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Tiling spaces, codimension one attractors
and shape

Alex Clark and John Hunton

Abstract. We establish a close relationship between, on the one hand,
expanding, codimension one attractors of diffeomorphisms on closed
manifolds (examples of so-called strange attractors), and, on the other,
spaces which arise in the study of aperiodic tilings. We show that every
such orientable attractor is homeomorphic to a tiling space of either a
substitution or a projection tiling, depending on its dimension. We also
demonstrate that such an attractor is shape equivalent to a (d + 1)-
dimensional torus with a finite number of points removed, or, in the
nonorientable case, to a space with a two-to-one covering by such a
torus-less-points. This puts considerable constraints on the topology of
codimension one attractors, and constraints on which manifolds tiling
spaces may be embedded in. In the process we develop a new invariant
for aperiodic tilings, which, for 1-dimensional tilings is in many cases
finer than the cohomological or K-theoretic invariants studied to date.
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1. Introduction

This work establishes a close relationship between, on the one hand, ex-
panding, codimension one attractors of diffeomorphisms on closed manifolds
(examples of so-called strange attractors), and, on the other, spaces which
arise in the study of aperiodic tilings.

Following the important programme initiated by Smale [38, 33], hyper-
bolic attractors of smooth diffeomorphisms have played a key role in un-
derstanding the structurally stable diffeomorphisms of closed, smooth man-
ifolds. A Cr-diffeomorphism h : M → M of a Cr-manifold (r > 1) M is
structurally stable if all diffeomorphisms sufficiently close to h in the Cr-
metric are topologically conjugate to h. An attractor A ⊂M of h is hyper-
bolic if the tangent bundle of the attractor admits an h-invariant continuous
splitting Es + Eu into uniformly contracting Es and expanding Eu direc-
tions. An important class of hyperbolic attractors is the class of expanding
attractors, those with the same topological dimension, say d, as the fibre
of Eu. Expanding attractors locally have the structure of the product of a
d-dimensional disk and a Cantor set [43] and are therefore sometimes re-
ferred to as strange attractors. Locally, the diffeomorphism h expands the
disks and contracts in the Cantor set direction. Here we shall focus on
codimension one expanding attractors, i.e., the case that A is compact and
connected (a continuum) with topological dimension d one less than the
dimension d+ 1 of the ambient manifold M .

The tilings we have in mind are patterns in Euclidean space that admit no
nontrivial translational symmetries, but nevertheless have the property that
arbitrarily large compact patches of the pattern repeat themselves through-
out the space. The Penrose tiling is perhaps the best known example of such
a pattern, but the class is huge and rich, indeed infinite, and contains, for
example, the geometric patterns used to model physical quasicrystals [37]. A
standard tool in the study of any such pattern P is the construction of an as-
sociated tiling space ΩP , a topological space whose points correspond to the
set of all patterns locally indistinguishable from P . Topological properties
of ΩP , in particular the Čech cohomology groups H∗(ΩP ) and various forms
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of K-theory, have long been known to contain key geometric information
about the original pattern P , see, for example, [3, 9, 14].

Our main aim is to describe the possible spaces A, both up to homeo-
morphism and up to shape equivalence, that can arise as a codimension one
expanding attractor of a diffeomorphism. In brief, we show that every such
attractor is homeomorphic to a tiling space ΩP for some P , but that the
converse fails (in some sense, it fails in almost all cases). The shape equiv-
alence description gives essentially a complete description of the possible
cohomology rings of any such attractor A.

Our approach uses tools drawn from both shape theory and homological
algebra and in doing so introduces a new invariant that gives an obstruc-
tion to the existence of a codimension one embedding of a tiling space in
a manifold. Moreover, we provide examples of tilings with identical Čech
cohomology which this invariant distinguishes.

In drawing on a diverse range of mathematical topics, it is perhaps not
reasonable to assume the reader has specialist knowledge of expanding at-
tractors, tiling spaces, shape theory or homological algebra; we introduce the
necessary concepts or results directly, where possible. The ideas relating to
shape theory and the homological algebra we use are presented in Section 2,
while the details we assume of expanding attractors and tiling spaces are
discussed in Section 3. The interested reader will find further background
information on these topics in [12, 33, 36].

