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Galois theory over integral Tate algebras

Moshe Jarden and Elad Paran

Abstract. We prove that if F is the quotient field of an integral Tate
algebra over a complete nonarchimedean absolute valued field K, then
Gal(F ) is semi-free.
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Introduction

Integral Tate algebras over complete fields with respect to absolute values
play a central role in rigid analytic geometry, analogous to the role of finitely
generated integral domains over fields in algebraic geometry. Given a finitely
generated domain A over a field K, the absolute Galois group Gal(F ) of
F = Quot(A) is in general unknown. We do not know if every group can be
realized over F , let alone if every finite split embedding problem over F is
solvable. In contrast, we prove that ifK is complete under a nonarchimedean
absolute value | · | and A is a Tate algebra over K, then not only the inverse
Galois problem over F has an affirmative solution but Gal(F ) is even “semi-
free”.

To be more specific, recall that the free affinoid algebra Tn = Tn(K) is

defined as the ring of all formal power series
∑
aiX

i1
1 · · ·Xin

n with coefficients
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ai in K that converge to 0 as i → ∞. Each finitely generated integral
extension domain A of Tn(K) is an integral Tate algebra. A finite split
embedding problem over F = Quot(A) is an epimorphism α: B → Gal(F ′/F )
of finite groups, where F ′ is a finite Galois extension of F and there exists a
homomorphism α′: Gal(F ′/F )→ B such that α◦α′ = idGal(F ′/F ). A solution
field of the embedding problem is a Galois extension F ′′ of F that contains
F ′ for which there exists an isomorphism γ: Gal(F ′′/F ) → B such that
α ◦ γ = resF ′′/F ′ . One says [BHH11] that the absolute Galois group Gal(F )
of F is semi-free if every finite split embedding problem α: B → Gal(F ′/F )
over F with a nontrivial kernel has a set {Fi | i ∈ I} of solution fields of
cardinality card(F ) such that the fields Fi are linearly disjoint over F ′. In
particular, each finite group occurs as a Galois group of a Galois extension
of F .

If Gal(F ) is semi-free and projective, then by Chatzidakis–Melnikov, it
is a free profinite group [FrJ08, Theorem 25.1.7]. However, most of the
absolute Galois groups that one encounters are not projective. This is in
particular the case for Gal(F ), at least if K is not real closed and the order
of Gal(K) is divisible by a prime l 6= char(K) (Proposition 7.1). Thus, the
semi-freeness of Gal(F ) is the best known approximation to freeness.

Semi-freeness of absolute Galois groups of fields has been proved previ-
ously for several types of fields, for example for function fields of one variable
over an ample field ([Jar11, Theorem 11.7.1] or [BHH11, Theorem 7.2]), for
fields of formal power series in at least two variables over an arbitrary field,
and for Quot(R[[X1, . . . , Xn]]), where R is a Noetherian integral domain
that is not a field and n ≥ 1. The two latter examples are consequences
of a theorem of Weissauer that those fields are Hilbertian, and a theorem
of Pop asserting that those fields are ample (passage following the proof of
Proposition 1.4) and Krull (Definition 1.1) [Jar11, Theorem 12.4.3], and on
another result of Pop: If a field F is Hilbertian, ample, and Krull, then
Gal(F ) is semi-free of rank card(F ) [Jar11, Theorem 12.4.1].

Our proof takes a detour through the maximal purely inseparable exten-
sion Fins of F . First we observe that the properties of being Hilbertian,
ample, and Krull are preserved under finite algebraic extensions. Thus,
it suffices to prove these properties for Fn = Quot(Tn(K)). The proof of
Hilbertianity applies a theorem of Weissauer about generalized Krull do-
mains (Corollary 3.4). To prove that Fn is ample, we use a criterion of Pop
[Jar11, Proposition 5.7.7] and show that Fn is the quotient field of a domain
complete with respect to a nonzero ideal. The main effort is however done
in the proof that Fn is Krull (Proposition 4.4).

Using that F is Hilbertian and Krull, we apply [BaP10, Proposition 7.4]
to conclude that Fins is fully Hilbertian (Theorem 5.1(b)). This notion
is a powerful strengthening of Hilbertianity that, combined with ample-
ness, implies the semi-freeness of the absolute Galois group of F . Since
Gal(Fins) ∼= Gal(F ), the group Gal(F ) is also semi-free.
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Interesting examples for integral Tate algebras are the rings RI of holo-
morphic functions on certain connected affinoids (Section 6) used by the
method of “algebraic patching” in [HaV96] and subsequent works to solve
finite split embedding problems over K(x), where K is a complete field with
respect to an absolute value, and more generally when K is an ample field.

Acknowledgement. The authors thank Dan Haran for useful discussions.

1. Krull fields and fully Hilbertian fields

We recall the notions of a “Krull field” and of a “fully Hilbertian field”
and prove that if K is an ample Hilbertian Krull field, then Kins is fully
Hilbertian and Gal(K) is semi-free.

