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Isospectral metrics on weighted projective
spaces

Martin Weilandt

Abstract. We construct the first examples of families of bad Riemann-
ian orbifolds which are isospectral with respect to the Laplacian but not
isometric. In our case these are particular fixed weighted projective
spaces equipped with isospectral metrics obtained by a generalization of
Schüth’s version of the torus method.
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1. Introduction

An orbifold is a generalization of a smooth manifold which is in general
not locally homeomorphic to an open subset of Rn but to the quotient of a

smooth manifold Ũ by an effective action of a finite group Γ. A Riemannian

Received October 13, 2011.
2010 Mathematics Subject Classification. Primary: 58J53, 58J50; Secondary: 53C20,

57R18.
Key words and phrases. spectral geometry, Laplace operator, isospectral orbifolds,

weighted projective space.
This research was funded by the Berlin Mathematical School and partially funded by

the DFG Sonderforschungsbereich SFB 647.

ISSN 1076-9803/2012

421

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2012/Vol18.htm


422 MARTIN WEILANDT

metric is then in each orbifold chart as above given by a Γ-invariant metric

on Ũ . Given a Riemannian metric on an orbifold, it is possible to generalize
the manifold Laplacian and it is well-known that in the compact setting the
spectrum of the orbifold Laplacian can be written as an infinite sequence

0 = λ0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · ↗ ∞

of eigenvalues, each repeated according to the (finite) dimension of the cor-
responding eigenspace ([9]). The observation that the spectrum contains
geometric information like dimension, volume and certain curvature inte-
grals gave rise to the field of spectral geometry which asks about the degree
to which the spectrum of the Laplacian determines the geometry of the given
space.

Besides a vast theory on manifolds (cf. [16]), the spectral geometry on orb-
ifolds has recently received rising attention, since these provide the arguably
simplest type of singular spaces, and it is still an open problem, whether a
singular orbifold can be isospectral to (i.e., have the same spectrum as)
a manifold (though there are some results on isotropy groups, which in a
way measure the degree of singularity of an orbifold ([27, 31, 33]). How-
ever, all known nontrivial examples of isospectral orbifolds (also compare
[4, 13, 26, 32, 35]) are good, i.e., they can be written as the quotient of a
Riemannian manifold M by a discrete subgroup Γ of the isometry group of
M , and the eigenspaces on the orbifold M/Γ correspond to the Γ-invariant
eigenspaces on M . Since the known constructions can be seen to never
yield an isospectral pair of a manifold and a singular orbifold, the more
intricate setting of bad (i.e., non-good) orbifolds deserves special attention.
The isospectrality of bad orbifolds was already investigated in [1] and [17],
where large families of nonhomeomorphic weighted projective spaces with
their standard metrics were shown to be pairwise nonisospectral. Weighted
projective spaces are a generalization of complex projective space obtained
by taking certain quotients of odd-dimensional spheres by S1-actions with
finite stabilizers.

In this work we now use certain weighted projective spaces and special
metrics based on ideas in [30] to construct isospectral metrics on bad orb-
ifolds. Our main result is the following Theorem 4.15.

Theorem. For every n ≥ 4 and for all pairs (p, q) of coprime positive
integers there are isospectral families of pairwise nonisometric metrics on
the orbifold O(p, q), a weighted projected space of dimension 2n ≥ 8, which
is a bad orbifold for (p, q) 6= (1, 1).

This theorem generalizes a result on CPn (which is the case (p, q) = (1, 1)
in the theorem above) from [28].

This paper is organized as follows: Section 2 summarizes basic notions on
orbifolds and some facts from the spectral geometry of compact Riemannian
orbifolds.
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In Section 3 we generalize results from [30] to orbifolds. The basic idea
of this so-called torus method (which, in a different form, was first used in
[15]) is that the existence of related isometric actions of a fixed torus on two
Riemannian orbifolds implies under very special conditions that these two
orbifolds are isospectral. We also point out how the criterion for nonisometry
in [30] generalizes to the orbifold case.

In Section 4 we introduce (with n, p, q as in the theorem above) our
weighted projective spaces O(p, q) = S2n+1/S1 with the action given by
σ(u, v) = (σpu, σqv) for σ ∈ S1 ⊂ C, u ∈ Cn−1, v ∈ C2. We then fix
n, p, q and use the results from Section 3 together with other ideas from
[30] to obtain families of isospectral metrics on the orbifold O(p, q). For the
impatient reader Section 4.2.2 contains an alternative isospectrality proof
independent of Section 3 which also implies our main result but applies only
to the case of isospectral families and hence misses some potential isospec-
tral pairs. Eventually, in Section 4.3 we show that the resulting metrics are
(under certain conditions) nonisometric, thus establishing our main theorem
above. Moreover, inspired by [35], we give isospectral metrics on quotients
of our weighted projective spaces by certain finite groups in Section 4.4.

Acknowledgements. This work is a condensed version of my Ph.D. thesis
at the Humboldt-Universität zu Berlin and I am indebted to my supervisor
Dorothee Schüth. Without her foresight this project never would have come
into being and without her unceasing guidance and curiosity it could not
have been finished. I would also like to thank Emily Dryden, Alexander
Engel, Luis Guijarro and the referees for helpful suggestions.

2. Orbifold preliminaries

The concept of an orbifold was introduced by Satake in [29] and popular-
ized by Thurston ([36]). We basically follow Satake’s definition, also compare
[6, 22, 37] for basic introductions to orbifolds. However, since there seems to
be no standard reference for orbifolds from the point of view of differential
geometry, we will summarize basic notions and results which are necessary
for the constructions in the following sections. For an extended version of
this section with detailed proofs see [38].

2.1. Basics. An n-dimensional orbifold chart on a topological space X is

given by a tuple (U, Ũ/Γ, π) where U is an open connected subset of the

underlying space X, Ũ is a connected n-dimensional smooth manifold and Γ

is a finite group acting smoothly and effectively on Ũ . π is a continuous map

Ũ → U which induces a homeomorphism Ũ/Γ → U . Two n-dimensional

charts (Ui, Ũi/Γi, πi), i = 1, 2 on the same space X are called compatible if

for every x ∈ U1∩U2 there is an n-dimensional orbifold chart (U, Ũ/Γ, π) on
X such that x ∈ U ⊂ U1 ∩ U2 and there are smooth embeddings (so-called

injections) λ1 : Ũ → Ũ1, λ2 : Ũ → Ũ2 satisfying π1 ◦ λ1 = π = π2 ◦ λ2. A
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covering of X by compatible charts is called an orbifold atlas. An orbifold
is then a pair O = (X,A) of a second-countable Hausdorff space X and a
maximal atlas A on X. If O is connected, the dimension of O is by definition

given by the dimension of the manifolds Ũ appearing in charts on O.
The isotropy of a point x ∈ O is the isomorphism class of the stabilizer Γx̃,

where (U, Ũ/Γ, π) is an arbitrary chart around x and x̃ ∈ π−1(x). It is not
hard to show that the compatibility conditions above imply that the isotropy
is well-defined. Points with trivial isotropy are called regular, nonregular
points are called singular. It is well-known that in every connected orbifold
O the set of regular points (which we will denote by Oreg) is a connected
manifold which is open and dense in O.

A smooth map between two orbifoldsO1, O2 is a continuous map f : O1 →
O2 between the underlying topological spaces such that for every x ∈ O1

there is a chart (U1, Ũ1/Γ1, π1) onO1 around x, a chart (U2, Ũ2/Γ2, π2) onO2

around f(x) and a pair (f̃ ,Θ) consisting of a smooth map f̃ ∈ C∞(Ũ1, Ũ2)

and a homomorphism Θ: Γ1 → Γ2 such that π2 ◦ f̃ = f ◦ π1 and f̃(γỹ) =

Θ(γ)f̃(ỹ) for ỹ ∈ Ũ1, γ ∈ Γ1. A smooth map f where the local lifts f̃ can
always be chosen to be submersions is called a submersion between orbifolds.

Let A be a not necessarily maximal atlas on an orbifoldO. An (r, s)-tensor
field associated with A is given by a family τ = (τπ)π∈A, where for each chart

(U, Ũ/Γ, π) (which we also denote by π for short) in A the associated element

τπ is a Γ-invariant (r, s)-tensor field on Ũ . Moreover, τ has to satisfy the

following compatibility condition: Given charts (Ui, Ũi/Γi, πi), i = 1, 2, in

A and x ∈ U1 ∩ U2, there is a chart (U, Ũ/Γ, π) on O (which need not be
in A) satisfying x ∈ U ⊂ U1 ∩ U2 together with injections λ1, λ2 from π

into π1 and π2, respectively, such that λ∗1τπ1 = λ∗2τπ2 on Ũ . A tensor field
on the maximal atlas of O is called a tensor field on O. It can be shown
that a tensor field on an arbitrary atlas A on O induces a unique tensor
field on O. If τ is a tensor field on O, we set τreg := τπ for π given by
(Oreg,Oreg/{idOreg}, idOreg).