We detail our main results below; these are proved in Sections 4 and 5.

1.1. Our main results. Our initial results concern models for a codimen-
sion one expanding attractor up to shape equivalence. Shape equivalence
here means equivalence in the shape category. We explain more about this
notion in the next section, but for now we note that the shape category is a
natural one to consider when analysing spaces which readily occur as inverse
limits of topological spaces (such as both attractors and tiling spaces), but
that shape equivalence is distinct from relations such as homeomorphism
or homotopy equivalence. Nevertheless, two spaces that are shape equiv-
alent necessarily share all the same shape invariants, which include Čech
cohomology and certain forms of K-theory. Our identification of the shape
of a codimension one attractor thus allows both ready computation of the
Čech cohomology, etc., and also puts considerable constraints on the possible
cohomology rings that can arise.

Our first result shows that a codimension one expanding attractor is shape
equivalent to a finite polyhedron of a very specific kind.

Theorem 1.1. Suppose M is a Cr-manifold, r > 1, of dimension d +
1. Let A be a codimension one expanding attractor of the diffeomorphism
h : M → M . If A is orientable, then it is shape equivalent to a (d + 1)-
dimensional torus with a finite number of points removed, Td+1−{k} say. If
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A is unorientable, it is shape equivalent to a polyhedron that has a two-to-one
cover by some Td+1− {k}.

Fundamental to our work is Williams’ foundational paper [43] which shows
that any continuum A that occurs as an expanding attractor (independent
of codimension) is homeomorphic to the inverse limit Λ of a sequence

· · · → K
f−→ K

f−→ K

formed from a single map of a branched manifold f : K → K satisfying
certain expanding properties, and the restriction of h to A is conjugate to
the shift map of Λ.

However, our analysis of attractors splits into two cases, which display
significantly different behaviours. On the one hand, in the case where d = 1,
and so M is a closed surface, Williams’ branched manifold can be taken as
a one point union of copies of the circle, and so the shape theoretic analysis
leads us to the study of endomorphisms of free groups, being the homotopy
groups of these spaces. The higher dimensional cases, d > 2, involve far more
complicated branched manifolds K and a different approach is needed. Here
work of Plykin [30, 31] comes to our aid.

Our second set of results, which follows from these analyses, establishes
the connection between the codimension one oriented attractors and tiling
spaces: again the cases d = 1 and d > 2 are treated separately. In the case
d = 1, each such oriented attractor is homeomorphic to a tiling space associ-
ated to some so-called primitive substitution tiling. This is well known to the
experts and is mentioned in [4], but we sketch the argument in Section 4.3 for
completeness. The argument however does not readily generalise to higher
dimensions, and our main result for d > 2 realises all such attractors up
to homeomorphism as tiling spaces associated to a largely distinct class of
tilings, the so-called projection tilings. While it is possible that these tiling
spaces admit the structure of substitution tiling spaces, this does not follow
from our techniques. We note equally, however, that this second approach
involving projection tilings does not apply to the case d = 1: we show that
there are certainly 1-dimensional attractors which are substitution tiling
spaces that are not projection tilings.

Theorem 1.2. Every oriented codimension one expanding attractor A in
the (d + 1)-dimensional manifold M is homeomorphic to the tiling space
ΩP of an aperiodic tiling P of Rd. In the case d = 1 we may choose P
to be given by a primitive substitution; for d > 2, we can describe P as a
projection tiling.

We consider also the converse question: given a tiling space ΩP , can we
realise it as a codimension one attractor for some suitable M and h? In
general the answer is ‘no’. In the case of higher dimensional manifolds,
(d+ 1) > 3, the shape theoretic result of Theorem 1.1 puts such constraints
on the cohomology ring H∗(ΩP ) for any tiling P which models A that most
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tilings are immediately ruled out as sources of models for codimension one
attractors.

In the case d = 1, cohomology is not sufficient to rule out potential
models. However, our shape theoretic analysis leads us to obtain a new
invariant L(ΩP ) associated to a tiling space, whose vanishing is a necessary
condition on realising ΩP as a codimension one subspace of a manifold.
This obstruction is comparable to, though apparently quite distinct from,
obstructions based on the topology of the asymptotic components [24], but
as with those obstructions its vanishing does not in general guarantee the
existence of an embedding ΩP ↪→M .