Definition 1.1 ([Pop10, §1] and [Jar11, Definition 12.2.2]). Let K be a field
and let V be a set of discrete valuations of K. We say that (K,V) is a Krull
field (or that K is a Krull field with respect to V) if

(a) for each a ∈ K× the set Va = {v ∈ V | v(a) 6= 0} is finite, and
(b) for each finite Galois extension K ′ of K the set SplV(K ′/K) of all

v ∈ V that totally split in K ′ has the same cardinality as of K (in
particular, taking K ′ = K, we get that card(V) = card(K)).

We say that K is a Krull field if K is a Krull field with respect to some set
of discrete valuations.

Lemma 1.2. Let (K,V) be a Krull field and and let F be a subfield of K
with card(F ) < card(K). Denote the set of all v ∈ V that are trivial on F
by F . Then K is also a Krull field with respect to F .

Proof. If F is finite, then F = V. Otherwise, F is infinite, hence K is
uncountable. Since F ⊆ V, the family F satisfies Condition (a) of Def-
inition 1.1. By definition, V r F =

⋃
a∈F× Va, hence card(V r F) =

card(
⋃

a∈F× Va) ≤ card(F ) · ℵ0 < card(K)2 = card(K). Consequently, F
satisfies Condition (b) of Definition 1.1. �

The following notion is introduced in the introduction to [BaP10].

Definition 1.3. A field K is said to be fully Hilbertian if every irreducible
polynomial f ∈ K[X,Y ] which is separable in Y has the following property:
Let (x, y) be a zero of f in some field extension of K such that x is tran-
scendental over K, set F = K(x, y), and let L be the algebraic closure of K
in F . Then there exists a subset A of K with card(A) = card(K) such that

for each a ∈ A, f(a, Y ) is irreducible over K and there exists ba ∈ K̃ with
f(a, ba) = 0 and L ⊆ K(ba) such that the fields K(ba), a ∈ A, are linearly
disjoint over L.

We denote the maximal purely inseparable extension of a field K by Kins.

Proposition 1.4. Let K be a Hilbertian Krull field. Then Kins is fully
Hilbertian.
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Proof. If K is countable, then Hilbertianity and full Hilbertianity are equiv-
alent properties [BaP10, Corollary 2.24]. Thus K is fully Hilbertian, hence
by [BaP10, Theorem 1.3], so is Kins.

Now assume K is uncountable, and let V be a family of valuations on K
such that (K,V) is Krull. Let F be the prime field of K, and let F be the
family of valuations in V which are trivial on F . Since K is uncountable,
card(F ) < card(K), hence by Lemma 1.2, (K,F) is also Krull. By [BaP10,
Proposition 7.4], Kins is fully Hilbertian. �

Recall that a field K is ample if K is existentially closed in the field K((t))
of formal power series in the free variable t. Alternatively, if each absolutely
irreducible K-curve with a simple K-rational point has infinitely many K-
rational points [Jar11, Definition 5.3.2]. Examples of ample fields are PAC
fields [Jar11, Example 5.6.1], quotient fields of domains that are complete
(or even Henselian) with respect to nonzero ideals [Jar11, Proposition 5.7.3],
and fields whose absolute Galois groups are pro-p for a single prime number p
[Jar11, Theorem 5.8.3]. The strongest result about ample fields concerning
solutions of finite embedding problems is that the absolute Galois groups
of function fields of one variable over them are semi-free ([Jar11, Theorem
11.7.1] or [BHH11, Theorem 7.2]).

The next result is due to Pop ([Pop10, Thm. 1.2] or [Jar11, Thm. 12.4.1]):

Proposition 1.5. Let K be an ample Hilbertian Krull field. Then Gal(K)
is semi-free of rank card(K).

Proof. By Proposition 1.4, Kins is fully Hilbertian. By [Pop96, Prop. 1.2] or
[Jar11, Lemma 5.5.1], Kins is ample. By [BaP10, Corollary 2.28], Gal(Kins)
is semi-free. Hence Gal(K) ∼= Gal(Kins) is semi-free. �

Remark 1.6. Our proof of Proposition 1.5 is essentially the same as that
of Pop. However, as an interim result we have proven that Kins is fully
Hilbertian (Proposition 1.4). That property for ample fields is stronger
than just having a semi-free absolute Galois group [BaP10, Remark 2.14].
Thus, Proposition 1.4 is interesting for its own sake.

When K is also perfect, Proposition 1.4 asserts that K itself is fully
Hilbertian. It is unknown whether this holds if K is nonperfect.

2. Generalized Krull domains

One method to produce Krull fields is to start with Krull domains or
rather with “generalized Krull domains” with certain additional properties.
The latter notion was introduced by Ribenboim in [Rib56].

Definition 2.1. Let R be an integral domain with quotient field K. Then R
is a generalized Krull domain if K has a family V of rank-1 (i.e., real-valued)
valuations satisfying the following properties:

(a) Denoting the valuation ring of v by Rv, we have
⋂

v∈V Rv = R.
(b) For each a ∈ K× the set Va = {v ∈ V | v(a) 6= 0} is finite.
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(c) For each v ∈ V, Rv is the localization of R by the center

pv = {a ∈ R | v(a) > 0}
of v on R.

