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Noncommutative semialgebraic sets in
nilpotent variables

Terry A. Loring and Tatiana Shulman

Abstract. We solve the lifting problem in C∗-algebras for many sets

of relations that include the relations x
Nj

j = 0 for all variables. The

remaining relations must be of the form ‖p(x1, . . . , xn)‖ ≤ C for C a
positive constant and p a noncommutative ∗-polynomial that is in some
sense homogeneous. For example, we prove liftability for the set of
relations

x3 = 0, y4 = 0, z5 = 0, xx∗ + yy∗ + zz∗ ≤ 1.

Thus we find more noncommutative semialgebraic sets that have the
topology of noncommutative absolute retracts.
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1. Introduction

Lifting problems involving norms and star-polynomials are fundamental
in C∗-algebras. They arise in basic lemmas in the subject, as we shall see in
a moment. They also arise in descriptions of the boundary map in K-theory,
in technical lemmas on inductive limits, and have of course been around in
operator theory. Much of our understanding of the Calkin algebra comes
from having found properties of its cosets that exist only when some operator
in a coset has that property.

Let A denote a C∗-algebra and let I be an ideal in A. The quotient map
will be denoted π : A → A/I. Of course A/I is a C∗-algebra, but let us
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ponder how we know this. The standard proof uses an approximate unit
uλ and an approximate lifting property. The lemma used is that for any
approximate unit uλ, and any a in A,

lim
λ
‖a(1− uλ)‖ = ‖π(a)‖

and trivially we obtain as a corollary

lim
λ
‖(1− uλ)b(1− uλ)‖ = ‖π(b)‖ .

For a large λ, the lift x̄ = a(1−uλ) of π(a) approximately achieves two norm
conditions,

‖x̄‖ ≈ ‖π(x̄)‖ , ‖x̄∗x̄‖ ≈ ‖π(x̄)∗π(x̄)‖ .
The equality ‖x̄‖2 = ‖x̄∗x̄‖ upstairs now passes downstairs, so A/I is a
C∗-algebra.

We have an eye on potential applications in noncommutative real alge-
braic geometry [7, 8]. What essential differences are there between real
algebraic geometry and noncommutative real algebraic geometry? Occam
would cut between these fields with the equation

xn = 0.

Could we just exclude this equation? Probably not. A search of the physics
literature finds that polynomials in nilpotent variables are gaining popular-
ity. Two examples to see are [3] in condensed matter physics, and [12] in
quantum information.

Focusing back on lifting problems, we recall what is known about lifting
nilpotents up from general C∗-algebra quotients. Akemann and Pedersen
[1] showed the relation x2 = 0 lifts, and Olsen and Pedersen [14] did the
same for xn = 0. Akemann and Pedersen [1] also showed that if xn−1 6= 0
for some x ∈ A/I then one can find a lift X of x with∥∥Xj

∥∥ =
∥∥xj∥∥ , (j = 1, . . . , n− 1).

If xn = 0 and xn−1 6= 0 then we would like to combine these results, lifting
both the nilpotent condition and the n−1 norm conditions. It was not until
recently, in [16], that it was shown one could lift just the two relations

‖x‖ ≤ C, xn = 0

for C > 0.
Here we show how to lift a nilpotent and all these norm conditions, and

so show the liftablity of the set of relations∥∥xj∥∥ ≤ Cj , j = 1, . . . , n,

even if Cn = 0. In the particular case where the quotient is the Calkin
algebra and the lifting is to B(H), we proved this using different methods in
[10], as a partial answer to Olsen’s question [13].
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More generally, we consider soft homogeneous relations (as defined below)

together with relations x
Nj

j = 0. In one variable, another example of such a
collection of liftable relations is

‖x‖ ≤ C1,
∥∥x∗x− x2∥∥ ≤ C2, x3 = 0.

