
New York Journal of Mathematics
New York J. Math. 18 (2012) 315–336.

Homogeneous SK1 of simple graded
algebras

R. Hazrat and A. R. Wadsworth

Abstract. For a simple graded algebra S = Mn(E) over a graded divi-
sion algebra E, a short exact sequence is established relating the reduced
Whitehead group of the homogeneous part of S to that of E. In par-
ticular it is shown that the homogeneous SK1 is not in general Morita
invariant. Along the way we prove the existence and multiplicativity of
a Dieudonné determinant for homogeneous elements of S.
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Graded methods in the theory of valued division algebras have proved to
be extremely useful. A valuation v on a division algebra D induces a filtra-
tion on D which yields an associated graded ring gr(D). Indeed, gr(D) is a
graded division algebra, i.e., every nonzero homogeneous element of gr(D) is
a unit. While gr(D) has a much simpler structure than D, nonetheless gr(D)
provides a remarkably good reflection of D in many ways, particualrly when
the valuation on the center Z(D) is Henselian. The approach of making cal-
culations in gr(D), then lifting back to get nontrivial information about D
has been remarkably successful. See [JW, W1] for background on valued di-
vision algebras, and [HwW, TW1, TW2] for connections between valued and
graded division algebras. The recent papers [HW1, HW2, WY, W2] on the
reduced Whitehead group SK1 and its unitary analogue have provided good
illustrations of the effectiveness of this approach. Notably it was proved
in [HW1, Th. 4.8, Th. 5.7] that if v on Z(D) is Henselian and D is tame
over Z(D), then SK1(D) ∼= SK1(gr(D)) and SK1(gr(D)) ∼= SK1(q(gr(D))),
where q(gr(D)) is the division ring of quotients of gr(D). This has allowed
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recovery of many of the known calculations of SK1(D) with much easier
proofs, as well as leading to determinations of SK1(D) in some new cases.

By the graded Wedderburn theorem (see [HwW, Prop. 1.3(a)] and [NvO,
Thm 2.10.10]), any simple graded algebra S finite-dimensional over its center
T has the form S = Mn(E)(δ1, . . . , δn), where the δi lie in an abelian group Γ
containing the grade group ΓE. That is S is the n×n matrix algebra over a
graded division algebra E with its grading shifted by (δ1, . . . , δn). Since S is
known to be Azumaya algebra over T, there is a reduced norm map on the
group of units, NrdS : S∗ → T∗; one can then define the reduced Whitehead
group SK1(S) in the usual manner as the kernel of the reduced norm of S
modulo the commutator subgroup of S∗ (see Definition 2.1). However SK1 is
not a “graded functor”, i.e., it does not take into account the grading on S.

To factor in the grading on S, we introduce in this paper the homogeneous
reduced Whitehead group SKh

1(S) (see Definition 2.2), which treats only the
homogeneous units of S. We establish a short exact sequence relating SKh

1(S)
to SK1(E) (see Theorem 2.4) which allows us to calculate SKh

1(S) in many
cases. In particular we show that SKh

1 is not in general Morita invariant
for E, and indeed can behave quite badly when the semisimple ring S0 is
not simple (see Example 2.6). As a prelude to this, in §1 we prove the
existence and multiplicativity of a Dieudonné determinant for homogeneous
elements of S = Mn(E)(δ1, . . . , δn). This was originally needed for the work
on SKh

1 , but later it turned out that the ungraded Dieutdonné determinant
for the semisimple algebra S0 was all that was needed. We have nonetheless
included the development of the homogeneous Dieudonné determinant, since
we feel that it is of some interest in its own right. Throughout the paper we
assume that the grade group Γ is abelian. From §2 on we are interested in
graded division algebras arising from valued division algebras, and we then
make the further assumption that the abelian group Γ is torsion free.

1. Dieudonné determinant

Throughout this paper we will be working with matrices over graded
division rings. Recall that a graded ring E =

⊕
γ∈Γ Eγ is called a graded

division ring if every nonzero homogeneous element of E is a unit, i.e. it has
a (two-sided) multiplicative inverse. We assume throughout that the index
set Γ is an abelian group. Note that the hypothesis on E implies that the
grade set ΓE = {γ ∈ Γ | Eγ 6= {0}} is actually a subgroup of Γ. We write E∗h
for the group of homogeneous units of E, which consists of all the nonzero
homogeneous elements of E, and can be a proper subgroup of the group E∗

of all units of E.
Let Mn(E) be the n × n matrix ring over the graded division ring E.

For any x ∈ E, let Eij(x) be the matrix in Mn(E) with x in (i, j)-position
and 0’s otherwise. Take any δ1, . . . , δn ∈ Γ. The shifted grading on Mn(E)
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determined by (δ1, . . . , δn) is defined by setting,

(1.1) deg(Eij(x)) = deg(x) + δi − δj , for any homogeneous x in E.

Now extend this linearly to all of Mn(E). One can then see that for λ ∈ Γ, the
λ-component Mn(E)λ consists of those matrices with homogeneous entries,
with the degrees shifted as follows:

(1.2) Mn(E)λ =


Eλ+δ1−δ1 Eλ+δ2−δ1 · · · Eλ+δn−δ1
Eλ+δ1−δ2 Eλ+δ2−δ2 · · · Eλ+δn−δ2

...
...

. . .
...

Eλ+δ1−δn Eλ+δ2−δn · · · Eλ+δn−δn

 .

That is, Mn(E)λ consists of matrices with each ij-entry lying in Eλ+δj−δi .
We then have

Mn(E) =
⊕
λ∈Γ

Mn(E)λ and Mn(E)λ ·Mn(E)µ ⊆Mn(E)λ+µ for all λ, µ ∈ Γ,

which shows that Mn(E) is a graded ring. We denote the matrix ring with
this grading by Mn(E)(δ1, . . . , δn) or Mn(E)(δ), where δ = (δ1, . . . , δn). It
is not hard to show that Mn(E)(δ) is a simple graded ring, i.e., it has no
nontrivial homogeneous two-sided ideals. Observe that for S = Mn(E(δ)),
the grade set is

(1.3) ΓS =
n⋃
i=1

n⋃
j=1

(δj − δi) + ΓE,

which need not be a group. However, if we let

S∗h = {A ∈ S | A is homogeneous and A is a unit of S},

which is a subgroup of the group of units S∗ of S, and set

Γ∗S = {deg(A) | A ∈ S∗h},

then Γ∗S is a subgroup of Γ, with ΓE ⊆ Γ∗S ⊆ ΓS.
Note that when δi = 0, 1 ≤ i ≤ n, then Mn(E)λ = Mn(Eλ). We refer to

this case as the unshifted grading on Mn(E).
For any graded rings B and C, we write B ∼=gr C if there is graded ring

isomorphism B → C, i.e., a ring isomorphism that maps Bλ onto Cλ for all
λ ∈ ΓB = ΓC.

The following two statements can be proved easily (see [NvO, pp. 60-61]):

• If α ∈ Γ and π ∈ Sn is a permutation, then

(1.4) Mn(E)(δ1, . . . , δn) ∼=gr Mn(E)(δπ(1) + α, . . . , δπ(n) + α).

• If α1, . . . , αn ∈ Γ with αi = deg(ui) for some units ui ∈ E∗h, then

(1.5) Mn(E)(δ1, . . . , δn) ∼=gr Mn(E)(δ1 + α1, . . . , δn + αn).
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Take any δ1, . . . , δn ∈ Γ. In the factor group Γ/ΓE, let ε1 +ΓE, . . . , εk+ΓE

be the distinct cosets in {δ1+Γ, . . . , δn+Γ}. For each ε`, let r` be the number
of i with δi + Γ = ε` + Γ. It was observed in [HwW, Prop. 1.4] that

(1.6) Mn(E)0
∼= Mr1(E0)× · · · ×Mrk(E0).