An equivalent formulation of this definition appears in [FrJ08, §15.4].
If R is a generalized Krull domain, then the family V as above is unique

up to equivalence of valuations [Par11, Lemma 1.3]. It is called the essential
family of R. If every v ∈ V is discrete, then R is a Krull domain. All
unique factorization domains and all integrally closed Noetherian domains
are Krull domains [ZaS75, §VI.13]. By (a), every generalized Krull domain
is integrally closed.

The quotient fieldK of a generalized Krull domain with an essential family
V satisfies Condition (a) of Definition 1.1. The following result proves that
it satisfies a weak form of Condition (b) of that definition.

Proposition 2.2. Let R be a generalized Krull domain of dimension at
least 2, with essential family V. Suppose F ′ is a finite Galois extension of
F = Quot(R). Then there exist infinitely many valuations in V that totally
split in F ′.

Proof. Let m be a maximal ideal of R, of height at least 2. By [FrJ08,
Lemma 15.4.2], Rm is also a generalized Krull domain of dimension at least
2. Replacing R by Rm, we assume that R is local and m is its unique maximal
ideal.

We choose a primitive element z for F ′/F integral over R, and let

f(T ) = Tn + cn−1T
n−1 + · · ·+ c0 ∈ R[T ]

be its minimal polynomial over F . In particular, c0 6= 0. Then we multiply
z with an element of m to assume that d = discr(f(T )) ∈ m.

We suppose by induction that v1, . . . , vk ∈ V are valuations that totally
split in F ′. If k = 0, we set a = d. If k ≥ 1 we choose for each 1 ≤ i ≤ k an
element ai ∈ R with vi(ai) > 0, and set a = da1 · · · ak. Then vi(a) > 0 for
i = 1, . . . , k and a ∈ m.

By [FrJ08, Lemma 15.4.1(a)], Va 6= ∅. Thus, there exists w ∈ V with
w(a) > 0. By (b), Va∪Vc0 consists of finitely many elements w1, w2, . . . , wm.

For each w ∈ V, let pw = {x ∈ R | w(x) > 0} be the center of w on
R. Since R is a generalized Krull domain and V is its essential family of
valuations, Rpw is the valuation ring of w in F . Since w is of rank 1, pw is a
minimal prime ideal of R. We set pi = pwi for i = 1, . . . ,m. Since the height
of m is at least 2, m properly contains each pi. Hence, m strictly contains
p1∪· · ·∪pm [AtM69, Proposition 1.11]. We choose b ∈ mr(p1∪p2∪· · ·∪pm)
and consider w ∈ Vb. Then w(a) = 0 and w(c0) = 0, otherwise w = wi for
some 1 ≤ i ≤ m, so wi(b) > 0, hence b ∈ pi in contrast to the choice of b.
Thus:

(2.1) If w ∈ V satisfies w(a) > 0 or w(c0) > 0, then w(b) = 0.
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Since a, b ∈ m, the element

(2.2) c = cn−1
0 an + cn−2

0 cn−1a
n−1b+ · · ·+ c0c2a

2bn−2 + c1ab
n−1 + bn

belongs to m, hence by [FrJ08, Lemma 15.4.1(a)], there exists vk+1 ∈ V
such that vk+1(c) > 0. If vk+1(b) > 0, then vk+1(c0) > 0 or vk+1(a) > 0,
contradicting (2.1). Hence, vk+1(b) = 0. By (2.2), vk+1(a) = 0. Therefore,
vk+1 6= v1, . . . , vk and vk+1(d) = 0.

Finally we prove that vk+1 totally splits in F ′. Indeed, f( c0ab ) = c0c
bn , so

vk+1(f( c0ab )) > 0. Let v′k+1 be an extension of vk+1 to F ′, and use a bar

to denote reduction modulo v′k+1. Then c̄0
ā
b̄

is a root of f̄(T ) in F̄ . Since

d̄ 6= 0, this implies that vk+1 totally splits in F ′ (see also [Jar11, Remark
12.2.1(b)]). �

Corollary 2.3. Let R be a countable generalized Krull domain of dimension
at least 2 with an essential family V. Then (Quot(R),V) is a Krull field.

Proof. Condition (a) of Definition 1.1 follows from Condition (a) of Defini-
tion 2.1. Condition (b) of Definition 1.1 is a consequence of Proposition 2.2,
because card(Quot(R)) = ℵ0. �

3. Free affinoid algebras

We recall the notion of a free affinoid algebra and prove that its quotient
field is Hilbertian and ample. In the next section we prove that such a field
is Krull.

Let R be a domain, complete with respect to a nonarchimedean absolute
value | · |. Let R[[X]] be the ring of formal power series in X over R. We
consider the following subring of R[[X]]:

R{X} =

{ ∞∑
i=0

aiX
i ∈ R[[X]]

∣∣∣∣∣ ai ∈ R, lim
i→∞
|ai| = 0

}
.

