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On doubled 3-manifolds and minimal
handle presentations for 4-manifolds

R. Craggs

Abstract. We extend our earlier work on free reduction problems for
2-complexes K in 4-manifolds N (i.e., the problem of effecting, by a
geometric deformation of K in N , the free reduction of the relator words
in the presentation associated with K). Here, the problem is recast, with
new results, in terms of 2-handle presentations of 4-manifolds.

Let M∗ be the complement of the interior of a closed 3-ball in the
3-manifold M , and let 2M∗ be the connected sum of two copies M , via
a boundary identification allowing the identification of 2M∗ with the
boundary of M∗ × [−1, 1].

We show that algebraic handle cancellation associated with a 2-
handle presentation of a 4-manifold with boundary 2M∗ can be turned
into geometric handle cancellation for handle presentations of possibly
different 4-manifolds having the same boundary provided that certain
obstruction conditions are satisfied. These conditions are identified as
surgery equivalence classes of framed links in Bd(M∗ × [−1, 1]). These
links, without the framing information, were considered in previous work
by the author.

The following is one of the main results here: Let M be a 3-manifold
that is a rational homology sphere, and suppose that M∗× [−1, 1] has a
handle presentation H with no handles of index greater than 2. Suppose
H is a normal, algebraically minimal handle presentation. If the obstruc-
tion conditions are satisfied, then there is a 4-manifold N bounded by
2M∗ that has a minimal handle presentation.

Another theorem states, independent of the Poincaré Conjecture,
conditions for a homotopy 3-sphere to be S3 in terms of minimal handle
presentations and the triviality of the defined obstruction conditions.

Contents

1. Introduction 30

2. Definitions, examples, and implications 32

3. Statement of some of the main results, further implications 34

4. Cancellation segments; factorings 36

5. A review of previous link obstructions 37

Received December 17, 2010; revised December 16, 2011.
2010 Mathematics Subject Classification. Primary: 57M20; Secondary: 57R65, 57M40.
Key words and phrases. framed surgery, extended Nielsen operations, handle presen-

tations, graph manifolds.

ISSN 1076-9803/2012

29

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2012/Vol18.htm


30 R. CRAGGS

6. Framed links and surgery 38

7. Operations on framed links 39

8. Invariants for framed links 40

9. Evenness of framing 42

10. Three framed obstruction links, reduced attaching curves 43

11. Main results 45

12. Other schemes for turning algebraic into geometric handle
cancellation 47

13. Questions and conjectures 49

References 51

1. Introduction

An earlier version of this paper was written in the 1990’s, before Perel-
man’s solution of the Poincaré Conjecture. See [GP02], [GP03a], [GP03b],
[CZ06], [CZER] and [MT06]. At the time, we were interested in using 2-
handle presentations of 4-manifolds and formal 3-deformations of 2-com-
plexes naturally associated to these handle presentations to cast some light
on the Boileau–Zieschang Seifert fibered 3-manifolds, and see if homotopy
3-cells could be simplified using 3-deformations of cells in the presentation
so that when a presentation involving a single cell was encountered, meaning
a presentation arrived at by formal or abstract 3-deformations, involving a
single cell, a 0-cell, (corresponding to the satisfaction of the Andrews–Curtis
Conjecture), then we could recognize the fake cube as the 3-cube.

Reader take note. We are trying to develop tools for an alternate un-
derstanding of the Poincaré Conjecture, especially the case where 2-spines
of homotopy 3-spheres satisfy the Andrews–Curtis Conjecture. Because of
that we will avoid using the truth of the Poincaré Conjecture in the main
theorems. Theorem 3 is the only theorem that is affected. We will discuss
the matter at the end of the proof of Theorem 3.

For a closed 3-manifoldM , letM∗(k) denote the 3-manifold that results by
removing the interiors of k disjoint 3-balls in M . Let 2M∗(k) denote the dou-
ble ofM∗(k) obtained by identifying, in the obvious way, two copies ofM∗(k),
one with orientation reversed, along their boundaries. When k = 1, we will
use the more familiar notation 2M for the double. There have been some
efforts to show that for the case k = 1, the 4-manifold N = M∗(1)× [−1, 1]
has a 2-handle presentation (2-spine) with few 1-handles where few is de-
fined in terms of the formal 3-deformation properties of M∗(1). See [RC89],
[RC93], [JM86]. Such handle presentations will be called minimal here and
minimal will be defined in the next paragraph. From [RC89] and [RC93] we
know that the existence of minimal 2 handle presentations can, in favorable
circumstances, be reduced to some very difficult free reduction obstruction
problems for attaching words for 2-handles. The existence of minimal handle
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presentations for the 4-manifolds described above would offer an interesting
geometric invariant bounded above by Heegaard genus but not always equal
to Heegaard genus. Also a minimal presentation would offer the chance for
an alternative proof of the Poincaré conjecture by reducing it to a weak ver-
sion of the Andrews–Curtis Conjecture. In this paper we attempt to avoid
the free reduction problems in finding minimal handle presentations by em-
phasizing the trading of M∗ × [−1, 1] for other 4-manifolds with the same
boundary.

Counting and index. In the notation here k–handles means handles of
index k, and k handles means a collection of handles of cardinality k.
Consider one of the manifolds M∗(k). Define the extended Nielsen genus
en(M∗(k)) of M∗(k) to be the minimum number of 1-cells taken over all 2-
complexes to which M∗(k) formally 3-deforms. Note that M∗(k) 3-deforms
to a wedge of a 2-spine of M∗(1) with (k − 1) 2-spheres. From the char-
acterization of equivalence under extended Nielsen operations, (see [RB93],
[RC79a], [RC79b] [HM93], [PW75], [SY76]), it follows that we can define
en(M∗(k)) in the following alternate way. Take a 2-spine K of M∗(1). Let
PK = {x1, . . . , xn | r1, . . . , rn} be the associated group presentation. Let
(∗)k−1 denote k − 1 copies of the trivial relator. Then for the presentation
P = {x1, . . . , xn | r1, . . . , rn, (∗)k−1} minimize, by using extended Nielsen
transformations, the number of generators xi in P. This minimum number
is en(M∗(k)), and for k = 1 we will write en(M) for en(M∗(1)) sometimes.
Notice that the 4-manifold M∗(k) × [−1, 1] has, as boundary, the double
2M∗(k) and this boundary is equivalent to 2M#(k − 1)S2 × S1. The 4-
manifold M∗(k)×[−1, 1] collapses to M∗(k). Let N be a 4-manifold bounded
by 2M∗(k). A handle presentation H for N is said to be minimal (relative
to the boundary 2M∗(k)) provided that it has no handles of index exceeding
2 and the following conditions hold:

(1) The number of 1-handles in H is equal to en(M∗(k)).
(2) If KH is one of the 2-complexes naturally associated with H, then

M∗(k)�
3
↘ KH.

Let hg(M) denote the Heegaard genus of a closed 3-manifold M . From
the definitions of Heegaard genus and extended Nielsen genus, we know
that rank(π1(M)) ≤ en(M,k) ≤ hg(M∗(k)). There are only a couple of
classes of 3-manifolds for which strict inequality rank(π1(M)) < hg(M) is
known to hold: One of these is a family of the Seifert fibered spaces iden-
tified by Boileau and Zieschang [BZ84]. (See also the graph manifolds of
Moriah–Schultens and Weidmann [SW07], Schultens–Weidmann, and Wei-
dmann [RW03]). For the Boileau–Zieschang examples, the rank is 2 and the
Heegaard genus is 3. Moreover, by the work of Montesinos on the Boileau–
Zieschang manifolds [JM86], en(M∗(1)) = 2 for at least one of these exam-
ples. We attempt to prove here that for every closed 3-manifold M , and
for every positive integer k, there is a 4-manifold N bounded by 2M∗(k)
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and a minimal handle presentation for N . For a 3-manifold M and a pos-
itive integer k, we will identify two obstructions to getting minimal handle
presentations for 4-manifolds bounded by 2M∗(k). For k = 1, when the
two obstructions vanish, then minimal handle presentations exist. The first
obstruction will be an obstruction to the method used here. All known
examples of this first obstruction, including some highly complicated ones,
either vanish or can be made to vanish by a modification of the obstruction
definition. When the first obstruction vanishes, the second obstruction be-
comes, in certain important cases, a topological obstruction. In the case of
homotopy 3-spheres M for which M∗(1) 3-deforms to a point, when the first
obstruction vanishes, the second obstruction vanishes if and only if M is a
3-sphere. By Perelman’s solution of the Poincaré Conjecture, this is thus al-
ways the case and we have the possibility of putting together an independent
reduction of the Poincaré Conjecture to the Andrews–Curtis Conjecture.