Thus Mn(E)0 is a a semisimple ring; it is simple if and only if k = 1. Indeed,
(1.6) follows easily from the observations above. For, using (1.4) and (1.5)
we get

(1.7) Mn(E)(δ1, . . . , δn) ∼=gr Mn(E)(ε1, . . . , ε1, ε2, . . . , ε2, . . . , εk, . . . , εk),

with each ε` occurring r` times. Now (1.2) for λ = 0 and (δ1, . . . , δn) =
(ε1, . . . ε1, ε2, . . . , ε2, . . . , εk, . . . , εk) immediately gives (1.6).

If the graded ring E is commutative then the usual determinant map is
available, and det

(
Mn(E)λ

)
⊆ Enλ. Indeed, if a = (aij) ∈ Mn(E)λ, then

det(a) =
∑

σ∈Sn sgn(σ)a1σ1a2σ2 . . . anσn ∈ E. But by (1.2)

(1.8) deg(a1σ1a2σ2 . . . anσn) = nλ+
n∑
i=1

δσ(i) −
n∑
i=1

δi = nλ.

When E is not commutative, there is no well-defined determinant available
in general. For a division ring D, Dieudonné constructed a determinant map
which reduces to the usual determinant when D is commutative. This is a
group homomorphism det : GLn(D) → D∗/[D∗, D∗]. The kernel of det is
the subgroup En(D) of GLn(D) generated by elementary matrices, which
coincides with the commutator group [GLn(D),GLn(D)] unless Mn(D) =
M2(F2) (see Draxl [D, §20]). Note that the construction of a Dieudonné
determinant has been carried over to (noncommutative) local and semilocal
rings in [V].

Since graded division rings behave in many ways like local rings, one may
ask whether there is a map like the Dieudonné determinant in the graded
setting. We will show that this is indeed the case, so long as one restricts
to homogeneous elements. Specifically, let E be a graded division ring with
grade group ΓE ⊆ Γ with Γ abelian, and let δ = (δ1, . . . , δn), where δi ∈ Γ.
Let S = Mn(E)(δ) be the matrix ring over E with grading shifted by δ.
Denote by Sh the set of homogeneous elements of S and by S∗h or GLhn(E)(δ)
the group of homogeneous units of S. We will show in Theorem 1.2 that there
is a determinant-like group homomorphism detE : S∗h → E∗h/[E

∗
h,E
∗
h] which is

compatible with the Dieudonné determinant on the semisimple ring S0 (see
commutative diagram (1.18)).

We first show that every matrix in GLhn(E)(δ) can be decomposed into
strict Bruhat normal form. In this decomposition, a triangular matrix is
said to be unipotent triangular if all its diagonal entries are 1’s.

Proposition 1.1 (Bruhat normal form). Let E be a graded division ring
with grade group ΓE ⊆ Γ. Let S = Mn(E)(δ) be a matrix ring over E with
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grading shifted by δ = (δ1, . . . , δn), δi ∈ Γ. Then every A ∈ S∗h has a unique
strict Bruhat normal form, i.e., A can be decomposed uniquely as

A = TUPπV

for matrices T,U, Pπ, V in S such that T is unipotent lower triangular, U
is diagonal and invertible, Pπ is a permutation matrix, and V is unipotent
upper triangular with PπV P

−1
π also unipotent upper triangular. Moreover,

T , UPπ, and V are homogeneous matrices, with deg(T ) = deg(V ) = 0
and deg(UPπ) = deg(A). Also, T is a product of homogeneous elementary
matrices (of degree 0).

Proof. The construction follows closely that in Draxl [D, §19, Thm 1],
with extra attention given to degrees of the homogeneous matrices in the
graded ring S = Mn(E)(δ). We will carry out elementary row operations on
homogeneous invertible matrices, which corresponds to left multiplication by
elementary matrices. But, we use only homogeneous elementary matrices
thereby preserving homogeneity of the matrices being reduced. For x ∈ E
and i, j ∈ {1, 2, . . . , n} with i 6= j, let eij(x) = In + Eij(x), which is the
elementary matrix with all 1’s on the main diagonal, x in the (i, j)-position
and all other entries 0. Note that if eij(x) is homogeneous, it must have
degree 0 because of the 1’s on the main diagonal. So, in view of (1.2), eij(x)
is homogeneous if and only if x is homogeneous with deg(x) = δj − δi or
x = 0. Let

E`h = {homogeneous elementary matrices in S}(1.9)

= {eij(x) | i 6= j and x ∈ Eδj−δi}.
Let A ∈ S∗h. Since A is homogeneous, every nonzero entry of A is a

homogeneous element of the graded division ring E (see (1.2)), and so is a
unit of E. Since A is an invertible matrix, each row must have at least one
nonzero entry. Write the (i, j)-entry of A as a1

ij ; so A = (a1
ij). Let a1

1ρ(1)

be the first nonzero entry in the first row, working from the left. For i > 1,
multiplying A on the left by the elementary matrix ei1(−a1

iρ(1)(a
1
1ρ(1))

−1)

amounts to adding the left multiple −a1
iρ(1)(a

1
1ρ(1))

−1 times the first row to

the i-th row; it makes the (i, ρ(1))-entry zero, without altering any other
rows besides the i-th. By iterating this for each row below the first row, we
obtain a matrix A(1) =

∏2
i=n ei1(−a1

iρ(1)(a
1
1ρ(1))

−1)A, which has the form

(1.10) A(1) =


0 0 · · · a1

1ρ(1) a1
1,ρ(1)+1 · · · a1

1n

a1
21 a1

22 · · · 0 b2,ρ(1)+1 · · · b2n
a1

31 a1
32 · · · 0 b3,ρ(1)+1 · · · b3n

...
...

...
...

...
...

...
a1
n1 a1

n2 · · · 0 bn,ρ(1)+1 · · · bnn

 .

Let λ = deg(A). From the definition of the grading on Mn(A)(δ) we have
deg(a1

iρ(1)) = λ+ δρ(1) − δi (see (1.2)). Thus deg(−a1
iρ(1)(a

1
1ρ(1))

−1) = δ1−δi,
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which shows that ei1(−a1
iρ(1)(a

1
1ρ(1))

−1) ∈ E`h for i = 2, 3, . . . , n. Since

homogeneous elementary matrices have degree 0, A(1) is homogeneous with
deg(A(1)) = deg(A) = λ.

Write A(1) = (a2
ij). Since A(1) is invertible, not all the entries of its

second row can be zero. Let a2
2ρ(2) be the first nonzero entry in the second

row working from the left (clearly ρ(1) 6= ρ(2)), and repeat the process above

with A(1) to get a homogeneous invertible matrix A(2) with all entries below
a2

2ρ(2) zero. In doing this, the entries in the ρ(1) column are unchanged.

By iterating this process, working down row by row, we obtain a matrix
A(n−1) =

(
anij
)

= T ′A, where

(1.11) T ′ =
1∏

j=n−1

j+1∏
i=n

eij
(
− aj iρ(j)(a

j
jρ(j))

−1
)
.

Note that

deg
(
− aj iρ(j)(a

j
jρ(j))

−1
)

= λ+ δρ(j) − δi − (λ+ δρ(j) − δj) = δj − δi.

Therefore, in the product for T ′ each eij
(
−aj iρ(j)(a

j
jρ(j))

−1
)
∈ E`h; it is also

unipotent lower triangular, as i > j. Hence, T ′ is homgeneous of degree 0
and is unipotent lower triangular. Set

T = T ′−1 =
n−1∏
j=1

n∏
i=j+1

eij
(
aj iρ(j)(a

j
jρ(j))

−1
)
,

which is again a homogeneous unipotent lower triangular matrix of degree
zero. Our construction shows that in the matrix A(n−1) = T−1A the leftmost
nonzero entry in the i-th row is aniρ(i) which is homogeneous in E, hence a

unit. Furthermore, every entry below aniρ(i) is zero. The function ρ of the

indices is a permutation of {1, . . . , n}. Set

(1.12) U = diag(an1 ρ(1), . . . , a
n
nρ(n)),

where diag(u1, . . . , un) denotes the n × n diagonal matrix with successive
diagonal entries u1, . . . , un. While U need not be homogeneous, its diagonal
entries are all nonzero and homogeneous, hence units of E; so, U is invertible
in S.