The absolute value of R extends to an absolute value of R{X} by∣∣∣∣∑
i

fiX
i

∣∣∣∣ = max
i≥0

(|fi|)

and R{X} is complete with respect to | · | [Jar11, Lemma 2.2.1(c)]. Thus,
for each f ∈ R{X} there exists a ∈ R with |f | = |a|.

Setup 3.1. We use the following convention for the rest of this work.
Let K be a complete field with respect to a nonarchimedian absolute value

| · |. The free affinoid algebra Tn = Tn(K) is the subring of K[[X1, . . . , Xn]]

consisting of all power series f =
∑
aiX

i1
1 · · ·Xin

n with coefficients ai in K
that converge to 0 as min(i1, . . . , in) → ∞, where (i1, . . . , in) = i. The
absolute value of K extends to an absolute value of Tn by |f | = max(|ai|)
[FrP04, p. 46]. For each n ≥ 0 we consider the subring

On = {f ∈ Tn | |f | ≤ 1}
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of Tn and observe that On = On−1{Xn} when n ≥ 1.
One observes that Tn = Tn−1{Xn} for each n ≥ 1. A nonzero element

f =
∑
fiX

i
n ∈ Tn is said to be regular (over Tn−1), if fd ∈ T×n−1, where

d = max(i | |fi| = |f |).
We denote the quotient field of Tn by Fn.

Lemma 3.2. The ring Tn is a unique factorization domain of Krull di-
mension n. Moreover, if p is a prime element in Tn, then there exists an
automorphism σ of Tn such that σ(p) is an associate of an irreducible monic
polynomial q ∈ On−1[Xn] with |q| = 1.

Proof. That Tn is a unique factorization domain of dimension n is stated
in [FrP04, Theorem 3.2.1(2)]. Given p as in the lemma, we multiply p
with an appropriate element of K× ⊆ T×n to assume that |p| = 1. By the
Weierstrass preparation theorem [FrP04, Theorem 3.1.1(1)], there exists an
automorphism σ such that p′ = σ(p) is regular with |p′| = 1 (note that
“regular” in [FrP04] includes the condition on the norm to be 1). �

Proposition 3.3. The ring On is a generalized Krull domain with quotient
field Fn and dim(On) = n + 1. Moreover, if w denotes the real valuation
on Fn that corresponds to the absolute value | · |, and if V is the family
of valuations of Fn that correspond to the prime elements of Tn, then the
essential family of On is V ′ = V ∪ {w}.

Proof. We set T = Tn, O = On, and F = Fn. Let 0 6= f ∈ T . Then
there exists a ∈ K× with |a| = |f |, so f = f

a · a ∈ O · K. Therefore,
Quot(O) = Quot(T ) = F .

Since O0 is a real valuation ring, its dimension is 1. Inductively, as-
suming that dim(On−1) = n, we observe that the map Xn 7→ 0 extends
to an epimorphism On → On−1 whose kernel OnXn has height 1. Hence,
dim(On) = dim(On−1) + 1 = n+ 1.

We denote the valuation ring of F at v ∈ V by Rv. Since T is a unique
factorization domain, Conditions (a), (b) and (c) of Definition 2.1 hold for
(T,V) rather than for the pair (R,V) of that definition. In particular, each
element of F× satisfies v(a) = 0 for all but finitely many v ∈ V, hence
v(a) = 0 for all but finitely many v ∈ V ′ as well. Thus, V ′ satisfies Condition
(b) of Definition 2.1.

Suppose f ∈
⋂

v∈V ′ Rv. Since
⋂

v∈V Rv = T , we have f ∈ T . In addition,
w(f) ≥ 0. Equivalently, |f | ≤ 1, hence f ∈ O. Thus, (O,V ′) satisfies
Condition (a) of Definition 2.1.

It remains to prove that if v ∈ V ′, then Rv = Opv , where pv is the center
of v in O. First suppose that v ∈ V. Then v is the p-adic valuation of F
for some prime element p of T . In particular, v is trivial on K, because
K× ⊆ T×. Since T is a unique factorization domain, Rv = Tqv , where qv
is the center of v in T . Suppose f

g ∈ Rv = Tqv , with f, g ∈ T and g /∈ qv.

We choose b ∈ K× with |b| ≤ min(|f−1|, |g−1|). Then g′ = bg and f ′ = bf
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are in O. Moreover, v(g′) = v(b) + v(g) = v(g) = 0. Thus, g′ /∈ pv, hence
f
g = f ′

g′ = Opv . This proves that Rv = Opv .

Finally, suppose that v = w and let f
g ∈ F with f, g ∈ O, w(f) ≥ w(g).

Dividing f, g by an element of K with value w(g), we may assume that

w(g) = 0. Thus, f
g ∈ Opw , as needed. �

Corollary 3.4. For each n ≥ 1 the field Fn is Hilbertian.