A (1, 0)-tensor field is then called a vector field on O and a (0, 2)-tensor
field consisting of Riemannian metrics is a Riemannian metric on O. Given
a smooth real-valued function f and a Riemannian metric on O, we denote
by grad f the vector field on O given in each chart π by the gradient of f ◦π
with respect to the given metric. Note that given vector fields X1, . . . , Xk

and a (0, k)-tensor field τ on O, we can set fπ := τπ(X1
π, . . . , X

k
π) ∈ C∞(Ũ)Γ

for every chart (U, Ũ/Γ, π) on O. Patching the fπ ∈ C(U) induced by
fπ together, we obtain a well-defined smooth function f on O which we
will denote by τ(X1, . . . , Xk). Given a smooth map f : O1 → O2 between
orbifolds and an arbitrary (0, k)-tensor field τ on O2, the pull-back f∗τ
as a (0, k)-tensor field on O1 can be defined using the pull-backs of the

components of τ via local lifts f̃ of f . In particular, this applies to a (0, k)-
tensor field consisting of k-forms, which we will call k-form on O.
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To integrate on a compact Riemannian orbifold we first introduce densi-
ties on orbifolds. Let O = (X,A) be an n-dimensional orbifold. In analogy
to the case of n-forms, a density is given by a family µ = {µπ}π∈A, where

for each chart (U, Ũ/Γ, π) in A the associated element µπ is a Γπ-invariant

density on Ũ . Moreover, we assume that µ satisfies a compatibility condi-
tion analogous to the one for tensor fields. Given a density µ on a compact
orbifold O, we can define the integral of µ over O by∫

O
µ :=

∑
i

1

|Γi|

∫
Ũi

(ψi ◦ πi)µπi ,

where {(Ui, Ũi/Γi, πi)}i is a finite atlas of O and {ψi} is a smooth partition
of unity on O such that each ψi ∈ C∞(O) has support in Ui. It can be
shown that for a diffeomorphism F : O1 → O2 the respective formula for
densities on manifolds implies

∫
O1
F ∗µ =

∫
O2
µ for every density µ on O2.

Given a Riemannian metric g on O, note that for every chart (U, Ũ/Γ, π)
in A the Riemannian metric gπ defines the Riemannian density dvolgπ on

the manifold Ũ . The density dvolg := {dvolgπ}π∈A is called the Riemannian
density on (O, g). Given a smooth function f on O, we can define the
integral of f over O by ∫

O
f :=

∫
O
f dvolg .

We now assume that we are given a compact connected Lie group G acting
smoothly and effectively on a manifold M such that the stabilizer of every
point in M is finite. Denote the canonical projection by P : M → M/G.
Using foliation theory, it can be shown that under these conditions the
quotient M/G carries a canonical orbifold structure whose restriction to
(M/G)reg is given by the usual manifold structure on the free quotient of
points in M with trivial G-stabilizers ([22, 23]).

The quotient map P : M → M/G becomes a submersion for this orbi-
fold structure on M/G and the isotropy of a point in M/G is given by
the G-stabilizer of an arbitrary preimage by P . The pull-back P ∗ gives
an isomorphism between (0, k)-tensor fields on the orbifold M/G and G-
horizontal G-invariant (0, k)-tensor fields on M . Moreover, given a G-
invariant Riemannian metric g onM , we can canonically identifyG-invariant
vector fields on M which are G-horizontal with respect to g with vector
fields on M/G. This isomorphism is unique in the sense that it is the
unique extension of the usual isomorphism for the manifold case given by
the differential of the manifold submersion P|MG

: MG → (M/G)reg (where

MG := {x ∈M ; Gx = {id}} = P−1((M/G)reg)).
A Riemannian submersion is by definition a submersion f between two

Riemannian orbifolds such that the local lifts f̃ can be chosen to be Riemann-
ian submersions with respect to the given metrics. It can be shown that in
the situation of the paragraph above, given a G-invariant Riemannian metric
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g on M , there is a unique Riemannian metric (the so-called submersion met-
ric) gG on M/G such that the canonical projection P : (M, g)→ (M/G, gG)
becomes a Riemannian submersion.

To define fundamental vector fields on orbifolds suppose we are given a
Lie group G acting smoothly and effectively on an orbifold O, denote the
action by φ : G×O → O and let X ∈ TeG be an element of the Lie algebra
of G. We define a vector field X∗ on O in the following way: Let x ∈ O.

Since φ is smooth, there are charts (U, Ũ/Γ, π) and (U ′, Ũ ′/Γ′, π′) of O over

x, an open neighbourhood W of e in G and a smooth map φ̃ : W × Ũ → Ũ ′

such that π′ ◦ φ̃ = φ ◦ (idW , π). By choosing U sufficiently small around

x, we can assume that h := φ̃(e, ·) : Ũ → Ũ ′ is an embedding. Denote the

inverse Ũ ′ ⊃ h(Ũ)→ Ũ by h−1. Now recall that we had fixed X ∈ TeG and

define a vector field σx(X) on Ũ by σx(X)(ỹ) := d
dt |t=0

h−1(φ̃(exp(tX), ỹ)),

where exp denotes the Lie group exponential map. It can be shown that
the vector fields {σx(X)}x∈O satisfy the compatibiliy conditions for orbifold
vector fields and hence induce a unique vector field on O which we will
denote by X∗ and call the fundamental vector field associated with X.

2.2. The Laplace spectrum. Given a Riemannian orbifold (O, 〈, 〉), it
is possible to generalize the Laplace operator from the manifold case by

setting ∆f(x) := ∆̃(f ◦π)(x̃), where x ∈ O, (U, Ũ/Γ, π) is a chart around x,

x̃ ∈ π−1(x), f ∈ C∞(O) and ∆̃ is the Laplace operator on the Riemannian

manifold (Ũ , 〈, 〉π). The spectrum of the Laplacian on compact orbifolds
was first investigated by Donnelly ([8]). He proved the following theorem for
good orbifolds which was later generalized to arbitrary orbifolds by Chiang
([7]), also compare [9].

Theorem 2.1. Let (O, 〈, 〉) be a compact Riemannian orbifold. Then every
eigenvalue of ∆ on C∞(O) has finite multiplicity and the spectrum spec(O)
of ∆ consists of a sequence 0 = µ0 ≤ µ1 ≤ µ2 ≤ · · · , where µi → ∞.
Moreover, there is an orthonormal basis {φi}i≥0 ⊂ C∞(O) of the Hilbert
space L2(O, 〈, 〉) such that ∆φi = µiφi.

Two compact Riemannian orbifolds O1 and O2 are called isospectral if
spec(O1) = spec(O2) with multiplicities. From now on O will always denote
a compact Riemannian orbifold.

We will need Green’s Formula for orbifolds in its complex version. To
this end given a Riemannian orbifold (O, 〈, 〉), let ∆C and gradC denote the
complexifications of ∆ and grad, respectively. Moreover, let 〈, 〉C denote
the sesquilinear extension of 〈, 〉 to complex-valued vector fields on O. The
following lemma then follows directly from the respective formula for smooth
functions on manifolds with compact support.
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Lemma 2.2. Let (O, 〈, 〉) be a compact Riemannian orbifold and let f1, f2 ∈
C∞(O,C). Then∫

O
f1∆Cf2 =

∫
O

〈
gradC f1, gradC f2

〉
C =

∫
O
f2∆Cf1.

Note that — as in the manifold setting — this lemma implies that the
eigenvalues of ∆C are real and each eigenspace of ∆C is just given by the
complexification of the eigenspace of ∆ associated with the same eigenvalue.
In particular, {φi}i≥0 from Theorem 2.1 also gives an orthonormal basis of
the space of complex-valued L2-functions, which we will denote by L2(O, 〈, 〉)
from now on. Next consider C∞(O,C) as a Pre-Hilbert-space with the
sesquilinear inner product

(f1, f2)1 =

∫
O
f1f2 +

∫
O
〈gradC f1, gradC f2〉C.

The (complex) Sobolev space H1(O, 〈, 〉) is the completion of C∞(O,C)
with respect to this inner product. The Rayleigh quotient R : H1(O, 〈, 〉) \
{0} → [0,∞) is the unique continuous extension of the functional

C∞(O,C) \ {0} 3 f 7→
∫ 〈

gradC f, gradC f
〉
C∫

|f |2
∈ [0,∞)

to H1(O, 〈, 〉) \ {0}. Theorem 2.1 in its complex form together with Lem-
ma 2.2 imply the following variational characterization. The proof is almost
literally the same as in the manifold case ([5, III.28]), also compare [33,
Lemma 6.3].

Theorem 2.3. Let O be a compact Riemannian orbifold and let Lk denote
the set of all k-dimensional subspaces of H1(O, 〈, 〉). Then

µk = inf
U∈Lk

sup
f∈U\{0}

R(f).

As in the manifold case it can be shown that the spectrum determines the
volume, dimension and other geometric properties of an orbifold ([10, 11]).
In order to investigate which properties are not determined by the spectrum,
one needs constructions of isospectral (but nonisometric) orbifolds. There
are various constructions of isospectral manifolds (see [16] for an overview),
but in the next paragraph we shall briefly summarize only those which have
already been generalized to get examples of isospectral singular orbifolds.

Sunada’s Theorem ([34]) in its orbifold version by Bérard ([4]) was the
first construction of isospectral singular orbifolds and was used in [13] to
give examples of isospectral plane domains and in [31] to construct arbi-
trarily large families of isospectral orbifolds with pairwise nonisomorphic
biggest isotropy groups. Both the Sunada Theorem and an explicit formula
for eigenvalues on flat orbifolds ([21]) can even be used to construct pairs
of isospectral orbifolds in which the maximal orders of isotropy groups are
different ([27]). More intricate generalizations of the Sunada Theorem were



428 MARTIN WEILANDT

used in [35] and [26] to give continuous families of isospectral singular orb-
ifolds. Besides, [32] generalized results from [19] to construct isospectral
orbifold lens spaces.