Clearly U−1A(n−1) = U−1T−1A is a matrix whose leftmost nonzero entry
in the i-th row is the 1 in the (i, ρ(i))-position. Furthermore, every entry
below the (i, ρ(i))-entry is zero. Let π = ρ−1, and let Pπ be the permutation
matrix of π. Since left multiplication by Pρ (= P−1

π ) moves the i-th row to
the ρ(i)-th row the matrix

V = P−1
π U−1T−1A

is unipotent upper triangular. We have A = TUPπV which we show has the
form asserted in the proposition.
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As to the homogeneity of these matrices, we have seen that T is ho-
mogeneous with deg(T ) = 0. Observe next that U and Pπ need not be
homogeneous but UPπ is homogeneous. For, UPπ has its only nonzero en-
tries aniρ(i) in the (i, ρ(i))-position for 1 ≤ i ≤ n Thus, UPπ is obtainable

from the homogeneous matrix A(n−1) by replacing some entries in A(n−1) by
0’s. Hence, UPπ is homogeneous with

deg(UPπ) = deg
(
A(n−1)

)
= λ = deg(A).

Therefore, V = (UPπ)−1T−1A is also homogeneous, with

deg(V ) = deg
(
(UPπ)−1

)
+ deg(T−1) + deg(A) = 0.

Next we show that, PπV P
−1
π is also unipotent upper triangular, so A =

TUPπV is in strict Bruhat normal form. We have

(1.13) PπV P
−1
π = U−1T−1AP−1

π .

Recall the arrangement of entries in the columns of U−1T−1A = U−1A(n−1).
Since right multiplication of this matrix by P−1

π = Pρ moves the ρ(i)-th
column to the i-th column, U−1T−1AP−1

π is unipotent upper triangular.
Thus, PπV P

−1
π is unipotent upper triangular by (1.13).

It remains only to show that this strict Bruhat decomposition is unique.
(This uniqueness argument is valid for matrices over any ring.) Suppose
T1U1Pπ1V1 = T2U2Pπ2V2, are two strict Bruhat normal forms for the same
matrix. Then

(1.14) U−1
1 T−1

1 T2U2 = Pπ1V1V
−1

2 P−1
π2 .

Since V1V
−1

2 is unipotent upper triangular, we can write V1V
−1

2 = In + N ,
where In is the identity matrix and N is nilpotent upper triangular (i.e.,
an upper triangular matrix with zeros on the diagonal). Note that there is
no position (i, j) where the matrices In and N both have a nonzero entry.
Writing

(1.15) Pπ1V1V
−1

2 P−1
π2 = Pπ1P

−1
π2 + Pπ1NP

−1
π2 ,

the summands on the right again have no overlapping nonzero entries.
Therefore, as Pπ1V1V

−1
2 P−1

π2 is lower triangular by (1.14), each of Pπ1P
−1
π2

and Pπ1NP
−1
π2 must be lower triangular. Since Pπ1P

−1
π2 = Pπ1π−1

2
is a lower

triangular permutation matrix, it must be In; thus, π1 = π2. Because of
the nonoverlapping nonzero entries noted in (1.15), the diagonal entries of
Pπ1V1V

−1
2 P−1

π2 must be 1’s. But because the Ti are unipotent lower tri-
angular and the Ui are diagonal, (1.14) shows that the diagonal entries of
Pπ1V1V

−1
2 P−1

π2 coincide with those of the diagonal matrix U−1
1 U2. Hence,

U−1
1 U2 = In, i.e., U1 = U2.
Since π2 = π1, we can rewrite (1.14) as

(1.16) U−1
1 T−1

1 T2U2 = Pπ1V1P
−1
π1

(
Pπ2V2P

−1
π2

)−1
.
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Since the decompositions are strict Bruhat, the right side of (1.16) is unipo-
tent upper triangular while the left is lower triangular. This forces each side
to be In. Hence, V1 = V2, U1 = U2 (as we have seeen already), and T1 = T2.
This proves the uniqueness. �

Remark. The first part of the uniqueness proof above (preceding (1.16))
shows that if A admits a Bruhat decomposition A = TUPπV (without the
assumption on PπV P

−1
π ), then π and U are uniquely determined.

Theorem 1.2. Let E be a graded division ring. Let S = Mn(E)(δ) where
δ = (δ1, . . . , δn), δi ∈ Γ. Then there is a Dieudonnné determinant group
homomorphism

detE : GLhn(E)(δ) −→ E∗h/[E
∗
h,E
∗
h].

If A ∈ GLhn(E)(δ) = S∗h has strict Bruhat decomposition A = TUPπV with
U = diag(u1, . . . , un) as in Proposition 1.1, then

(1.17) detE(A) = sgn(π)u1 . . . un [E∗h,E
∗
h].

Moreover, if det0 : S∗0 → E∗0/[E
∗
0,E
∗
0] is the Dieudonné determinant for the

semisimple ring S0, then there is a commutative diagram

S∗0
det0 //

��

E∗0/[E
∗
0,E
∗
0]

��
S∗h

detE // E∗h/[E
∗
h,E
∗
h].

(1.18)

Proof. Throughout the proof we assume that

(δ1, . . . , δn) = (ε1, . . . , ε1, ε2, . . . , ε2, . . . , εk, . . . , εk)

with each ε` occurring r` times and the cosets ε1 +ΓE, . . . , εk+ΓE distinct in
Γ/ΓE. There is no loss of generality with this assumption, in view of (1.7).
Thus, any matrix B in S0 is in block diagonal form, say with diagonal blocks
B1, . . . , Bk, with each B` ∈Mr`(E0); we will identify

S0 = Mr1(E0)× · · · ×Mr`(E0),

by identifying B with (B1, . . . , Bk), which we call the block decomposition
of B.

We first assume that E0 6= F2, the field with two elements; the exceptional
case will be treated toward the end of the proof.

It is tempting to use formula (1.17) as the definition of det(A). But since
it is difficult to show that the resulting function is a group homomorphism,
we take a different tack.

We call a matrix M in S a monomial matrix if M has exactly one nonzero
entry in each row and in each column, and if each nonzero entry lies in
E∗. Clearly, M is a monomial matrix if and only if M = UP where U is a
diagonal matrix with every diagonal entry a unit, and P is a permutation
matrix. Moreover, P and U are uniquely determined by M . The set M
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of all monomial matrices in S is a subgroup of S∗, and the set Mh of all
homogeneous monomial matrices is a subgroup of S∗h. Define a function

∆: Mh −→ E∗h/[E
∗
h,E
∗
h]

by

∆(UPπ) = sgn(π)u1u2 . . . un [E∗h,E
∗
h], where U = diag(u1, . . . , un).

This ∆ is clearly well-defined, since UPπ determines U and the permutation
matrix Pπ for π in the symmetric group Sn. Note also that ∆ is a group ho-
momorphism. For, if M = UPπ and M ′ = U ′Pπ′ with U = diag(u1, . . . , un)
and U ′ = diag(u′1, . . . , u

′
n), then

MM ′ =
(
UPπU

′P−1
π

)
Pππ′

= diag
(
u1u

′
π−1(1), . . . , unu

′
π−1(n)

)
Pππ′ .

It follows immediately that ∆(MM ′) = ∆(M)∆(M ′).
Recall that S0 = Mr1(E0) × · · · × Mrk(E0). Each component GLr`(E0)

of S∗0 has a Dieudonné determinant function det` mapping it to E∗0/[E
∗
0,E
∗
0],

and these maps are used to define the Dieudonné determinant

det0 : S∗0 → E∗0/[E
∗
0,E
∗
0]

for the semisimple ring S0 by

(1.19) det0(B1, . . . , Bk) =
k∏
`=1

det`(B`).