The L-invariant also provides a new tool to distinguish tiling spaces, and
in Section 4.4 we exhibit examples which cannot otherwise be told apart
using standard cohomological or K-theoretic calculations.

Finally, let us note that many of our results fail to be true if we ask
about attractors of codimension greater than one: this may easily be seen
in the case of the classic Smale example of the dyadic solenoid, which occurs
as an oriented, codimension two attractor in a 3-torus, but is not shape
equivalent to any finite polyhedron, nor is it homeomorphic to any tiling
space. In contrast to this, Anderson and Putnam [1] show that every sub-
stitution tiling space ΩP of the type they consider has the structure of an
expanding attractor for some smooth diffeomorphism of a smooth (possibly
high-dimensional) manifold, but the natural question of which manifolds M
in which such ΩP can occur is as yet unanswered.

The organisation of this paper is as follows. In Section 2 we recall the basic
facts about shape theory and shape equivalence that we need. This leads us
also to introduce some related homological algebra, and in particular discuss
aspects of the lim1 functor and its relationship to the concept of movability.
In Section 3 we introduce concepts and notations we use to discuss tiling
spaces, attractors and their associated paraphernalia. In this section we
define our L-invariant (in fact the first of a series of invariants for tiling
spaces), and recall the results of Plykin [30, 31], needed in the final section.

In Section 4 we specialise to d = 1 and begin by proving Theorem 1.1
in this case. We show in Section 4.1 that any codimension one attractor
in a surface is shape equivalent to a one point union of a finite number
of circles, and as such is determined by a finite rank free group F and an
automorphism s : F → F . However, most such automorphisms are not re-
alisable as expanding attractors in surfaces and we develop in Section 4.2
our homological approach to aid computation of our main obstruction to
an automorphism arising via an attractor. We sketch in Section 4.3 how
all such oriented attractors in surfaces can be realised as substitution tiling
spaces (Theorem 1.2), and apply in Section 4.4 our L-invariant and homolog-
ical results to demonstrate examples of nonembedding tiling spaces and to
distinguish aperiodic tilings indistinguishable by cohomology or K-theory.
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In Section 5 we consider the rather different case d > 2, proving Theorems
1.1 and 1.2 in these dimensions. Here we introduce the generalised projection
spaces needed for realising attractors in higher dimensions d > 2, but show
that their analogues cannot account for all attractors when d = 1. We
conclude by showing that, in analogy with the case d = 1, most projection
tilings do not possess codimension one embeddings in (d+1)-manifolds; this
follows from cohomological considerations and the shape theoretic result of
Theorem 1.1.

2. Shape theory

2.1. The shape category, stability and movability. We sketch the ba-
sic notions and perspectives of the shape theory we use. Fuller details may
be found in, for example, the books [12, 27].

We deal with two underlying categories of spaces. The first, T , has as
objects topological spaces, and morphisms the homotopy classes of maps.
The second, P, is the full subcategory of T with objects those spaces which
can be given the structure of a finite CW complex (‘finite polyhedra’ in the
shape literature). In each case we will also need the corresponding categories
of pointed spaces: each such space Xn will then have a specified base point
xn, and all maps and homotopies will preserve base points. In general we
shall suppress mention of the base point in our notation unless it is expressly
needed.

We also consider the corresponding procategories (see [27], or even [2], for
the full definition) of diagrams of objects indexed by a directed set D. For
the cases we consider, we can always take D = N, in which case, an object
in the procategory pro-C of the category C is a tower

X : · · · → Xn → Xn−1 → · · · → X2 → X1 → X0

whose objects Xn and maps Xn → Xn−1 are in C. Morphisms in pro-C are
equivalence classes of commuting maps of towers which do not necessarily
preserve levels (i.e., a map X→ Y consists of maps in C running Xr(n) → Yn,
for n ∈ N, making the corresponding diagram commute and with r(n)→∞
monotonically as n→∞). Two commuting maps of towers are equivalent if
they induce the same map on the inverse limits of the towers. The category
C has a standard embedding as a subcategory of pro-C given by identifying
a C-object X with the constant tower

· · · → X
1−→ X

1−→ · · · 1−→ X
1−→ X

in pro-C, and without further comment we shall identify objects in C as
objects in pro-C in this manner.