However, all pairs of isospectral orbifolds above are good. More pre-
cisely, they are either of the form M/Γ1,M/Γ2 with Γi discrete subgroups
of the isometry group of a Riemannian manifold M or (in the case of [35])
M1/Γ1,M2/Γ2 with M1,M2 isospectral compact Riemannian manifolds and
each Γi a finite subgroup of the isometry group of Mi. It has been shown
in [14, Proposition 3.4(ii)] that the first type cannot give an isospectral pair
of a Riemannian manifold and a singular orbifold. An analogous argument
(also using the heat kernel expansion from [9], see [35, 38]) shows that the
second type cannot yield such a pair, either.

These observations are the basis for our interest in the spectral geometry
of bad orbifolds. The only obvious way to construct isospectral bad orb-
ifolds using known constructions would be to take a pair of good isospectral
orbifolds O1,O2 (which can, of course, be manifolds) and a bad orbifold O.
Then the Riemannian products O1×O and O2×O are isospectral bad orb-
ifolds. However, in Section 4 we will present the first examples of isospectral
bad orbifolds which cannot be written as nontrivial products.

Note that it would be pointless to apply obstructions to the isospectrality
of a pair of a manifold and a singular orbifold to the examples in Section 4,
since our isospectral pairs and families are always diffeomorphic by defini-
tion. Also note that such obstructions in general do not apply to the case
of orbifolds with boundary as it is actually possible to construct a Dirichlet-
isospectral pair of a singular orbifold and a manifold ([18]). For more results
on the spectral geometry of (closed) orbifolds see [9, 11] and the references
therein.

3. The torus method for orbifolds

In this section we generalize the so-called torus method from [30] to orb-
ifolds.

3.1. Isospectral metrics. Let T be a torus (i.e., a nontrivial compact
connected abelian Lie group) acting effectively and smoothly on a connected
orbifold O. Recall that Oreg is connected, open and dense in O. It is
also obviously T -invariant. Since T is abelian and acts effectively, the (not
necessarily connected) manifold Oreg

T := {x ∈ Oreg; Gx = {id}} is open
and dense in Oreg and hence in O. Given an orbifold metric g on O we
also write g for the induced (manifold) metric on Oreg and its submanifolds.
Note that in the theorem below we do not assume O to be oriented and dvolg
stands for the Riemannian density on (O, g). In the corresponding proof and
later on we also need the following notation: Let t := TeT denote the Lie
algebra of T . Setting L := ker(exp: t→ T ), we observe that exp induces an
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isomorphism from t/L to T . We will write L∗ := {φ ∈ t∗; φ(x) ∈ Z ∀X ∈ L}
for the dual lattice.

Theorem 3.1. Let T be a torus acting effectively and isometrically on two

compact connected Riemannian orbifolds (O, g) and (O′, g′). Set Ô = Oreg
T ,

Ô′ = O′regT . Assume that for every subtorus W ⊂ T of codimension 1 there
is a T -equivariant diffeomorphism FW : O → O′ satisfying F ∗W dvolg′ =

dvolg which induces an isometry between the manifolds (Ô/W, gW ) and

(Ô′/W, g′W ). Then the orbifolds (O, g) and (O′, g′) are isospectral.

Proof. Consider the Sobolev spaces H := H1(O, g) and H ′ := H1(O′, g′).
One can construct an isometry H ′ → H preserving L2-norms in the same
way as has been done in the proof of [30, Theorem 1.4] for the manifold
setting:

Consider the unitary representation of T on H given by (zf)(x) := f(zx)
for z ∈ T , f ∈ H, x ∈ O. Then the T -module H can be written as the
Hilbert sum H =

⊕
µ∈L∗ Hµ of T -modules

Hµ =
{
f ∈ H; [Z]f = e2πiµ(Z)f ∀Z ∈ t

}
.

For each subtorus W of T of codimension 1 set

EW :=
⊕

µ∈L∗\{0}
TeW=kerµ

Hµ

and denote the (Hilbert) sum over all these subtori by
⊕

W . We obtain the
decomposition

H = H0 ⊕
⊕

µ∈L∗\{0}

Hµ = H0 ⊕
⊕
W

EW .

Moreover, set

HW := H0 ⊕ EW =
⊕
µ∈L∗

TeW⊂kerµ

Hµ

and note that HW consists precisely of the W -invariant functions in H.
Now use the analogous notation H ′µ, E

′
W , H

′
W for the corresponding sub-

spaces of H ′. Fix a subtorus W of T of codimension 1 and let FW : O → O′
be the corresponding diffeomorphism from the assumption. We will show
that F ∗W : H ′W → HW is a Hilbert space isometry preserving the L2-norm.
It preserves the L2-norm since F ∗W dvolg′ = dvolg. Now let ψ ∈ C∞(O′) be

invariant under W . Since the map (Ô/W, gW ) → (Ô′/W, g′W ) induced by
FW is an isometry and the quotient maps are Riemannian submersions, we

have ‖ grad(ψ ◦ FW )F−1
W (y)‖g = ‖ gradψy‖g′ for all y ∈ Ô. Since Ô is dense

in O and Ô′ is dense in O′, this implies that F ∗W : H ′W → HW is a Hilbert
space isometry with respect to the H1-product. Hence so is its restriction
F ∗W |E′W

: E′W → EW .
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Considering all subtori W ⊂ T of codimension 1 and choosing an arbi-
trary F ∗W : H ′0 → H0, we obtain an L2-norm-preserving isometry H ′ → H.
Isospectrality of (O, g) and (O′, g′) finally follows from Theorem 2.3. �

We will need the following definitions and results, which generalize [30,
1.5] to our orbifold setting.

Notations and Remarks 3.2. We now fix a torus T and use the notation
t = TeT , L := ker(exp: t→ T ) as above. Moreover, fix a compact connected
Riemannian orbifold (O, g0) and a smooth effective action of T on (O, g0)

by isometries and set Ô := Oreg
T . If Z ∈ t, write Ẑ := Ẑ := Z∗reg|Ô for the

fundamental vector field on Ô induced by Z.

(i) A t-valued 1-form on O will be called admissible if it is T -horizontal
(i.e., it vanishes on all X∗, X ∈ t) and T -invariant.

(ii) For an admissible 1-form λ on the orbifold O denote by gλ the

Riemannian metric given in each chart (U, Ũ/Γ, π) on O by

gλπ(X,Y ) = g0π(X + (λπ(X))∗π, Y + (λπ(Y ))∗π)

for vector fields X,Y ∈ V(Ũ). It is not hard to verify that this
indeed defines a Riemannian orbifold metric.

Note that if Φλ,π denotes the C∞(Ũ)-isomorphism

V(Ũ) 3 X 7→ X − (λπ(X))∗π ∈ V(Ũ),

then gλπ = (Φ−1
λ,π)∗g0π. Since λ is horizontal, Φλ,π is unipotent

and this implies dvolgλ,π =
∣∣det Φ−1

λ,π

∣∣ dvolg0,π = dvolg0,π . Since this

holds for every chart π, we have dvolgλ = dvolg0 .

(iii) gλ is T -invariant: let z ∈ T , x ∈ O. There are charts (Ui, Ũi/Γi, πi),

i = 1, 2, on O and a diffeomorphism z̃ ∈ C∞(Ũ1, Ũ2) such that
x ∈ U1, zx ∈ U2 and π2 ◦ z̃ = z◦π1. Since T is abelian, fundamental

vector fields on O are T -invariant; in particular, Z∗π1 ∈ V(Ũ1) is z̃-

related to Z∗π2 ∈ V(Ũ2) for every Z ∈ t. Using that λ and g0 are also
T -invariant, a straightforward calculation shows z̃∗gλ,π2 = gλ,π1 .

(iv) Moreover, note that for every x ∈ Ô the metric gλ on TxÔ restricts

to the same metric as g0 on the vertical subspace tx = {Ẑx;Z ∈ t} ⊂
TxÔ, because λ is T -horizontal. Moreover, note that the metrics gT0
and gTλ on Ô/T coincide.

The proof of the next theorem is now just an imitation of the proof of
[30, Theorem 1.6].

Theorem 3.3. Let λ, λ′ be two admissible 1-forms on O satisfying:
For every µ ∈ L∗ there is a T -equivariant isometry Fµ on (O, g0) such

that

(3.1) µ ◦ λ = F ∗µ(µ ◦ λ′).
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Then (O, gλ) and (O, gλ′) are isospectral.

Proof. We shall use Theorem 3.1. So let W be a subtorus of T of codi-
mension 1 and choose µ ∈ L∗ such that kerµ = TeW . Let Fµ ∈ Isom(O, g0)
be a corresponding T -invariant isometry satisfying (3.1). We will show that
FW := Fµ satisfies the conditions of Theorem 3.1: Since Fµ is an isometry, we
have by the remarks above that F ∗µ dvolgλ′ = F ∗µ dvolg0 = dvolg0 = dvolgλ .

To see that Fµ induces an isometry between the manifolds (Ô/W, gWλ ) and

(Ô/W, gWλ′ ), let x ∈ Ô, let V ∈ TxÔ be W -horizontal with respect to gλ and

set X := Φ̂−1
λ (V ) ∈ TxÔ, Y := Φ̂λ′(Fµ∗X) ∈ TFµ(x)Ô.

First, note that Fµ∗V − Y is W -vertical: Condition (3.1) implies that

Z := λ̂′(Fµ∗X)−λ̂(X) ∈ kerµ. Using that Fµ is T -equivariant, it is straight-

forward to show that for Y := Φ̂λ′(Fµ∗X) we obtain Fµ∗V − Y = ẐFµ(x),
which is W -vertical by our choice of µ.