Kapitza, (see [PK01],[PK11a], and [PK11b]), attempts to get a minimal
handle presentation for a 4-manifold bounded by the double of one of the
Boileau–Zieschang examples, specifically one that is identified by Montesinos
as having extended Nielsen genus 2. He uses a Heegaard decomposition of
the Boileau–Zieschang example of genus 95 to find an instance where the first
obstruction to minimality vanishes. Notice that if there is a minimal handle
presentation in this case, then en(M) is an integral invariant measuring
geometric simplicity of 3-manifolds that is sometimes less than the Heegaard
genus.

2. Definitions, examples, and implications

Presentations and reduced presentations. A presentation for a group
G is an expression P = {x1, . . . , xn | r1, . . . , rp}. The xi’s are the generators
and the rj ’s are the relators. The relators are words on the alphabet {x±i }.
The relators are not necessarily freely reduced. We denote by P the corre-
sponding reduced presentation {x1, . . . , xn | r̄1, . . . , r̄p} where r̄i denotes the
free reduction of the word ri.

We will be working with 2-handle presentations for 4-manifolds and with
longitudinal surgery presentations for 3-manifolds. All the work here is
in PL. The work is done visually on diagrams. We can take freely from
diagrams in DIFF and convert them to PL. The basic facts from references
such as [JS68] and [RS82] will be assumed. For a handle presentation H and
an integer `, let N(H, `) or N(`) for short, denote the union of all handles
of index less than or equal to `. For N(H, 1), we will always assume that
this manifold has the form J × [−1, 1] where J is a 3-dimensional cube with
handles. We will denote the boundary of this manifold by Σ(n), a sphere
with n handles.

Split 4-manifolds. Getting minimal handle presentations is regarded at
the start as a problem of converting algebraic handle cancellation to geomet-
ric handle cancellation. We restrict attention to a special class of 4-manifolds
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where this problem can be treated as an obstruction problem. We say that
a 4-manifold N is a split 4-manifold provided that there is a 3-dimensional
cube with handles J and disjoint unions of disks D− and D+ together with
homeomorphisms h± : Bd(D±)× [0, 1]→ Bd(J) so that N is represented as
the identification space,

D− × [0, 1]× [−1,−1/2] q
(x,s,t)=(h−(x,s),t))

J × [−1, 1]

q
(h+(x,s),t))=(x,s,t)

D+ × [0, 1]× [1/2, 1].

If the images of h− and h+ are disjoint, then N can be reparameterized
as an ordinary product manifold M∗ × [−1, 1]. We do not know whether
all 4-manifolds with boundary that have 2-handle presentations admit split
structures; however we do know that every 3-deformation type of 2-complex
is the natural spine for a 4-manifold with a split handle presentation in the
sense of normal handle presentations defined below. See [CC84] and [RCip].

Complex associated with a handle presentation. With any handle
presentation H for N , a manifold with boundary, where the index of the
handles is at most n, there is an associated n–complex KH that is well
defined up to formal (n + 1)–deformation. This is built up by deforming
attaching cells for the successive handles. See [RS82] for example. For the
2-handle presentations here, the associated 2-complexes are well defined up
to 3-deformation; thus invariants of extended Nielsen type are associated
with them.

Normal handle presentations, algebraic handle cancellation. Con-
sider a split 4-manifold with handle presentation H where the union N(1)
of the 0- and 1-handles is J × [−1, 1]. We will say that the presentation is a
normal handle presentation provided that the following two conditions hold:

(1) The 2-handles may be taken to be the products

D−,j × [0, 1]× [−1,−1/2] and D+,j × [0, 1]× [1/2, 1]

where D±,j are the components of D±.
(2) The attaching spheres for the 2-handles are the curves

h±((Bd(D±)×±1)).

For any normal handle presentation, H, we say that p 1-handles can be
cancelled algebraically provided that there is a basis {x1, . . . , xn} for the
fundamental group of J corresponding to a complete system of meridian
disks in J such that the attaching words for p of the 2-cells (read by the
attaching maps) when projected to the fundamental group of J , read, after
free reduction, p distinct basis elements xi(1 ≤ i ≤ p). For later reference
we identify two copies of J :

J+ = J × 1 ∪ (Bd(J))× [0.75, 1],

J− = J ×−1 ∪ (Bd(J))× [−1,−0.75].
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Finally let us say that a normal handle presentation H for a 4-manifold
N with boundary 2M∗ is algebraically minimal (relative to the boundary
2M∗) provided that following conditions hold:

(1) The 2-complex KH associated with H formally 3-deforms to M∗.
(2) The number p of the 1-handles can be cancelled algebraically where
H has n 1-handles and n− p = en(M∗).

Algebraic handle cancellation can be turned into actual geometric handle
cancellation and the sought for minimal handle presentations if attaching
spheres reflecting algebraic handle cancellation can be adjusted so that the
attaching words are freely reduced. This approach is summarized in the
statement of the two results below. The second result is well known, and
the first one is effectively done by Kapitza [PK11a].

Theorem 1 (Christ [CC84]). For each 3-manifold M and each integer k ≥
1, the 4-manifold M∗(k)× [−1, 1] has a normal handle presentation in which
all but en(M∗) 1-handles can be algebraically cancelled.

Proposition 1. For any one of the handle presentations described in The-
orem 1, suppose that there is an isotopy of Bd((J) × [−1, 1]) that causes,
for the 2-cells that contribute to algebraic handle cancellation, the attaching
words for the 2-cells to be freely reduced.

Then M∗(k)× [−1, 1] has a minimal handle presentation.

The work by Christ cited above is a Diplom Arbeit at the University of
Frankfurt. Much sharper results here will come when we allow the actual
4-manifold M∗(k)× [−1, 1] to change. We will employ, in §7, a variation on
the usual surgery calculus for framed longitudinal surgeries on 3-manifolds
[TW64a] and [TW64b], [RK78], and [GS99]. In this calculus, we will dis-

tinguish equivalence ≈ and strong equivalence
s
≈. For any 3-manifold M

and corresponding M∗(k), and for any normal handle presentation H for
M∗(k) × [−1, 1] that admits algebraic cancellation of all but en(M∗(k)) 1-
handles, we will associate three framed links R, L, and T , involving disjoint
links. The surgery equivalence classes of these framed links will measure
obstructions to converting the algebraic handle cancellation in H to geo-
metric handle cancellation for a handle presentation of a possibly different
4-manifold that has the same boundary 2M∗(k) as before. We will say that
the obstruction conditions are satisfied, or say that the obstructions are

trivial, if L
s
≈ ∅ and T ∪ L ≈ T .

3. Statement of some of the main results, further
implications

Theorem 2. Let M be a closed compact 3-manifold that is a rational ho-
mology sphere, and let k = 1. Suppose that H is a normal, algebraically
minimal handle presentation of M∗(1)× [−1, 1] with n 1-handles. Let R, L,
T be the associated framed links.
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If L
s
≈ ∅ and T ∪L ≈ T , then there is a 4-manifold N bounded by 2M∗(1)

that has a minimal handle presentation.

Theorem 3. Let M be a homotopy 3-sphere, let en(M∗(k)) = 0 for k = 1

or 2, and suppose that L
s
≈ ∅ for some algebraically minimal normal handle

presentation.
Then there exists a minimal handle presentation for a 4-manifold bounded

by 2M∗(k) if and only if M is a 3-sphere. For k = 1, M is a 3-sphere if and
only if T ∪ L ≈ T .

Consider a homotopy 3-sphere M . For any k ≥ 1, M∗(k) collapses to
a bouquet of (k − 1) 2-spheres wedged with a 2-spine of the homotopy
cube M∗(1). It is well known that there is an integer k ≥ 1 such that
en(M∗(k)) = 0. In this case, a minimal handle presentation for a 4-manifold
bounded by 2M∗(k) would consist of a 0-handle and (k−1) 2-handles. Thus
the homotopy sphere with (k−1) handles, 2M∗(k), would result from the 3-
sphere by longitudinal surgery on a link of k−1 components. There is a long
outstanding conjecture, the Generalized Property R Conjecture, that the
framed link is equivalent, without stabilization by either of the two kinds,
to the 0-framed unlink; hence in this case surgery returns a sphere with
(k−1) handles. See [RK97]. Thus, if the Generalized Property R Conjecture
holds, then 2M and hence M would be a 3-sphere. For k = 1 or 2 special
considerations apply. If k = 1, and a minimal handle presentation exists for
some N , then N has just a 0-handle and 2M is the boundary of a 4-ball;
so 2M is 3-sphere and hence M is a 3-sphere. If k = 2 and a minimal
handle presentation exists, then 2M∗(2) is the connected sum of 2M and
S2 × S1. Gabai’s solution to the Property R Conjecture [DG87] (see also
Gordon–Luecke [GL89]) confirms, in this case, the Property R Conjecture,
and shows that M is again a 3-sphere.

