/d, 1 ≤ f ≤ (n+As)/d,(13)

ed = m mod r, fd = n mod s, and(14)

ed−m
r

=
fd− n
s

.(15)

Now to simplify things let us first deal with the case when (m, r) = (n, s) =
1. For a given d if there are integers e and f satisfying (15) then clearly we
must have that d|nr −ms.

On the other hand suppose that d|nr−ms and that e is any integer which
satisfies the conditions in (13) and (14). Then we claim that there is exactly
one choice of f for which (13)–(15) hold. To see this write

(16) nr −ms = (g − se)d, with g ∈ Z,
so that

gd = nr + s(ed−m) = 0 mod r.
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Since (m, r) = 1 and ed = m mod r we deduce that (d, r) = 1 and from the
equation above we obtain g = 0 mod r. Writing g = fr we then see that

fd = n+ s

(
ed−m

r

)
= n mod s,

and that (15) is satisfied. Furthermore conditions (15), (16), and 1 ≤ e ≤
(m+ Ar)/d together imply that 1 ≤ f ≤ (n+ As)/d. Finally once e and d
are chosen there is clearly at most one choice for f , so our claim is verified.

Returning to (12) this shows that when (m, r) = (n, s) = 1,

N(A) =
∑

d|nr−ms

µ(d)
∑

e≤(m+Ar)/d
e=md−1 mod r

1

=
∑

d|nr−ms

µ(d)

(
m+Ar

dr
+ ξ(d)

)
,

for some real constants ξ(d) satisfying |ξ(d)| ≤ 1. This gives us the inequality

N(A) ≥
(
A+

m

r

) ∑
d|nr−ms

µ(d)

d
−

∑
d|nr−ms

|µ(d)|

≥ Aϕ(nr −ms)
nr −ms

− 2ω(nr−ms).

In the general case if (m, r) = d1 and (n, s) = d2 then since (r, s) = 1 we
have that (m+ br, n+ bs) = 1 if and only if(

m

d1
+ b

(
r

d1

)
,
n

d2
+ b

(
s

d2

))
= 1,

and therefore

N(m,n, r, s, A) = N

(
m

d1
,
n

d2
,
r

d1
,
s

d2
, A

)

≥ A
ϕ
(
nr−ms
d1d2

)
(
nr−ms
d1d2

) − 2
ω
(
nr−ms
d1d2

)

≥ Aϕ(nr −ms)
nr −ms

− 2ω(nr−ms).

Here we have used the facts that if d|M then ω(M/d) ≤ ω(M) and

ϕ(M/d)

(M/d)
=

∏
p|(M/d)

(
1− 1

p

)
≥ ϕ(M)

M
.

Our lower bound for N(A), together with (11), completes the proof of the
lemma. �
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We will also use the following elementary result (the proof of which is
adapted from an argument in [3]) about prime divisors of integers in short
intervals.

Lemma 6. Let c > 0 and for x > 1 set

gc(x) = max
(

3, 2(c
√
log x)

)
and hc(x) =

gc(x)

log gc(x) log log gc(x)
.

Then for any ε > 0 and for all sufficiently large x (depending on ε and c),
there is at least one integer N ∈ [x, x+ hc(x)] with

ω(N) ≤ (1 + ε)
√

log x

c log 2
.

Proof. For n ∈ N let
ωc(n) =

∑
p|n

p>gc(n)

1.

First of all we have that∑
x≤n≤x+hc(x)

(ω(n)− ωc(n))

≤
∑

p≤gc(x+hc(x))

∑
x≤n≤x+hc(x)

p|n

1

≤ hc(x)
∑

p≤gc(x+hc(x))

1

p
+ π(gc(x+ hc(x))).

Now by (9), the prime number theorem, and the fact that gc(x + hc(x)) ∼
gc(x), it follows that there is a number x0 = x0(ε, c) such that∑

x≤n≤x+hc(x)

(ω(n)− ωc(n))

≤ (1 + ε)

(
hc(x) log log gc(x) +

gc(x)

log gc(x)

)
= 2(1 + ε)hc(x) log log gc(x),

for all x ≥ x0. Therefore for every x ≥ x0 there is at least one integer
N ∈ [x, x+ hc(x)] with

ω(N)− ωc(N) ≤ 2(1 + ε) log log gc(x),

and we have that

ω(N) ≤ ωc(N) + 2(1 + ε) log log gc(N)

≤ logN

log gc(N)
+ 2(1 + ε) log log gc(N)

≤ (1 + ε′)
√

log x

c log 2
,
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provided that x is sufficiently large. �

3. Proof of main result

Now we come to the proof of Theorem 1. Let α ∈ R\Q and let γ ∈ R\{0}
(the case when γ = 0 is trivial to verify). There are two cases to consider,
depending on whether or not γ ∈ αZ + Z. The analysis in both cases is
fundamentally the same, so we will treat them simultaneously. For each
i ≥ 0 define a pair of integers mi and ni as follows. If γ = α`+ `′ for some
`, `′ ∈ Z then set

mi = pi − `′ and ni = qi + `.

If γ 6∈ αZ + Z then choose ` ∈ Z so that γ − ` ∈ [−{α}, 1− {α}), and write

γ − ` =
∞∑
k=0

bk+1Dk

as in Lemma 2. Then set

mi = −`+
i−1∑
k=0

bk+1pk and ni =
i−1∑
k=0

bk+1qk.

Next for each a, b ≥ 0 define

mi(a, b) = mi + api−1 + bpi and ni(a, b) = ni + aqi−1 + bqi.

In the case when γ ∈ αZ + Z we have from (4) that for each i ≥ 1,

|ni(a, b)α−mi(a, b)− γ| = |(1 + b)Di + aDi−1| ≤
1 + b

qi+1
+
a

qi
.