Second, Y is W -horizontal with respect to gλ′ : Since λ is T -horizontal

and V is W -horizontal with respect to gλ, the vector X = Φ̂−1
λ (V ) ∈ TxÔ is

W -horizontal with respect to g0. Hence so is Fµ∗X, and Y = Φ̂λ′(Fµ∗X) is
W -horizontal with respect to gλ′ .

The two observations above imply that Y is the W -horizontal part of
Fµ∗V with respect to gλ′ . Since ‖Y ‖gλ′ = ‖Fµ∗X‖g0 = ‖X‖g0 = ‖V ‖gλ ,

we conclude that Fµ indeed induces an isometry between (Ô/W, gWλ ) and

(Ô/W, gWλ′ ). �

3.2. Nonisometry. In this section we give a sufficient criterion that im-
plies two orbifolds (O, gλ) and (O, gλ′) as in Theorem 3.3 are not isometric.

Let (O, g0), T , t, L, Ô be as in the preceding section. Note that the action

of T on Ô gives Ô the structure of a principal T -bundle π : Ô → Ô/T . By
λ we denote an admissible t-valued 1-form on O. We now recall the nota-
tions and remarks from [30, 2.1], applied to our special case of the connected
T -invariant manifold Oreg.

Notations and Remarks 3.4.

(i) A diffeomorphism F : Oreg → Oreg is called T -preserving if conju-
gation by F preserves T ⊂ Diffeo(Oreg), i.e.,

cF (z) := F ◦ z ◦ F−1 ∈ T ∀z ∈ T.

In this case we denote by ΨF := cF∗ the automorphism of t = TeT
induced by the isomorphism cF on T . Obviously, each T -preserving
diffeomorphism F of Oreg maps T -orbits to T -orbits. In particular,

F preserves Ô. Moreover, it is straightforward to show F∗Ẑ =

Ψ̂F (Z) for all Z ∈ t.
(ii) We denote by AutTg0(Oreg) the group of all T -preserving diffeomor-

phisms of Oreg which, in addition, preserve the g0-norm of vectors
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tangent to the T -orbits in Ô and induce an isometry of the Rie-

mannian manifold (Ô/T, gT0 ). We denote the corresponding group

of induced isometries by Aut
T
g0(Oreg) ⊂ Isom(Ô/T, gT0 ).

(iii) We define

D := {ΨF ; F ∈ AutTg0(Oreg)} ⊂ Aut(t).

Note that D is discrete because it is a subgroup of the discrete group
{Ψ ∈ Aut(t); Ψ(L) = L}.

(iv) Let ω0 : T Ô → t denote the connection form on the principal T -

bundle Ô associated with g0; i.e., ω0(Ẑ) = Z ∀Z ∈ t and for each

x ∈ Ô the kernel ker(ω0|TxÔ) is the g0-orthogonal complement of

the vertical space tx = {Ẑx; Z ∈ t} in TxÔ. The connection form

on Ô associated with gλ is easily seen to be given by ωλ := ω0 + λ̂.

(v) Let Ωλ denote the curvature form on the manifold Ô/T associated

with the connection form ωλ on Ô. We have π∗Ωλ = dωλ, because
T is abelian.

(vi) Since λ̂ is T -invariant and T -horizontal, it induces a t-valued 1-form

λ on Ô/T . Then π∗Ωλ = dωλ = dω0 + dλ̂ implies Ωλ = Ω0 + dλ.

Lemma 3.5. Let F : (Oreg, gλ) → (Oreg, gλ′) be a T -preserving isometry.
Then:

(i) F preserves the g0-norm of vectors tangent to the T -orbits in Ô, and

it induces an isometry F̄ of (Ô/T, gT0 ). In particular, F ∈ AutTg0(O)
and ΨF ∈ D.

(ii) F ∗ωλ′ = ΨF ◦ ωλ ∈ Ω1(Ô, t), in particular F ∗dωλ′ = ΨF ◦ dωλ.

(iii) The isometry F̄ of (Ô/T, gT0 ) satisfies F̄ ∗Ωλ′ = ΨF ◦ Ωλ.

Proof. Apply [30, Lemma 2.2] to the manifold M := Oreg. �

Before coming to the following propositions, note that the isometry group
Isom(O, g) of a Riemannian orbifold (O, g) endowed with the compact-open
topology admits a unique smooth structure that turns it into a Lie group
([3]). The proof of the following proposition is analogous to the proof of [30,
Proposition 2.3].

Proposition 3.6. Let λ be an admissible t-valued 1-form on O such that

the associated curvature form Ωλ on Ô/T satisfies the following genericity
condition:

(G) No nontrivial 1-parameter group in Aut
T
g0(Oreg) preserves Ωλ.

Then T is a maximal torus in Isom(O, gλ)

Proof. Assume that Ft ∈ Isom(O, gλ) is a 1-parameter family of isometries
commuting with T . If we can show that Ft ∈ T ∀t, we know that T is maxi-
mal. Since the Ft commute with T , they are T -preserving. By Lemma 3.5(i)
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the restrictions Ft|Oreg induce a 1-parameter family F̄t ∈ Isom(Ô/T, gT0 ),

hence Ft ∈ AutTg0(Oreg) and ΨFt ∈ D ∀t. Since ΨF0 = ΨId = Id and D is

discrete, we have ΨFt = Id for all t and hence by Lemma 3.5(iii) each F̄t pre-
serves Ωλ. By (G) this implies F̄t = id for all t. Hence each Ft|Ô is a gauge

transformation of the principal bundle Ô → Ô/T which, by Lemma 3.5(ii),
preserves the connection form ωλ. Therefore Ft|Ô acts as an element of T on

every connected component of Ô ([38, Lemma 4.2.3]). Since the isometry
Ft|Oreg is determined uniquely by its values on an open set in the connected
manifold Oreg and Oreg is dense in O, we conclude that Ft ∈ T . �

Lemma 3.5 and the proposition above now imply the following proposi-
tion. Its proof is almost literally the same as that of [30, Proposition 2.4] but
we include it for completeness. Note that we use the fact that the isometry
group of a compact orbifold is compact ([20]).

Proposition 3.7. Let λ, λ′ be admissible 1-forms on O such that Ωλ′ has
property (G). Furthermore, assume that

(N) Ωλ /∈ D ◦Aut
T
g0(Oreg)∗Ωλ′ .

Then (O, gλ) and (O, gλ′) are not isometric.

Proof. Suppose that there were an isometry F : (O, gλ) → (O, gλ′). By
Proposition 3.6, T is a maximal torus in Isom(O, gλ′). Since {F ◦z◦F−1; z ∈
T} also is a torus in Isom(O, gλ′) and all maximal tori are conjugate, we can
assume F — after possibly combining it with an isometry of (O, gλ′) —
to be T -preserving. But then Lemma 3.5 implies F̄ ∗Ωλ′ = ΨF ◦ Ωλ with

F̄ ∈ Aut
T
g0(Oreg) and ΨF ∈ D, which contradicts our assumption. �

4. Examples of isospectral bad orbifolds

As mentioned in Section 2.2, one can easily obtain examples of isospectral
bad orbifolds of the form O × O1,O × O2 from isospectral good orbifolds
O1,O2 and a bad orbifold O. However, in this section we will use the
constructions from the preceding section to give genuinely new examples of
isospectral bad orbifolds. More precisely, for every fixed n ≥ 4 and coprime
positive integers p, q we will give isospectral pairs and even families of metrics
on certain 2n-dimensional weighted projective spaces (depending on p, q).
The latter turn out to be bad orbifolds for (p, q) 6= (1, 1).

4.1. Our weighted projective spaces. Consider the following orbifold
which is a special weighted projective space: for n ≥ 4, let S2n+1 ⊂ Cn+1

denote the standard sphere and let p, q be coprime positive integers. Let
S1 ⊂ C act smoothly on S2n+1 by

(4.1) σ(u, v) = (σpu, σqv),
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where σ ∈ S1 ⊂ C, u ∈ Cn−1, v ∈ C2. The quotient O := O(p, q) :=
S2n+1/S1 under this action becomes an orbifold and

Oreg = {[(u, v)] ∈ O; u 6= 0 ∧ v 6= 0}:
the points of the form (u, 0) are fixed precisely by the p-th roots of unity,
the points of the form (0, v) ∈ S2n+1 are fixed precisely by the q-th roots of
unity, and the action is free in all other points.

For every pair (p, q) we will construct isospectral metrics on the orbifold
O = O(p, q). Note that for p = q = 1 we have O = CPn. All other orbifolds
in this family are singular.

Since S2n+1 is simply connected and S1 is connected, the orbifold funda-
mental group πOrb

1 (O(p, q)) is trivial for all p, q ([2, Proposition 1.54]) and
hence the orbifolds O(p, q) for (p, q) 6= (1, 1) are “bad”, i.e., they cannot
be written as a quotient of a manifold by a properly discontinuous group
action.

Throughout this section, 〈, 〉 will always denote the canonical metric on
S2n+1 ⊂ Cn+1 given by the restriction of the inner product

〈X,Y 〉 = Re

(
n+1∑
i=1

XiȲi

)
for X,Y ∈ Cn+1.

Besides, 〈, 〉 will also denote the unique metric onO = S2n+1/S1 with respect
to which the quotient map P : S2n+1 → S2n+1/S1 becomes a Riemannian
orbifold submersion. In cases where the metric is not specified, we will
always assume that 〈, 〉 is used. The metric 〈, 〉 on O will also be denoted
by g0.

