New York Journal of Mathematics

New York J. Math. 18 (2012) 657-665.

On dual-valued operators on Banach algebras

María J. Aleandro and Carlos C. Peña

Abstract

Let \mathcal{U} be a regular Banach algebra and let $D: \mathcal{U} \rightarrow \mathcal{U}^{*}$ be a bounded linear operator, where \mathcal{U}^{*} is the topological dual space of \mathcal{U}. We seek conditions under which the transpose of D becomes a bounded derivation on $\mathcal{U}^{* *}$. We focus our attention on the class $\mathcal{D}(\mathcal{U})$ of bounded derivations $D: \mathcal{U} \rightarrow \mathcal{U}^{*}$ so that $\langle a, D(a)\rangle=0$ for all $a \in \mathcal{U}$. We consider this matter in the setting of Beurling algebras on the additive group of integers. We show that \mathcal{U} is a weakly amenable Banach algebra if and only if $\mathcal{D}(\mathcal{U}) \neq\{0\}$.

Contents

1. Introduction 657
2. Transposes and bounded derivations between \mathcal{U} and \mathcal{U}^{*} 658
3. An application to Beurling algebras on the group $(\mathbb{Z},+)$ 662
References 665

1. Introduction

Throughout this article \mathcal{U} will be a Banach algebra. By \square and \diamond we will denote the first and second Arens products on $\mathcal{U}^{* *}$ (cf. [1]). The Banach algebra \mathcal{U} is said to be regular when these products coincide, in which case we will simply write $\square=\diamond=\bullet$. If \mathcal{U} is regular it is readily seen that \mathcal{U}^{*} becomes a Banach $\mathcal{U}^{* *}$-bimodule. As usual, $\mathcal{B}\left(\mathcal{U}, \mathcal{U}^{*}\right)$ will denote the space of bounded operators between \mathcal{U} and \mathcal{U}^{*} and $\mathcal{Z}^{1}\left(\mathcal{U}^{* *}, \mathcal{U}^{*}\right)$ will be the space of bounded derivations between $\mathcal{U}^{* *}$ and \mathcal{U}^{*}. As is well known, when endowed with the uniform norm $\mathcal{B}\left(\mathcal{U}, \mathcal{U}^{*}\right)$ and $\mathcal{Z}^{1}\left(\mathcal{U}^{* *}, \mathcal{U}^{*}\right)$ are Banach spaces. By $\mathcal{D}(\mathcal{U})$ we will denote the class of \mathcal{D}-derivations consisting of bounded derivations $D: \mathcal{U} \rightarrow \mathcal{U}^{*}$ such that $\langle a, D(a)\rangle=0$ if $a \in \mathcal{U}$. Clearly any inner derivation from \mathcal{U} into \mathcal{U}^{*} is a \mathcal{D}-derivation. For problems related to these special classes of derivations, their characterization and examples in the context of Banach algebras of continuous functions or projective Banach algebras, we recommend [3]. In Proposition 1 we will characterize

[^0]those operators $D \in \mathcal{B}\left(\mathcal{U}, \mathcal{U}^{*}\right)$ whose dual belongs to $\mathcal{Z}^{1}\left(\mathcal{U}^{* *}, \mathcal{U}^{*}\right)$ under the hypothesis that \mathcal{U} is a regular Banach algebra. Further, the corresponding problem if $D \in \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$ will be considered in Proposition 2. In Theorem 6 we will provide conditions under which $D \in \mathcal{D}(\mathcal{U})$ if $D^{*} \in \mathcal{Z}^{1}\left(\mathcal{U}^{* *}, \mathcal{U}^{*}\right)$. In Proposition 7 it will be shown that any $D \in \mathcal{D}(\mathcal{U})$ is (w, w) continuous. This matter and examples in the setting of Beurling algebras on \mathbb{Z} will be considered in Theorem 8. For further information and background on the subject of this paper, we recommend [11], §1.4, p. 46. In addition, important articles concerning the regularity of Banach algebras are [8], [12] and [13]. Conditions under which the second transpose of a \mathcal{U}^{*}-valued bounded derivation on \mathcal{U} becomes a bounded derivation on $\mathcal{U}^{* *}$ endowed with the first Arens product were investigated in [7] and [2].

2. Transposes and bounded derivations between \mathcal{U} and \mathcal{U}^{*}

Proposition 1. If \mathcal{U} is a regular Banach algebra and if $D \in \mathcal{B}\left(\mathcal{U}, \mathcal{U}^{*}\right)$, then the following assertions are equivalent:
(i) $D^{*} \in \mathcal{Z}^{1}\left(\mathcal{U}^{* *}, \mathcal{U}^{*}\right)$.
(ii) If $a \in \mathcal{U}$ and if $\Phi, \Psi \in \mathcal{U}^{* *}$, then

$$
\left\langle a D^{*}(\Phi), \Psi\right\rangle=\left\langle\Psi D(a)-D^{*}(\Psi) a, \Phi\right\rangle .
$$

(iii) If $a \in \mathcal{U}$ and if $\Phi, \Psi \in \mathcal{U}^{* *}$, then

$$
\left\langle D^{*}(\Psi) a, \Phi\right\rangle=\left\langle D(a) \Phi-a D^{*}(\Phi), \Psi\right\rangle
$$