Effect of the Poincaré Conjecture on Theorem 3. First of all, we
know that M is a 3-sphere and that the equivalence T ∪ L ≈ T always
holds. This allows us to sketch out the reduction of the Poincaré Conjecture
to the Andrews–Curtis Conjecture if we do not use the conjecture in carrying
out these steps:

(1) Establish that T ∪ L ≈ T holds.
(2) Show that for some normal, algebraically minimal handle presenta-

tion for M∗ × [−1, 1], the triviality L
s
≈ ∅ holds.

The first of the two tasks should be made easier by the fact that we know
that the equivalence is true.

If the Andrews–Curtis Conjecture were false for 2-spines of homotopy
3-spheres, then en(M) ≥ 2 for some homotopy 3-sphere M . Now, by a
result of Haken’s [WH68], Heegaard genus is additive for connected sums,
hg(M# . . .#M) = hg(M)+ · · ·+hg(M), but extended Nielsen genus would
not be additive for a homotopy 3-sphere M if en(M) > 0. In particular we
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would have en(M# . . .#M) ≤ en(M) (see [RC75]); so if minimal handle
presentations always exist, then there would be, in this case, handle presen-
tations for 4-manifolds bounded by doubled homotopy 3-spheres in which
the number of 1-handles would be smaller than that promised by Heegaard
genus. In fact, the difference hg(M) − en(M) could be made arbitrarily
large.

4. Cancellation segments; factorings

A disjoint system of simple closed curves {Si} on a compact, closed, ori-
entable surface Q is complete if the curves do not separate Q and no other
simple closed curve disjoint from the Si can be added to the collection so
as to preserve the nonseparation property. Similarly, a disjoint system of
meridian disks in a cube with handles J is complete if the union does not
separate, but any larger disjoint collection of meridian disks does separate.
Let us say that a system of disjoint simple closed curves on a surface Q
is saturated if it contains a complete subsystem. Similarly call a system
of disjoint, properly embedded disks in a cube with handles saturated if it
contains a complete system of meridian disks. Given a cube with handles
J and a complete system of meridian disks {E`} on J , there is a standard
way of reading elements from the fundamental group of J . One assigns
positive and negative sides to the disks E`. One can regard J\

⋃
E` as the

basepoint of J . Then given any loop in J one reads the letters x−` if the

loop passes through E` from the positive to negative side and x+` if the loop
passes through E` from the negative to the positive side. With a saturated
system of disks we can do the same thing except the readings correspond to
elements of the fundamental group only after intersections with certain disks
E` are ignored. But even in this case, for homotopically trivial loops in J ,
the associated words cancel down to the empty word regardless of whether
the system of disks includes more than a complete system.

Cancellation segments. Let J be a cube with n handles and E =
⋃
E` a

saturated system of disks in J . Let R =
⋃
Ri be a union of disjoint, oriented,

simple closed curves
⋃
Ri on Bd(J) intersecting E transversally. Let each

Ri be provided a base point ∗i missing E. By a cancellation segment on one
of the curves Ri we mean an arc A on Ri\∗i that begins and ends on some
E`, abutting on the same side at the two ends, and is homotopic relative
to its end points to an arc in E`. Denote the initial and terminal points
of the cancellation segment A by ι(A) and τ(A). A cancellation segment
A is irreducible if no proper initial subsegment or terminal subsegment is a
cancellation segment. See Figure 1 for an example of a reducible cancella-
tion segment. An equivalent, and useful, condition for irreducibility is the
following: Lift A and E` to Ã and Ẽ` in the universal cover J̃ of J so that Ã
begins and ends on Ẽ`. Then A is irreducible if and only if Ã∩ Ẽ` = Bd(Ã).
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reducible cancellation segment
odd framing

Figure 1.

Factoring, normal form. Let {Ai} be a collection of irreducible cancel-
lation segments in R defined by a union of disks E. Assume that whenever
two of these segments intersect, one of them is contained in the other. By
a factoring of the segments {Ai} we mean a collection of cancellation seg-
ments {Bj} containing {Ai} where each Bj is contained in some Ai and
the collection {Bj} is maximal with respect to satisfying the irreducibility
and containment conditions just mentioned. A particular factoring is de-
scribed in the next paragraph. Factoring here corresponds to tree factoring
in [RC89] and [RC93].

Initial normal form. For the least possible Ri, choose the least point of
Ri ∩ E that is an initial point for a cancellation segment. Then among all
cancellation segments beginning at this initial point, choose the one that has
the least terminal point. Add this segment to the collection {Ai} and apply
this same construction repeatedly until a collection of cancellation segments
Bj is created that accounts for every point of every Ri ∩ E. We define this
collection of irreducible cancellation segments to be an initial normal form.

5. A review of previous link obstructions

The framed link obstructions here derive from the free reduction approach
to getting minimal handle presentations [RC89] and [RC93]. In the second
reference a family of 1-dimensional links (without framing) measures the
obstruction to geometrically realizing, by an isotopy, free reduction of at-
taching words for 2-handles. A natural framing on the links above will
enable us to regard the link obstructions above as surgery obstructions.
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The most elementary example of an obstruction to free reduction, the Hopf
Link, will turn out to be trivial as a surgery obstruction. We review here
the obstruction links of [RC93]. Consider first the case of an ordinary han-
dle presentation H with attaching spheres R =

⋃
Ri. Let R(0) ⊂ R be

a subunion of attaching spheres. Let there be given a complete system of
meridian disks in J giving rise to attaching words and an irreducible factor-
ing of the cancellation segments. By taking thin regular neighborhoods of
the disks E` that are small with respect to all items previously mentioned,
we can get very close parallel copies E`± of the disks E` that enjoy the
same transverse intersection properties with the curves in R as the disks E`
do. For each arc Aij from the factoring, extend Aij slightly in Ri so that
its initial and terminal points are shifted from some E` to a corresponding
E`ε. Then push the extended arcs to one side of R(0) using the fact that
R(0) is 2-sided in Bd(J). From Lemma 3.1 of [RC93] it follows that on
each E`ε containing end points of pushed arcs, the pairs of end points can
be connected by disjoint arcs, called lips, properly embedded in that E`ε.
Adding the lips to the adjusted cancellation segments creates a link L, the
obstruction link, that is disjoint from R. For normal handle presentations,
there is an immediate extension obtained by forming two links L+ ⊂ J+ and
L− ⊂ J− for the handles attached to Bd(J+) and Bd(J−) respectively. The
union of the two links L = L+ ∪ L− is the obstruction link.

After a change of language from 2-complexes to 2-handles, we get the
following main result of [RC93].

Theorem 4. Let H be a normal handle presentation. Let R(0) ⊂ R be a
subunion of the attaching spheres for the 2-handles, and consider the family
of all obstruction links L corresponding to the subunion R(0).

Then a necessary and sufficient condition in order that there be an isotopic
deformation of Bd((J)× [−1, 1]) that causes the attaching words for the 2-
handles associated with R(0) to be freely reduced is that one of the links
L = L+ ∪ L− in the family be trivial in J+ ∪ J− in the sense that the
components of L bound disjoint disks in J+ ∪ J−.

6. Framed links and surgery

Given a 3-manifold M possibly with boundary, a framed link is a pair
(S,A) (S ⊂ M) where S =

⋃
Si is a link of simple closed curves Si in M

and A =
⋃
Ai is a union of embedded annuli in M , called framing annuli,

containing S in its boundary and defining trivializations µ : S×D2 →M of
tubular neighborhoods of the curves Si in M ′ where M ′ is some 3-manifold
containing M in its interior. (If x ∈ S then (x, 0) → x.) (For technical
reasons it is sometimes necessary for us to allow curves Si to reside totally
or partially in Bd(M).) Two trivializations µ and µ′ are equivalent if there is
an ambient isotopy of M ′ fixing S and converting µ to µ′. If x ∈ Bd(D2) then
when a tubular neighborhood of S is removed from M ′, new solid tori are
to be sewn in with each µ(Si×x) becoming a meridian in the resewn torus.
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The connection with the framing annuli is that for one of the equivalence
classes of trivializations µ, we have Ai = µ(Si × B) where B is an arc in
D2 running from 0 to Bd(D2). When S is homologously trivial, the framing
can be described by specifying the linking number of the two components of
the boundary of the framing annulus where the two boundary components
are oriented in parallel. When this linking number is 0, the framing is called
the 0-framing. The framing is connected with surgery in the following way:
The trivialization µ : S ×D2 →M ′ of the tubular neighborhood of the link
S, defines a union of tori µ(Si × D2) with distinguished boundary curves
µ(Si × ∗) where ∗ is a point of Bd(D2). Removing the union of tori from
M ′ and resewing them so that meridian disks are attached to the curves
µ(Si × ∗) yields a new 3-manifold that results from M ′ by surgery on the
framed link (S,A).