In two variables, we have such curiosities as

‖x‖ ≤ 1, ‖y‖ ≤ 1, x3 = 0, y3 = 0, ‖x− y‖ ≤ ε

which we can now lift.
Given a ∗-polynomial in x1, . . . , xn we have the usual relation

p(x1, . . . , xn) = 0,

where now the xj are in a C∗-algebra. In part due to the shortage of semipro-
jective C∗-algebras, Blackadar [2] suggested that we would do well to study
the relation ‖p(x1, . . . , xn)‖ ≤ C for some C > 0. Following Exel’s lead [6],
we call this a soft polynomial relation. Softened relations come up naturally
when trying to classifying C∗-algebras that are inductive limits, as in [5],
when exact relations in the limit lead only to inexact relations in a building
block in the inductive system.

The homogeneity we need is only that there be a subset, say x1, . . . , xr,
of the variables and an integer d ≥ 1 so that every monomial in p contains
exactly d factors from x1, x

∗
1 . . . , xr, x

∗
r .

The relation xN = 0 is “more liftable” than most liftable relations in that
it can be added to many liftable sets while maintaining liftability. Other
relations that behave this way are x∗ = x and x ≥ 0. We explored semial-
gebraic sets (as NC topological spaces) in positive and hermitian variables
in [11].

There are still other relations that are “more liftable” in this sense. We
consider in this note xyx∗ = 0 and xy = 0. This is not the end of the story.
We might have a rare case of too little theory and too many examples.

We use many technical results from our previous work [11]. We also have
use for the Kasparov Technical Theorem. Indeed we use only a simplified
version, but the fully technical version can probably be used to find even
more lifting theorems in this realm. For a reference, a choice could be made
from [4, 9, 14].

We will use the notation a� b to mean b acts like unit on a, i.e.,

ab = a = ba.

A trick we use repeatedly is to replace a single element c so that 0 ≤ c ≤ 1
and

xjc = xj , cyk = 0

for some sequences xj and yk with two elements a and b with

(1.1) 0 ≤ a� b ≤ 1
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and

(1.2) xja = xj , byk = 0.

These are found with basic functional calculus. The simplified version of
Kasparov’s technical theorem we need can be stated as follows: for x1, x2, . . .
and y1, y2, . . . in a corona algebra C(A) = M(A)/A (for A σ-unital) with
xjyk = 0 for all j and k, there are elements a and b in C(A) satisfying (1.1)
and (1.2).

2. Lifting nilpotents while preserving various norms

Lemma 2.1. Suppose A is σ-unital C∗-algebra, n is at least 2, and consider
the quotient map π : M(A)→M(A)/A.

(1) If x is an element of M(A) so that π (xn) = 0 then there are elements
p1, . . . , pn−1 and q1, . . . , qn−1 of M(A) with

j > k =⇒ pjqk = 0

and

π

n−1∑
j=1

qjxpj

 = π(x).

(2) If π(x̃) = π(x) and we set

x̄ =
n−1∑
j=1

qj x̃pj ,

then π(x̄) = π(x) and x̄n = 0.

Proof. This is the essential framework that assists the lifting of nilpotents,
going back to [14]. Other than a change of notation, this is an amalgam of
Lemmas 1.1, 8.1.3, 12.1.3 and 12.1.4 of [9]. �

Theorem 2.2. If x is an element of a C∗-algebra A, and I is an ideal and
π : A → A/I is the quotient map, then for any natural number N , there is
an element x̄ in A so that π(x̄) = π(x) and

‖x̄n‖ = ‖π (xn)‖ , (n = 1, . . . , N).

Proof. If π
(
xN
)
6= 0, then this is the first statement in Theorem 3.8 of [1].

Assume then that π
(
xN
)

= 0. Standard reductions (Theorem 10.1.9
of [9]) allow us to assume A = M(E) and I = E for some separable C∗-
algebra E. The first part of Lemma 2.1 provides elements p1, . . . , pN−1 and
q1, . . . , qN−1 in M(E) with

j > k =⇒ pjqk = 0

and

π

N−1∑
j=1

qjxpj

 = π(x).
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Let Cn = ‖π (xn)‖. Each norm condition∥∥∥∥∥∥
N−1∑

j=1

qj x̃pj

n∥∥∥∥∥∥ ≤ Cn (n = 1, . . . , N − 1)

is a norm-restriction of a NC polynomial that is homogeneous in x̃. We can
apply Theorem 3.2 of [11] to find x̂ in M(E) with π (x̂) = π (x̃) and∥∥∥∥∥∥

N−1∑
j=1

qj x̂pj

n∥∥∥∥∥∥ ≤ Cn (n = 1, . . . , N − 1).