Proof. (i) \Rightarrow (ii). Let $\Phi, \Psi \in \mathcal{U}^{* *}$ and $a \in \mathcal{U}$. Then

$$
\begin{aligned}
\langle\Psi D(a), \Phi\rangle & =\langle D(a), \Phi \bullet \Psi\rangle \\
& =\left\langle a, D^{*}(\Phi \bullet \Psi)\right\rangle \\
& =\left\langle a, D^{*}(\Phi) \Psi+\Phi D^{*}(\Psi)\right\rangle \\
& =\left\langle a D^{*}(\Phi), \Psi\right\rangle+\left\langle D^{*}(\Psi) a, \Phi\right\rangle .
\end{aligned}
$$

(ii) \Rightarrow (iii). Given $\Phi, \Psi \in \mathcal{U}^{* *}, a \in \mathcal{U}$, it will suffice to see that

$$
\begin{equation*}
\langle\Psi D(a), \Phi\rangle-\left\langle a D^{*}(\Phi), \Psi\right\rangle=\left\langle D(a) \Phi-a D^{*}(\Phi), \Psi\right\rangle . \tag{1}
\end{equation*}
$$

But (1) is an immediate consequence of the regularity of \mathcal{U}.
(iii) \Rightarrow (i). If $a \in \mathcal{U}$ and $\Phi, \Psi \in \mathcal{U}^{* *}$ we have

$$
\begin{aligned}
\left\langle a, D^{*}(\Phi \bullet \Psi)\right\rangle & =\langle D(a), \Phi \bullet \Psi\rangle \\
& =\langle D(a) \Phi, \Psi\rangle \\
& =\left\langle D^{*}(\Psi) a, \Phi\right\rangle+\left\langle a D^{*}(\Phi), \Psi\right\rangle \\
& =\left\langle a, \Phi D^{*}(\Psi)+D^{*}(\Phi) \Psi\right\rangle .
\end{aligned}
$$

Since a is arbitrary the claim holds.
Proposition 2. Let \mathcal{U} be a regular Banach algebra and let $k_{\mathcal{U}^{*}}: \mathcal{U}^{*} \hookrightarrow \mathcal{U}^{* * *}$ be the natural embedding of \mathcal{U}^{*} into $\mathcal{U}^{* * *}$. Given $D \in \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$, the following assertions are equivalent:
(i) $D^{*} \in \mathcal{Z}^{1}\left(\mathcal{U}^{* *}, \mathcal{U}^{*}\right)$.
(ii) If $a \in \mathcal{U}$ and if $\Phi \in \mathcal{U}^{* *}$, then $k_{\mathcal{U}^{*}}\left(a D^{*}(\Phi)\right)+a D^{* *}(\Phi)=0$.
(iii) If $a \in \mathcal{U}$ and if $\Phi \in \mathcal{U}^{* *}$, then $D^{* *}(a \Phi)+k_{\mathcal{U}^{*}}\left(D^{*}(a \Phi)\right)=0$.

Proof. (i) \Rightarrow (ii). Let $D^{*} \in \mathcal{Z}^{1}\left(\mathcal{U}^{* *}, \mathcal{U}^{*}\right), a \in \mathcal{U}$. Given $\Phi, \Psi \in \mathcal{U}^{* *}$, consider bounded nets $\left\{b_{i}\right\}_{i \in I},\left\{c_{j}\right\}_{j \in J}$ in \mathcal{U} such that $\Phi=w^{*}-\lim _{i \in I} k_{\mathcal{U}}\left(b_{i}\right)$ and $\Psi=w^{*}-\lim _{j \in J} k_{\mathcal{U}}\left(c_{j}\right)$, where $k_{\mathcal{U}}: \mathcal{U} \hookrightarrow \mathcal{U}^{* *}$ denotes the usual isometric embedding of \mathcal{U} into its second dual space $\mathcal{U}^{* *}$ by means of evaluations. Hence

$$
\left\langle D^{*}(\Psi) a, \Phi\right\rangle=\lim _{i \in I}\left\langle b_{i}, D^{*}(\Psi) a\right\rangle=\lim _{i \in I}\left\langle D\left(a b_{i}\right), \Psi\right\rangle=\lim _{i \in I} \lim _{j \in J}\left\langle c_{j}, D\left(a b_{i}\right)\right\rangle .
$$

Further,

$$
\begin{align*}
\left\langle\Psi D(a)-D^{*}(\Psi) a, \Phi\right\rangle & =\langle D(a), \Phi \bullet \Psi\rangle-\left\langle a, \Phi D^{*}(\Psi)\right\rangle \tag{2}\\
& =\lim _{i \in I} \lim _{j \in J}\left(\left\langle b_{i} c_{j}, D(a)\right\rangle-\left\langle c_{j}, D\left(a b_{i}\right)\right\rangle\right) \\
& =-\lim _{i \in I} \lim _{j \in J}\left\langle c_{j}, a D\left(b_{i}\right)\right\rangle \\
& =-\lim _{i \in I}\left\langle a D\left(b_{i}\right), \Psi\right\rangle \\
& =-\left\langle D^{*}(\Psi a), \Phi\right\rangle
\end{align*}
$$

and the conclusion follows from Proposition 1 and (2).
(ii) \Rightarrow (iii). If $a \in \mathcal{U}$ and $\Phi, \Psi \in \mathcal{U}^{* *}$ we write
(3) $\left\langle D^{*}(\Psi) a, \Phi\right\rangle=\left\langle D^{*}(\Psi a)+\Psi D(a), \Phi\right\rangle=\langle\Psi D(a), \Phi\rangle-\left\langle a D^{*}(\Phi), \Psi\right\rangle$.