Set det0 to be the composition S∗0
det0−−→ E∗0/[E

∗
0,E
∗
0] −→ E∗h/[E

∗
h,E
∗
h]. We

claim that if M ∈Mh has degree 0, then

(1.20) ∆(M) = det0(M).

For, as M ∈ S0, it follows that U and P lie in S0, and when we view
M = (M1, . . . ,Mk), U = (U1, . . . , Uk), P = (P1, . . . , Pk), we have: in each
Mr`(E0), U` is a diagonal, say U` = diag(u`1, . . . , u`r`), and P` a permutation
matrix, say P` = Pπ` for some π` ∈ Sr` , and M` = U`P`. So, M` is a mono-
mial matrix in Mr`(E0). Since each M` has (nonstrict) Bruhat decomposi-
tion M` = Ir`U`Pπ`Ir` in GLr`(E0),[D, §20, Def. 1, Cor. 1] yields det`(M`) =
sgn(π`)u`1 . . . u`r` [E∗0,E

∗
0]. Moreover, as P = Pπ, where π = (π1, . . . , πk)

when we view Sr1 × · · · × Srk ⊆ Sn, we have sgn(π) = sgn(π1) . . . sgn(πk).
Thus,

det0(M) =
k∏
`=1

(
sgn(π`)u`1 . . . u`r`

)
[E∗0,E

∗
0] = sgn(π)

k∏
`=1

(u`1 . . . u`r`)[E
∗
0,E
∗
0],

which yields (1.20).
We next claim that every matrix A in S∗h is expressible (not uniquely) in

the form A = CM , where C ∈ [S∗0, S
∗
0] and M ∈ Mh. For this, consider

first an elementary matrix e ∈ E`h. The block form of e is (e1, . . . , ek),
where clearly one e` is an elementary matrix in Mr`(E0) and all the other
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blocks are identity matrices. Since every elementary matrix in Mr`(E0) lies in
[GLr`(E0),GLr`(E0)] by [D, §20, Th. 3, Th. 4(i)] (as E0 6= F2 by assumption)
it follows thet e ∈ [S∗0,S

∗
0]. Now, take any A ∈ S∗h, with its strict Bruhat

decomposition A = TUPπV as in Proposition 1.1. Then, T is a product of
elementary matrices in S∗0; so T ∈ [S∗0,S

∗
0]. Moreover the transpose V t of V

is unipotent lower triangular of degree 0. The unique strict Bruhat normal
form of V t is clearly V t = V tInPidIn. Hence, Proposition 1.1 shows that V t

is a product of matrices in E`h. Therefore, V t ∈ [S∗0, S
∗
0], which implies that

V ∈ [S∗0, S
∗
0]. Now, let M = UPπ ∈ Mh, and let C = TMVM−1 = AM−1.

Because V ∈ [S∗0, S
∗
0] and M is homogeneous, MVM−1 ∈ [S∗0, S

∗
0]. (For take

any Z1, Z2 ∈ S∗0. Then, M [Z1, Z2]M−1 = [MZ1M
−1,MZ2M

−1] ∈ [S∗0, S
∗
0],

as each MZiM
−1 ∈ S∗0.) Hence, C ∈ [S∗0,S

∗
0], so A = CM , as claimed.

Define detE : S∗h → E∗h/[E
∗
h,E
∗
h] by

detE(CM) = ∆(M), for any C ∈ [S∗0,S
∗
0], M ∈Mh.

To see that detE is well-defined, suppose C1M1 = C2M2 with C1, C2 ∈
[S∗0, S

∗
0] and M1,M2 ∈Mh. Then,

M1M
−1
2 = C−1

1 C2 ∈ [S∗0,S
∗
0].

Hence, deg(M1M
−1
2 ) = 0 and det0(M1M

−1
2 ) = det0(C−1

1 C2) = 1, which

implies that also det0(M1M
−1
2 ) = 1. So, by (1.20) ∆(M1M

−1
2 ) = 1. Since

∆ is a group homomorphism, it follows that ∆(M1) = ∆(M2). Thus, detE
is well-defined. To see that it is a group homomorphism, take any C,C ′ ∈
[S∗0,S

∗
0], and M,M ′ ∈Mh. Then,

(CM)(C ′M ′) =
(
C(MC ′M−1)

)
(MM ′).

Since C ′ ∈ [S∗0, S
∗
0], we have MC ′M−1 ∈ [S∗0, S

∗
0], as noted above; so,

C(MC ′M−1) ∈ [S∗0, S
∗
0]. Also, MM ′ ∈Mh. Hence,

detE
(
(CM)(C ′M ′)

)
= ∆(MM ′) = ∆(M)∆(M ′) = detE(CM) detE(C ′M ′);

so, detE is a group homomorphism. For A ∈ S∗h with strict Bruhat decom-

position A = TUPπV , we have seen that A = CM with M = UPπ ∈ Mh

and C = TMVM−1 ∈ [S∗0, S
∗
0], so detE(A) = ∆(M), which yields formula

(1.17).
We now dispose of the exceptional case where E0 = F2. When this holds,

replace [S∗0, S
∗
0] in the proof by S∗0, and the argument goes through. Observe

that now if M ∈ Mh with deg(M) = 0, then ∆(M) = 1. For, all nonzero
entries of M then lie in E∗0 = {1} and the sgn(π) term in the formula for
∆(M) drops out as char(E0) = 2. This replaces use of (1.20) in the proof.
There is no need to invoke det0, which is in fact trivial here as |E∗0| = 1. The
argument that a homogeneous elementary matrix e lies in [S∗0, S

∗
0] is replaced

by the tautology that e ∈ S∗0.
Turning to diagram (1.18), take any A ∈ S∗0, with strict Bruhat decom-

position A = TUPπV . Then, det(UPπ) = deg(A) = 0, so U and Pπ lie
in S∗0. Take the block decomposition A = (A1, . . . , Ak) and likewise for
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T,U, P, V . Then, Pπ = (Pπ1 , . . . , Pπk), where π = (π1, . . . , πk) when we
view Sr1 × · · · × Srk ⊆ Sn. Note that A` = T`U`Pπ`V` is the strict Bruhat
decomposition of A` in GLr`(E0) for ` = 1, 2, . . . , k. So,

det0(A) =
k∏
`=1

det`(A`) =
k∏
`=1

det`(U`Pπ`) = det0(UPπ).

Hence, invoking (1.20) for UPπ ∈Mh,

det0(A) = det0(UPπ) = detE(UPπ) = detE(A),

showing that diagram (1.18) is commutative. �

In a matrix ring Mr(R) over any ring R, for any a ∈ R we write Dr(a)
for the diagonal matrix diag(1, . . . , 1, a).

Proposition 1.3. Let S = Mn(E)(δ) with

(δ1, . . . , δn) = (ε1, . . . , ε1, . . . , εk, . . . , εk)

as in the proof of Theorem 1.2. If ΓE is n-torsion free, then

ker(detE) =〈
E`h
〉
·
{(

Dr1(c1), . . . ,Drk(ck)
)
| each ci ∈ E∗0 and c1 . . . ck ∈ [E∗h,E

∗
h]
}
.

Here, E`h denotes the group of homogeneous elementary matrices, as in
(1.9), and

(
Dr1(c1), . . . ,Drk(ck)

)
denotes the block diagonal matrix with

diagonal blocks Dr1(c1), . . . ,Drk(ck).

Proof. Suppose A ∈ S∗h and deg(A) = λ 6= 0, and let A = TUPπV be
the strict Bruhat decomposition of A, with U = diag(u1, . . . , un). Since the
monomial matrix UPπ is homogeneous of degree λ with (i, π−1(i))-entry ui,
we have deg(ui) = λ+ δi − δπ−1(i). So deg(sgn(π)u1 . . . un) = nλ 6= 0, as ΓE

is n-torsion free. But, [S∗h, S
∗
h] ⊆ S∗0, as every commutator of homogeneous

matrices has degree 0. Hence, detE(A) 6= 1. Thus, ker(detE) ⊆ S∗0.
Note that every homogeneous elementary matrix e has stict Bruhat de-

composition e = eInPidIn or e = InInPide. In either case, detE(e) = 1. This
shows that 〈E`h〉 ⊆ ker(detE).