On the other hand in the case when γ 6∈ αZ + Z we have from Lemma 3
that for each i ≥ 4,

|ni(a, b)α−mi(a, b)− γ| =

∣∣∣∣∣
∞∑
k=i

bk+1Dk − aDi−1 − bDi

∣∣∣∣∣
≤ max(1, bi+1) + b

qi+1
+
a

qi

≤ b

qi+1
+

1 + a

qi
,

using the fact that bi+1 ≤ ai+1. In either case we have for i ≥ 4 that

(17) |ni(a, b)α−mi(a, b)− γ| ≤
1 + a+ b

qi
.

Now consider the quantities

Ni(a) = ni(a, 0)pi −mi(a, 0)qi.

Using (3) we have that

Ni(a) = nipi −miqi + (−1)i+1a.(18)
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We would like to apply Lemma 6 to show that we can find an integer a
which is not too large, for which ω(Ni(a)) is also not too large. In order to
do this we will verify that |Ni(0)| → ∞ as i→∞. Note that if this were not
the case we would still be able to complete the proof (in fact with a better
bound), however we still use the extra information for our final calculations.

In the case when γ ∈ αZ + Z we have by (4) and (7) that

Ni(0) = pi`+ qi`
′

= qi

(
pi
qi
`+ `′

)
= qi

(
α`+ `′ +

(−1)i+1ξi`

qiqi+1

)
= qiγ +

(−1)i+1ξi`

qi+1
,

for some constant 0 < ξi ≤ 1. Since γ 6= 0 it is clear in this case that
|Ni(0)| ∼ qi|γ| → ∞ as i→∞.

In the case when γ 6∈ αZ + Z we have that

Ni(0) = niqi

(
pi
qi
− mi

ni

)
= niqi

(
pi
qi
− α+

1

ni
(niα−mi)

)
= niqi

(
pi
qi
− α+

1

ni

(
γ −

∞∑
k=i

bk+1Dk

))
.

Thus by (7) and Lemmas 3 and 4 we obtain for i ≥ 4 that

Ni(0) = qiγ +
(−1)i+1ξi,1ni

qi+1
+

(−1)i+1ξi,2 max(1, bi+1)qi
qi+1

,

for some constants 0 < ξi,1 ≤ 1 and 0 < ξi,2 ≤ 3. Finally by the uniqueness
of the expansion in Lemma 1 we have that ni < qi and we conclude that

Ni(0) = qiγ + (−1)i+1ξi

for some 0 < ξi ≤ 4. As before this shows that |Ni(0)| ∼ qi|γ| → ∞ as
i→∞.

Now choose c > 0 and ε > 0. If i0 = i0(ε, c) is chosen large enough then
it follows from (18) and Lemma 6 that for all i ≥ i0, there is an integer
1 ≤ a ≤ hc(|Ni(0)|) with

(19) ω(Ni(a)) ≤
(1 + ε)

√
log |Ni(0)|

c log 2
.

There are a couple minor technical points here, namely that Ni(0) could be
negative and that it Ni(a) < Ni(0) for half of the values of i. However these
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don’t interfere significantly with the proof, only possibly with the choice of
i0 above.

Supposing that 1 ≤ a ≤ hc(Ni(0)) is chosen so that (19) is satisfied, we
then apply Lemma 5 with

m = mi(a, 0), n = ni(a, 0), r = pi, and s = qi.

We have that

log log (max(3, |ms− nr|)) 2ω(ms−nr)

= log log (max(3, |Ni(a)|)) 2ω(Ni(a))

= o (gc′(qi)) as i→∞,

for any c′ > (1 + ε)/c log 2. Therefore by the lemma, for all i sufficiently
large we can find an integer 1 ≤ b ≤ gc′(qi) with (mi(a, b), ni(a, b)) = 1.
Then by (17) we have that

|ni(a, b)α−mi(a, b)− γ| ≤
1 + hc(|Ni(0)|) + gc′(qi)

qi
.

Now notice that in the above analysis we can always find a suitable ε > 0,
as long as c, c′ > 0 are chosen so that cc′ > 1

log 2 . Therefore by relabeling we

may assume that c = c′ > 1/
√

log 2 and that ε > 0 has been chosen so that
c2 < (1 + ε)/ log 2. Also note that we can find a constant ρ > 0, depending
only on γ, such that

gc(|Ni(0)|) ≤ ρgc(qi) for all 0 ≤ c ≤ 1.

Putting these observations together, we conclude that for any 1/
√

log 2 <
c ≤ 1 there is an integer i0 = i0(c) such that for all i ≥ i0, there are integers
0 ≤ a, b ≤ gc(qi) with (mi(a, b), ni(a, b)) = 1 and

|ni(a, b)α−mi(a, b)− γ| ≤
3(1 + ρ)gc(qi)

qi
.

For such a choice we also have that gc(qi) ≤ ρ′gc(ni(a, b)) and that

ni(a, b) ≤ ρ′qigc(qi) ≤ ρ′qigc(ni(a, b)),

where again ρ′ > 0 is some constant that only depends on γ (in the case
when γ 6∈ (αZ+Z) we can take ρ′ = 1). Substituting back into our inequality
above gives

|ni(a, b)α−mi(a, b)− γ| ≤
3ρ′(1 + ρ)g2c(ni(a, b))

ni(a, b)
.

Since this holds for all 1/
√

log 2 < c ≤ 1 the constant 3ρ′(1 + ρ) can be
ignored for large i (i.e., the inequality is always true for a smaller value of
c in this interval but possibly with a larger value of i0), and we therefore
obtain the statement of the theorem.
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