Moreover, $\langle\Psi D(a), \Phi\rangle=\langle D(a) \Phi, \Psi\rangle$ because \mathcal{U} is regular. Hence, by (3) we obtain

$$
\left\langle D^{*}(\Psi) a, \Phi\right\rangle=\left\langle D(a) \Phi-a D^{*}(\Phi), \Psi\right\rangle=-\left\langle D^{*}(a \Phi), \Psi\right\rangle .
$$

(iii) \Rightarrow (i). If $a \in \mathcal{U}$ and $\Phi, \Psi \in \mathcal{U}^{* *}$ we write

$$
\begin{aligned}
\left\langle a, D^{*}(\Phi \bullet \Psi)\right\rangle & =\langle D(a) \Phi, \Psi\rangle \\
& =\left\langle a D^{*}(\Phi)-D^{*}(a \Phi), \Psi\right\rangle \\
& =\left\langle a D^{*}(\Phi), \Psi\right\rangle+\left\langle D^{*}(\Psi) a, \Phi\right\rangle \\
& =\left\langle a, D^{*}(\Phi) \Psi+\Phi D^{*}(\Psi)\right\rangle .
\end{aligned}
$$

Corollary 3. Let \mathcal{U} be a regular Banach algebra. Given $D \in \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$ such that $D^{*} \in \mathcal{Z}^{1}\left(\mathcal{U}^{* *}, \mathcal{U}^{*}\right)$, then

$$
\mathcal{U} D^{* *}\left(\mathcal{U}^{* *}\right) \cup D^{* *}\left(\mathcal{U}^{* *}\right) \mathcal{U} \hookrightarrow \mathcal{U}^{*}
$$

Theorem 4 (cf. [3, Theorem 2.1]). Let \mathcal{U} be a general Banach algebra such that \mathcal{U}^{2} is dense in \mathcal{U}, where

$$
\mathcal{U}^{2}=\operatorname{span}\{x y: x, y \in \mathcal{U}\}
$$

Then for $D \in \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$, the following assertions are equivalent:
(i) $D \in \mathcal{D}(\mathcal{U})$.
(ii) $\langle x, D(y)\rangle+\langle y, D(x)\rangle=0$ for all $x, y \in \mathcal{U}$.
(iii) $D^{*} \circ k_{\mathcal{U}} \in \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$.
(iv) $D+D^{*} \circ k_{\mathcal{U}}=0_{\mathcal{U}, \mathcal{U}^{*}}$.

Corollary 5. Let \mathcal{U} be a general Banach algebra such that \mathcal{U}^{2} is dense in \mathcal{U}. If $D \in \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$, then $D \in \mathcal{D}(\mathcal{U})$ if and only if for all $a, b, c \in \mathcal{U}$ the following identity

$$
\begin{equation*}
\langle a b, D(c)\rangle+\langle c a, D(b)\rangle+\langle b c, D(a)\rangle=0 \tag{4}
\end{equation*}
$$

holds.
Proof. (\Rightarrow) For $a, b, c \in \mathcal{U}$ and $D \in \mathcal{D}(\mathcal{U})$

$$
\begin{aligned}
\langle a b, D(c)\rangle+\langle c a, D(b)\rangle+\langle b c, D(a)\rangle & =\langle a b, D(c)\rangle+\langle c a, D(b)\rangle-\langle a, D(b c)\rangle \\
& =0 .
\end{aligned}
$$

(\Leftarrow) If $a, b \in \mathcal{U}$ let $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ be sequences in \mathcal{U} such that $b=$ $\lim _{n \rightarrow \infty}\left(b_{n} c_{n}\right)$, then

$$
\begin{aligned}
\langle a, D(b)\rangle+\langle b, D(a)\rangle & =\lim _{n \rightarrow \infty}\left\{\left\langle a, D\left(b_{n} c_{n}\right)\right\rangle+\left\langle b_{n} c_{n}, D(a)\right\rangle\right\} \\
& =\lim _{n \rightarrow \infty}\left\{\left\langle a, D\left(b_{n}\right) c_{n}+b_{n} D\left(c_{n}\right)\right\rangle+\left\langle b_{n} c_{n}, D(a)\right\rangle\right\} \\
& =\lim _{n \rightarrow \infty}\left\{\left\langle c_{n} a, D\left(b_{n}\right)\right\rangle+\left\langle a b_{n}, D\left(c_{n}\right)\right\rangle+\left\langle b_{n} c_{n}, D(a)\right\rangle\right\} \\
& =0
\end{aligned}
$$