The natural framing. Let J be a cube with handles and D a finite union
of disjoint properly embedded disks in J . Let S be a simple closed curve in
J . Assume that the following two conditions hold:

(1) S is either contained in Bd(J) or it is a union of proper arcs in D
together with arcs in Bd(J) whose interiors intersect Bd(D) transver-
sally in Bd(J).

(2) For each arc component A of S ∩D, the ends of the arc component
of S\A abut on the same side of D in J .

Under these conditions, a preferred framing of S exists that we refer to as
the natural framing. If S is contained in Bd(J), then S is 2-sided in Bd(J)
and so there is an annulus A for S that is contained in Bd(J). We take this
to define the natural framing. In the case where S has pieces in Int(J), the
framing annulus is defined by a product embedding A = µ(S × [0, 1]) where
µ(x, 0) = x, and A ⊂ Bd(J) ∪D. Here µ(x× [0, 1]) intersects D if and only
if x ∈ D in which case µ(x × [0, 1]) ⊂ D. To get the annulus, start laying
out at some point of S\D following the rules given above. Given the start,
there is always a unique side of S on which to continue. The question is, is
it possible that we end up on the opposite side of S when we try to complete
the layout? If that were to occur, we could complete another cycle about S
defining a Moebius band. Using the abutment condition we could push this
Moebius band to an immersion in Bd(J) exhibiting a nonorientable curve
in the orientable Bd(J).

7. Operations on framed links

Consider a 3-manifold M possibly with boundary and a framed link S =
(S,A). Consider the following operations on S:

(1) Shrink the whole of M by pushing in along the fibers of a collar on
Bd(M) so that M is pushed onto the closure of the complement of a
collar on Bd(M). Apply the same push to the framing annuli. This
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operation insures that all curves in a surgery presentation can be
modified to have solid tori for tubular neighborhoods.

(2) Inverse of the previous operation.
(3) Replace any annulus Ai by an annulus A′i that defines the same

equivalence class of framing.
(4) Replace S and A by H1(S) and H1(A) where Ht is an ambient

isotopy of M .
(5) Modify any Sk and Ak by sliding Sk over some Sj(j 6= k).
(6) Add or delete a 0-framed Hopf Link that is contained in the interior

of a 3-ball in M where the 3-ball does not intersect any other part
of the surgery curves.

(7) Add or delete a 0-framed unknotted curve that is contained in the
interior of a 3-ball in M where the 3-ball does not intersect any other
part of the surgery curves.

Define two framed links in M to be equivalent if one can be converted to
the other by a finite sequence of the operations above. The chief differences
with the usual calculi for framed links (Wall [TW64a] and [TW64b], Kirby
[RK78], Gompf & Stipsicz [GS99]) are two: Adding the 0-framed unknot is
not considered in the two theories just cited, and the Kirby move involving
a ±1 framed unknot, is not considered here. The following two propositions
are well known (for the second one see 5.11 of [GS99] or [TW64b]).

Proposition 2. If S and S ′ are equivalent framed links in a 3-manifold
M , then up to connected sum with copies of S2 × S1, the two corresponding
surgeries present the same 3-manifold.

Proposition 3. Let S = (S,A) be a framed link and {S0, S1} a pair of
homotopically trivial components of S such that:

(1) S0 is evenly framed.
(2) S1 has the 0-framing and bounds a disk intersecting S1 transversally

in a single point and not intersecting the remaining curves of S.

Then deleting S0 ∪ S1 from the surgery S results in an equivalent presen-
tation.

Our interest is in framed links in Σ with all the curves located in J±;
however the transformations will be applied sometimes with M = J+ ∪ J−
and sometimes with M = Σ = Bd(J × [−1, 1]).

8. Invariants for framed links

Here we look at properties that are invariant under the operations on the
framed links. All of our framed links are associated with the sphere with
n handles Σ(n); although we look in some cases at the subspaces J± to
consider equivalence. The source of invariants is the linking form defined
on any framed link S consisting of homologously trivial curves. See for
example Chapter 4 of [GS99]. Given a framed link S in Σ(n) based on
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curves S1, . . . , Sp all homologously trivial in Σ(n), the linking form is an
integral symmetric bilinear form with matrix Bp×p defined as follows: Give
each Si an orientation. The entry bij is the linking number in Σ(n) of
the pair (Si, Sj). The entry bii is obtained by taking the linking number
of the two components of the boundary of a framing annulus Ai where
both boundary components are oriented in the same direction. Two linking
forms, represented by symmetric, integral matrices B and B′ are equivalent
if the corresponding matrices B and B′ are congruent, that is, if there is a
unimodular, integral symmetric matrix C such that B′ = CBCT . Notice
that changing the orientation of a component results in an equivalent linking
form. Invariants of the form are signature and type, even or odd accordingly
as all the diagonal entries of the linking matrix are even or not. One can
also refer to the individual curves and say that the framing on one of the
curves is even or odd accordingly as the linking number of the boundary
components of the framing annulus is even or odd.

Except for the stabilizing operations, the other surgery moves correspond
to congruence of matrices. The stabilizing operations correspond to replac-
ing a matrix by a direct sum with ( 0 1

1 0 ) or ( 0 ). For any positive integer n,
let On denote the direct sum of n copies of the 1× 1 zero matrix (0).

Proposition 4. Let S and S ′ be equivalent framed links with corresponding
linking forms B and B′.

(1) After direct sum with suitable numbers of copies of ( 0 ) and ( 0 1
1 0 ),

the matrices B and B′ become congruent.
(2) If B and B′ have the forms B0

⊕
Op and B′0

⊕
Oq where B0 and B′0

have nonzero determinants, then det(B′0) = ±det(B0).

Proof. The first condition is obvious. For the second, there is no loss in
supposing that B and B′ are actually congruent. Now by invariance of rank,
the dimensions of B0 and B′0 are the same. By taking sums with ( 0 1

1 0 ) and
( 0 ), at the expense of changing the sign of the determinants of B0 and B′0,
we may assume that we have the congruence situation above with p = q
and the dimensions of B0 and B′0 equal to p. But now for some 2p × 2p
unimodular integral matrix, (

C D
E F

)
we have (

C D
E F

) ( B0 Op

Op Op

) (
C D
E F

)T
=
(
B′0 Op

Op Op

)
.

This shows that B′0 = CB0C
T and so the determinant of B0 is a divisor

of the determinant of B′0. The same argument in reverse shows that the
determinant of B′0 is a divisor of the determinant of B0. Thus the two
determinants are the same up to sign. �

Remark. We are not saying that decompositions as in (2) always exist, but
only that when they do exist, the nonzero determinant is, up to sign change,
an invariant.
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9. Evenness of framing

We show below that the natural framing on the obstruction link L is
an even framing. Here the condition of irreducibility on the cancellation
segments is crucial. Figure 1 shows an example of an odd framing associated
with a reducible cancellation segment.

Proposition 5. Let S be a component of an obstruction link L. Then the
natural framing on S is an even framing.

Proof. Let S be based on an arc A and lip C in a disk D. By the irre-
ducibility criterion, it follows that if we lift S and C to the universal cover J̃
of J so that A is lifted to Ã that begins and ends on D̃, then Int(Ã) fails to

intersect D̃. From the Dehn Lemma [CP57] and loop theorem [SW58] and

[JS60], S̃ bounds a disk E in J̃ with Int(E) ⊂ Int(J̃). In fact, D̃ separates

J̃ into two pieces, and the disk E can be chosen to be in the closure of one
of the two pieces. From this it is easy to see in fact that the framing of S̃ in
J̃ by an annulus in E is equivalent to the natural framing and so projects
to the natural framing of S.