Note that isospectral families of metrics on O(1, 1) = CPn have already
been given in [28] using the manifold version of the construction in the
following section. Similar methods have also led to examples of isospectral
families of good orbifolds ([35]). For results on the spectral geometry of
weighted projective spaces with their standard metric see [1] and [17].

Remark. The results from Section 4.2 easily generalize to the case that
p, q1, q2 are natural numbers with greatest common divisor one and S1 acts
on S2n+1 via σ(u, v1, v2) := (σpu, σq1v1, σ

q2v2). However, the nonisometry
proof (in particular, the statements from Lemma 4.12 onwards) would be-
come considerably more complicated, and so we restricted our attention to
the special case q1 = q2 given in (4.1).

4.2. Isospectral metrics. In this section we will give isospectral metrics
on the orbifold O = O(p, q). To this end we will apply the torus method
from Section 3 to a certain action of some quotient of S1 × S1 ⊂ C2 on O.
We identify R2 with t = T(1,1)(S

1×S1) via R2 3 (t1, t2) 7→ (it1, it2) ∈ t ⊂ C2

and set Z1 = (i, 0), Z2 = (0, i) ∈ t.
In order to introduce appropriate admissible 1-forms λ, λ′ on O we will

need the following variation of [30, Definition 3.2.4]. (The only difference is
a broader definition of equivalence in (ii).)
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Definition 4.1. Let j, j′ : t ' R2 → su(m) be two linear maps.

(i) We call j and j′ isospectral if for each Z ∈ t there is AZ ∈ SU(m)
such that j′Z = AZjZA

−1
Z .

(ii) Let Q : Cm → Cm denote complex conjugation and set

E := {φ ∈ Aut(t); φ(Zk) ∈ {±Z1,±Z2} for k = 1, 2}.

We call j and j′ equivalent if there is A ∈ SU(m)∪SU(m) ◦Q and
Ψ ∈ E such that j′Z = AjΨ(Z)A

−1 for all Z ∈ t.
(iii) We say that j is generic if no nonzero element of su(m) commutes

with both jZ1 and jZ2 .

Note that all properties above are stable under multiplication of both
j and j′ with a fixed nonzero real number. We will need the following
proposition which is just a simplified form of [30, Proposition 3.2.6(i)].

Proposition 4.2. For every m ≥ 3 there is an open interval I ⊂ R and a
continuous family j(t), t ∈ I, of linear maps R2 → su(m) such that:

(i) The maps j(t) are pairwise isospectral.
(ii) For t1, t2 ∈ I with t1 6= t2 the maps j(t1) and j(t2) are not equiva-

lent.
(iii) All maps j(t) are generic.

Remark. Note that the proof of (ii) in [30] still holds for our slightly
different definition of equivalence, since Definition 4.1(ii) still implies that

tr((j2
Z1

+ j2
Z2

)2) = tr((j′Z1

2 + j′Z2

2)2).

4.2.1. Isospectral Pairs. In this section we will explain how two isospec-
tral maps j, j′ : R2 → su(n − 1) (which do not necessarily have to lie in a
continuous family) induce isospectral metrics on our orbifold O = O(p, q)
from Section 4.1. More precisely, we will describe a construction process
which associates metrics gλ, gλ′ on O with j, j′.

Consider the following action of the two-torus T̃ := S1 × S1 ⊂ C2 on
S2n+1 ⊂ Cn+1:

(4.2) (σ1, σ2)(u, v1, v2) = (u, σ1v1, σ2v2)

for σ1, σ2 ∈ S1 ⊂ C, u ∈ Cn−1 and v1, v2 ∈ C. This action is isometric and

commutes with the S1-action above and hence induces a smooth T̃ -action
on O. This action is not effective but induces an effective action of

T := (S1 × S1)/{(σ, σ);σ p-th root of untity}.

Note that the exponential map t 3 s1Z1 + s2Z2 7→ (eis1 , eis2) ∈ T̃ induces

an isomorphism t/L̃ ' T̃ with L̃ := spanZ{2πZ1, 2πZ2} and an isomorphism
t/L ' T with L := spanZ{2πZ1,

2π
p (Z1 + Z2)}.

Moreover, set

Ŝ2n+1 = {(u, v) ∈ Cn−1 × C2; ‖u‖2 + ‖v‖2 = 1, u 6= 0, vj 6= 0 ∀j = 1, 2}.
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With Ô defined as in Notations and Remarks 3.2 (with respect to our effec-

tive T -action on O = O(p, q)) we then have Ô = P (Ŝ2n+1).
Given a linear map j : R2 → su(n − 1), define an R2-valued 1-form κ =

(κ1, κ2) on S2n+1 ⊂ Cn+1 by

(4.3) κk(u,v)(U, V ) := ‖u‖2〈jZku, U〉 − 〈U, iu〉〈jZku, iu〉

for u ∈ Cn−1, v ∈ C2, U ∈ Cn−1 and V ∈ C2 and restricting to S2n+1.
Since κ is independent of V , it is T -horizontal; in particular, κ(u,v)(0, iv) =

κ(u,v)(Z
∗
1 + Z∗2 ) = 0 for (u, v) ∈ S2n+1. Moreover,

κk(u,v)(iu, 0) = ‖u‖2〈jZku, iu〉 − 〈iu, iu〉〈jZku, iu〉 = 0 for k = 1, 2

(as already noted in the proof of [30, 3.2.2]). Hence κ is also S1-horizontal,
since the vertical space in (u, v) ∈ S2n+1 under the S1-action is given by the
real span of (ipu, iqv). Moreover, κ is S1-invariant, since S1 acts isometri-
cally and each jZk ∈ su(n− 1) commutes with scalars in S1 ⊂ C.

Note that this implies that κ induces a unique R2-valued 1-form λ on O
satisfying

(4.4) P ∗λ = κ.

Moreover, since P ∗ commutes with d, we have

dλ(P∗(U1, V1), P∗(U2, V2)) = dκ((U1, V1), (U2, V2)).

We will need the following basic observations.

Proposition 4.3.

(i) P|Ŝ2n+1 : Ŝ2n+1 → Ô is T̃ = S1 × S1-equivariant.

(ii) For every Z ∈ t the differential P∗ maps the fundamental vector

field Z∗
|Ŝ2n+1

∈ V(Ŝ2n+1) to the fundamental vector field Ẑ on Ô.

(iii) Let j : t ' R2 → su(n − 1) be a linear map. Then for the t-valued
1-forms κ given in (4.3) and λ given in (4.4) we have:

(a) κ is T̃ -invariant and T̃ -horizontal.
(b) λ is admissible in the sense of 3.2(i) with respect to the effective

T -action on O induced by (4.2).

The following theorem, which partly generalizes [30, Proposition 3.2.5], is
now the main result of this section. Together with the results in Section 4.3
it implies the existence of nontrivial pairs and families of isospectral metrics
on O = O(p, q).

Theorem 4.4. Let j, j′ : R2 → su(n− 1) be isospectral linear maps and let
λ and λ′ be the corresponding admissible 1-forms on O given above. Then
(O, gλ) and (O, gλ′) are isospectral orbifolds.
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Proof. To apply Theorem 3.3 let µ ∈ L∗ ⊂ t∗ and set

Z := µ(Z1)Z1 + µ(Z2)Z2 ∈ t.

Then since j and j′ are isospectral, we can choose AZ ∈ SU(n − 1) as in
Definition 4.1(i) and set Eµ = (AZ , Id) ∈ SU(n− 1)×SU(2) ⊂ SO(2n+ 2).
Then Eµ is an isometry on (S2n+1, g0) and a straightforward calculation
shows that with κ, κ′ associated with j, j′ via (4.3) we have µ◦κ = E∗µ(µ◦κ′)
(compare the proof of [30, Proposition 3.2.5]).

Note that Eµ is S1-equivariant and T̃ = S1×S1-equivariant, hence induces
a T -equivariant isometry Fµ on (O, g0) and for any vector X tangent to

Ŝ2n+1 we have (µ ◦ λ)(P∗X) = F ∗µ(µ ◦ λ′)(P∗X). Since P|Ŝ2n+1 : Ŝ2n+1 → Ô

is a manifold submersion, Fµ satisfies condition (3.1) of Theorem 3.3 on Ô.
Since both sides of (3.1) are smooth, it is satisfied on all of O. �

We will show in Section 4.3 that if j, j′ are not equivalent and at least
one of them is generic, then (O, gλ) and (O, gλ′) are not isometric.

Moreover, since 〈, 〉 on S2n+1 has constant curvature one and our quotient
map P : (S2n+1, 〈, 〉)→ (O, g0) is a Riemannian submersion, O’Neill’s curva-
ture formula ([24]) implies that after multiplying j and j′ with a sufficiently
small positive real number we can assume that the metrics greg

λ , greg
λ′ on Oreg

are so close to greg
0 that they have positive curvature. Therefore (O, gλ),

(O, gλ′) cannot be nontrivial Riemannian product orbifolds and they are
not of the trivial form described at the beginning of Section 4.

4.2.2. Isospectral Families. The isospectrality proof for the pair (O, gλ),
(O, gλ′) becomes considerably simpler if j, j′ belong to a continuous isospec-
tral family j(t), t ∈ I. In this setting we can alternatively apply Theorem 3.3
(or [30, Theorem 1.6]) directly to the sphere (with 〈, 〉 replaced by a non-
standard metric h0) to deduce that the induced metrics on the quotient are
isospectral. To this end we modify 〈, 〉 in such a way that the fibres of our
S1-action (4.1) become totally geodesic.