Theorem 6. Let \mathcal{U} be a regular Banach algebra, and let $D \in \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$.
(i) If \mathcal{U}^{2} is dense in \mathcal{U} and $D^{*} \in \mathcal{Z}^{1}\left(\mathcal{U}^{* *}, \mathcal{U}^{*}\right)$ then $D \in \mathcal{D}(\mathcal{U})$.
(ii) Suppose $D \in \mathcal{D}(\mathcal{U})$ has the property that

$$
\begin{equation*}
\lim _{i \in I} \lim _{j \in J}\left\langle c_{j}, a D\left(b_{i}\right)\right\rangle=\lim _{j \in J} \lim _{i \in I}\left\langle c_{j}, a D\left(b_{i}\right)\right\rangle \tag{5}
\end{equation*}
$$

for every pair of bounded sequences in $\mathcal{U},\left\{b_{i}\right\}_{i \in I},\left\{c_{j}\right\}_{j \in J}$, and every $a \in \mathcal{U}$ for which both iterated limits exist. Then $D^{*} \in \mathcal{Z}^{1}\left(\mathcal{U}^{* *}, \mathcal{U}^{*}\right)$.
Proof. (i) By Proposition 2 if $D^{*} \in \mathcal{Z}^{1}\left(\mathcal{U}^{* *}, \mathcal{U}^{*}\right)$, the equality (4) holds for all $a, b, c \in \mathcal{U}$. Thus the conclusion follows from Corollary 5 .
(ii) If $a, b \in \mathcal{U}$, then $a D^{* *}\left(k_{\mathcal{U}}(b)\right)=k_{\mathcal{U}^{*}}(a D(b))$. So, by Theorem 4 we get

$$
\begin{aligned}
0 & =k_{\mathcal{U}^{*}}(a D(b))-a D^{* *}\left(k_{\mathcal{U}}(b)\right) \\
& =k_{\mathcal{U}^{*}}\left(a D^{*}\left(k_{\mathcal{U}}(-b)\right)\right)+a D^{* *}\left(k_{\mathcal{U}}(-b)\right) .
\end{aligned}
$$

If $\Phi \in \mathcal{U}^{* *}$ let $\left\{b_{i}\right\}_{i \in I}$ be a bounded net in \mathcal{U} such that $\Phi=w^{*}-\lim _{i \in I} k_{\mathcal{U}}\left(b_{i}\right)$. Define $\zeta \in \mathcal{U}^{*}$ by $\langle c, \zeta\rangle \triangleq\left\langle D^{*}\left(k_{\mathcal{U}}(c) a\right), \Phi\right\rangle$. Thus $\zeta=w^{*}-\lim _{i \in I} a D\left(b_{i}\right)$ and $k_{\mathcal{U}^{*}}(\zeta)=a D^{* *}(\Phi)$. For, let $\Psi \in \mathcal{U}^{* *}$ such that $\Psi=w^{*}-\lim _{j \in J} k_{\mathcal{U}}\left(c_{j}\right)$ in $\mathcal{U}^{* *}$ for some bounded net $\left\{c_{j}\right\}_{j \in J}$ in \mathcal{U}. So, by (5) we have

$$
\left\langle\Psi, a D^{* *}(\Phi)\right\rangle=\lim _{i \in I} \lim _{j \in J}\left\langle c_{j}, a D\left(b_{i}\right)\right\rangle=\lim _{j \in J} \lim _{i \in I}\left\langle c_{j}, a D\left(b_{i}\right)\right\rangle=\langle\zeta, \Psi\rangle .
$$

Consequently,

$$
\begin{aligned}
\left\langle\Psi, k_{\mathcal{U}^{*}}\left(a D^{*}(\Phi)\right)+a D^{* *}(\Phi)\right\rangle & =\left\langle\Psi, k_{\mathcal{U}^{*}}\left(a D^{*}(\Phi)+\zeta\right)\right\rangle \\
& =\left\langle a D^{*}(\Phi)+\zeta, \Psi\right\rangle \\
& =\lim _{j \in J}\left\langle c_{j}, a D^{*}(\Phi)+\zeta\right\rangle \\
& =\lim _{j \in J}\left[\left\langle D\left(c_{j} a\right), \Phi\right\rangle+\left\langle\zeta, k_{\mathcal{U}}\left(c_{j}\right)\right\rangle\right] \\
& =\lim _{j \in J} \lim _{i \in I}\left[\left\langle b_{i}, D\left(c_{j} a\right)\right\rangle+\left\langle a D\left(b_{i}\right), k_{\mathcal{U}}\left(c_{j}\right)\right\rangle\right] \\
& =\lim _{j \in J} \lim _{i \in I}\left\langle c_{j}, a\left(D^{*}\left(k_{\mathcal{U}}\left(b_{i}\right)\right)+D\left(b_{i}\right)\right)\right\rangle \\
& =0 .
\end{aligned}
$$

Since Ψ was arbitrary, $k_{\mathcal{U}^{*}}\left(a D^{*}(\Phi)\right)+a D^{* *}(\Phi)=0$ and the conclusion follows from Proposition 2.

Proposition 7. If $D \in \mathcal{D}(\mathcal{U})$ then D^{*} is (w, w)-continuous.
Proof. If $D \in \mathcal{D}$, let $\left\{\Phi_{i}\right\}_{i \in I}$ be a net in $\mathcal{U}^{* *}$ such that $w-\lim _{i \in I} D^{*}\left(\Phi_{i}\right) \neq$ $0_{\mathcal{U}^{*}}$. There exists $\Theta \in \mathcal{U}^{* *}$ and a subnet $\left\{\Phi_{i}\right\}_{i \in I_{1}}$ of $\left\{\Phi_{i}\right\}_{i \in I}$ such that

$$
\left|\left\langle D^{*}\left(\Phi_{i}\right), \Theta\right\rangle\right| \geq 1 \text { if } i \in I_{1} .
$$