Applying the projection map to E we get an immersion of E in J , and by
some cut and paste together with piping, we can reduce the singularities of
the projection map to clasp double arcs that begin and end on the lip. So we
have a clasp disk bounded by S with an annular neighborhood of S mapping
nonsingularly to a framing annulus equivalent to the natural framing on S.

But whenever an annulus in a clasp disk is used to frame the boundary,
the framing is even; that is, the linking number of the boundary components
of the annulus is an even number: The boundary curve meets the interior
of the clasp disk transversally in an even number of points. �

Proposition 6. Let S ⊂ L be an unknotted component of an obstruction
link in J . Then the natural framing on S is the 0-framing.

Proof. We know from the previous proposition that the framing on the
curves is even. Let S be a component of the obstruction link L and let S
bound a disk E in J . There is no loss in supposing that S and E have been
pushed slightly into the interior of J . We know from Proposition 5 that S
is the boundary of a clasp disk in J and that this clasp disk can be chosen
so that when lifted to the universal cover J̃ of J , the clasp disk becomes a
nonsingular disk E. Furthermore, this clasp disk E may be used to define
the natural framing on S by means of an annulus A with lifting Ã. Since
the projection map is nonsingular on S̃, we can calculate the linking number
of the two components of Bd(A) by calculating linking in J̃ . But since Ẽ is

embedded in J̃ the linking number of the two boundary components of Ã
must be 0. This shows that the natural framing of the components of L is
the 0-framing. �
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10. Three framed obstruction links, reduced attaching
curves

We describe three approaches to the framed obstruction link L. We begin
with ordinary handle presentations. We suppose that we are given a union
of attaching curves R and a subunion R(0) whose attaching words we want
to see freely reduced. We assume that for some basis for the fundamental
group of J , the curves in R(0) are precisely the ones that read distinct free
generators. We will use ι and τ to denote the initial and terminal points of
oriented arc segments.

The Type 1 link. Let L be the obstruction link corresponding to the
subset R(0). For the obstruction link L, we take the framed link (L,A)
where A gives the natural framing on L in J . We define this to be the
framed obstruction link of Type 1 associated with R(0). The trefoil example
of Figure 2 in [RC93] shows easily that this framed link is not always trivial
in the calculus here. For a suitable orientation, the matrix for the bilinear
intersection form is the 1× 1–matrix [2]. If the surgery were trivial, then by
Proposition 4, the determinant would have to be ±1 instead of 2. The next
two forms of the obstruction link are modifications intended to help make
the obstruction links trivial.

The Type 2 link. Extend the set R minimally to a union of disjoint simple
closed curves, R′ in BdJ that meets M transversally and contains the union
R′(0) of a complete system of curves in BdJ where R(0) ⊂ R′(0). If J
has genus n, then this means that the extension contains n curves whose
union does not separate BdJ . There are some arguments for preferring some
extensions over others; however if Conjecture 2 of §13 is true, all extensions
will have the desired effect of making the obstruction link trivial. Form the
Type 1 framed obstruction link associated with R′(0). We say that this is a
framed obstruction link of Type 2.

The Type 3 link. Let an irreducible factoring of the cancellation segments
of R(0) into irreducible subsegments be given, for example the initial normal
form. This factoring corresponds to a tree factoring in the language of
[RC93]. We will form the obstruction link as before except that we will
include components for all the subsegments in the irreducible factoring.

For each E take parallel disks as before. Use natural framing annuli on
the curves Ri to push the arcs of the irreducible factoring into disjoint arcs as
indicated in Figure 2. The procedure works like this: Push the original arcs
half way across the framing annuli. Then find the maximal proper subarcs
and push them three fourths of the way across the framing annuli. Then
locate the maximal proper subarcs of these and push them seven eighths
of of the way across. Continue in this way until all the subarcs are pushed
off. As in the case of the Type 1 link, irreducibility allows us to connect up
the endpoints of the adjusted arcs in the parallel disks M with disjoint arcs
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Figure 2. Making segments disjoint

(lips). This gives us, with the natural framing, a framed obstruction link of
Type 3.

The above yields the obstruction links for 3-manifold complexes and han-
dle presentations associated with products of 3-manifolds M∗(k) × [−1, 1].
By passing to normal handle presentations and using obstruction links in
J+ and J− we get corresponding obstruction links and pairs in J × [−1, 1].
When we pass to the normal handle presentation case, we have two possible
equivalences to use in the surgery calculus: equivalence either in Σ or equiv-
alence in J+ ∪ J−. We refer to equivalence ≈ in the first case and strong

equivalence
s
≈ in the second.

The reduced surgery link, T . For each component Ri ⊂ R(0) of R, slide
Ri over the corresponding components of L and follow this by an isotopy in
J , as indicated in Figure 3, to convert Ri to Ti so that the attaching word
for Ti reads the free reduction of the attaching word read for Ri. For the
remaining components Ri of R set Ti = Ri and denote by T the union

⋃
Ti.

Let T denote the corresponding framed link in Σ where the framing on T is
defined by the framing on R together with the slidings and isotopy. We call
this the reduced surgery link. It is important to remember here that in the
reduced surgery, the only curves that have been modified are the ones that
contribute to algebraic handle cancellation.

An alternate way to form T is the following: For each cancellation seg-
ment involving the lip construction, apply the construction twice on pairs of
disks parallel and very close to each other. There will be two small arcs run-
ning between the parallel disks that were contained in extended cancellation
segments. Discard these. What remains are a new component of the ob-
struction link together with a work in progress forming the reduced surgery
link. When this construction terminates, the second piece mentioned above
becomes the reduced surgery link.
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Figure 3. Converting R to T

Status of the framed obstruction links. The few examples we know
of have the framed obstruction link of Type 2 or 3 strongly trivial. In
[PK11a] and [PK11b] Kapitza attempts to come up with a minimal handle
presentation for a 4-manifold bounded by the double of one of the Boileau–
Zieschang manifolds. Kapitza constructs an algebraically minimal normal
handle presentation for M∗(1)× [−1, 1]. This presentation has 95 1-handles
and 95 2-handles. Kapitza gets a framed obstruction link L of Type 1 and a
corresponding reduced surgery link T . Before extension, the obstruction link
has 56 components involving cancellation with an average word cancellation
length of 4. He shows that his L is strongly trivial thus reducing the existence
of a minimal handle presentation for some suitable 4-manifold bounded by
the double of the Boileau–Zieschang manifold to showing an equivalence
T ≈ T ∪ L.

11. Main results

Proof of Theorem 2. The strong triviality of L implies that R∪ L ≈ R.
Just push L into Int(J+ ∪ J−) and do the trivialization of L there holding
R fixed. By construction, R∪ L ≈ T ∪ L. The triviality of the obstruction
pair implies thus that R ≈ T , and so by Proposition 2, R and T result in
the same 3-manifold up to connected sum with copies of S2 × S1.
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The framed link surgery R converts Σ to the double 2M∗(1). This is a
rational homology sphere, and the product

N = J × [−1, 1] + 2-handles

associated with the attaching spheres in R, the manifold N is a rational
homology ball. It follows now that the 4-manifold N ′ associated with the
2-handle attachment along T is also a rational homology ball, and so again
by duality, the result of the framed surgery T is a rational homology sphere
M ′. Thus neither 2M∗(1) nor M ′ has a connected summand that is S2×S1.
By Proposition 2 we have M ′ = 2M∗(1). Let H denote the algebraically
minimal handle presentation for N . The associated handle presentation
H′ for N ′ has 1 0-handle and n 1-handles and n 2-handles where n is the
genus of the cube with handles associated with T . All but en(M∗(1)) of
the 2-handles cancel 1-handles. When that cancelling is done, we have a
2-handle presentation H′′ for N ′ with 1 0-handle, and en(M∗(1)) 1-handles
and the same number of 2-handles. By construction, the attaching curves
Ti are homotopic to the attaching curves Ri; so the 2-complexes naturally
associated with HR and H′ 3-deform to each other. It now follows that
the handle presentation H′′ satisfies the conditions for a minimal handle
presentation for N ′. We have already observed that Bd(N ′) = 2M∗(1). �

Proof of Theorem 3. Given the hypotheses for this theorem, we know
from the discussion in §2 that there exist minimal handle presentations if
and only if M is the 3–sphere. Suppose that M is the 3-sphere and that
k = 1. We know that R surgery produces the 3-sphere. An application
of Proposition 3 shows that T is equivalent to a framed link T ∪ R′ where
R ⊂ R′, and the components of R′\R are homotopically trivial in Σ. Do
the surgery corresponding to R. This converts Σ to the 3-sphere, and it
converts the relative surgery T ∪ (R′\R) to a surgery turning the 3-sphere
back into itself. It is easy to check that this relative framed link in the 3-
sphere has as associated symmetric bilinear linking form, a unimodular form
of even type and signature 0. This follows from the fact that the linking
form restricted to half a basis, (R′\R), is trivial. By Remark 3 on page 52
of [RK78], or after drawing the diagrams in [TW64a]and [TW64b], it follows
that the relative framed link is equivalent to the empty link. That implies,
back in Σ, that the two framed links R and T are equivalent. But then we
have the following chain of equivalences relating R and T :

T ≈ R ≈ R ∪ L ≈ T ∪ L
establishing the equivalence T ∪ L ≈ T .