The shape category arises from certain equivalences on such towers, and
considers those objects in T which, up to these equivalences, can be con-
sidered as objects in pro-P. Explicitly, we use the notion of a P-expansion
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of a space X in T , which is effectively a representation of X by a tower of
spaces drawn from the subcategory P.

Definition 2.1. A P-expansion of an object X ∈ T ⊂ pro-T is a map
α : X → X in pro-T for some object X in pro-P with the universal property
that for each morphism h : X → Y with h in pro-T and Y in pro-P, there

is a unique map f : X→ Y in pro-P factoring h as X
α−→ X f−→ Y.

A key result for shape theory is that every object in T admits a P-
expansion.

It is important to note that if X is homeomorphic to the inverse limit
lim
←−
{X} for some object X in pro-P, then the universal map

X = lim
←−
{X} −→ · · · → Xn → Xn−1 → · · · → X0

gives a P-expansion of X, but the converse does not generally hold: if
α : X → X is a P-expansion of X then there is no general reason that X is
homeomorphic to lim

←−
{X}.

As usual, if α : X → X and α′ : X → X′ are two P-expansions of X, there
is a natural isomorphism i : X→ X′ in pro-P.

We need a corresponding notion of equivalence on morphisms.

Definition 2.2. Suppose α : X → X and α′ : X → X′ are two P-expansions
of some object X ∈ T , with natural isomorphism i : X → X′ in pro-P, and
suppose β : Y → Y and β′ : Y → Y′ are two P-expansions of some object
Y ∈ T , with natural isomorphism j : Y→ Y′ in pro-P. Then two morphisms
f : X→ Y and f ′ : X′ → Y′ in pro-P are equivalent, written f ∼ f ′, if

X i //

f
��

X′

f ′

��

Y
j
// Y′

commutes in pro-P.

Definition 2.3. The shape category has objects the objects of T and mor-
phisms the ∼classes of morphisms on pro-P of P-expansions of objects of T .
Two objects X,Y ∈ T are then shape equivalent if they have P-expansions
X and Y isomorphic in the shape category.

Note that any morphism in the shape category may be represented by a
diagram

X
α // X

f
��

Y
β
// Y

for some P-expansions α and β, and morphism f in pro-P. Indeed any map
X → Y in T gives rise to such a diagram, but the converse does not hold:
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a morphism f : X→ Y does not necessarily correspond to a map X → Y in
T .

We are particularly interested in shape invariants, invariants of objects
in T which depend only on the shape equivalence class of the objects. The
principal invariants we are concerned with here are Čech cohomology and
(in the pointed version) the shape homotopy groups, defined respectively on
an object X ∈ T with P-expansion X by

H∗(X) = lim
−→
{H∗(X0)→ · · · → H∗(Xn−1)→ H∗(Xn)→ · · · },

πsh∗ (X, ∗) = lim
←−
{ · · · → π∗(Xn, xn)→ π∗(Xn−1, xn−1) · · · → π∗(X0, x0)}.

The usual property of Čech cohomology taking inverse limits of spaces to
direct limits of cohomology groups means that the above coincides with the
normal definition of Čech cohomology of a space X ∈ T . A similar defini-
tion of K-theory for X ∈ T with P-expansion X given by the direct limit
K∗(X) = lim

−→
{K∗(Xn)} can also be made, is a shape invariant and coincides

with other appropriate forms of K-theory, for example that constructed from
C∗-algebras.

An important class of objects for us is the class of spaces X ∈ T which
are shape equivalent to objects in P. This is encapsulated in the following
definition.

Definition 2.4. A space X ∈ T or pointed space (X,x) is stable if it is
shape equivalent to a finite polyhedron.

Remark 2.5. A sufficient condition for the stability of a space X is that X
may be written (in T ) as an inverse limit

X = lim
←−

{
· · · → Xn

fn−→ Xn−1 → · · · → X0

}
in which all the factor spaces Xn are homotopy equivalent to finite polyhedra
and all the bonding maps fn are homotopy equivalences. In this case the
homotopy and (co)homology groups associated to the Xn ‘stabilise’ and all
the shape invariants of X coincide with the corresponding invariants of each
of the Xn in this P-expansion.

