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Test elements in torsion-free hyperbolic
groups

Daniel Groves

Abstract. We prove that in a torsion-free hyperbolic group, an ele-
ment is a test element if and only if it is not contained in a proper
retract.

Contents

1. Proof of Theorem 6 652

References 655

Definition 1 ([13, Definition 1], [7, Definition 1]). Let G be a group. An
element g ∈ G is a test element if any endomorphism φ : G → G for which
φ(g) = g is an automorphism of G.

This concept was studied by Shpilrain [12], before being made explicit in
[13, 7]. A method for constructing test elements in fee groups was given
by Dold in [2]. Also, Nielsen [6] proved that [a, b] is a test element in
F2 = 〈a, b | 〉. Other test elements were found by Zieschang [14] and also
by Shpilrain [12].

Examples 2. Suppose Fr is a free group of rank r, with basis {a1, . . . , ar}.
For k ≥ 2, the element ak1 · · · akr is a test element. If r is even, the element
[a1, a2] · · · [ar−1, ar] is a test element. See [14, 2, 12, 13].

Definition 3. Suppose that G is a group and H a subgroup, with the
inclusion map ι : H → G. A retract is a homomorphism r : G→ H so that
r ◦ ι = IdH . A (proper) retract of G is a (proper) subgroup H for which
there admits a retract r : G→ H.

Clearly, if g ∈ G is contained in a proper retract of G, then g cannot be
a test element.

Definition 4 ([7, Definition 2]). A hyperbolic group G is stably hyperbolic
if for every endomorphism φ : G → G, there are arbitrarily large values of
n so that φn(G) is hyperbolic.
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O’Neill and Turner [7] proved the following result.

Theorem 5 ([7, Theorem 1]). Suppose that G is a torsion-free and stably
hyperbolic group. Then g ∈ G is a test element if and only if g is not
contained in a proper retract of G.

We do not know if every torsion-free hyperbolic group is stably hyperbolic,
as conjectured by O’Neill and Turner. However, we prove that the above
retract theorem holds for all torsion-free hyperbolic groups.

Theorem 6. Suppose that G is a torsion-free hyperbolic group. An element
g ∈ G is a test element if and only if g is not contained in a proper retract
of G.

The proof of this theorem uses Sela’s Shortening Argument, and the the-
ory of JSJ decompositions of groups. We attempt to give references, though
everything we do is standard in this area, and we assume the reader is fa-
miliar with these techniques. For an introduction to the general theory of
JSJ decompositions, see [4, 5].

Acknowledgements. I would like to thank Michael Siler, for introducing
test elements to me, and for helpful discussions, and the referee for numerous
useful comments and suggestions.

1. Proof of Theorem 6

Throughout, G is a torsion-free hyperbolic group, φ : G→ G is an endo-
morphism and g ∈ G satisfies φ(g) = g. First note that according to the
main result of [9], if φ is surjective then it is an automorphism. Also, we
have the following result.

Theorem 7 (Sela). There exists an N ∈ N so that for all n ≥ N we have

ker(φn) = ker(φN ).

Remark 8. Theorem 7 is claimed in [9] (it does not require φ to fix any
element of G), though a proof does not appear there. However, if G is
a torsion-free hyperbolic group, then G and its endomorphic images are
all G-limit groups, in the sense of [11, Definition 1.11]. Thus, Theorem 7
is an immediate consequence of [11, Theorem 1.12], the descending chain
condition for G-limit groups.

The sequence of kernels ker(φi) is an ascending chain of subgroups of G.
Theorem 7 says that this sequence stabilizes. In particular

φi
∣∣∣φN (G)

is injective for all i ≥ 1.
Consider the group H = φN (G), as an abstract finitely generated group.

Clearly, if we choose a different value of N , still satisfying the conclusion of
Theorem 7, the group H is unchanged (as an abstract group).

Let π : H → φN (G) be an isomorphism, and let gπ = π−1(g).
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Observation 9. Since roots are unique in torsion-free hyperbolic groups, if
CG(g) = 〈γ〉, then φ(γ) = γ, and γ ∈ φi(G) for any i. Therefore, we suppose
henceforth that g generates its own centralizer (so that it is not a proper
power in G). Thus we may assume that gπ is not a proper power in H.

Definition 10. Let Γ be a group and Λ a subgroup of Γ. We say that Γ is
freely indecomposable rel Λ if there is no proper free product decomposition
Γ = Γ1 ∗ Γ2 where Λ ≤ Γ1.

The relative version of Grushko’s Theorem is the result below. The proof
is the same as the usual version of Grushko’s Theorem, except that only free
splittings where Λ is contained in one factor are considered. See [4, §4.2] for
a discussion about why JSJ decompositions (including the Grushko decom-
position) can be performed in the relative case. The following statement
can also be found in [1].