Finally, if the homotopy 3-sphere M is not a 3-sphere, then, by Proposi-
tion 2, R and T cannot be equivalent, and neither can T ∪ L and T . �

Here is a good place to discuss the effect of the Poincaré Conjecture on
the main results, Theorems 2 and 3. First, the homotopy 3-sphere M is
always a 3-sphere. This implies that T ∪ L ≈ T always holds. Thus by
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Theorem 3, there are always minimal handle presentations and R and T
are equivalent. Given our goal of reducing the Poincaré Conjecture to the
Andrews–Curtis Conjecture, we are trying to show that when en(M) = 0,
we have T ∪L ≈ T . We are trying to prove something that at least we know
is true. Turning that knowledge into a proof of the equivalence leaves us

with the task of establishing L
s
≈ ∅ for some suitable algebraicially minimal

handle presentation.

12. Other schemes for turning algebraic into geometric
handle cancellation

The form of linking used in [RC89] can sometimes be used to turn al-
gebraic into geometric handle cancellation via a change of basis in circum-
stances where free reduction obstructions are present. Consider an ordinary
handle presentation with a complete system of meridian disks {E`} for J .
Let there be given an irreducible factoring of the cancellation segments {Ai}
in R, a disjoint union of simple closed curves in Bd(J). The factoring yields
a pairing of the points of Ai∩E`. In fact, the pairs of points are the bound-
aries of the irreducible cancellation segments in the factoring. List the pairs
P1, . . . , Pq. Form a symmetric q × q–matrix C over Z/2Z where cij is given
by 0 if any of the following conditions is met and 1 otherwise:

(1) i = j.
(2) Pi and Pj belong to different meridian disks E`.
(3) Pi and Pj belong to the same meridian disk E`, but Pi and Pj do

not link in Bd(E`).

A result of Zieschang’s on geometrically realizing Whitehead length mini-
mizing automorphisms of free groups [HZ65] and [TK82] says that a change
of geometric basis will allow the chosen attaching curves to read free genera-
tors. The result below shows that in some cases, one can make this geometric
change of basis algebraically the identity.

Theorem 5. Suppose that an ordinary handle presentation H for N =
M∗ × [−1, 1] is given along with an irreducible factoring of the cancellation
segments Aij contained in R(0) ⊂ R, and suppose that the associated bilinear
form above, C, has rank q.

Then there is a change of geometric basis corresponding to new meridian
disks {E′`} with respect to which each of the curves Ri ⊂ R(0) reads the
reduced version of what it read before.

Proof. This is essentially the Kaneto version [TK82] of Zieschang’s theorem
[HZ65] mentioned above. It is convenient to switch from meridian disks E`
to meridians e`, that is, from disks E` to boundaries e`. It is also convenient
to regard each ei as a disjoint union of curves in Bd(J) where the number
of curves in each ei starts out at 1 but grows or shrinks according to the
construction below.
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Figure 4. Breaking a meridian in two

Let A be an innermost segment in the factoring. This means that no
interior points of the segment lie on any meridian e`. Let the segment begin
and end on e`. Thicken the segment slightly in Bd(J) on one side of e` to
get a disk E intersecting e` in two arcs on Bd(E). See Figure 4. Replace the
arc intersection of e` with E by the remaining part of the boundary of E.
This gives a pair of new meridians. Follow Kaneto in continuing to call the
union of both pieces e` even though e` is disconnected by this action. Repeat
this step now for a new shortest segment. The replacement operation may
disconnect a component of e` or it may connect two components. Eventually
we arrive at a final revision of the curves e′` so that all the pairs of points
of intersection Pi have been removed. Each curve labeled e′` is a union of
components that are contractible in J .

Kaneto observes that it is possible to choose components of the curves e′`
so that a complete meridian system is obtained. In the circumstances here,
it is not necessary to pick components. We claim that for each e`, the union
of 1-spheres e′` has in fact a single component. To prove this, it is most
convenient for us to abstract away the 3-manifold information.

We begin with a disjoint collection of 1-spheres e` and a collection of 0-
spheres {Pi} on the 1-spheres. For each 0-sphere Pi we have a very narrow
band joining small neighborhoods of the two points so that band intersects
the 1-spheres in the union of two small arcs in its boundary. In the order
described above, the interiors of the bands never intersect the current stage
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of the meridians; however we are going to reorder the band moves. Reorder-
ing will introduce temporary intersections that we would prefer to ignore.
For this reason we regard the bands as abstract. Each band is attached so
that the union of the band and a disk bounded by the meridian is a planar
surface. For each band, the two arcs on the meridian are traded for the two
remaining arc pieces of the boundary of the band. The claim is that after
all the band operations are done, each simple closed curve e` is transformed
into a simple closed curve. To show this, we will show that the changes in
the meridians {e`} can be rearranged in steps {e`(k)} → {e`(k + 1)} with
{e`(0)} = {e`} with corresponding steps for the matrix A(k)→ A(k + 1) so
that each step involves a pair of bands attached to the same simple closed
curve e`(k) and the bands are attached to thickening of linked 0-spheres
Pi(k) and Pj(k) in e`(k). Observe that this does not disconnect a merid-
ian. Since each step does not disconnect the meridian being revised, we see
that the end result will indeed be a complete collection of meridians e`(q)
as desired.

The matrix A representing the linking form is congruent to a direct sum
of matrices of the forms ( 0 1

1 0 ) and ( 1 ). But A represents a bilinear form of
even type; so there can be no matrices of the second form in the direct sum.
Thus the dimension of A is even.

By reindexing the 0-spheres Pi, arrange things so that the upper left
hand corner of the matrix A is 0 1

1 0 . By subtracting the first two rows and
first two columns from suitable rows and columns, we arrive at a congruent
matrix with no additional 1’s in the first two rows or columns other than
the entries in the upper left hand block. The resulting matrix is the direct
sum of ( 0 1

1 0 ) and a matrix A(1) of dimension two smaller than before. The
corresponding pair of band operations does not disconnect the meridian e`
that was modified. But the matrix A(1) is the linking matrix for the 0-
spheres P3, P4, . . . Pq in the curves e`(1) that result from the first paired
band operation. The new matrix has rank and dimension q − 2. After
q/2 iterations of this process we end up with the desired connected curves
e`(q/2) = e′`(q). �

13. Questions and conjectures

The main results of this paper say that provided that certain surgery
conditions are met, algebraic handle cancellation associated with certain
4-manifolds can be turned into geometric handle cancellation for handle
presentations of different 4-manifolds that have the same boundary. We
examine now Theorem 4 to see if that result can be explained by the framed
link obstruction approach here.

Conjecture 1. Let H be a normal handle presentation for a 4-manifold N =
M∗× [−1, 1] and suppose that for some basis for π1(N(1)), the presentation
H allows the algebraic cancelling of k 1-handles. Here N(1) = J × [−1, 1].
Let the basis for π1(N(1)) correspond geometrically to a complete set of
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meridian disks in J , and suppose that L in the obstruction link L is trivial
in the sense of §5. Then both obstructions, L and (T ∪ L, T ) vanish.

Partial proof. To show that L is trivial, it is sufficient to show that the
natural framing on the components of L is the 0-framing. This is Proposi-
tion 6. To show that (T ∪L, T ) is trivial, given the disjoint 2-cells property
of the curves in the obstruction link, it would be sufficient to show that the
disks bounded by the components of L can be arranged so that they do not
intersect T .

Conjecture 2. If L is a framed obstruction link of Type 2 or Type 3 then
L is strongly trivial.

Conjecture 3. For any normal handle presentation for M∗ × [−1, 1], we
have the equivalence T ∪L ≈ T provided that L is a framed obstruction link
of Type 1, or Type 2, or Type 3 and is strongly trivial.