The final shape theoretic concept we will need will be that of movability.
Borsuk [11] introduced the notion of movability for compact subspaces X of
the Hilbert cube Q as in the following definition, but, for our work here, the
properties discussed in the remaining results of this section form the more
practical characterisation of this concept.

Definition 2.6. Say X ⊂ Q is movable if for every neighbourhood U of
X in Q there is a neighbourhood U0 ⊂ U of X in Q such that for every
neighborhood W ⊂ U of X there is a homotopy

H : U0 × I → U

such that for all x ∈ U0, H(x, 0) = x and H(x, 1) ∈W.
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In other words, U0 can be homotopically deformed within U , i.e., “moved”
into a subspace of W . Every compact metric space can be embedded in Q
and the definition of movability can be reformulated to make no reference
to an embedding in Q. We refer the reader to [27] for the proof of the
equivalence of the various formulations of movability; see in particular [27,
Remark 2, p. 184].

It is important to note the following relationship between stability and
movability. See, for example, [27] for details.

Theorem 2.7. A space is movable if it is stable, but the converse does not
necessarily hold.

An informal, intuitive explanation for why stability as above implies mov-
ability is as follows. If a stable space X is embedded in the Hilbert cube Q,
then each projection pn : X → Xn will extend (since each Xn is an absolute
neighborhood retract) to a neighborhood p̃n : Un → Xn and one can choose
these neighbourhoods to be decreasing to X, say X = ∩Un and Un ⊃ Un+1.
One can then “move” a given Un into Un+1 using the homotopy equivalence
of the corresponding bonding map. In general, however, one can move Un
into Un+1 under weaker conditions.

However, we work primarily with a homological characterisation of mov-
ability, which will be more amenable than the definition above. First, recall
the following.

Definition 2.8. The inverse sequence of groups and homomorphisms

· · · → A2
a2−→ A1

a1−→ A0

satisfies the Mittag–Leffler condition (ML) if for each n there is a number
N > n such that

Im(Ap → An) = Im(Aq → An)

for all p, q > N . Clearly if p > q > n, the image of Ap in An is contained
in the image of Aq in An; the system is ML if the images of Ap in An are
eventually constant for large values of p. The condition is obviously met in
the case that all the bonding homomorphisms an are surjective.

Proposition 2.9 ([27, Remark 3, p. 184]). If the pointed space (X, ∗) is
movable and

· · · → (Xn, xn)
fn−→ (Xn−1, xn−1)→ · · · → (X0, x0)

is any inverse sequence of compact polyhedra with limit homeomorphic to
(X, ∗), then for each nonnegative integer k the resulting inverse sequence of
homotopy groups

· · · → πk(Xn, xn)
(fn)∗−→ πk(Xn−1, xn−1)→ · · · → πk(X0, x0)

satisfies the Mittag-Leffler condition.

In the special case of 1-dimensional continua, a converse also holds.
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Theorem 2.10. If the pointed space (X, ∗) is homeomorphic to the limit
of the inverse sequence of finite connected 1-dimensional pointed polyhedra
((Xn, xn); fn), then (X, ∗) is movable if and only if

{π1(Xn, xn); (fn)∗}

satisfies the ML condition.

This follows from the stronger theorem [27, Theorem 4, II § 8.1, p. 200].

Remark 2.11. We should point out that shape theoretic results stated in
terms of inverse sequences hold for any shape expansion of a space into
an inverse system and include such expansions as the Čech expansion [27,
I,§4.2] whose inverse limit is not necessarily homeomorphic to the original
space. Any representation of a continuum as an inverse limit of finite CW-
complexes does yield a shape expansion [27, I,§5.3] and since these are the
expansions readily available for tiling spaces [1, 5, 6, 19, 35], we shall only
state results in that context.

Movability and its characterisation in Theorem 2.10 are relevant to the
understanding of the embeddings in surfaces in the light of the next result.

Theorem 2.12 ([26, Theorem 7.2], [28]). If X is a subcontinuum of a closed
surface and if x is any point of X, then (X,x) is movable.