Use the standard metric 〈, 〉 on S2n+1 to define a new metric h0 on S2n+1

by setting for (u, v) ∈ S2n+1, X,Y ∈ T(u,v)S
2n+1:

h0(X,Y ) := (p2‖u‖2 + q2‖v‖2)−1〈Xv, Y v〉+ 〈Xh, Y h〉,

where the superscripts v and h refer to the vertical and horizontal parts with
respect to the given S1-action (4.1) on (S2n+1, 〈, 〉). Note that this amounts
to a smooth rescaling in the vertical directions; in particular, the horizontal
spaces are the same for 〈, 〉 and h0 (as are the vertical spaces, of course).

Moreover, note that the action of T̃ on S2n+1 is still isometric with respect
to h0. Recall from Proposition 4.3 that if j : t ' R2 → su(n− 1) is a linear

map then the associated t-valued 1-form κ, defined as in (4.3) is T̃ -invariant

and T̃ -horizontal, hence admissible with respect to the T̃ -action on S2n+1.
For such κ define hκ(X,Y ) := h0(X+κ(X)∗, Y +κ(Y )∗). In analogy to [30,
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Proposition 3.2.5] (but now with the deformed metric h0 instead of 〈, 〉) one
then has:

Proposition 4.5. If j, j′ : t ' R2 → su(n−1) are isospectral in the sense of
Definition 4.1(i) and κ, κ′ are the corresponding t-valued 1-forms on S2n+1

given by (4.3), then (S2n+1, hκ) and (S2n+1, hκ′) are isospectral manifolds.

Proof. We had already recalled above how the isospectrality condition was
used in [30, Proposition 3.2.5] to find for each µ ∈ L∗ an isometry

Eµ = (A, Id) ∈ SU(n− 1)× SU(2) ⊂ SO(2n+ 2)

on (S2n+1, 〈, 〉) satisfying µ◦κ = E∗µ(µ◦κ′). Note that Eµ acts isometrically

on (S2n+1, h0) as well. The proposition then follows from Theorem 3.3 (or
from [30, Theorem 1.6]). �

Remark. Using Proposition 4.3 and the denseness of Ŝ2n+1 in S2n+1, it is

not hard to see that given a fixed j, the induced metric hS
1

κ on our orbifold
O = S2n+1/S1 coincides with the metric gλ from 3.2(ii).

Proposition 4.6. spec(O, hS1

κ ) ⊂ spec(S2n+1, hκ).

Proof. With respect to the metric h0 all regular S1-orbits are easily seen
to have length 2π. Since κ is S1-horizontal, we obtain the same result with
respect to hκ and hence the Riemannian manifold submersion

P : (Ŝ2n+1, hκ)→ (Ŝ2n+1/S1, hS
1

κ )

has totally geodesic fibres. Together with the denseness of Ŝ2n+1 in S2n+1

this implies that every eigenfunction on O pulls back to an eigenfunction
on S2n+1 associated with the same eigenvalue. Since linear independence is
also preserved by P ∗, the proposition follows. �

Remark. For the spectrum in the setting of Riemannian orbifold submer-
sions with totally geodesic fibres also compare [12].

Finally, we obtain the following proposition, which is actually just a spe-
cial case of Theorem 4.4.

Proposition 4.7. Given a continuous isospectral family of linear maps

j(t) : t → su(n − 1), t ∈ I, the associated Riemannian metrics hS
1

κ(t) = gλ(t)

on O = O(p, q) = S2n+1/S1 form a continuous family of isospectral metrics
on the orbifold O.

Proof. We write 0 = µ0(t) < µ1(t) ≤ µ2(t) ≤ · · · for the spectrum of

(O, hS1

κ(t)) and note that each of these functions µi : I → [0,∞) is continuous

(as can be seen as in the compact manifold setting using Theorem 2.3).
From Proposition 4.6 in connection with Proposition 4.5 we deduce that the
image of each µi is discrete. Since I is connected, this implies that each µi
is constant. �
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4.3. Nonisometry. In this section we will argue that if j, j′ are not equiv-
alent and at least one of them is generic in the sense of Definition 4.1, then
the corresponding metrics gλ and gλ′ on O = O(p, q) = S2n+1/S1 are not
isometric. This will be a consequence of Proposition 4.14 and the nonisom-
etry criterion in Section 3.2. Together with the results from Subsection 4.2
we will finally obtain the main result of this paper (Theorem 4.15).

Some of the arguments below are inspired by ideas in [28]. (However,
we do not use concrete results due to a mistake in [28, Remark 5.9], com-
pare the first step in the proof of Proposition 4.14.) Before we can use
the criterion from Proposition 3.7, we need some preliminary observations.
Proposition 4.14 will then be a consequence of Lemmas 4.12 and 4.13. As
usual, we will use the canonical metrics and the corresponding submersion
metrics unless otherwise stated.

Let T̃ = (S1)2 act on Cn−1 \ {0} × (C∗)2 by multiplication in the last
two components and consider the following isometric S1-actions, where σ ∈
S1 ⊂ C, u ∈ Cn−1 \ {0}, v ∈ (C∗)2, a, b ∈ R>0:

• On (Cn−1 \ {0} × (C∗)2)/T̃ set σ[(u, v)] := [(σpu, σqv)].
• On Cn−1 \ {0} × R>0 × R>0 set σ(u, a, b) := (σpu, a, b).

With respect to these actions, the isometry

(Cn−1 \ {0} × (C∗)2)/T̃ 3 [(u, v)] 7→ (u, |v1|, |v2|) ∈ Cn−1 \ {0} ×R>0 ×R>0

is S1-equivariant. Now recall from Section 4.2.1 that

Ŝ2n+1 = {(u, v) ∈ Cn−1 × C2; ‖u‖2 + ‖v‖2 = 1, u 6= 0, vj 6= 0 ∀j = 1, 2}
and restrict the S1-equivariant isometry above to the S1-invariant subman-

ifold Ŝ2n+1/T̃ of (Cn−1 \ {0}× (C∗)2)/T̃ . Factoring out the S1-actions gives
an isometry

(4.5) Φ: Ô/T̃ → N/S1,

where N := {(u, a, b) ∈ Cn−1\{0}×R>0×R>0; ‖u‖2+a2+b2 = 1} ⊂ S2n−1.
Note that the S1-actions above are not effective. However, the quotient of

S1 by the p-roots of unity acts freely and it is the smooth structures induced

by these free actions that we refer to. Analogously, Ô/T̃ is just Ô/T with

T = T̃ /{(σ, σ) ∈ T̃ ; σp = 1} acting freely on Ô.

Recall from Section 3.2 that π : Ô → Ô/T denotes the quotient map. For
a, b > 0 with a2 + b2 < 1 set

Sa,b := (S2n−3(
√

1− a2 − b2)× {(a, b)})/S1 ⊂ N/S1,

Oa,b := π−1(Φ−1(Sa,b)) ⊂ Ô.

Since π is a manifold submersion, Oa,b is a T -invariant submanifold of Ô.
By definition, under the isometry Φ the manifold Oa,b/T corresponds to

Sa,b
isom.' (CPn−2, (1 − a2 − b2)gFS), where gFS denotes the Fubini–Study

metric on CPn−2.



440 MARTIN WEILANDT

For x ∈ Ŝ2n+1 consider the diffeomorphism

rx : T̃ = S1 × S1 3 (σ1, σ2) 7→ (σ1, σ2)x ∈ T̃ x ⊂ Ŝ2n+1

and the corresponding immersion

r[x] : T̃ = S1 × S1 3 (σ1, σ2) 7→ (σ1, σ2)[x] ∈ T̃ [x] ⊂ Ŝ2n+1/S1 = Ô.

Note that r[x] = P ◦ rx for P : Ŝ2n+1 → Ŝ2n+1/S1 = Ô the canonical
projection. In the following calculations we will use our convention that on
O the bracket 〈, 〉 stands for g0. A straightforward calculation shows:

Proposition 4.8. Let Aj , Bj ∈ R, σj ∈ S1 ⊂ C for j = 1, 2, and set

A := (iA1σ1, iA2σ2), B := (iB1σ1, iB2σ2) ∈ T(σ1,σ2)(S
1 × S1) ⊂ C2.

Moreover, let x = (u, v) ∈ Ŝ2n+1 with u ∈ Cn−1, v ∈ C2. Then

〈r[x]
∗ A, r

[x]
∗ B〉 =

2∑
j=1

AjBj |vj |2 −
q2(
∑

j Aj |vj |2)(
∑

j Bj |vj |2)

p2‖u‖2 + q2‖v‖2
.

Recall that Z1 = (i, 0), Z2 = (0, i) denote the standard basis of t =

T(1,1)(S
1 × S1) ⊂ C2 and that for Z ∈ t the symbol Ẑ denotes the funda-

mental manifold vector field associated with Z with respect to the action of

T (or, equivalently, T̃ ) on Ô. Moreover, note that Proposition 4.3(i) implies

Ẑk ◦ P = P∗ ◦ Z∗k = P∗r
·
∗(1,1)Zk = r

[·]
∗ (1,1)Zk.

Corollary 4.9. For j, k ∈ {1, 2} and x = (u, v) ∈ Ŝ2n+1 we have

〈Ẑj [x], Ẑk [x]〉 = δjk|vj |2 −
q2|vj |2|vk|2

p2‖u‖2 + q2‖v‖2
.