What evidence we have points to the truth of the first conjecture. Al-
though the second conjecture seems forbidding, we feel that somehow the
two conjectures are related. A relation is suggested by the fact that Σ can
be thought of in two ways:

(1) the boundary of the 4-manifold that results from adding 1-handles
to the 4-ball;

(2) the result of doing 0-framed surgery on an unlink in the 3-sphere.

The second way of looking at things also corresponds to one of the stabi-
lization moves in the surgery calculus we use here.

The correct definition of L. The choice of the framed obstruction link L
involves a compromise. The link needs to be simple enough that it is trivial
and yet complex enough that it affords free reduction of attaching words by
sliding. The link has to link the attaching spheres in a simple enough way
that the equivalence T ∪ L ≈ T can be shown. We remark that it is easy
to use Proposition 3 to define a framed link L ≈ ∅ that permits the desired
free reduction. But then showing T ∪ L ≈ T becomes the problem. In the
end, there is only one real test for the correctness of the definition of the
framed obstruction link: Can Conjecture 2 be proved, and, when minimal
handle presentations exist, can their existence be established by the main
construction here?

Other surgery theories. To what extent is our choice of surgery calculus
critical to the results here? Is it possible to get some of these results using
a theory with the Kirby move, say with the zero framed unknot operation
discarded? Some caution seems in order here. It seems probable that when
manifolds are produced using even surgeries, one copy, at least, of the odd
framed surgery on the unknot must remain behind in the sense that stably,
that surgery can be recovered from the presentation. Our choice of moves
is made in part because we have not seen any examples to indicate that any
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more moves are needed. Also it seems a shame to give up the even framing
on L by exposure to Kirby moves since the evenness is free.

Graph manifolds. In the Introduction it was pointed out that the source
of the significant examples was Seifert fibered manifolds or more generally
graph manifolds. It would seem to be worthwhile to try to produce the
surgeries R and L using the graph manifold structure.

References

[AC65] Andrews, J.J.; Curtis, M.L. Free groups and handlebodies. Proc. Amer.
Math. Soc. 16 (1965), 192–195. MR0173241 (30#3454) Zbl 0131.38301

[AC66] Andrews, J.J.; Curtis, M.L. Extended Nielsen operations in free groups.
Amer. Math. Month, 73 (1966), 21–28. MR0195928 (33#4124) Zbl 0135.04403.

[BZ84] Boileau, M.; Zieschang, H. Heegaard genus of closed orientable Seifert 3-
manifolds. Invent. Math. 76 (1984), 455–468. MR0746538 (86a:57008), Zbl
0538.57004.

[RB93] Brown, Richard A. Generalized group presentations and formal deformations
of CW-complexes. Trans. Amer. Math. Soc. 334 (1992), 519–549. MR1153010.

[CZ06] Cao, Huai-Dong; Zhu, Xi-Ping. A complete proof of the Poincaré and ge-
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Diagramme mit Singularitäten. Staatsexamensarbeit. University of Frankfurt,
Frankfurt am Main, 1984.

[RC75] Craggs, R. On finite presentations for groups. Proc. Amer. Math. Soc. 78
(1980), 170–174. MR0550487 (80m:20034), Zbl 0436.20021.

[RC79a] Craggs, R. Free Heegaard diagrams and extended Nielsen transformations. I.
Mich. Math. J. 26 (1979), 161–186. MR0532318 (81g:20052a), Zbl 0441.57011.

[RC79b] Craggs, R. Free Heegaard diagrams and extended Nielsen transformations. II.
Ill. J. Math. 26 (1979), 101–127. MR0516574 (81g:20052b), Zbl 0404.57009.

[RC89] Craggs, R. Freely reducing group readings for 2-complexes in 4-manifolds.
Topology 28 (1989), 247–271. MR1003586 (90k:57018), Zbl 0695.57002.

[RC93] Craggs, R. Links in 3-manifolds as obstructions in free reduction problems.
Top. and App. 49 (1993), 15–53. MR1202875 (93k:57002), Zbl 0782.57003.

[RCip] Craggs, R. Extended Nielsen operations and deformations of 2-complexes in
4-manifolds. In preparation.

[FR79] Fenn, Roger; Rourke, Colin. On Kirby’s calculus of links. Topology 18
(1979), 1–15. MR0528232 (80c:57005), Zbl 0413.57006.

[DG87] Gabai, David. Foliations and the topology of 3-manifolds. III. J. Diff. Geom.
26 (1989), 479–536. MR0910018 (89a:57014b), Zbl 0639.57008.

[GS99] Gompf, Robert E.; Stipsicz, András I. 4-Manifolds and Kirby Calculus.
Graduate Studies in Mathematics, 20. American Mathematical Society, Provi-
dence, 1999. MR1707327 (2000h:7038) Zbl 0933.57020.

[GL89] Gordon, C. McA. Luecke, J. Knots are determined by their complements. J.
Amer. Math. Soc. 2 (1989), 371–415. MR0965210 (90a:57006a), Zbl 0678.57005.

http://www.ams.org/mathscinet-getitem?mr=0173241
http://www.emis.de/cgi-bin/MATH-item?0131.38301
http://www.ams.org/mathscinet-getitem?mr=0195928
http://www.emis.de/cgi-bin/MATH-item?0135.04403
http://www.ams.org/mathscinet-getitem?mr=0746538
http://www.emis.de/cgi-bin/MATH-item?0538.57004
http://www.emis.de/cgi-bin/MATH-item?0538.57004
http://www.ams.org/mathscinet-getitem?mr=1153010
http://www.ams.org/mathscinet-getitem?mr=2233789
http://www.emis.de/cgi-bin/MATH-item?1200.53057
http://www.emis.de/cgi-bin/MATH-item?1200.53057
http://www.ams.org/mathscinet-getitem?mr=2282358
http://www.emis.de/cgi-bin/MATH-item?1200.53058
http://www.ams.org/mathscinet-getitem?mr=0550487
http://www.emis.de/cgi-bin/MATH-item?0436.20021
http://www.ams.org/mathscinet-getitem?mr=0532318
http://www.emis.de/cgi-bin/MATH-item?0441.57011
http://www.ams.org/mathscinet-getitem?mr=0516574
http://www.emis.de/cgi-bin/MATH-item?0404.57009
http://www.ams.org/mathscinet-getitem?mr=1003586
http://www.emis.de/cgi-bin/MATH-item?0695.57002
http://www.ams.org/mathscinet-getitem?mr=1202875
http://www.emis.de/cgi-bin/MATH-item?0782.57003
http://www.ams.org/mathscinet-getitem?mr=0528232
http://www.emis.de/cgi-bin/MATH-item?0413.57006
http://www.ams.org/mathscinet-getitem?mr=0910018
http://www.emis.de/cgi-bin/MATH-item?0639.57008
http://www.ams.org/mathscinet-getitem?mr=1707327
http://www.emis.de/cgi-bin/MATH-item?0933.57020
http://www.ams.org/mathscinet-getitem?mr=0965210
http://www.emis.de/cgi-bin/MATH-item?0678.57005


52 R. CRAGGS

[WH68] Haken, Wolfgang. Some results on surfaces in 3-manifolds. Studies in Mod-
ern Topology, 39–98. Math. Assoc. Amer., 1968. MR0224071 (36#7118), Zbl
0194.249002.

[HM93] Hog-Angeloni, Cynthia; Metzler, Wolfgang. Geometric aspects of two-
dimensional complexes. Two-dimensional Homotopy and Combinatorial Group
Theory, 1–50, London Math. Soc. Lecture Note Ser., 197. Cambridge Univ.
Press, Cambridge, 1993. MR1279175, Zbl 0811.57001.

[TK82] Kaneto, Takeshi. On simple loops in a solid torus of general genus. Proc.
Amer. Math. Soc. 86 (1982), 550–552. MR0671234 (84b:57005), Zbl 0511.57006.

[PK01] Kapitza, Paul John. On small geometric invariants of 3-manifolds. Ph. D.
Thesis. University of Illinois at Urbana-Champaign, 2001. MR2702804

[PK11a] Kapitza, Paul John. On small geometric invariants of 3-manifolds. New York
J. Math. 17 (2011), 383–435. Zbl 1223.57006.

[PK11b] Kapitza, Paul John. A reduction of surgery obstructions and minimal handle
presentations. Manuscript available.

[SK79] Kaplan, Steve J. Constructing framed 4-manifolds with given almost-
framed boundaries. Trans. Amer. Math. Soc. 254 (1979), 237–263. MR0539917
(87h;57015), Zbl 0426.57009.