Let $\left\{a_{j}\right\}_{j \in J}$ be a bounded net in \mathcal{U} such that

$$
\Theta=w^{*}-\lim _{j \in J} k_{\mathcal{U}}\left(a_{j}\right) .
$$

Since $\left\{k_{\mathcal{U}^{*}}\left(D\left(a_{j}\right)\right)\right\}_{j \in J}$ is a bounded net in $\mathcal{U}^{* * *}$ by the Banach-Alaoglu theorem there is a subnet $\left\{a_{j}\right\}_{j \in J_{1}}$ such that the limit $w^{*}-\lim _{j \in J_{1}} k_{\mathcal{U}^{*}}\left(D\left(a_{j}\right)\right)$ defines an element M in $\mathcal{U}^{* * *}$. As $D^{* *} \in\left(w^{*}, w^{*}\right)$,

$$
D^{* *}(\Theta)=w^{*}-\lim _{j \in J_{1}} D^{* *}\left(k_{\mathcal{U}}\left(a_{j}\right)\right)
$$

In particular, by Theorem 4 we deduce that $D^{* *} \circ k_{U}=k_{\mathcal{U}^{*}} \circ D$. Hence, if $i \in I_{1}$ we obtain

$$
\begin{aligned}
1 & \leq\left|\left\langle D^{*}\left(\Phi_{i}\right), \Theta\right\rangle\right| \\
& =\left|\left\langle\Phi_{i}, D^{* *}(\Theta)\right\rangle\right| \\
& =\lim _{j \in J_{1}}\left|\left\langle\Phi_{i}, D^{* *}\left(k_{\mathcal{U}}\left(a_{j}\right)\right)\right\rangle\right| \\
& =\lim _{j \in J_{1}}\left|\left\langle\Phi_{i}, k_{\mathcal{U}^{*}}\left(D\left(a_{j}\right)\right)\right\rangle\right| \\
& =\left|\left\langle\Phi_{i}, M\right\rangle\right|,
\end{aligned}
$$

i.e., $w-\lim _{i \in I} \Phi_{i} \neq 0_{\mathcal{U}^{* *}}$.

3. An application to Beurling algebras on the group $(\mathbb{Z},+)$

Given a function $w: \mathbb{Z} \rightarrow \mathbb{R}^{+}$let $\mathcal{U} \triangleq \ell^{1}(\mathbb{Z}, w)$ be the space of complex sequences $\left\{a_{m}\right\}_{m \in \mathbb{Z}}$ such that $\|a\|_{1, w} \triangleq \sum_{m \in \mathbb{Z}}\left|a_{m}\right| w(m)$ is finite. With the natural vector space operations $\left(\mathcal{U},\|\circ\|_{1, w}\right)$ is a Banach space. Further, let us suppose that w is a weight function, i.e., $w(m+n) \leq w(m) w(n)$ for all $m, n \in \mathbb{Z}$ and $w(0)=1$. Then, for $a, b \in \mathcal{U}$ the convolution product

$$
a * b \triangleq\left\{\sum_{m \in \mathbb{Z}} a_{m} b_{n-m}\right\}_{n \in \mathbb{Z}}
$$

is well defined and \mathcal{U} becomes a Banach algebra. These algebras are called Beurling algebras on the additive group \mathbb{Z} (cf. [6], [9]). The topological dual \mathcal{U}^{*} consists of all functions $\lambda: \mathbb{Z} \rightarrow \mathbb{C}$ such that

$$
\|\lambda\|_{\infty, w^{-1}} \triangleq \sup \left\{|\lambda(m)| w(m)^{-1}: m \in \mathbb{Z}\right\}
$$

is finite. Indeed, \mathcal{U} is a dual Banach algebra whose predual can be identified with the the closed subspace $c_{0}\left(\mathbb{Z}, w^{-1}\right)$ consisting of those sequences $\lambda \in$ $\ell^{\infty}\left(\mathbb{Z}, w^{-1}\right)$ such that λw^{-1} vanishes at infinity. Since the additive group of integers is discrete and countable there are weights w on \mathbb{Z} such that $\ell^{1}(\mathbb{Z}, w)$ is regular. Further, \mathcal{U} is regular if

$$
\inf _{i \leq j} \frac{w\left(m_{i}+n_{j}\right)}{w\left(m_{i}\right) w\left(n_{j}\right)}=0
$$

for all sequences of distinct elements of \mathbb{Z} (see [5]). For instance, \mathcal{U} is not regular if $w(m)=1$ or $w(m)=\exp (|m|)$, and it is regular if $w(m)=1+|m|$ for all $m \in \mathbb{Z}$.

Theorem 8. Let $D \in \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$.
(i) There is a unique complex sequence $\left\{\lambda_{m}\right\}_{m \in \mathbb{Z}}$ such that

$$
\begin{equation*}
\|D\|=\sup _{m \in \mathbb{Z}}\left\{\frac{|m|}{w(m)} \sup _{p \in \mathbb{Z}} \frac{\left|\lambda_{m+p-1}\right|}{w(p)}\right\} \tag{6}
\end{equation*}
$$

and if $a \in \mathcal{U}$ we have

$$
\begin{equation*}
D(a)=\left\{\sum_{m \in \mathbb{Z}} m \lambda_{m+p-1} a_{m}\right\}_{p \in \mathbb{Z}} \tag{7}
\end{equation*}
$$