Now take A ∈ S∗0 with block decomposition (A1, . . . , Ak). By [D, §20,
Th. 2], each A` is expressible in GLr`(E0) as A` = B`Drl(c`) for some
c` ∈ E∗0, where B` is a product of elementary matrices in Mr`(E0). So,
(Ir1 , . . . , Ir`−1

, B`, Ir`+1
, . . . , Irk) is a product of the corresponding homoge-

neous elementary matrices in S0. Hence A = BD, with

B = (B1, . . . , Bk) ∈ 〈E`h〉 and D = (Dr1(c1), . . .Drk(ck)),

which is a diagonal matrix in S0. Thus,

detE(A) = detE(B) detE(D) = c1 . . . ck [E∗h,E
∗
h].

So, A ∈ ker(detE) if and only if c1 . . . ck ∈ [E∗h,E
∗
h], which yields the propo-

sition. �
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Recall that a graded division ring E with center T is said to be unramified
if ΓE = ΓT. In Theorem 2.4(iv) below we will show that homogeneous SK1

of unramified graded division algebras is Morita invariant. For nonstable
K1, we have the following:

Corollary 1.4. Let E be a graded division ring and let S = Mn(E) with un-
shifted grading. Suppose ΓE is n-torsion free, E is unramified, and Mn(E0) 6=
M2(F2). Then detE induces a group monomorphism

GLhn(E)
/

[GLhn(E),GLhn(E)] ↪→ E∗h
/

[E∗h,E
∗
h].

Proof. We need to show that ker(detE) = [GLhn(E),GLhn(E)]. The inclusion
⊇ is clear as detE is a group homomorphism mapping into an abelian group.
For the reverse inclusion, note that as S0 is simple, Proposition 1.3 says

ker(detE) =
〈
E`h
〉
·
{
Dn(a) | a ∈ [E∗h,E

∗
h]
}
.

Because ΓE = ΓT where T is the center of E, we have E∗h = T∗h · E∗0, hence
[E∗h,E

∗
h] = [E∗0,E

∗
0]. Thus,{

Dn(a) | a ∈ [E∗h,E
∗
h]
}

= [Dn(E∗0),Dn(E∗0)] ⊆ [GLhn(E),GLhn(E)].

Also, as S0 = Mn(E0), the homogeneous elementary matrices of S, which
all have degree 0, are the same as the elementary matrices of Mn(E0);
since E0 is a division ring, by [D, §20, Th. 4, Lemma 4] these all lie in
[GLn(E0),GLn(E0)] ⊆ [GLhn(E),GLhn(E)], as Mn(E0) 6= M2(F2). Hence,
ker(detE) ⊆ [GLhn(E),GLhn(E)], completing the proof. �

2. Homogeneous SK1

Throughout this section we consider graded division algebras E, i.e., E is a
graded division ring which is finite-dimensional as a graded vector space over
its center T. In addition, as we are interested in graded division algebras
arising from valued division algebras, we assume that the abelian group Γ
(which contains ΓE) is torsion free. The assumption on Γ implies that every
unit in E is actually homogeneous, so E∗h = E∗. This assumption also implies
that E has no zero divisors. (These properties follow easily from the fact that
the torsion-free abelian group ΓE can be made into a totally ordered group,
see, e.g. [HwW, p. 78].) Hence, E has a quotient division ring obtained by
central localization, q(E) = E ⊗T q(T), where q(T) is the quotient field of
the integral domain T. In addition, every graded module M over E is a free
module with well-defined rank; we thus call M a graded vector space over
E, and write dimE(M) for rankE(M). This applies also for graded modules
over T, which is a commutative graded division ring. We write [E : T]

for dimT(E), and ind(E) =
√

[E : T]. Clearly, [E : T] = [q(E) : q(T)], so
ind(E) = ind(q(E)) ∈ N. Moreover, in ([B, Prop. 5.1] and [HwW, Cor. 1.2]
it was observed that E is an Azumaya algebra over T.

In general for an Azumaya algebra A of constant rank m2 over a com-
mutative ring R, there is a commutative ring S faithfully flat over R which
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splits A, i.e., A⊗RS ∼= Mm(S). For a ∈ A, considering a⊗1 as an element of
Mm(S), one then defines the reduced characteristic polynomial, charA(X, a),
the reduced trace, TrdA(a), and the reduced norm, NrdA(a), of a by

charA(X, a) = det(XIm − (a⊗ 1))

= Xm − TrdA(a)Xm−1 + · · ·+ (−1)mNrdA(a).

in S[X]. Using descent theory, one shows that charA(X, a) is independent
of S and of the choice of R-isomorphism A ⊗R S ∼= Mm(S), and that
charA(X, a) lies in R[X]; furthermore, the element a is invertible in A if
and only if NrdA(a) is invertible in R (see Knus [K, III.1.2] and Saltman

[S, Th. 4.3]). Let A(1) denote the multiplicative group of elements of A of
reduced norm 1. One then defines the reduced Whitehead group of A to be
SK1(A) = A(1)/A′, where A′ = [A∗, A∗] denotes the commutator subgroup
of the group A∗ of units of A. For any integer n ≥ 1, the matrix ring Mn(A)
is also an Azumaya algebra over R. One says that SK1 is Morita invariant
for A if

SK1(Mn(A)) ∼= SK1(A) for all n ∈ N.
Specializing to the case of a graded division algebra E and the graded

matrix algebra S = Mn(E)(δ), where δ = (δ1, . . . , δn) ∈ Γn, we have the
reduced Whitehead group

(2.1) SK1(S) = S(1)/[S∗, S∗], where S(1) =
{
x ∈ S∗ | NrdS(x) = 1

}
.

Here S∗ is the group of units of the ring Mn(E) (thus the shifted grading on
S does not affect SK1(S)). Restricting to the homogeneous elements of S we
define

(2.2) SKh
1(S) = S

(1)
h

/
[S∗h,S

∗
h], where S

(1)
h =

{
x ∈ S∗h | NrdS(x) = 1

}
.

To distinguish these two groups, we call the second one the homogeneous re-
duced Whitehead group of S. These groups coincide for n = 1, i.e, SKh

1(E) =
SK1(E). For, E∗ = E∗h, as noted above. (See [HW1] for an extensive study
of SK1 of graded division algebras.)

The question naturally arises whether SK1(A) is Morita invariant for an
Azumaya algebra A. When A is a central simple algebra this is known
to be the case (see, e.g., [D, §22, Cor. 1] or [P, §16.5, Prop. b]). We will
answer the analogous question for homogeneous reduced Whitehead groups
when A is a graded division algebra E by establishing an exact sequence
relating SKh

1(Mn(E)) and SK1(E) (Theorem 2.4) and producing examples
showing that they sometimes differ (Example 2.5); thus, SKh

1 is not Morita
invariant. We will see in fact that, as n varies, SKh

1(Mn(E)) depends only
on the congruence class of n modulo a constant e dividing the ramification
index of E over its center. Furthermore, SKh

1(Mn(E)) ∼= SK1(E) whenever n
is prime to e.

A major reason why SKh
1(S) is more tractable than SK1(S) for S =

Mn(E)(δ) is that S
(1)
h consists of homogeneous elements of degree 0, as we
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next show. This will allow us to use the Dieudonné determinant for the
semisimple algebra S0 to relate SKh

1(S) to SK1(E).

Lemma 2.1. With the hypotheses on E as above, let S = Mn(E)(δ) for
δ = (δ1, . . . , δn) ∈ Γn. Let T be the center of E. Then, NrdS(Sλ) ⊆ Tnsλ for

any λ ∈ ΓS, where s = ind(E). Hence, S
(1)
h ⊆ S∗0.