Since π (x̂) = π (x) we may apply the second part of Lemma 2.1 to conclude
that

x̄ =

N−1∑
j=1

qj x̂pj

is a lift of π(x), is nilpotent of order N , and

‖x̄n‖ ≤ Cn = ‖π (xn)‖

for n = 1, . . . , N − 1. �

There was nothing special about the homogeneous ∗-polynomials xn, and
we can deal with more than one nilpotent variable x at a time. We say a
∗-polynomial is homogeneous of degree r for some subset S of the variables
when the total number of times either x or x∗ for x ∈ S appears in each
monomial is r. Staying consistent with the notation in [11], we use

p (x,y) = p (x1, . . . , xr, y1, y2, . . .)

as so keep to the left the variables in subset where there is homogeneity.

Theorem 2.3. Suppose p1, . . . , pJ are NC ∗-polynomials in infinitely many
variables that are homogeneous in the set of the first r variables, each with
degree of homogeneity dj at least one. Suppose Cj > 0 are real constants
and Nk ≥ 2 are integer constants, k = 1, . . . , r. For every C∗-algebra A and
I C A an ideal, given x1, . . . , xr and y1, y2, . . . in A with

(π (xk))
Nk = 0

and

‖pj (π (x,y))‖ ≤ Cj ,
there are z1, . . . , zr in A with π (z) = π(x) and

zNk
k = 0

and

‖pj (z,y)‖ ≤ Cj .
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Proof. Again we use standard reductions to assume A = M(E) and I = E
for some separable C∗-algebra E. Now we apply Lemma 2.1 to each xk and
find pk,1, . . . , pk,Nk−1 and qk,1, . . . , qk,Nk−1 in M(E) with

b > c =⇒ pk,bqk,c = 0

and

π

(
Nk−1∑
b=1

qk,bxkpk,b

)
= π (xk) .

We know that any x̃ we take with π (x̃) = π (x) will give us

π

(
Nk−1∑
b=1

qk,bx̃kpk,b

)
= π (xk)

and (
Nk−1∑
b=1

qk,bx̃kpk,b

)Nk

= 0,

so we need only fix the relations∥∥∥∥∥pj
(
N1−1∑
b=1

q1,bx̃1p1,b, . . . ,

Nr−1∑
b=1

qr,bx̃rpr,b,y

)∥∥∥∥∥ ≤ Cj .
These are homogeneous in {x̃1, . . . , x̃r} so we are done, by Theorem 3.2 of
[11]. �

We could add various relations on the variables y1, y2, . . . , and include in
the pj some ∗-polynomials that ensure that there is an associated universal
C∗-algebra which is then projective. For example, we could zero out the
extra variables (so just omit them) and impose a soft relation known to
imply all the xj are contractions. Let us give one specific class of examples.

Example 2.4. Let A be the universal C∗-algebra on x1, . . . , xn subject to
the relations

xNk = 0,
∥∥∥∑xkx

∗
k

∥∥∥ ≤ 1, ‖pj (x1, . . . , xn)‖ ≤ Cj

for Cj > 0 and where the pj are all NC ∗-polynomials that are homogeneous
in x1, . . . , xn. Then A is projective.

3. The relation xyx∗ = 0

We now explore setting xyx∗ to zero. This word is unshrinkable, in the
sense of [17]. We show that many sets of relations involving xyx∗ = 0 are
liftable. One example, chosen essentially at random, is the set consisting of
the relations

‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖xy + yx‖ ≤ 1, xyx∗ = 0.
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Lemma 3.1. Suppose A is σ-unital and C(A) = M(A)/A. If x and y are
elements of M(A) so that xyx∗ = 0, then there are elements

0 ≤ e� f � g ≤ 1

so that

x(1− g) = x

and

ey + (1− e)yf = y.