Proof. By Proposition 3.3, On is generalized Krull domain of dimension at
least 2 with quotient field Fn. By Weissauer’s Theorem [FrJ08, Theorem
15.4.6], Fn is Hilbertian. �

Remark 3.5. The case where n = 1 of Corollary 3.4 is [Jar11, Theorem
2.3.3]. For n > 1, Corollary 3.4 may be deduced without the use of Propo-
sition 3.3. Indeed, the ring Tn is a unique factorization domain, and in
particular a generalized Krull domain. Since dim(Tn) = n > 1, Weissauer’s
Theorem implies that Fn = Quot(Tn) is Hilbertian. Nevertheless, Proposi-
tion 3.3 will be used in the proof of Proposition 4.4.

4. Proof that Fn is ample and Krull

In the next section, we prove that the maximal purely inseparable exten-
sion of Fn is fully Hilbertian by proving that Fn is a Krull field (We keep the
convention of Setup 3.1.) The main difficulty is to prove that the essential
family of Tn satisfies Condition (b) of Definition 1.1.

Lemma 4.1. Let A be an integral domain. Suppose A is complete with
respect to a real valuation v and A is contained in the valuation ring Rv of v
in Quot(A). Let t be a nonzero element of A with v(t) > 0. If A[t−1]∩Rv =
A, then A is complete and Hausdorff with respect to the t-adic topology on
A.

Proof. First note that since v(t) > 0 and v(t) ∈ R, we have
⋂∞

n=1(tA)n =
{0}. That is, A is Hausdorff with respect to the t-adic topology. Now we
consider a Cauchy sequence {ai}∞i=1 in A with respect to the t-adic topology.
Then there exists a sequence of integers {ni}∞i=1 with tni |ai+1−ai and ni →
∞. Thus, v(ai+1 − ai) ≥ niv(t) for each i, so v(ai+1 − ai) → ∞. Since A
is complete with respect to v, there exists a ∈ A with v(ai − a) → ∞. For

each i ≥ 1, let mi be an integer satisfying v(ai−a)
v(t) − 1 ≤ mi ≤ v(ai−a)

v(t) . Then,

mi → ∞ and v(ai−atmi ) ≥ 0, which implies that ai−a
tmi ∈ A[t−1] ∩ Rv = A for

each i. Thus, tmi |ai − a for each i ≥ 1. Hence ai converges t-adically to
a. �

Lemma 4.2. Let n ≥ 0 and let t ∈ K× with |t| < 1. Then On is complete
with respect to the t-adic topology.

Proof. Let Rn = {x ∈ Fn | |x| ≤ 1} be the valuation ring of | · | in Fn. Since
t ∈ K×, we have On[t−1] ≤ Tn. Hence, On ⊆ Rn∩(On)[t−1] ⊆ Rn∩Tn = On,
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so On = (On)[t−1] ∩Rn. Hence by Lemma 4.1, On is complete with respect
to the t-adic topology. �

Corollary 4.3. For each n ≥ 1, Fn is an ample field.

Proof. By Proposition 3.3, Fn = Quot(On). By Lemma 4.2, On is complete
with respect to the t-adic topology (for each t ∈ K× with |t| < 1). Hence,
by [Pop10, Theorem 1.1] or [Jar11, Proposition 5.7.7], Fn is ample. �

Now we prove that Fn is a Krull field. The proof is an adaptation of
[Par10, Proposition 5.5].

Proposition 4.4. For each n ≥ 1, Fn is a Krull field.

Proof. Set F = Fn = Quot(Tn). By Lemma 3.2, Tn is a unique factorization
domain. We choose a system of representatives S for the associate classes of
the prime elements of Tn. Let V be the family of all s-adic valuations of F
with s ranging on S. Then each v ∈ V is discrete and V satisfies Condition
(a) of Definition 1.1. Let F ′ be a finite Galois extension of F . We prove
that there are card(K) valuations in V that totally split in F ′.

By Proposition 3.3, On is a generalized Krull domain with quotient field
F . Therefore, we may choose a primitive element z for F ′/F integral over
On. Let f = irr(z, F ). Then f is a monic polynomial with coefficients in On

and f(z) = 0. In particular, d = discr(f) is a nonzero element of On.
Let V ′ be the essential family of On (Definition 2.1). By Proposition 2.2,

infinitely many valuations of V ′ totally split in F ′. By Proposition 3.3, V ′rV
consists of one element. Hence, we may choose an s ∈ S that totally splits
in F ′ and s - d. By Lemma 3.2, we may apply an automorphism of Tn to
assume that s is an irreducible monic polynomial in On−1[Xn] with |s| = 1.

We divide the rest of the proof into two parts.

Part A. Modification of s. We set X = Xn. As a generalized Krull domain,
On is integrally closed. Set P = On ∩ Tns. Since s does not divide d, z
generates the integral closure O′n,P of the local ring of On,P [FrJ08, Lemma

6.1.2]. Let P ′ be a prime ideal of O′n,P lying over PO′n,P . Then, the residue

of z modulo P ′ generates the residue field F ′ of F ′ over F̄ = On,P /POn,P .

Since s totally splits in F ′, we have F ′ = F̄ . Hence, there exists a ∈ On

such that

(4.1) f(a) ≡ 0 mod Ons and b = f ′(a) 6≡ 0 mod Ons.