Proof. For calculating NrdS, we split E using a graded faithfully flat ex-
tension of its center T, in order to preserve the graded structure. For this
we employ a maximal graded subfield L of E. Associated to the graded field
T there is a graded Brauer group grBr(T) of equivalence classes of graded
division algebras with center T. See [HwW, TW1] for properties of graded
Brauer groups. In particular, there is a commutative diagram of scalar ex-
tension homomorphisms,

grBr(T) //
� _

−⊗Tq(T)
��

grBr(L)� _

−⊗Lq(L)
��

Br(q(T)) // Br(q(L)),

where the vertical maps are injective. If L is a maximal graded subfield of
E, then [L : T] = ind(E) by the graded Double Centralizer Theorem [HwW,
Prop. 1.5]. Since [q(L) : q(T)] = [L : T] = ind(E) = ind(q(E)), it follows that
q(L) is a maximal subfield of the division ring q(E), which is known to be
a splitting field for q(E) (see §9, Cor. 5 in [D]). The commutativity of the
diagram above and the injectivity of vertical arrows imply that L splits E
as well, i.e., E ⊗T L ∼=gr Ms(L)(γ), for some γ = (γ1, . . . , γs) ∈ Γs, where
s = ind(E). Moreover L is a free, hence faithfully flat, T-module.

The graded field L also splits S = Mn(E)(δ), where δ = (δ1, . . . , δn) ∈ Γn.
Indeed,

S⊗T L ∼=gr Mn(E)(δ)⊗T L ∼=gr Mn(E⊗T L)(δ)

∼=gr Mn

(
Ms(L)(γ)

)
(δ) ∼=gr Msn(L)(ω),

where ω = (γi + δj), 1 ≤ i ≤ s, 1 ≤ j ≤ n. For a homogeneous element a of
S with deg(a) = λ, its image a⊗1 in S⊗TL is also homogeneous of degree λ,
and NrdS(a) = det(a⊗ 1). But, as noted in (1.8) above, det(s⊗ 1) ∈ Tnsλ.
Thus, Nrd(Sλ) ⊆ Tnsλ. If NrdS(a) = 1 ∈ T0, then deg(a) = 0, as Γ is

assumed torsion free. Thus, S
(1)
h ⊆ S0. �

In order to establish a connection between the homogeneous SKh
1(S) and

SK1(E) we need to relate the reduced norm of S to that of S0, which we
do in the next lemma. Recall that S0 is a semisimple ring (see (1.6)). For
a division algebra D, one defines the reduced norm map on a semisimple
algebra Mr1(D) × · · · × Mrk(D) finite-dimensional over its center as the
product of reduced norms of the simple factors.



HOMOGENEOUS SK1 OF SIMPLE GRADED ALGEBRAS 329

Lemma 2.2. With the hypotheses on the graded division algebra E as above,
let S = Mn(E)(δ) for δ = (δ1, . . . , δn) ⊆ Γn. Let T be the center of E. Then,
for a ∈ S0

(2.3) NrdS(a) = NZ(E0)/T0
(NrdS0(a))d,

where d = ind(E)/
(

ind(E0) [Z(E0) : T0]
)
.

Here Z(E0) denotes the center of E0, which is a field finite-dimensional
and abelian Galois over T0. Also, NZ(E0)/T0

denotes the field norm from
Z(E0) to T0.

Proof. After applying a graded isomorphism, we may assume (δ1, . . . , δn)
has the form (ε1, . . . , ε1, ε2, . . . , ε2, . . . , εk, . . . , εk) as in (1.7) above. Then,
S0 = Mr1(E0) × · · · × Mrk(E0). Let a = (a1, ..., ak) ∈ S0 with each ai ∈
Mri(E0). That is, a is in block diagonal form with diagonal blocks a1, . . . , ak;

so, NrdS0(a) =
∏k
i=1 NrdMri

(E0)(ai). We thus need to prove that:

(2.4) NrdS(a) =
k∏
i=1

NZ(E0)/T0
(NrdMri (E0)(ai))

d.

Formula (2.3) is known for n = 1, i.e., S = E, by [HW1, Prop. 3.2]. The
further fact needed here is that for any b in Mn(E) in block triangular form,
say with diagonal blocks b1, . . . , bm, where bj ∈Mtj (E), and t1+· · ·+tm = n,
we have

(2.5) NrdMn(E)(b) =
m∏
j=1

NrdMtj (E)(bj).

Indeed, if we split E by extending scalars, say E ⊗T L ∼= Ms(L) for some
graded field L, then

Mn(E)⊗T L ∼= Mns(L);

the matrix for b⊗1 is again in block triangular form with its diagonal blocks
coming from the splitting of the diagonal blocks of b. So formula (2.5) follows
from the determinant formula for matrices in block triangular form.

Formula (2.5) applied to the block diagonal matrix a shows that it suffices
to verify that

(2.6) NrdMri (E)(ai) = NZ(E0)/T0
(NrdMri (E0)(ai))

d

for each i. Formula (2.6) is clearly multiplicative in ai. Moreover, it holds
for any triangular matrix in Mri(E0) by (2.5) with t1 = · · · = tm = 1
and m = ri, since it holds when S = E. But, we can always write ai =
ei1ciei2, where ei1, ei2 are products of elementary matrices in Mri(E0) and
ci is a diagonal matrix. This is just another way of saying that we can
diagonalize ai in Mri(E0) by elementary row and column operations. Thus,
formula (2.6) holds for ai because ai is a product of triangular matrices.
This yields (2.3). �
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In producing the first examples of division algebras D with nontrivial
reduced Whitehead groups, Platonov worked in [Pl] with division algebras
over twice iterated Laurent series over a global field. Ershov later in [E]
generalized and systematized Platonov’s approach, by working with divi-
sion algebras over arbitrary Henselian valued fields. Ershov encapsulated
his results in a commutative diagram with exact rows and columns which
related SK1(D) to various quantities involving the residue division algebra
D and the value group ΓD for the valuation on D. More recently it was
shown in [HW1, Th. 3.4] that there is a commutative diagram analogous to
Ershov’s for computing SK1(E), where E is a graded division algebra. It was
also shown in [HW1, Th. 4.8] that Ershov’s results for D over a Henselian
field could be deduced from the corresponding graded ones by proving that
SK1(D) ∼= SK1(gr(D)), where gr(D) is the associated graded division alge-
bra of the valued division algebra D. The diagram for SK1(E) is the vertical
E-plane in the following diagram (2.7).

1

��

1

��

SK1(E0) // ker ÑE/[E
∗
0,E
∗]

NrdE0 //

��

Ĥ−1(G,NrdE0
(E∗0)) // 1

SK1(S0) //

∼= 77

ker ÑS/[S
∗
h,S
∗
0] //

��

∼= 77

Ĥ−1(G,NrdS0
(S∗0)) //

∼= 55

1

ΓE/ΓT∧ΓE/ΓT
// E(1)/[E∗0,E

∗] //

��

SK1(E) // 1

ΓS/ΓT∧ΓS/ΓT

ηn 77

// S(1)h /[S∗h,S
∗
0] //

∼= 66

Ñ

��

SKh1 (S)

55

// 1

µδ(T0)∩Ñ(E∗0)

��

µδ(T0)∩Ñ(S∗0)

��

∼= 66

1

1

(2.7)

This diagram shows the close connections between SK1(E) and SKh
1(S),

where S = Mn(E) with unshifted grading. The diagram is commutative
with exact rows and columns. The group G in it is G = Gal(Z(E0)/T0),
where T is the center of E, and Z(E0) is the center of E0; it is known that
Z(E0) is Galois over T0, and that G is a homomorphic image of ΓE/ΓT,
so G is abelian. Also, d = ind(E)

/(
ind(E0) [Z(E0) : T0]

)
, and µd(T0) is

the group of those d-th roots of unity lying in T0. The map ÑE is the

composition ÑE = NZ(E0)/T0
◦ NrdE0

: E∗0 → T∗0; the map ÑS is defined
analogously. Exactness of the rows and column in the vertical E-plane is
proved in [HW1, Th. 3.4]; exactness in the S-plane is proved analogously,
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as the reader can readily verify. The maps from the S-plane to the E-plane
are induced by the Dieudonné determinant detS0 from S0 = Mn(E0) to E0.