In fact, in his proof [26] Krasinkiewicz shows that any such (X,x) is shape
equivalent to the wedge of finitely many circles or the Hawaiian earring (with
point given by the wedge point), but his proof only treats the case that
the ambient manifold is orientable. This is a natural generalisation of the
analogous result for continua embedded in the plane obtained by Borsuk [12,
VII,§7].

2.2. Some homological algebra. The identification of the Mittag–Leffler
condition above being relevant to our discussion leads us to introduce some
further homological algebra, culminating below in Theorem 2.17.

Definition 2.13. For an inverse sequence A of groups and homomorphisms

· · · → A2
a2−→ A1

a1−→ A0

let the equivalence relation ≈ on
∏
nAn be given by (xn) ≈ (yn) if and only

if there is a (gn) ∈
∏
nAn such that (yn) = (gn · xn · an+1(g

−1
n+1)). Then

lim1A is defined to be the pointed set of ≈-classes with base point given by
the class of the identity element of

∏
nAn.

The lim1 construction is functorial on the category of inverse sequences of
groups (with morphisms as in pro-Groups) and takes values in the category
of pointed sets.

If d :
∏
nAn →

∏
nAn is given by d((xn)) = (xn ·an+1(x

−1
n+1)), then lim1A

is the trivial pointed set {∗} if and only if d is onto. If d is a homomorphism
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(which is the case whenever each An is abelian), lim1A = coker d. In general,
lim1A is uncountable if it is not trivial.

The following theorem follows from general considerations, see, e.g., [27,
Theorem 10, II § 6.2, p. 173].

Theorem 2.14. If the inverse sequence A satisfies the ML condition, then
lim1A is trivial.

In [22] Geoghegan shows the converse under a natural condition.

Theorem 2.15. [22] If each group An in the inverse sequence A is countable
and lim1A is trivial, then A satisfies the ML condition.

An advantage of lim1A over the ML condition is that it is more amenable
to calculation, as indicated by the following result that we shall use.

Lemma 2.16 ([27, Theorem 8, II § 6.2, p. 168]). Given a short exact
sequence of inverse systems of groups

1→ (An, an)→ (Bn, bn)→ (Cn, cn)→ 1,

that is, a commutative diagram

1 1 1y y y
· · · → A2

a2−→ A1
a1−→ A0y y y

· · · → B2
b2−→ B1

b1−→ B0y y y
· · · → C2

c2−→ C1
c1−→ C0y y y

1 1 1

in which the columns are exact, there is an induced six term exact sequence
of pointed sets

1→ lim
←−

An → lim
←−

Bn → lim
←−

Cn → lim1An → lim1Bn → lim1Cn → 1 .

(An exact sequence of pointed sets satisfies the usual conditions for an
exact sequence of groups, where the kernel is understood to be the preimage
of the base point of the pointed set.)

Piecing together the above results we arrive at the following theorem.

Theorem 2.17. If X is homeomorphic to the inverse limit of the sequence of
finite polyhedra ((Xn, xn); fn) and if lim1 ((π1(Xn, xn); (fn)∗) is not trivial,
then X cannot be embedded in a closed surface.
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3. Tiling spaces and attractors

3.1. The space of an aperiodic tiling. For our purposes here, a tiling P
of Rd is a decomposition of Rd into a union of compact, polyhedral regions,
each translationally congruent to one of a finite number of fixed prototiles
and meeting only on their boundary, full face to full face. In the case d = 1,
a tiling is essentially equivalent to a bi-infinite word in a finite alphabet
indexed by Z: such a word determines the tiling combinatorially, and it is
determined geometrically with the additional information of the lengths of
the individual prototiles and the relative position of 0 in the tiling. The topo-
logical information we will associate to P , in particular the homeomorphism
class of the tiling space ΩP associated to P (see definition 3.3 below) will
depend only on such combinatorial information. See [36] for a full discussion
of the basics of tiling theory.

The tilings we have in mind will typically satisfy two further important
properties. Here and elsewhere, let us write Br(x) for the open ball in Rd
of radius r and centre x. The collection of tiles of P with support contained
in the ball Br(x) is known as a patch of the tiling P and will be denoted
Br(x)[P ].