Proof. Apply Proposition 4.8 to Ẑ1[x] = r
[x]
∗ Z1 and Ẑ2[x] = r

[x]
∗ Z2 in σ =

(1, 1). �

Corollary 4.10. For [x] ∈ Oa,a we have:

〈Ẑj [x], Ẑk [x]〉 = δjka
2 − q2a4

p2(1− 2a2) + 2q2a2
,(4.6)

∠(Ẑ1[x], Ẑ2[x]) = arccos
−q2a2

p2(1− 2a2) + q2a2
.(4.7)

Proof. (4.6) follows directly from Corollary 4.9. (4.7) then follows from
(4.6). �

Moreover, since T is abelian and acts by isometries, we can make the
following observation.
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Lemma 4.11. Given a, b > 0 with a2 + b2 < 1 and [x] ∈ Oa,b, the map

R[x] : T 3 z 7→ z[x] ∈ Ô is an embedding and the pull-back by R[x] of the
metric g0 = 〈, 〉 to T is left-invariant and associated with the inner product

t2 3 (Y1, Y2) 7→
〈
Ŷ1[x], Ŷ2[x]

〉
∈ R.

We first use the formulas above to show the following lemma, from which
we will need only the case a = b in the proof of Proposition 4.13. Recall from
3.4(ii) that AutTg0(Oreg) is the group of all T -preserving diffeomorphisms of

Oreg which preserve the g0-norm of vectors tangent to the T -orbits in Ô and

induce an isometry of (Ô/T, gT0 ).

Lemma 4.12. Let a, b > 0 with a2 + b2 < 1 and F ∈ AutTg0(Oreg). Then
F (Oa,b ∪ Ob,a) = Oa,b ∪ Ob,a.

Proof. For c ∈ (0, 1) set

Oc =
⋃

r2+s2=1−c2
r,s>0

Or,s ⊂ Ô.

We proceed in two steps.

First step. We will first show that F preserves every Oc. To this end for
each c ∈ (0, 1) set

Nc := S2n−3(c)× {(r, s) ∈ (R>0)2; r2 + s2 = 1− c2} ⊂ S2n−1 ⊂ Cn−1 × R2

and observe that Nc/S
1 = Φ(Oc/T ) and N =

⋃
c∈(0,1)Nc (with Φ and N

given in (4.5)).
Now fix c ∈ (0, 1). Note that Oc is T -invariant and hence F preserves

Oc if and only if the induced isometry F ∈ Aut
T
g0(Oreg) of Ô/T leaves

Oc/T invariant. The isometry Φ: Ô/T → N/S1 has a unique continuous
extension

Φ̃ : O/T =
˜̂O/T =

˜̂O/T → Ñ/S1 = Ñ/S1 = N/S1,

where the tildes denote the completions of the respective metric spaces. This
extension is given by (S2n+1/S1)/T 3 [(u, v1, v2)] 7→ [(u, |v1|, |v2|)]. Write
π̃ : O → O/T for the canonical projection and note that π̃ is the unique

continuous extension of π : Ô → Ô/T . Moreover, note that

N = {(u, r, s) ∈ Cn−1×R≥0×R≥0; ‖u‖2+r2+s2 = 1} ⊂ S2n−1 ⊂ Cn−1×R2.

Extend F̄ ∈ Isom(Ô/T ) uniquely to a metric space isometry F̃ of O/T and

note that F̃ ◦ π̃ = π̃ ◦F by continuity. Now set N1 := S2n−3×{(0, 0)} ⊂ N .
Then it is straightforward to see:

(i) N1/S
1 is preserved by the isometry Φ̃ ◦ F̃ ◦ Φ̃−1.

(ii) Nc/S
1 is precisely the set of all points in Ñ/S1 which have distance

arccos(c) from N1/S
1.
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(i) and (ii) together imply that Φ̃ ◦ F̃ ◦ Φ̃−1 ∈ Isom(N/S1) preserves Nc/S
1,

hence F = F̃|Ô/T leaves Oc/T invariant and Oc is preserved by F .

Second step. Now let a, b > 0 with a2 + b2 < 1 and F ∈ AutTg0(Oreg) be
as in the lemma and fix [x] = [(u, v)] ∈ Oa,b. Note that the area of T with
respect to its standard bi-invariant metric (with {Z1, Z2} an orthonormal

basis of t) is 4π2/p, since T ' t/L with L = spanZ

{
2πZ1,

2π
p (Z1 + Z2)

}
.

By Lemma 4.11 we conclude that the area of T [x] is given by A(T [x]) =
4π2

p

√
det(〈Ẑj [x], Ẑk [x]〉)j,k=1,2. Now set c = ‖u‖ =

√
1− a2 − b2 so that

Oa,b ∪ Ob,a ⊂ Oc. Corollary 4.9 then implies

(4.8)
p2

16π4
A(T [x])2 = a2b2

(
1− q2(1− c2)

p2c2 + q2(1− c2)

)
.

Note that since F preserves the length of vectors tangent to T -orbits by
definition, we have A(T [x]) = A(F (T [x])) = A(TF ([x])). Moreover, we had
seen in the first step that Oc is invariant under F . These two observations
and (4.8) then imply that for [(u′, v′1, v

′
2)] := F ([x]) and a′ := |v′1|, b′ := |v′2|,

we have a′2 + b′2 = a2 + b2 and a′2b′2 = a2b2, i.e., a = a′ ∧ b = b′ or
a = b′ ∧ b = a′. In other words, F preserves Oa,b ∪ Ob,a. Since F−1 also

lies in AutTg0(Oreg), the lemma follows. �

Recall that we had set D := {ΨF ; F ∈ AutTg0(Oreg)} ⊂ Aut(t) in 3.4(iii)
and E := {φ ∈ Aut(t); φ(Zk) ∈ {±Z1,±Z2} ∀k = 1, 2} in Definition 4.1(ii).
We are now in a position to show that in our example we have the following
inclusion.

Lemma 4.13. D ⊂ E.

Proof. Let F ∈ AutTg0(Oreg). We have to show that ΨF (Zk) ∈ {±Z1,±Z2}
for k = 1, 2. By 3.4(i) we know F∗(Ẑk) = Ψ̂F (Zk) on Ô. The map

t 3 Z 7→ Ẑ[x] ∈ T[x]Ô

is injective for any [x] ∈ Ô as the differential of the embedding R[x] : T 3
z 7→ z[x] ∈ Ô. So it suffices to show that

F∗[x](Ẑk [x]) ∈
{
±Ẑ1F ([x]),±Ẑ2F ([x])

}
for k = 1, 2 in a single point [x] ∈ Ô.

By (4.7) we can choose a ∈ (0, 1√
2
) such that cos∠(Ẑ1[x], Ẑ2[x]) is irrational

for all [x] ∈ Oa,a. Now fix [x] ∈ Oa,a and temporarily write 〈Y1, Y2〉 :=

〈Ŷ1[x], Ŷ2[x]〉 and ‖Y ‖ :=
√
〈Y, Y 〉 for Y1, Y2, Y ∈ t. Note that ‖Z1‖ = ‖Z2‖.

By our choice of a we observe that if k, l ∈ Z and

‖kZ1 + lZ2‖2/‖Z1‖2 ∈ Q,
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then kl = 0. Hence if 2πY ∈ L with ‖Y ‖ = ‖Z1‖, then (since 2πpY ∈ L̃
and hence pY = kZ1 + lZ2 for some k, l ∈ Z) we have pY ∈ {±pZ1,±pZ2}
and hence Y ∈ {±Z1,±Z2}.

This implies that the images of the two flow lines generated by Ẑ1 and

Ẑ2 through [x] give precisely the geodesic loops in T [x] ⊂ Oa,a through [x]
of length 2π‖Z1‖; recall from Lemma 4.11 that T 3 z 7→ z[x] ∈ T [x] is an
isometry with respect to the left-invariant metric 〈, 〉 above on T , hence such
flow lines are indeed geodesics.

Since F preserves Oa,a by Lemma 4.12, we have F (T [x]) ⊂ Oa,a and
the geodesic loops in TF ([x]) = F (T [x]) through F ([x]) of length 2π‖Z1‖
are given precisely by the flow lines of Ẑ1 and Ẑ2 through F ([x]). On the
other hand, since F : T [x]→ F (T [x]) is an isometry, the images of the flow

lines of F∗Ẑ1 and F∗Ẑ2 through F ([x]) in F (T [x]) also have length 2π‖Z1‖.
Together this implies F∗[x](Ẑj [x]) ∈ {±Ẑ1F ([x]),±Ẑ2F ([x])} for j = 1, 2. As

noted above, this proves our statement. �

Proposition 3.7 (where we introduced the properties (N) and (G) below)
and the following proposition will imply that if isospectral maps j and j′ are
not equivalent and j′ is generic, then the corresponding isospectral orbifolds
(O, gλ), (O, gλ′) with O = O(p, q) are nonisometric. In the second and
third step of the proof we basically follow the first part of the proof of [30,
Proposition 4.3].

Proposition 4.14. Let j, j′ : R2 → su(n− 1) be two linear maps and let λ,
λ′ be the admissible t-valued 1-forms on O = O(p, q) associated with j and
j′.

(i) If j and j′ are not equivalent in the sense of Definition 4.1(ii), then
Ωλ and Ωλ′ satisfy condition (N).

(ii) If j′ is generic in the sense of Definition 4.1(iii), then Ωλ′ has prop-
erty (G).

Proof. Choose an arbitrary a ∈ (0, 1/
√

2) and set L := Oa,a ⊂ Ô. We
write ΩL

0 for the t-valued 2-form on L/T induced by the curvature form Ω0

on (Ô/T, gT0 ). Moreover, to a t-valued k-form η on a manifold we associate
real-valued k-forms η1, η2 via η =: η1Z1 + η2Z2.