(ii) If we write $D_{0}(a) \triangleq\left\{-m a_{-m}\right\}_{m \in \mathbb{Z}}$ for $a \in \mathcal{U}$ then $D_{0} \in \mathcal{D}(\mathcal{U})$ and any other element of $\mathcal{D}(\mathcal{U})$ is a constant multiple of D_{0}.
(iii) $\mathcal{D}(\mathcal{U}) \neq\{0\}$ if and only if \mathcal{U} is a non-weakly amenable Banach algebra.
(iv) If $D \in \mathcal{D}(\mathcal{U})$ then $D(\mathcal{U}) \subseteq c_{0}\left(\mathbb{Z}, w^{-1}\right)$.
(v) If $D \in \mathcal{D}(\mathcal{U})$ then $D^{*}+D \circ k_{\mathrm{c}_{0}\left(\mathbb{Z}, w^{-1}\right)}^{*}=0_{\ell^{\infty}\left(\mathbb{Z}, w^{-1}\right)^{*}, \ell^{\infty}\left(\mathbb{Z}, w^{-1}\right)}$.
(vi) If $D \in \mathcal{D}(\mathcal{U})$ then $D \circ k_{\mathrm{c}_{0}\left(\mathbb{Z}, w^{-1}\right)}^{*}=k_{\ell^{1}(\mathbb{Z}, w)}^{*} \circ D^{* *}$.

Proof. (i) If $m \in \mathbb{Z}$, let e_{m} be the characteristic function of $\{m\}$ considered as an element of \mathcal{U} and let $D\left(e_{m}\right)=\left\{\lambda_{m, p}\right\}_{p \in \mathbb{Z}}$ in $\ell^{\infty}\left(\mathbb{Z}, w^{-1}\right)$. Since D satisfies the Leibnitz rule, the following identities $\lambda_{m+p, q}=\lambda_{m, p+q}+\lambda_{p, m+q}$ hold for all $m, p, q \in \mathbb{Z}$. Let us write $\lambda_{m} \triangleq \lambda_{1, m}$ for $m \in \mathbb{Z}$. It is readily seen that $\lambda_{m, p}=m \lambda_{m+p-1}$ if $m, p \in \mathbb{Z}$. Hence (7) holds since for each $p \in \mathbb{Z}$ the linear form $\mu \rightarrow\left\langle e_{p}, \mu\right\rangle$ belongs to $\ell^{\infty}\left(\mathbb{Z}, w^{-1}\right)^{*}$. Now,

$$
\begin{aligned}
\sup _{m \in \mathbb{Z}}\left\|D\left(\frac{e_{m}}{w(m)}\right)\right\|_{\infty, w^{-1}} & =\sup _{m \in \mathbb{Z}} \frac{1}{w(m)} \sup _{p \in \mathbb{Z}} \frac{\left|\lambda_{m, p}\right|}{w(p)} \\
& =\sup _{m \in \mathbb{Z}} \frac{|m|}{w(m)} \sup _{p \in \mathbb{Z}} \frac{\left|\lambda_{m+p-1}\right|}{w(p)} \leq\|D\| .
\end{aligned}
$$

We can assume that $D \neq 0$. If $0<t<\|D\|$ there exist $m, p \in \mathbb{Z}$ such that $\left|m \lambda_{m+p-1}\right| / w(m) w(p)>t$. Otherwise, we can choose $u, v \in[\mathcal{U}]_{1}$ such that

$$
t<|\langle v, D(u)\rangle| \leq \sum_{p \in \mathbb{Z}}\left|v_{p}\right| \sum_{m \in \mathbb{Z}}\left|m \lambda_{m+p-1} u_{m}\right| \leq t\|u\|_{1, w}\|v\|_{1, w} \leq t,
$$

which is absurd. Thus (6) follows.
(ii) It is straightforward to see that $D_{0} \in \mathcal{D}(\mathcal{U})$. Moreover, with the above notation let $D \in \mathcal{D}(\mathcal{U})$ and $m, p \in \mathbb{Z}$. By Theorem 4(ii) we see that

$$
0=\left\langle e_{m}, D\left(e_{p}\right)\right\rangle+\left\langle e_{p}, D\left(e_{m}\right)\right\rangle=(m+p) \lambda_{m+p-1} .
$$

Hence $\lambda_{m, p}=\lambda_{m+p-1}=0$ if $m+p \neq 0$ while $\lambda_{m,-m}=m \lambda_{-1}$. Consequently $D\left(e_{m}\right)=\lambda_{-1} m e_{-m}$ and $D=\lambda_{-1} D_{0}$.
(iii) Observe that \mathcal{U} is not weakly amenable if and only if

$$
\begin{equation*}
\sup _{m \in \mathbb{Z}} \frac{|m|}{w(m) w(-m)}<+\infty \tag{8}
\end{equation*}
$$

(cf. [10], Corollary 4.8). Further, by (6),

$$
\begin{equation*}
\left\|D_{0}\right\|=\sup _{m \in \mathbb{Z}} \frac{|m|}{w(m) w(-m)} \tag{9}
\end{equation*}
$$

and the conclusion now follows.
(iv) If $a \in \mathcal{U}$ and $m \in \mathbb{Z}$ by (9) we have

$$
\frac{\left|-m a_{-m}\right|}{w(m)}=\frac{|m|}{w(m) w(-m)}\left|a_{-m}\right| w(-m) \leq\left\|D_{0}\right\|\left|a_{-m}\right| w(-m),
$$

i.e., $\lim _{m \rightarrow \infty}\left(-m a_{-m}\right) / w(m)=0$.
(v) Let \mathfrak{K} be the subset of elements $F \in \ell^{\infty}(\mathbb{Z})^{*}$ whose induced finitely additive set function $\mu_{F}(E) \triangleq\left\langle\chi_{E}, F\right\rangle$ defined for all $E \in \mathcal{P}(\mathbb{Z})$ vanishes on finite subsets of \mathbb{Z}. Certainly

$$
\ell^{\infty}(\mathbb{Z})^{*}=k_{\ell^{1}(\mathbb{Z})}\left[\ell^{1}(\mathbb{Z})\right] \oplus \mathfrak{K}
$$