Proof. We apply Kasparov’s technical theorem to the product x (yx∗) = 0
to find

0 ≤ d ≤ 1

in C(A) with

xd = x,(3.1)

dyx∗ = 0.(3.2)

We rewrite (3.1) as

(3.3) (1− d)x∗ = 0

and apply Kasparov’s technical theorem to (3.2) and (3.3) to find

0 ≤ f � g ≤ 1

in C(E) with

(1− d)f = (1− d)

dyf = dy(3.4)

gx∗ = 0.

Thus we have xg = 0 and

0 ≤ 1− d� f � g ≤ 1.

We are done, with e = 1− d, since (3.4) gives us

ey + (1− e)yf = (1− d)y + dyf = y. �

Lemma 3.2. Suppose A is σ-unital and consider the quotient map

π : M(A)→M(A)/A.

(1) If x and y are elements of M(A) so that π (xyx∗) = 0, then there
are elements e, f and g in M(A) with

0 ≤ e� f � g ≤ 1,(3.5)

π (x(1− g)) = π(x)

and

π (ey + (1− e)yf) = π(y).
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(2) If π(x̃) = π(x) and π(ỹ) = π(y) then, if we set

x̄ = x̃(1− g),

ȳ = eỹ + (1− e)ỹf,

we have π(x̄) = π(x), π(ȳ) = π(y) and x̄ȳx̄∗ = 0.

Proof. In C(A), the product π(x)π(y)π(x)∗ is zero, so Lemma 3.1 produces
e0, f0 and g0 in C(A) with

0 ≤ e0 � f0 � g ≤ 1,

π(x)(1− g0) = π(x)

and

e0π(y) + (1− e0)π(y)f0 = π(y).

Lemma 1.1.1 of [9] tells us there are lifts e, f and g in M(A) of e0, f0 and
g0 satisfying (3.5). Then

π (x(1− g)) = π (x) (1− g0) = π (x)

and

π (ey + (1− e)yf) = e0π(y) + (1− e0)π(y)f0 = π(y).

As for the second statement,

π(x̄) = π (x̃(1− g)) = π(x)(1− g0) = π(x),

π(ȳ) = π(eỹ + (1− e)ỹf) = e0π(y) + (1− e0)π(y)f0 = π(y)

and

x̄ȳx̄∗ = x̃(1− g)eỹ(1− g)x̃∗ + x̃(1− g)(1− e)ỹf(1− g)x̃∗ = 0

since (1− g)e = 0 and (1− g)f = 0. �

Theorem 3.3. Suppose p1, . . . , pJ are NC ∗-polynomials in infinitely many
variables that are homogeneous in the set of the first 2r variables, each with
degree of homogeneity dj at least one. Suppose Cj > 0 are real constants
and Nj ≥ 2 are integer constants. For every C∗-algebra A and I C A an
ideal, given x1, . . . , xr and y1, . . . , yr and z1, z2, . . . in A with

π (xk)π (yk)π (xk)
∗ = 0, (k = 1, . . . , r)

and

‖pj (π (x,y, z))‖ ≤ Cj , (j = 1, . . . , J)

there are x̄1, . . . , x̄r and ȳ1, . . . , ȳr in A with π (x̄) = π(x) and π (ȳ) = π(y)
and

x̄kȳkx̄
∗
k = 0, (k = 1, . . . , r)

and

‖pj (x̄, ȳ, z̄)‖ ≤ Cj , (j = 1, . . . , J).
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Proof. Without loss of generality, assume A = M(E) and I = E for some
separable C∗-algebra E. Now we apply Lemma 3.2 to each pair xj and yj
and find ej , fj and gj in M(E) so that, given any lifts x̃j and ỹj of π(xj)
and π(yj), setting

x̄j = x̃j(1− gj)
and

ȳj = ej ỹj + (1− ej)ỹjfj
produces again lifts of the π(xj) and π(yj) with

x̄j ȳj x̄
∗
j = 0.