By Lemma 2.1, S
(1)
h ⊆ S∗0; moreover, the images of S

(1)
h , [S∗h, S

∗
h] and [S∗h,S

∗
0]

in S∗0/[S
∗
0, S
∗
0], under detS0 , lie in the images of E(1), [E∗,E∗] and [E∗,E∗0] in

E∗0/[E
∗
0,E
∗
0], respectively— see Proposition 2.3 below, which yields the middle

isomorphism in the lower horizontal plane of the diagram. Here, ΓS = ΓE

since the grading on S is unshifted, and the map ηn on the left is x 7→ nx.
This diagram gives some insight into where to look for differences between
SKh

1(S) and SK1(E); the differences are delineated in Theorem 2.4 below.
Let S = Mn(E), with unshifted grading. We have the filtration of com-

mutator groups

[S∗0,S
∗
0] ⊆ [S∗h,S

∗
0] ⊆ [S∗h, S

∗
h] ⊆ S

(1)
h ,

with SKh
1(S) = S

(1)
h /[S∗h, S

∗
h]. We relate the factors in this filtration to the

corresponding ones for E in order to relate SKh
1(S) to SK1(E):

Proposition 2.3. Let S = Mn(E) with unshifted grading, and suppose S0 6=
M2(F2). Then,

(2.8) S(1)
/

[S∗0, S
∗
0] ∼= E(1)

/
[E∗0,E

∗
0],

and this isomorphism maps [S∗h, S
∗
0]
/

[S∗0,S
∗
0] onto [E∗h,E

∗
0]
/

[E∗0,E
∗
0].

Proof. Let S
(1)
h = S

(1)
h /[S∗0,S

∗
0] and E(1) = E(1)/[E∗0,E

∗
0]. Note that S0 =

Mn(E0), since the grading on S is unshifted. There is a homomorphism

η : E(1) → S
(1)
h induced by c 7→ diag(c, 1, 1, . . . , 1).

This η is well-defined, as NrdS(diag(c, 1, . . . , 1)) = NrdE(c). Moreover, η
is surjective, as S∗0 = diag(E∗0, 1, . . . , 1)[S∗0, S

∗
0] (see [D, §22, Th. 1]) since

S0 6= M2(F2). To get a map in the other direction we use the Dieudonné
determinant for S0,

detS0 : S∗0 −→ E∗0
/

[E∗0,E
∗
0].

Recall (see [D, §22, Th. 1]) that detS0 is compatible with reduced norms,

i.e., NrdS0(a) = NrdE0
(detS0(a)) for all a ∈ S∗0, where NrdE0

: E∗0/[E
∗
0,E
∗
0]→

Z(E0)∗ is induced by NrdE0
. Therefore, if a ∈ S(1), then a ∈ S∗0 by

Lemma 2.1, so by Lemma 2.2 (used for S then for E),

1 = NrdS(a) = NZ(E0)/T0
(NrdS0(a))d

= NZ(E0)/T0

(
NrdE0

(detS0(a))
)d

= NrdE(detS0(a)).

This shows that there is a well-defined homomorphism

ξ : S
(1)
h −→ E

(1)
h induced by detS0 .
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Since detS0(diag(c, 1, . . . , 1)) = c [E∗0,E
∗
0], for c ∈ E∗0 we have ξη = id. There-

fore, as η is surjective, η and ξ are isomorphisms, proving (2.8).

Let [S∗h,S
∗
0] = [S∗h, S

∗
0]
/

[S∗0, S
∗
0] and [E∗,E∗0] = [E∗h,E

∗
0]
/

[E∗0,E
∗
0]. It remains

to show that these groups are isomorphic via ξ.
Since ΓS = ΓE as the grading on E is unshifted, we have Γ∗S = ΓE. That is,

for any s ∈ S∗h there is e ∈ E∗ with deg(e) = deg(s). Then, s = [s(e−1In)] eIn
with deg(s(e−1In)) = 0. Thus, S∗h = (E∗In)S∗0. Recall the general commuta-
tor identity

(2.9) [ab, c] = [ab, ac][a, c], where ax = axa−1.

Since S∗0 is a normal subgroup of S∗h, this identity shows that [S∗h,S
∗
0] is

generated by the images of commutators of the form [cIn, a], where c ∈ E∗

and a ∈ S∗0. Now if ϕ is any ring automorphism of E0, then ϕ induces an
automorphism of S0 = Mn(E0), again called ϕ, and also an automorphism ϕ
of E∗0/[E

∗
0,E
∗
0]. Because ϕ is compatible with strict Bruhat decompositions of

matrices, it is compatible with detS0 , i.e., detS0(ϕ(s)) = ϕ(detS0(s)) for any
s ∈ S∗0. By applying this to the automorphism of E0 given by conjugation
by c ∈ E∗, we obtain, for any a ∈ S∗0,

detS0([cIn, a]) = detS0(cIn a c−1In) detS0(a−1) = cdc−1d−1 [E∗0,E
∗
0],

where detS0(a) = d [E∗0,E
∗
0]. This shows that ξ

(
[S∗h, S

∗
0]
)

= [E∗,E∗0], and hence

η
(
[E∗,E∗0]

)
= [S∗h,S

∗
0]. �

Theorem 2.4. Let E be a graded division algebra finite-dimensional over
its center T (with ΓE torsion-free). For n ∈ N let S = Mn(E), with unshifted
grading, and assume Mn(E0) 6= M2(F2). Then there is an exact sequence
(2.10)

0 −→ [E∗,E∗]
/(

[E∗,E∗]n [E∗,E∗0]
)
−→ SKh

1(Mn(E))
ξ−−→ SK1(E) −→ 0,

where ξ is induced by the Dieudonné determinant

detS0 : S∗0 −→ E∗/[E∗0,E
∗
0].

Furthermore, let Λ = ΓE/ΓT ∧ ΓE/ΓT, a finite abelian group. and let e be
the exponent of Λ. Then,

(i) The group [E∗,E∗]
/

[E∗,E∗0] is a homomorphic image of Λ. Hence,

[E∗,E∗]
/(

[E∗,E∗]n[E∗,E∗0]
)

is a homomorphic image of Λ/nΛ.

(ii) As n varies, [E∗,E∗]
/

[E∗,E∗]n[E∗,E∗0] depends only on the congru-
ence class of n mod e.

(iii) If gcd(n, e) = 1, then SKh
1(Mn(E)) ∼= SK1(E). This holds for all n

if Λ is trivial, which occurs, e.g. if ΓE = Z or more generally if
ΓE/ΓT is cyclic.

(iv) If E is unramified over T, then SKh
1(Mn(E)) ∼= SK1(E) ∼= SK1(E0).

(v) Suppose E is totally ramified over T. Then, e = exp(ΓE/ΓT), and
SK1(E) ∼= µs(T0)/µe(T0), where s = ind(E). Moreover, there is a
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short exact sequence

(2.11) 0 −→ Z/(n, e)Z −→ SKh
1(Mn(E))

ξ−−→ SK1(E) −→ 0.

Proof. We use the notation in the proof of Proposition 2.3.
Recall from the proof of Proposition 2.3 that S∗h = (E∗In)S∗0. Since S∗0 is

a normal subgroup of S∗h, it follows by using the commutator identity (2.9)
that [S∗h,S

∗
h]
/

[S∗h, S
∗
0] is generated by the images of [cIn, c′In] = [c, c′]In for

c, c′ ∈ E∗. Note that

detS0([cIn, c′In]) = [c, c′]n [E∗0,E
∗
0].