(cf. [4, Theorem 3.2]). Further, since $\operatorname{Id}_{\ell^{1}(\mathbb{Z}, w)}=k_{\mathrm{c}_{0}\left(\mathbb{Z}, w^{-1}\right)}^{*} \circ k_{\ell^{1}(\mathbb{Z}, w)}$ then

$$
\begin{equation*}
\ell^{\infty}\left(\mathbb{Z}, w^{-1}\right)^{*}=k_{\ell^{1}(\mathbb{Z}, w)}\left[\ell^{1}(\mathbb{Z}, w)\right] \oplus \operatorname{ker}\left[k_{\mathrm{c}_{0}\left(\mathbb{Z}, w^{-1}\right)}^{*}\right] . \tag{10}
\end{equation*}
$$

Let $A_{w}: \ell^{1}(\mathbb{Z}) \rightarrow \ell^{1}(\mathbb{Z}, w)$ be the isometric isomorphism such that

$$
A_{w}(x) \triangleq\{x(m) / w(m)\}_{m \in \mathbb{Z}}
$$

if $x \in \ell^{1}(\mathbb{Z})$. Then

$$
\begin{equation*}
A_{w}^{* *}(\mathfrak{K})=\operatorname{ker}\left[k_{\mathrm{c}_{0}\left(\mathbb{Z}, w^{-1}\right)}^{*}\right] . \tag{11}
\end{equation*}
$$

For, let be given $F \in \mathfrak{K}$ and $\lambda \in \mathrm{c}_{0}\left(\mathbb{Z}, w^{-1}\right)$. Then

$$
\begin{align*}
\left\langle\lambda, k_{\mathrm{co}_{0}\left(\mathbb{Z}, w^{-1}\right)}^{*}\left(A_{w}^{* *}(F)\right)\right\rangle & =\left\langle A_{w}^{*}\left(k_{\mathrm{co}_{0}\left(\mathbb{Z}, w^{-1}\right)}(\lambda)\right), F\right\rangle \tag{12}\\
& =\left\langle\{\lambda(m) / w(m)\}_{m \in \mathbb{Z}}, F\right\rangle \\
& =\int_{\mathbb{Z}} \frac{\lambda}{w} d \mu_{F} .
\end{align*}
$$

But $\left\{e_{m}\right\}_{m \in \mathbb{Z}}$ can be considered as a Schauder basis of $c_{0}\left(\mathbb{Z}, w^{-1}\right)$. Moreover, using (12) we can write

$$
\begin{align*}
\left\langle\lambda, k_{\mathrm{c}_{0}\left(\mathbb{Z}, w^{-1}\right)}^{*}\left(A_{w}^{* *}(F)\right)\right\rangle & =\left\langle\sum_{m \in \mathbb{Z}} \lambda(m) e_{m}, k_{\mathrm{c}_{0}\left(\mathbb{Z}, w^{-1}\right)}^{*}\left(A_{w}^{* *}(F)\right)\right\rangle \tag{13}\\
& =\sum_{m \in \mathbb{Z}} \lambda(m)\left\langle e_{m}, k_{\mathrm{c}_{0}\left(\mathbb{Z}, w^{-1}\right)}^{*}\left(A_{w}^{* *}(F)\right)\right\rangle \\
& =\sum_{m \in \mathbb{Z}} \lambda(m) \int_{\mathbb{Z}} \frac{e_{m}}{w} d \mu_{F} \\
& =0 .
\end{align*}
$$

Since λ was arbitrary then $k_{\mathrm{c}_{0}\left(\mathbb{Z}, w^{-1}\right)}^{*}\left(A_{w}^{* *}(F)\right)=0_{\ell^{1}(\mathbb{Z}, w)}$. On the other hand, given $\Phi \in \operatorname{ker}\left[k_{\mathrm{c}_{0}\left(\mathbb{Z}, w^{-1}\right)}^{*}\right]$ we set $F \triangleq\left(A_{w}^{-1}\right)^{* *}(\Phi)$. If $m \in \mathbb{Z}$, let $\chi_{\{m\}}^{\infty}$ be the characteristic function of $\{m\}$ considered as an element of $\ell^{\infty}(\mathbb{Z})$. Given $a \in \ell^{1}(\mathbb{Z}, w)$ we see that

$$
\begin{aligned}
\left\langle\chi_{\{m\}}^{\infty}, F\right\rangle & =\left\langle\left(A_{w}^{-1}\right)^{*}\left(\chi_{\{m\}}^{\infty}\right), \Phi\right\rangle \\
& =\left\langle w(m) k_{\mathrm{c}_{0}\left(\mathbb{Z}, w^{-1}\right)}\left(e_{m}\right), \Phi\right\rangle \\
& =w(m)\left\langle e_{m}, k_{\mathrm{c}_{0}\left(\mathbb{Z}, w^{-1}\right)}^{*}(\Phi)\right\rangle \\
& =0 .
\end{aligned}
$$