Theorem 11. Let Γ be a finitely generated group and Λ a subgroup of Γ.
There is a free product decomposition

Γ = ΓΛ ∗ Γ1 ∗ · · · ∗ Γk ∗ F

where:

(1) Λ ≤ ΓΛ.
(2) ΓΛ is freely indecomposable rel Λ.
(3) The Γi are freely indecomposable and not free.
(4) F is a finitely generated free group.

The subgroup ΓΛ is unique. Up to reordering and conjugation, the Γi are
unique. The rank of F is determined by Γ,Λ. This splitting is called the
Grushko decomposition of Γ rel Λ.

Consider the Grushko decomposition of H rel C, where C = 〈gπ〉. The
subgroup HC is freely indecomposable rel C and is a retract of H.

Whenever Γ is a finitely generated group and Λ is a subgroup, so that Γ is
freely indecomposable rel Λ, there is a relative cyclic JSJ decomposition of Γ
rel Λ. This has the form of a graph of groups with cyclic edge groups. There
is a distinguished vertex group VΛ, which contains Λ. Other vertices are
either cyclic, QH-subgroups, which are isomorphic to the fundamental group
of a 2-orbifold with boundary so that the adjacent edge groups correspond
to boundary components or are rigid (which just means they are not of the
first two types).

That the cyclic JSJ decomposition of HC rel C exists follows as in the
paragraph at the end of [11, §1].1 For an alternative explanation, note that
since HC is a subgroup of a torsion-free hyperbolic group, it is torsion-free
and CSA. Therefore, the existence of the required splitting follows from [4,
Theorem 11.1].

1This argument in turn follows that in [10, §9].
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Let T (HC , C) be the canonical cyclic JSJ decomposition of HC rel C. Let
VC be the distinguished vertex containing C.

The modular group of HC rel C, denoted Mod(HC , C) may be defined to
be the group of automorphisms of HC generated by:

(i) inner automorphisms of HC fixing gπ (these are conjugation by pow-
ers of gπ);

(ii) Dehn twists in edge groups of T (HC , C); and
(iii) Dehn twists in essential simple closed curves in surfaces correspond-

ing to QH subgroups of T (HC , C).

By convention, we choose Dehn twists which fix VC element-wise.
Suppose that X(HC , C) = {η : HC → G | η injective, η(gπ) = g}.
There is a natural action by precomposition of Mod(HC , C) on X(HC , C).

The Shortening Argument implies the following:

Theorem 12. The set X(HC , C)/Mod(HC , C) is finite.

Theorem 12 follows from the construction of the restricted Makanin–
Razborov diagram for HC as in [11, §1] (see also [10, §8] for more details
in the similar situation of a free group). This diagram encodes all of the
homomorphisms from HC to G, where we force certain elements to have
given image. There are proper quotients of HC in this diagram, but we are
only considering injective homomorphisms, so we are only concerned about
the end of the diagram, which consists of finitely generated subgroups of G
along with injective homomorphisms into G. Theorem 12 is just a restate-
ment about this last part of the restricted Makanin–Razborov diagram.

Note that normally one might expect to have to shorten by inner auto-
morphisms of G, but in this case we are fixing the image of gπ, so we can
only conjugate by elements centralizing g, and this can be achieved by inner
automorphisms of HC . The limiting R-tree in this construction is described
in detail in the proof of Proposition 3.6 in [3].

The Main Theorem is a fairly easy consequence of Theorem 12, as follows.
Suppose that ψ0 = φN , so that ψ0(G) ∼= H, and recall that π : H →

ψ0(G) is an isomorphism. Note that ψ0|ψ0(G) is injective. Let η : H → HC

be the canonical retraction and ι : HC → H be the inclusion, so that η ◦ ι =
IdHC

. Let K = π−1(HC).
We have a homomorphism κ : G→ K defined by

κ = π−1 ◦ ι ◦ η ◦ π ◦ ψ0.

We note that κ(g) = π−1(ι(η(π(g))) = g, and that κ|K is injective, since
ι ◦ η|HC

is injective and π is an isomorphism.
For a positive integer s, define a homomorphism ξs : HC → G by

ξs = κs ◦ π.

The above observations show that we have ξs ∈ X(HC , C) for any s ≥ 1.
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By Theorem 12 there are positive integers k, j with k > j and α ∈
Mod(HC , C) so that

ξk = ξj ◦ α.

Let β = π ◦ α ◦ π−1 be the automorphism of K induced by α. When all
homomorphisms in the next equation are restricted to have K as domain,
we have

κk = ξk ◦ π−1 = ξj ◦ α ◦ π−1 = κj ◦ π ◦ α ◦ π−1 = κj ◦ β.

Now, κ is injective on K, so we have κk−j |K = β, so κk−j(K) = K, and
β−1 ◦ κk−j is the identity map on K.

Therefore, β−1 ◦ κk−j : G → K is a retraction and g ∈ K. If φ is not an
automorphism then we know that it is not surjective. Since K ≤ φN (G), in
this case we clearly have K 6= G, so it is a proper retract. This completes
the proof of Theorem 6.
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