Definition 3.1. A tiling P of Rd is said to be aperiodic if it has no nontrivial
translational symmetries, i.e., if P = P + x for some x ∈ Rd, then x = 0.

We say P is repetitive if, for every r > 0, there is a number R > 0 such
that for every x, y ∈ Rd, the patch BR(x)[P ] contains a translation of the
patch Br(y)[P ].

One of the aims of this paper is to identify, for each of our attractors
A ⊂M , a tiling P whose associated tiling space ΩP is homeomorphic to A.
We now formally introduce this space, also known in the literature as the
continuous hull of P . First however, we must describe the local topology on
a set of tilings.

Definition 3.2. Suppose W is a set of tilings in Rd. The local topology on
W is given by the basis of open sets defined by all the cylinder sets. For
W ∈W and parameters r, s > 0, define the cylinder set

U(W, r, s) =
{
V ∈W : Br(0)[V ] = Br(0)[W + x]

for some x ∈ Rd with |x| < s
}
.

That is, U(W, r, s) consists of those tilings which agree with W + x out to
distance r from the origin, for some translate x of length less than s.

This topology is metrisable, and the reader will find many sources (e.g.,
[36]) which define it directly in terms of a specific metric ∂. Loosely speaking,
the metric ∂ declares two tilings to be close if, after a small translation, they
agree out to a large distance from the origin.
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Definition 3.3. The tiling space of P is the space Ω = ΩP of all tilings S
of Rd all of whose local patches Br(x)[S] are translation images of patches
occurring in P , and topologised with the local topology.

Assuming P is repetitive, ΩP may also be defined as the completion of
P + Rd, the set of all translates of P , with respect to the metric ∂.

We shall meet in Section 4 the particular case of tilings generated by
substitutions. For this class of examples we shall give a further (equivalent)
definition of the corresponding tiling space.

For a repetitive, aperiodic tiling P , the space ΩP is compact, connected
and locally has the structure of a Cantor set crossed with a d-dimensional
disc; in fact it can be shown that, up to homeomorphism, ΩP has the struc-
ture of a Cantor fibre bundle over a d-torus [34].

A host of results [1, 5, 6, 19, 25, 35], etc., variously identify a tiling space
as an inverse limit of finite, path-connected complexes. These results are
applicable to tilings varying from the very general to specific classes, but
one motivation for many of them has been to decompose the tiling spaces in
such a way as to make computation of cohomology and K-theory accessible:
if

ΩP = lim
←−
{· · · → Xn → Xn−1 → · · · → X1}

then, for example, the Čech cohomology may be computed as H∗(ΩP ) =
lim−→H∗(Xn).

Although results like these show that the formalism of shape theory is
very natural to apply to the subject of tiling spaces, it has not explic-
itly been done as far as we are aware. Nevertheless, it is interesting to
note that several of the crucial steps in the papers such as [5, 6, 25] which
are particularly effective at computing cohomology, use essentially a shape
equivalence: the machines developed compute the cohomologies H∗(ΩP ) by
actually computing the cohomology of a space that is shape equivalent, but
not homeomorphic, to ΩP .

We are now in a position to introduce our L-invariant mentioned in the
introduction.

Definition 3.4. Suppose P is a tiling of Rd, and ΩP is its associated tiling
space. Define L(ΩP ) to be lim1 π1(Xn) for any P-expansion

ΩP = lim
←−
{· · · → Xn → Xn−1 → · · · → X1}

with path-connected, pointed complexes Xn.

Following the discussion in the previous section, the invariant L(−) takes
values in the category of pointed sets. By construction, L(−) is a shape
invariant, and hence an invariant of ΩP up to homeomorphism. It is in fact
the first of a series of such invariants, and although we do not use them here,
we record
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Definition 3.5. Suppose P is a tiling of Rd, and ΩP is its associated tiling
space. For i ∈ N, define Li(ΩP ) to be lim1 πi(Xn) for any P-expansion

ΩP = lim
←−
{· · · → Xn → Xn−1 → · · · → X1}

with path-connected, pointed complexes Xn. Then Li(ΩP ) = L(ΩP ) for
i = 1, while for higher i it will take values in abelian groups.