Since s ∈ On−1[X] is monic with |s| = 1, s (viewed as an element of Tn)
is regular. By the Weierstrass division theorem [FrP04, Theorem 3.1.1(2)],
for each g ∈ Tn, there exist q ∈ Tn and r ∈ Tn−1[X] such that g = qs + r,
degX(r) < degX(s), and |g| = max(|q|, |r|). If also g ∈ On, then |g| ≤ 1, so
|q|, |r| ≤ 1, hence q, r ∈ On. Therefore, r ∈ Tn−1[X] ∩On = On−1[X].

It follows that On/Ons = On−1[x], where x (the reduction of X modulo
s) satisfies a monic equation over On−1 of degree k = degX(s). We denote
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the reduction of b modulo s by bs. Then, b2s = qs(x), where qs ∈ On−1[X]
is a polynomial of degree less than k. Set c = qs(X). Then, c ∈ On−1[X]
satisfies

(4.2) c ≡ b2 mod Ons.

We choose 0 6= t ∈ O0 with |t| < 1. For each e ∈ O0 ⊆ On with |e| ≤ |t|
we set

(4.3) se = s+ ce.

Then,

(4.4) there exists u ∈ O×n such that cu ≡ b2 mod seOn.

Indeed, by (4.2) there exists g ∈ On such that c = b2 + gs. Then, u =
1 + ge is invertible in On, because |ge| ≤ |e| < 1 and On is complete with
respect to | · |. By (4.3), c = b2 + gse − gce ≡ b2 − gce mod seOn. Hence,
cu = c(1 + ge) ≡ b2 mod seOn, as claimed.

By (4.1) and (4.3), f(a) ∈ Ons ⊆ Ons+Once = Onse +Once. Hence, by
(4.2) and (4.1),

(4.5) f̄(ā) ∈ (c̄ē)Ōn = (b̄2ē)Ōn = f̄ ′(ā)2(Ōnē),

where the bar denotes reduction of elements of On modulo se.
Since s is monic of degree k in X and degX(c) < k, se is also monic of

degree k (by (4.3)). Also, |se| = 1, because |ce| < |e| ≤ 1 = |s|. Applying
the Weierstrass division theorem to se, we get that the ring Ōn = On−1[X̄] is
a finite module over On−1. By Lemma 4.2, On−1 is complete and Hausdorff
with respect to tOn−1. Since Ōn is a finite On−1-module, it follows from
[ZaS75, p. 256, Theorem 5] that Ōn is complete with respect to the tŌn-adic
topology.

Since |e| ≤ |t|, we have One ⊆ Ont. Hence, by (4.5), f̄(ā) ∈ f̄ ′(ā)2(Ōnē) ⊆
f̄ ′(ā)2(Ōnt). Therefore, by Hensel’s Lemma (for the ring Ōn and the ideal
Ōnt), there exists ae ∈ On such that f̄(āe) = 0 [Eis95, p. 185], i.e., f(ae) ∈
Onse.

Part B. Many totally split primes. For each e ∈ O0 satisfying |e| ≤ |t| let
se = s + ce, as in (4.3), and let pe be a prime factor of se in the unique
factorization domain Tn. Dividing by a nonzero element of K of the same
absolute value as pe, we may assume that |pe| = 1. It follows that pe is also
a prime element of On. Since f(ae) ∈ Onse, we also have f(ae) ∈ Onpe.

We claim that if e, e′ are distinct elements in O with |e|, |e′| ≤ |t|, then
pe, pe′ are nonassociate prime elements of On. Indeed, suppose pe is a prod-
uct of pe′ by an invertible element of On. Then pe divides (s+ce)− (s+ce′),
so pe|c(e−e′). If pe|c, then pe|s, and since s is prime in On, s and pe are asso-
ciates, which implies that s|c. By (4.2) c ≡ b2 mod Ons, so b ≡ 0 mod Ons,
in contrast to (4.1). Thus, pe does not divide c. If pe|e − e′, then |pe| ≤
|e− e′| ≤ |t| < 1, in contrast to the choice of pe in the preceding paragraph.
It follows that pe, pe′ are nonassociate prime elements of On. This implies
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that pe, pe′ are nonassociate prime elements of Tn. Indeed, if pe and pe′ are
associates in Tn, then pe

pe′
,
pe′
pe
∈ Tn, and since |pe| = |pe′ | = 1 this implies

that pe
pe′
,
pe′
pe
∈ On, a contradiction.

Thus, each e in O with |e| ≤ 1 yields a distinct prime pe of Tn such that
f has a root modulo pe. Only finitely many of these primes divide d (since
Tn is a unique factorization domain), all others split completely in F ′ (same
argument as for s in Part A). The corresponding valuations in V totally split
in F ′.