[RK78] Kirby, Robion. A calculus for framed links in S3. Invent. Math. 45 (1978),
35–56. MR0467753 (57#7605), Zbl 0377.55001.

[RK97] Kirby, Robion, ed. Problems in low-dimensional topology. AMS/IP Stud.
Adv. Math., 2.2. Geometric topology (Athens, GA, 1993), 35–473. Amer. Math.
Soc., Providence, RI, 1997. MR1470751, Zbl 0888.57014.

[KL06] Kleiner, Bruce; Lott, John. Notes on Perelman’s papers. arXiv:0605667.
MR2460872 (2010h:53098), Zbl 1204.53033.

[RM80] Mandelbaum, Richard. Four-dimensional topology: an introduction. Bull.
Amer. Math. Soc. 2 (1980), 1–159. MR0551752 (81j:57001), Zbl 0645.57001.
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Mathematics Monographs, 3. American Mathematical Society, Providence, RI;
Clay Mathematics Institute, Cambridge, MA, 2007. xlii+521 pp. ISBN: 978-0-
8218-4328-4. MR2334563 (2008d:57020), Zbl 1179.57045.

[MS98] Moriah, Yoav; Schultens, Jennifer. Irreducible Heegaard splittings of Sei-
fert spaces are either vertical or horizontal. Topology 37 (1998), 1089–1112.
MR1650355 (99g:57021), Zbl 0926.57016.

[CP57] Papakyriakopoulos C. D. Dehn’s lemma and the asphericity of knots. Ann.
of Math. (2) 66 (1957), 1–26. MR0090053 (19761a), Zbl 0078.16402.

[GP02] Perelman, Grisha. The entropy formula for the Ricci flow and its geometric
applications. arXiv:math/0211159.

[GP03a] Perelman, Grisha. Ricci Flow with surgery on three-manifolds.
arXiv:math/0303109.

[GP03b] Perelman, Grisha. Finite extinction time for the solutions to the Ricci flow
on certain three-manifolds. arXiv:math/0307245.

[RS82] Rourke, Colin Patrick; Sanderson, Brian Joseph. Introduction to piece-
wise-linear topology. Reprint. Springer Study Edition. Springer-Verlag, Berlin-
New York, 1982. viii+123 pp. ISBN: 3-540-11102-6. MR0665919 (83g:57009),
Zbl 0477.57003.

http://www.ams.org/mathscinet-getitem?mr=0224071
http://www.emis.de/cgi-bin/MATH-item?0194.249002
http://www.emis.de/cgi-bin/MATH-item?0194.249002
http://www.ams.org/mathscinet-getitem?mr=1279175
http://www.emis.de/cgi-bin/MATH-item?0811.57001
http://www.ams.org/mathscinet-getitem?mr=0671234
http://www.emis.de/cgi-bin/MATH-item?0511.57006
http://www.ams.org/mathscinet-getitem?mr=2702804
http://nyjm.albany.edu/j/2011/17-18.html
http://www.emis.de/cgi-bin/MATH-item?1223.57006
http://www.ams.org/mathscinet-getitem?mr=0539917
http://www.emis.de/cgi-bin/MATH-item?0426.57009
http://www.ams.org/mathscinet-getitem?mr=0467753
http://www.emis.de/cgi-bin/MATH-item?0377.55001
http://www.ams.org/mathscinet-getitem?mr=1470751
http://www.emis.de/cgi-bin/MATH-item?0888.57014
http://arXiv.org/abs/0605667
http://www.ams.org/mathscinet-getitem?mr=2460872
http://www.emis.de/cgi-bin/MATH-item?1204.53033
http://www.ams.org/mathscinet-getitem?mr=0551752
http://www.emis.de/cgi-bin/MATH-item?0645.57001
http://www.ams.org/mathscinet-getitem?mr=0903868
http://www.emis.de/cgi-bin/MATH-item?0619.57003
http://www.ams.org/mathscinet-getitem?mr=2334563
http://www.emis.de/cgi-bin/MATH-item?1179.57045
http://www.ams.org/mathscinet-getitem?mr=1650355
http://www.emis.de/cgi-bin/MATH-item?0926.57016
http://www.ams.org/mathscinet-getitem?mr=0090053
http://www.emis.de/cgi-bin/MATH-item?0078.16402
http://arXiv.org/abs/math/0211159
http://arXiv.org/abs/math/0303109
http://arXiv.org/abs/math/0307245
http://www.ams.org/mathscinet-getitem?mr=0665919
http://www.emis.de/cgi-bin/MATH-item?0477.57003


MINIMAL HANDLE PRESENTATIONS 53

[SW07] Schultens, Jennifer; Weidman, Richard. On the geometric and algebraic
rank of graph manifolds. Pacific J. Math. 231 (2007), 481–510. MR2346507
(2009a:57030), Zbl 1171.57020.

[JS60] Stallings, John R. On the loop theorem. Ann. of Math. (2) 66 (1960), 12–19.
MR0121796 (22#12526), Zbl 0094.36103.

[JS68] Stallings, John R. Lectures on polyhedral topology Notes by G. Ananda
Swarup. Tata Institute of Fundamental Research Lectures on Mathematics, 43.
Tata Institute of Fundamental Research, Bombay, 1967. iv+260 pp. MR0238329
(38#6605), Zbl 0182.26023.

[SW58] Shapiro, Arnold; Whitehead, J. H. C. A proof and extension of Dehn’s
lemma. Bull. Amer. Math. Soc. (1958), 174–178. MR0103474 (21#2242), Zbl
0084.19104.

[TW64a] Wall, C.T.C. Diffeomorphism of 4-manifolds. J. Lond. Math. Soc. 39 (1964),
131–140. MR0163323 (29#626), Zbl 0121.18101.

[TW64b] Wall, C.T.C. On simply connected 4-manifolds. J. Lond. Math. Soc. 39 (1964),
141–149. MR0163324 (29#627), Zbl 0131.20701.

[RW03] Weidmann Richard. Some 3-manifolds with 2-generated fundamental group.
Arch. Math. 81 (2003), 589–595. MR2029721 (2004j57033), Zbl 1041.57008.

[PW75] Wright, Perrin. Group presentations and formal deformations. Trans. Amer.
Math. Soc. 208 (1975), 161–169. MR0380813 (52 #1710), Zbl 0318.57010.

[SY76] Young, S. F. Contractible 2-complexes. Masters Thesis. Christ’s College, Uni-
versity of Cambridge, 1976.

[HZ65] Zieschang, H. Simple path systems on complete pretzels (Russian). Math.
Sborn. (NS) 66 (108) (1965), 230–239. MR0193633 (33#1849).

Department of Mathematics, University of Illinois at Urbana–Champaign,
1409 W. Green, Urbana, IL 61801
craggs@math.uiuc.edu

This paper is available via http://nyjm.albany.edu/j/2012/18-2.html.

http://www.ams.org/mathscinet-getitem?mr=2346507
http://www.emis.de/cgi-bin/MATH-item?1171.57020
http://www.ams.org/mathscinet-getitem?mr=0121796
http://www.emis.de/cgi-bin/MATH-item?0094.36103
http://www.ams.org/mathscinet-getitem?mr=0238329
http://www.emis.de/cgi-bin/MATH-item?0182.26023
http://www.ams.org/mathscinet-getitem?mr=0103474
http://www.emis.de/cgi-bin/MATH-item?0084.19104
http://www.emis.de/cgi-bin/MATH-item?0084.19104
http://www.ams.org/mathscinet-getitem?mr=0163323
http://www.emis.de/cgi-bin/MATH-item?0121.18101
http://www.ams.org/mathscinet-getitem?mr=0163324
http://www.emis.de/cgi-bin/MATH-item?0131.20701
http://www.ams.org/mathscinet-getitem?mr=2029721
http://www.emis.de/cgi-bin/MATH-item?1041.57008
http://www.ams.org/mathscinet-getitem?mr=0380813
http://www.emis.de/cgi-bin/MATH-item?0318.57010
http://www.ams.org/mathscinet-getitem?mr=0193633
http://nyjm.albany.edu/j/2012/18-2.html

	1. Introduction
	2. Definitions, examples, and implications
	3. Statement of some of the main results, further implications
	4. Cancellation segments; factorings
	5. A review of previous link obstructions
	6. Framed links and surgery
	7. Operations on framed links
	8. Invariants for framed links
	9. Evenness of framing
	10. Three framed obstruction links, reduced attaching curves
	11. Main results
	12. Other schemes for turning algebraic into geometric handle cancellation
	13. Questions and conjectures
	References