The needed norm conditions∥∥pj(x̃1(1− g1), . . . , x̃r(1− gr),
e1ỹ1 + (1− e1)ỹ1f1, . . . , erỹr + (1− er)ỹrfr, z̄

)∥∥ ≤ Cj
involve NC ∗-polynomials that are homogeneous in {x1, . . . , xr, y1, . . . , yr},
so Theorem 3.2 of [11] again finishes the job. �

Example 3.4. For any r, the C∗-algebra

C∗

〈
x1, . . . , xr, y1, . . . , yr

∣∣∣∣∣ xjyjx
∗
j = 0,∥∥∥∑xjx

∗
j + yjy

∗
j

∥∥∥ ≤ 1

〉
is projective. In particular, since projective implies residually finite dimen-
sional, if one could show that the ∗-algebra

C

〈
x1, . . . , xr, y1, . . . , yr

∣∣∣∣∣ xjyjx
∗
j = 0,∥∥∥∑xjx

∗
j + yjy

∗
j

∥∥∥ ≤ 1

〉
is C∗-representable (as in [15]), then it would have a separating family of
finite dimensional representations.

4. The relations xjxk = 0

We can work with variables that are “half-orthogonal” in that any product
xjxk is zero. The ∗-monoid here contains only monomials of the forms

xj1x
∗
j2 · · ·xj2N−1x

∗
j2N

, xj1x
∗
j2 · · ·x

∗
j2N

xj2N+1

and their adjoints.

Lemma 4.1. Suppose A is σ-unital and C(A) = M(A)/A. If x1 . . . , xr are
elements of M(A) so that xjxk = 0 for all j and k then there are elements
0 ≤ f, g ≤ 1 so that

fg = 0

and

fxjg = xj

for all j.
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Proof. We apply Kasparov’s technical theorem to find a and b with

0 ≤ a� b ≤ 1

and
xja = a, bxj = 0.

Let f = 1− b and g = a. �

Lemma 4.2. Suppose A is σ-unital and consider the quotient map

π : M(A)→M(A)/A.

(1) If x1, . . . , xr are elements of M(A) so that π (xjxk) = 0 for all j and
k, then there are elements f and g in M(A) with

(4.1) 0 ≤ f, g ≤ 1,

(4.2) fg = 0

and
π (fxjg) = π (xj) .

(2) If π(x̃j) = π(xj) then, if we set

x̄j = fx̃jg,

we have π(x̄j) = π(xj) and

x̄j x̄k = 0

for all f and g.

Proof. The products π(xj)π(xk) are zero, so Lemma 4.1 gives us elements
0 ≤ f0, g0 ≤ 1 in C(A) with f0g0 = 0 and

f0π (xj) g0 = π (xj) .

Orthogonal positive contractions lift to orthogonal positive contractions, so
there are f and g in M(A) satisfying (4.1) and (4.2) that are lifts of f0 and
g0, which means

π (fxjg) = f0π (xj) g0 = π (xj) .

With x̄j as indicated,

π(x̄j) = π(fx̃jg) = f0π(xj)g0 = π(xj)

and
x̄j x̄k = fx̃jgfx̃kg = 0. �

Theorem 4.3. Suppose p1, . . . , pJ are NC ∗-polynomials in infinitely many
variables that are homogeneous in the set of the first r variables, each with
degree of homogeneity dj at least one. Suppose Cj > 0 are real constants.
For every C∗-algebra A and I C A an ideal, given x1, . . . , xr and y1, y2, . . .
in A with

π (xk)π (xl) = 0, (k, l = 1, . . . , r)

and
‖pj (π (x,y))‖ ≤ Cj , (j = 1, . . . , J)
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there are x̄1, . . . , x̄r in A with π (x̄) = π(x) and

x̄kx̄l = 0, (k, l = 1, . . . , r)

and

‖pj (x̄, ȳ)‖ ≤ Cj , (j = 1, . . . , J).

Proof. The proof is essentially the same as that of Theorem 3.3. �
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