Finally we note that since K is complete with respect to a nontrivial
nonarchimedean absolute value, we have card(K) = card(K)ℵ0 [Vam75,
Lemma 2]. Since K ⊂ Tn ⊂ K[[X1, . . . , Xn]], we have card(K) ≤ card(Tn) ≤
card(K)ℵ0 = card(K). Hence, card(Tn) = card(K). Therefore, card(F ) =
card(K). Consequently, F is a Krull field. �

Remark 4.5. In the case where the absolute value | · | is discrete (that is,
the corresponding valuation is discrete), Proposition 4.4 follows by applying
[Pop10, Theorem 3.4(ii)] to the ring On and the ideal 〈t,X1〉, where t is a
uniformizer of O. In the case where | · | is nondiscrete (in particular, when
K is algebraically closed), we cannot rely on [Pop10, Theorem 3.4].

5. Tate algebras

We prove the main result of this work, namely that the quotient field of
a Tate algebra has a semi-free absolute Galois group.

Theorem 5.1. Let A be an integral Tate algebra over a complete field K with
respect to a nonarchimedean absolute value and let F = Quot(A). Then:

(a) F is Hilbertian and Krull.
(b) The maximal purely inseparable extension Fins of F is fully Hilber-

tian.
(c) F is ample and Gal(F ) is semi-free of rank card(F ).

Proof. By definition, A is a finitely generated integral extension domain
of Tn for some n ≥ 1. Thus, in the notation of Setup 3.1, F is a finite
field extension of Fn = Quot(Tn). By Corollary 3.4, Fn is Hilbertian. By
Proposition 4.4, Fn is a Krull field. Since F is a finite extension of Fn, F
is Hilbertian [FrJ08, Proposition 12.3.3] and Krull [Jar11, Lemma 12.2.4],
This proves (a).

It follows from [BaP10, Proposition 7.4] that Fins is fully Hilbertian, which
is (b).

By Corollary 4.3, Fn is ample. Hence, by [Pop96, Proposition 1.2] or
[Jar11, Lemma 5.5.1], F is ample. Since Fins is an algebraic extension of F ,
it is also ample. It follows from [BaP10, Theorem 1.6] that Gal(Fins) is semi-
free of rank card(Fins). Since Gal(F ) = Gal(Fins) and card(F ) = card(Fins),
we find that Gal(F ) is semi-free of rank card(F ). �
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Remark 5.2. The conclusion that Gal(F ) is semi-free of rank card(F ) fol-
lows also from [Pop10, Theorem 1.1] (see also [Jar11, Theorem 12.4.1]). We
note that Pop’s proof replaces the field F by a finite purely inseparable
extension, like the step we take in (b).

6. Rings of convergent power series

We apply Theorem 5.1 to rings of convergent power series that play a
central role in “algebraic patching”.

Let K be a complete field with respect to an absolute value | · | and let

x be a variable. We extend | · | to the field K(x) by the rule |
∑d

j=1 aix
i| =

max(|a0|, . . . , |ad|) for ai ∈ K (the Gauss extension). Now we consider
a positive integer n, let I = {1, . . . , n} and consider c1, . . . , cn ∈ K and
r1, . . . , rn ∈ K× such that |ri| ≤ |ci − cj | for all distinct i, j in I. Then we
set wi = ri

x−ci and note that |wi| = 1 for all i. Finally we consider the subring

R0 = K[w1, . . . , wn] of K(x) and let R = RI be the completion of the ring R0

with respect to |·|. This is the ring of holomorphic function on the connected

affinoid
⋂

i∈I D(ci, ri), where D(ci, ri) = {z ∈ P1(K̃) | |z−ci| ≥ |ri|} [FrP04,
Example 3.3.5].

In the case where the ri’s are independent of i, the rings RJ , with J
ranging on the subsets of I, satisfy certain rules that make them part of a
“patching data” [Jar11, Definition 1.1.1] that eventually lead to the solution
of all finite split embedding problems over K(x) [Jar11, Proposition 7.3.1].
Indeed, [Jar11, Proposition 7.4.4] proves even that Gal(K(x)) is a semi-free
profinite group of rank card(K). We prove here that the absolute Galois
groups of the quotient fields of these rings are themselves semi-free.

The following lemma appears in [FrP04, Example 3.3.5] in the case where
K is algebraically closed.

Lemma 6.1. The integral domain R is an integral Tate algebra.

Proof. Let Tn0 = K[X1, . . . , Xn] equipped with the Gauss extension of | · |.
The map Xi 7→ wi for i ∈ I extends to a K-epimorphism φ0: Tn,0 → R0. For

each f =
∑
aj
∏

i∈I X
ji
i ∈ Tn0 with distinct monomials

∏
i∈I X

ji
i , we have

|f | = max(|aj|). Since |wi| = 1 for all i ∈ I, we have |φ0(f)| ≤ max(|aj|) =
|f |. Since Tn and R are the completions of Tn0 and R0 with respect to the
absolute value, this implies that φ0 extends to a continuous K-epimorphism
φ: Tn → R. Then R = Tn/Ker(φ). By [FrP04, Theorem 3.2.1(4)], R is
a finitely generated extension of Td, with d = dim(R). Thus, R is a Tate
algebra. �

Taking Lemma 6.1 into account, we get the following example for Theo-
rem 5.1:

Theorem 6.2. Let R = RI be as above and set F = Quot(R). Then, F is
Hilbertian, Krull, and ample, Gal(F ) is semi-free of rank card(F ), and the
maximal purely inseparable extension Fins of F is fully Hilbertian.
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7. Nonprojectivity

Let A be an integral Tate algebra over a complete field K with respect to
a nonarchimedean absolute value and let F = Quot(A). By Theorem 5.1,
Gal(F ) is semi-free. We prove that in most cases this result can not be
improved to “Gal(F ) is free” by showing that Gal(F ) is not projective.