Therefore, $F \in \mathfrak{K}$ and (8) holds. If $\Phi \in \mathcal{U}^{* *}$, then by (10) and (11), there are unique elements $a \in \mathcal{U}$ and $F \in \mathfrak{K}$ such that $\Phi=k_{\mathcal{U}}(a)+A_{w}^{* *}(F)$. Finally, it is easy to verify that $a=k_{\mathrm{co}_{0}\left(\mathbb{Z}, w^{-1}\right)}^{*}(\Phi)$ and given $b \in \mathcal{U}$ we have

$$
\begin{aligned}
\left\langle b, D_{0}^{*}(\Phi)\right\rangle & =\left\langle b,-D_{0}(a)\right\rangle+\left\langle A_{w}^{* *}(F), k_{\mathrm{c}_{0}\left(\mathbb{Z}, w^{-1}\right)}\left(D_{0}(b)\right)\right\rangle \\
& =\left\langle b,-\left(D_{0} \circ k_{\mathrm{c}_{0}\left(\mathbb{Z}, w^{-1}\right)}^{*}\right)(\Phi)\right\rangle .
\end{aligned}
$$

(vi) It suffices to apply Theorem 4 and (v).

References

[1] Arens, Richard. Operations induced in function classes. Monatsh. Math. 55, (1951), 1-19. MR0044109 (13,372b), Zbl 0042.35601.
[2] Barootkoob, S.; Vishki, H. R. Ebrahimi. Lifting derivations and n-weak amenability of the second dual of a Banach algebra. Bull. Aust. Math. Soc. 83 (2011), no. 1, 122-129. MR2765419 (2012a:46084), Zbl 05864254, arXiv:1007.1649, doi: 10.1017/S0004972710001838.
[3] Barrenechea, A. L.; Peña, C. C. On bounded dual-valued derivations on certain Banach algebras. Publ. Inst. Math. (Beograd) (N.S.) 86(100) (2009), 107-114. MR2567770 (2010m:46076), Zbl 05656373, doi: 10.2298/PIM0900107B.
[4] Civin, Paul; Yood, Bertram. The second conjugate space of a Banach algebra as an algebra. Pacific J. Math. 11 (1961), 847-870. MR0143056 (26 \#622), Zbl 0119.10903.
[5] Craw, I. G.; Young, N. J. Regularity of multiplication in weighted group and semigroup algebras. Quart. J. Math. Oxford Ser. (2) 25 (1974), 351-358. MR0365029 (51 \#1282) Zbl 0304.46027.
[6] Dales, H. G.; Lau, A. T.-M. The second duals of Beurling algebras. Mem. Amer. Math. Soc. 177 (2005), no. 836, vi+191 pp. MR2155972 (2006k:43002), Zbl 1075.43003.
[7] Dales, H. G.; Rodríguez-Palacios, A.; Velasco, M. V. The second transpose of a derivation. J. London Math. Soc. (2) 64 (2001), no. 3, 707-721. MR1865558 (2003e:46077), Zbl 1023.46051, doi: 10.1112/S0024610701002496.
[8] Duncan, J.; Hosseiniun, S. A. R. The second dual of a Banach algebra. Proc. Roy. Soc. Edinburgh, Sect. A 84, (1979), no. 3-4, 309-325. MR0559675 (81f:46057), Zbl 0427.46028, doi: 10.1017/S0308210500017170.
[9] Dzinotyiweyi, Heneri A. M. Weighted function algebras on groups and semigroups. Bull. Austral. Math. Soc. 33 (1986), no. 2, 307-318. MR0832532 (87h:43005), Zbl 0571.43006, doi: 10.1017/S0004972700003178.
[10] Grønbæk, Niels. A characterization of weakly amenable Banach algebras. Studia Math. 94 (1989), no. 2, 149-162. MR1025743 (92a:46055), Zbl 0704.46030.
[11] Palmer, Theodore W. Banach algebras and the general theory of *-algebras. Vol. I. Algebras and Banach algebras. Encyclopedia of Mathematics and its Applications, 49. Cambridge University Press, Cambridge, 1994. xii+794 pp. ISBN: 0-521-36637-2. MR1270014 (95c:46002), Zbl 1176.46052.
[12] Pym, John S. The convolution of functionals on spaces of bounded functions. Proc. London Math. Soc. (3) 15 (1965), 84-104. MR0173152 (30 \#3367), Zbl 0135.35503, doi: $10.1112 / \mathrm{plms} / \mathrm{s} 3-15.1 .84$.
[13] Young, N. J. Periodicity of functionals and representations of normed algebras on reflexive spaces. Proc. Edinburgh Math. Soc. (2) 20, (1976/77), no. 2, 99-120. MR0435849 (55 \#8800), Zbl 0331.46042, doi: 10.1017/S0013091500010610.

CONICET - UNCPBA. FCExactas, Dpto. de Matemáticas, NUCOMPA. aleandro@exa.unicen.edu.ar

UNCPBA. FCExactas, Dpto. de Matemáticas, NUCOMPA.
ccpenia@exa.unicen.edu.ar
This paper is available via http://nyjm.albany.edu/j/2012/18-35.html.

[^0]: Received May 17, 2011, and in revised form on August 22, 2012.
 2010 Mathematics Subject Classification. 46H35, 47D30.
 Key words and phrases. Arens products, amenable and weakly amenable Banach algebras, dual Banach algebras, Beurling algebras.