Furthermore note that the commutators [c, c′] generate [E∗,E∗]. Since the

isomorphism ξ maps [S∗h, S
∗
0] to [E∗h,E

∗
0] by Proposition 2.3, it therefore maps

maps [S∗h,S
∗
h]
/

[S∗0,S
∗
0] onto [E∗,E∗]n[E∗,E∗0]

/
[E∗0,E

∗
0]. Hence,

SKh
1(S) = S(1)/[S∗h,S

∗
h] ∼= E(1)/[E∗,E∗]n[E∗,E∗0],

which yields the exact sequence (2.10).
For (i)–(iii), recall from [HW1, Th. 3.4, Lemma 3.5] that there is a

well-defined epimorphism ψ : Λ = ΓE/ΓT ∧ ΓE/ΓT → [E∗,E∗]/[E∗0,E
∗], given

as follows: For γ, δ ∈ ΓE, take any nonzero xγ ∈ Eγ and xδ ∈ Eδ. Then,

ψ
(
(γ + ΓT) ∧ (δ + ΓT)

)
= [xγ , xδ] mod [E∗0,E

∗].

This ψ induces an epimorphism

Λ/nΛ →
(
[E∗,E∗]/[E∗0,E

∗]
)/(

[E∗,E∗]/[E∗0,E
∗]
)n ∼= [E∗,E∗]

/
[E∗,E∗]n[E∗,E∗0],

which yields (i). Assertion (ii) follows immediately from (i) since the epi-
morphism ψ shows that the exponent of [E∗,E∗]/[E∗0,E

∗] divides that of Λ.
Also, (iii) is immediate from (i) and the exact sequence (2.10), since Λ/nΛ
is trivial when gcd(n, e) = 1.

For (iv), let E be an unramified graded division algebra with center T,
i.e., suppose ΓE = ΓT. Then we have E∗ = E∗0T

∗, so [E∗,E∗] = [E∗,E∗0] and it

follows immediately from (2.10) that SKh
1(Mn(E)) ∼= SK1(E), for any n ∈ N.

(Compare this with Corollary 1.4). The isomorphism SK1(E) ∼= SK1(E0) for
E unramified is given in [HW1, Cor. 3.6(i)].

For (v), let E be a totally ramified graded division algebra with center
T, i.e., E0 = T0. Then [E∗,E∗0] = [E∗,T∗0] = 1. Also, by [HwW, Prop. 2.1],
[E∗,E∗] ∼= µe′(T0) ∼= Z/e′Z, where e′ is the exponent of the torsion abelian
group ΓE/ΓT. But since E is totally ramified, there is a nondegenerate sym-
plectic pairing on ΓE/ΓT induced by commutators in E (see [HwW, Prop. 2.1,
Remark 2.2(ii)]). Hence, ΓE/ΓT

∼= H ×H for some finite abelian group H,
which implies that the exponent e′ of ΓE/ΓT coincides with the exponent e
of Λ. With this information, exact sequence (2.11) follows from (2.10). The
formula for SK1(E) was given in [HW1, Cor. 3.6(ii)] �

Example 2.5. For any positive integers e > 1 and s with e | s and s having
the same prime factors as e, it is easy to construct examples of graded
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division algebras E with center T such that E is totally ramified over T
with exp(ΓE/ΓT) = e and ind(E) = s, and SK1(E) ∼= µs/µe. For example,
T could be an iterated Laurent polynomial ring over the complex numbers,
T = C[X1, X

−1
1 , X2, X

−1
2 , . . . , Xk, X

−1
k ] graded by multidegree in X1, . . . , Xk

(so ΓT = Zk). For k sufficiently large, one can take E to be a tensor product
of suitable graded symbol algebras over T, cf. [HW2, Ex. 5.3]. By choosing
e arbitrarily and choosing n not relatively prime to e, one obtains explicit
examples where SK1(Mn(E)) 6∼= SK1(E) by Theorem 2.4(v).

The exact sequence (2.10), along with part (i) of Theorem 2.4 shows
that SKh

1(Mn(E)) is a finite abelian group with exponent dividing n ind(E)
(since SK1(E) is finite abelian with exponent dividing ind(E) by [D, §23,
Lemma 2]). However if we permit shifting in the grading on matrices, we
can construct more complicated reduced Whitehead groups. In the example
below we construct a simple graded algebra such that its homogenous SK1

is not even a torsion group when T∗0 is not torsion.

Example 2.6. Let E be a graded division algebra totally ramified over its
center T, with grade group ΓE ⊆ Γ. Consider S = Mn(E)(δ), where n > 1
and δ = (δ1, . . . , δn) =

(
0, δ, . . . , (n − 1)δ

)
, with δ ∈ Γ chosen so that the

order m of δ + ΓE in Γ/ΓE exceeds 3n. Let s = ind(E). We will show that

SKh
1(Mn(E)(δ)) ∼=

((
n−1∏
i=1

T∗0

)
× µs(T0)

)/
H,(2.12)

where H = {(ω, . . . , ω, ω2−n) | ω ∈ µe(T0)} ∼= µe.

Note that since the δi are distinct modulo ΓE, the grading on matrices
(1.2) shows that S0 consists of all diagonal matrices with entries from E0.
We show further that Γ∗S = ΓE. For, recall that Γ∗S is a subgroup of Γ with
ΓE ⊆ Γ∗S ⊆ ΓS. From (1.3), we have

ΓS =
n⋃
i=1

n⋃
j=1

(δi − δj) + ΓE =
n−1⋃

k=−(n−1)

kδ + ΓE.

If Γ∗S % ΓE, then `δ ∈ Γ∗S for some integer ` with 1 ≤ |`| ≤ n − 1. Take the
integer q with n ≤ q` < n+ `. For any integer k with |k| ≤ n− 1, we have

1 ≤ q`− k < 2n+ `− 1 < 3n ≤ m.

Hence, (q`− k)δ /∈ ΓE; so, (q`)δ + ΓE 6= kδ + ΓE for any k with |k| ≤ n− 1.
Hence, q`δ /∈ ΓS, But, q`δ lies in the group Γ∗S, a contradiction. Thus,
Γ∗S = ΓE.

The formula for Γ∗S implies that S∗h = S∗0(E∗In). Since S∗0 =
∏n
i=1 E

∗
0 =∏n

i=1 T
∗
0, which is abelian and centralized by E∗In, it follows that [S∗h,S

∗
h] =

[E∗,E∗]In. By [HwW, Prop. 2.1], [E∗,E∗] = µe(T0) = µe, where e is the
exponent of the torsion abelian group ΓE/ΓT. Hence, [S∗h,S

∗
h] = µeIn.

By Lemma 2.1, S
(1)
h ⊆ S∗0 ⊆Mn(T0). Now, for any matrix

U = diag(u1, . . . , un)S∗0,
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we have
NrdS0(U) = u1 . . . un,

so by Lemma 2.2,
NrdS(U) = (u1 . . . un)s,

where s = ind(E). It follows that

S
(1)
h =

{
diag(u1, . . . , un) | each ui ∈ T∗0 and u1 . . . un ∈ µs(T0)

}
∼=
{

(u1, . . . , un−1, ω) | each ui ∈ T∗0 and ω ∈ µs(T0

}
∼=
(
n−1∏
i=1

T∗0

)
× µs(T0).

In the isomorphism

S
(1)
h
∼=
(
n−1∏
i=1

T∗0

)
× µs(T0),

for any ω ∈ µs(T0), the matrix ωIn maps to (ω, . . . , ω, ω2−n). This yields

formula (2.12) for SKh
1(S) = S

(1)
h /[S∗h, S

∗
h].

One natural question still unanswered is whether inhomogeneous SK1 is
Morita invariant in the graded setting, i.e., whether for a graded division
algebra E, we have a natural isomorphism SK1(Mn(E)) ∼= SK1(E), for n ∈ N.
This seems to be a difficult question, in particular as there does not seem
to be a notion of (inhomogeneous) Dieudonné determinant, which is what
furnishes the Morita isomorphism for division algebras. A key fact which
one uses frequently for invertible matrices over fields and division rings is
that they are diagonizable modulo their elementary subgroups. However,
the work of Bass, Heller and Swan ([R, Lemma 3.2.21]) shows that the de-
composition of an invertible matrix over the graded field F [X,X−1] modulo
its elementary subgroup is not necessarily diagonal.
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