Proposition 7.1. Let A be an integral Tate algebra over a field K which
is complete with respect to a nonarchimedean absolute value | · | and let
F = Quot(A). Then Gal(F ) is not projective in each of the following cases:

(a) dim(A) ≥ 2.
(b) dim(A) = 1, K is not real closed [Lan93, Section XI.2], and the

order of Gal(K) [FrJ08, Section 22.8] is divisible by a prime number
l 6= char(K).

Proof. Since K is complete with respect to | · |, the field K ′ = K(
√
−1) is

also complete with respect to the unique extension of | · |. Moreover, under
the assumptions of (b), K ′ is not formally real and the order of Gal(K) is
divisible by a prime number l 6= char(K). By definition, the domain A is
integral and finitely generated over Tn = Tn(K) for some n ≥ 1. By the
going up theorem, dim(A) = dim(Tn) [HuS06, Theorem 2.2.5]. By Lem-
ma 3.2, dim(Tn) = n, hence dim(A) = n. Let T ′n = Tn[

√
−1], A′ = A[

√
−1],

and F ′ = F (
√
−1). Then T ′n = Tn(K ′) (because there exists a positive real

number γ such that |a + b
√
−1| ≤ γmax(|a|, |b|) for all a, b ∈ K [CaF67,

p. 57, Corollary] and F ′ = Quot(A′). Moreover, A′ is integral over Tn(K ′),
so A′ is an integral Tate algebra over K ′ and dim(A′) = dim(A). If Gal(F )
is projective, so is Gal(F ′) [Rib70, Chapter IV, Proposition 2.1(a)]. Thus,
replacing K, Tn, A, F , respectively, by K ′, T ′n, A′, F ′, if necessary, we may
assume that K is not formally real, so K can not be ordered.

Now we set T0 = F0 = K. By Lemma 3.2, Tn is a unique factorization
domain. In particular, Tn is Noetherian. The map (X1, . . . , Xn−1, Xn) 7→
(X1, . . . , Xn−1, 0) extends to a continuous K-epimorphism Tn 7→ Tn−1 with
TnXn as its kernel. In particular, TnXn is a prime ideal of Tn and Xn is a
prime element of Tn.

We denote the discrete valuation of Fn that corresponds to Xn by v. Then
the residue field of Fn with respect to v is Fn−1. We consider an extension
w of v to F and let Fw be a Henselian closure of F with respect to w. The
field Fw is a discrete Henselian valuation ring whose residue field F̄w is a
finite extension of Fn−1. Since K ⊆ Fn−1 and K is not formally real, F̄w

not formally real.
If l 6= char(K) is a prime number, then l ∈ K×, so l is invertible in the

valuation ring of Fw. By [AGV73, Chap. x, Théorème 2.3], cdl(Gal(Fw)) =
cdl(Gal(Fn−1)) + 1. Since Gal(Fw) is a closed subgroup of Gal(Fn), we have
cdl(N) ≤ cdl(Fn) [Rib70, p. 204, Proposition 2.1(a)]. Hence,

(7.1) cdl(Gal(Fn)) ≥ cdl(Gal(Fn−1)) + 1.



386 MOSHE JARDEN AND ELAD PARAN

End of proof under Assumption (a). As in the second paragraph of the
proof, Xn is a prime element of Tn−1. Let l 6= char(K) be a prime number.
By Eisenstein’s criterion, Fn−1( l

√
Xn) is a separable extension of Fn−1 of

degree l. Hence, by [Rib70, Chapter IV, Corollary 2.3], cdl(Fn−1) ≥ 1.
Consequently, by (7.1), cdl(Fn) ≥ 2, so Gal(F ) is not projective.

End of proof under Assumption (b). Let l 6= char(K) be a prime number
that does not divide the order of Gal(K). By [Rib70, Chapter IV, Corollary
2.3], cdl(K) ≥ 1. Therefore, by (7.1), cd(F1) ≥ 2. �

If K is a real closed field, then its unique ordering can be extended to
K((x)) (e.g., by defining 0 < x < a for each positive a ∈ K), hence to F1 =
Quot(K{x}). Therefore, Gal(F1) contains an involution and consequently
cd2(Gal(F1)) = ∞ [Rib70, Chapter IV, Proposition 2.1(a) and Corollary
2.5]. In particular, Gal(F1) is not projective. From the remaining cases, it
seems that the first one to handle should be when K is separably closed.

Problem 7.2. Let K be a separably closed field, x a variable, and F =
Quot(K{x}). Is it true that Gal(F ) is projective?
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