First step: calculation of ΩL
0 . In this step we will show that on

L/T
isom' (CPn−2, (1− 2a2)gFS)

we have (ΩL
0 )1 = (ΩL

0 )2 and this form is a nonvanishing multiple of the
standard Kähler form.

Recall from 3.4(iv) that ω0 : T Ô → t denotes the connection form on the

principal T -bundle Ô associated with g0. We first note that it is not hard

to verify that with P : Ŝ2n+1 → Ô the canonical projection we have for
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(u, v) ∈ Ŝ2n+1, X = (U, V ) ∈ T(u,v)Ŝ2n+1, j = 1, 2:

(4.9) (P ∗ω0
j)(u,v)(X) = −q

p

〈U, iu〉
‖u‖2

+
〈Vj , ivj〉
|vj |2

Now write ωL0 for the t-valued 1-form on L induced by ω0. (4.9) implies that
for (u, v) ∈ P−1(L) and X = (U, V ) ∈ T(u,v)P

−1(L):

(4.10) (P ∗ωL0 )j(X) = − q

p(1− 2a2)
〈U, iu〉+

1

a2
〈Vj , ivj〉.

Now note that P−1(L) = S2n−3(
√

1− 2a2)× (S1(a))2 ⊂ S2n+1 ⊂ Cn+1 and
hence if X = (U, V ) ∈ T(u,v)P

−1(L), then Vj is a real multiple of ivj for

j = 1, 2. Using this, (4.10) implies that for X = (U, V ), X̃ = (Ũ , Ṽ ) tangent
to P−1(L) in (u, v) and j = 1, 2:

(P ∗dωL0 )j(X, X̃) = −2
q

p(1− 2a2)
〈iU, Ũ〉.

Therefore, on L/T
isom' (CPn−2, (1 − 2a2)gFS) the form (ΩL

0 )1 = (ΩL
0 )2 is a

nonvanishing multiple of the standard Kähler form.

Second step: proof of (i). Suppose that condition (N) is not satisfied.

Then there is Ψ ∈ D and F ∈ AutTg0(Oreg) such that Ωλ = Ψ ◦ F ∗Ωλ′ .

Since F preserves L/T by Lemma 4.12, this implies ΩL
λ = Ψ ◦ F ∗ΩL

λ′ . Now

Ωλ = Ω0 + dλ and Ωλ′ = Ω0 + dλ′ (3.4(vi)) imply (with λ
L

denoting the
t-valued 1-form on L/T induced by λ, and analogously for λ′):

(4.11) ΩL
0 + dλ

L
= ΩL

λ = Ψ ◦ F ∗ΩL
λ′ = Ψ ◦ F ∗(ΩL

0 + dλ′
L

).

In particular, ΩL
0 −Ψ◦F ∗ΩL

0 is exact. Moreover, note that Proposition 4.13

implies Ψ ∈ E . The first step above shows that ΩL
0 −Ψ ◦ F ∗ΩL

0 ∈ {0, 2ΩL
0 }

and that 2ΩL
0 cannot be exact. Hence ΩL

0 −Ψ◦F ∗ΩL
0 = 0 and (4.11) implies

(4.12) dλ
L

= Ψ ◦ F ∗dλ′L.
Let Q : Cn−1 → Cn−1 denote complex conjugation and choose

A ∈ SU(n− 1) ∪ SU(n− 1) ◦Q
such that A induces (via the Hopf fibration Cn−1 ⊃ S2n−3 → CPn−2) the
isometry on L/T ' (CPn−2, (1− 2a2)gFS) corresponding to F |L/T , i.e., such

that P ◦(A, I2)|P−1(L) = F ◦P|P−1(L). Then, with κL denoting the restriction

of κ to P−1(L) (and analogously for κ′), pulling back both sides of (4.12)
via π ◦ P , we obtain

(4.13) dκL = Ψ ◦ (A, I2)∗dκ′
L
.

For k ∈ {1, 2} set jk := jZk . Letting

(u, v) ∈ P−1(L) = S2n−3(
√

1− 2a2)× (S1(a))2,
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we have by (4.3) for (U, V ) ∈ T(u,v)(P
−1(L)):

κk(u,v)(U, V ) = (1− 2a2)〈jku, U〉 − 〈U, iu〉〈jku, iu〉.

For (U1, V1), (U2, V2) ∈ T(u,v)(P
−1(L)) we get by elementary differentiation

and skew-symmetry:

dκk(u,v)((U1, V1), (U2, V2))(4.14)

= 2(1− 2a2)〈jkU1, U2〉 − 2〈iU1, U2〉〈jku, iu〉
− 2〈U2, iu〉〈jkU1, iu〉+ 2〈U1, iu〉〈jkU2, iu〉

= 2(1− 2a2)〈jkUh1 , Uh2 〉 − 2〈jku, iu〉〈iU1, U2〉,

where we write Uh = U − 〈U,iu〉
1−2a2

iu for the orthogonal projection of U ∈
TuS

2n−3(
√

1− 2a2) to (iu)⊥. By Proposition 4.13 we can choose εk ∈ {±1}
and l ∈ {1, 2} such that Ψ(Zk) = εkZl. Plugging (4.14) and the analogous
formula for κ′, j′ into (4.13), we obtain:

2(1− 2a2)〈jlUh1 , Uh2 〉 − 2〈jlu, iu〉〈iU1, U2〉

= 2εk

(
(1− 2a2)〈A−1j′kAU

h
1 , U

h
2 〉 − 〈A−1j′kAu, iu〉〈iU1, U2〉

)
.

Setting τk := εkA
−1j′kA− jl ∈ su(n− 1) gives

0 = (1− 2a2)〈τkUh1 , Uh2 〉 − 〈τku, iu〉〈iU1, U2〉.
Plugging U2 = iU1 into the last equation, we can conclude that the map

φ : Cn−1 \ {0} 3 U 7→ 〈iτkU,U〉
‖U‖2 ∈ R is constant, say C, on span{u, iu}⊥ \ {0}

and φ(u) = φ(iu) = C. Since iτk is hermitian and has trace zero, we have
τk = 0. This finally implies jΨ(Zk) = A−1j′ZkA for k = 1, 2 and therefore

jΨ(Z) = A−1j′ZA.

Third step: proof of (ii). Assume that Ωλ′ does not satisfy property (G).

Then there is a nontrivial one-parameter family F̄t ∈ Aut
T
g0(Oreg) such that

F̄ ∗t Ωλ′ = Ωλ′ for all t. The same argument as above (with Ψ = Id and
j = j′) gives a one-parameter family At ∈ SU(n− 1) ∪ SU(n− 1) ◦Q such

that (At, I2) preserves dκ′L. Note that A0 = Id implies At ∈ SU(n− 1). As

in the proof of (i) the relation (At, I2)∗dκ′L = dκ′L implies j′Z = Atj
′
ZA
−1
t .

Taking the derivative with respect to t in 0 gives 0 = [Ȧ0, j
′
Z ] for all Z ∈ t

in contradiction to the genericity assumption. �

As announced in the beginning of this section, we can now put all pieces
together to obtain our main result.

Theorem 4.15. For every n ≥ 4 and for all pairs (p, q) of coprime positive
integers there are isospectral families of pairwise nonisometric metrics on
the orbifold O = O(p, q), a weighted projected space of dimension 2n ≥ 8,
which is a bad orbifold for (p, q) 6= (1, 1).
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Proof. Direct consequence of Proposition 4.2, Theorem 4.4, Proposition 3.7,
and Proposition 4.14. �

4.4. Isospectral quotients of weighted projective spaces. In this sec-
tion we will apply ideas from [35] to give isospectral metrics on quotients
of the form O(p, q)/G with O(p, q) from the preceding sections and G now
a finite subgroup of the given 2-torus T (which had been introduced in
Section 4.2.1).

We first phrase a special case of Sutton’s results on equivariant isospec-
trality ([35], also compare [25]) for orbifolds. Suppose we are given a Rie-
mannian orbifold (O, g) and a finite subgroup G of its isometry group. Then
O/G carries a canonical orbifold structure and a Riemannian orbifold met-
ric ḡ such that the canonical projection P : (O, g) → (O/G, ḡ) becomes a
Riemannian orbifold covering.

Theorem 4.16. Let G be a finite group acting effectively and isometri-
cally on two compact Riemannian orbifolds (O1, g1) and (O2, g2) such that
the latter are equivariantly isospectral with respect to G, i.e., such that
there is a unitary isomorphism U : L2(O1, g1)→ L2(O2, g2) between the G-
representations τG1 and τG2 (given by τGi (g)f(x) = f(g−1x) for f ∈ L2(Oi, gi),
x ∈ Oi) with the following property: U maps eigenfunctions on (O1, g1) to
eigenfunctions on (O2, g2) associated with the same eigenvalue.

Then (O1/G, ḡ1) and (O2/G, ḡ2) are isospectral orbifolds.

Proof. Just adapt the proof of [35, Theorem 2.7] to this very simple case
(replacing the manifolds M1,M2 by O1,O2). �

The orbifolds from Theorem 3.1 are then seen to be equivariantly isospec-
tral with respect to the torus T from that theorem via the same argument
as for the manifold version, for which the equivariant isospectrality was al-
ready observed in [35]. Hence in the situation of Theorem 4.4 with G a finite
subgroup of T the two orbifolds (O/G, ḡλ), (O/G, ḡλ′) are isospectral.
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