Remark 3.6. By the work of the previous section, the L-invariant for 1-
dimensional tilings provides an obstruction to the tiling space being movable,
and hence to it being realised as a subspace of a surface. In fact, homology
or cohomology frequently suffice to determine that a space is not movable
since, for X a finite, path-connected CW complex, and as H1(X) is the
abelianisation of π1(X), if the inverse system

· · ·π1(Xn)→ π1(Xn−1)→ · · · → π1(X0)

is ML, then the system

· · ·H1(Xn)→ H1(Xn−1)→ · · · → H1(X0)

is also ML. Thus the nonvanishing of lim1H1(Xn) implies the nonvanishing
of lim1 π1(Xn); similarly, divisibility in lim

−→
H1(Xn) will also imply that the

L-invariant is nonzero.
For example, consider the dyadic solenoid S given by the inverse limit of

circles Xn = S1 with bonding map the doubling map. This space can be
seen to be immovable from the fact that lim1H1(Xn) does not vanish (it
is a copy of the 2-adic integers mod Z), or equivalently from the fact that
H1(S) = lim

−→
H1(Xn) = Z

[
1
2

]
. However, we will see in Section 4.3 examples

of tiling spaces for which the finer L invariant and the associated homotopy
groups are necessary to detect lack of movability.

3.2. Expanding attractors in codimension one. Recall that, given a
diffeomorphism h of a Cr-manifold M , r > 1, an attractor A is a closed
invariant set that admits a closed neighborhood N such that:

(1) h(N) ⊂ Interior(N).
(2) A consists of nonwandering points of h.
(3) A =

⋂
n∈N h

n(N).

We will consider the case that A is a continuum of codimension one in M
(i.e., it has topological dimension one less than that of M) and that A is an
expanding attractor. Then each point x ∈ A has a stable manifold

W s(x) = {y ∈M |dist(hn(x), hn(y))→ 0 as n→∞}
which is an immersed one-to-one image of R and an unstable manifold

W u(x) = {y ∈M | dist(hn(x), hn(y))→ 0 as n→ −∞}
which is an immersed one-to-one image of Rd. For any given x, y ∈ A we have
W s(x)∩W u(y) ⊂ A and at each point in this intersection the corresponding
tangent spaces of the stable and unstable manifolds split the tangent space
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of M into a direct sum. In the expanding case under consideration, for each
point x ∈ A, W u(x) ⊂ A while W s(x) intersects A in a totally disconnected
set. Given points x, y ∈ A and fixed orientations on W s(x) and W u(y),
if for each point z ∈ W s(x) ∩W u(y) there is a neighborhood U of z that
can be oriented in a such a way that its orientation coincides with the
orientations induced byW s(x) andW u(y) at all points inW s(x)∩W u(y)∩U ,
then the attractor A is said to be orientable; otherwise, A is unorientable.
The general expanding attractor can have a more complicated structure, as
explored in [40]. In [30, 31] Plykin proved fundamental theorems about the
structure of codimension one attractors that are essential for our results and
are summarized in [32]. Many of these results relate to the structure of the
restriction of the h to W s(A) = ∪x∈AW s(x), the basin of attraction of A.

Theorem 3.7 ([32, 2.2]). If the continuum A is an orientable codimension
one expanding attractor of the diffeomorphism h of a Cr≥1-manifold M of
dimension d+1 ≥ 3, then W s(A) is homeomorphic to a (d+1)-dimensional
torus Td+1 with some finite number k points removed. Moreover, W s(A)

can be compactified by adding k points to form a space W s(A) that is home-
omorphic to Td+1 in such a way that h can be extended to a diffeomorphism
h : W s(A)→W s(A) that is topologically conjugate to a DA-diffeomorphism
of Td+1.

Recall that a DA-diffeomorphism of Td+1 is obtained by modifying an
Anosov automorphism Td+1 → Td+1; that is, an automorphism of Td+1 =
Rd+1/Zd+1 that lifts to an automorphism of Rd+1 represented by a matrix in
GL(d+ 1,Z) having no eigenvalues of modulus one. The modification takes
the form of inserting a source along each of a finite number of periodic orbits
of the automorphism. These maps were first introduced by Smale [38, 9.4(d)]
and are explained in detail in, for example, [33, Chapt 8.8], [29, Chapt 4.4,
Ex. 5].

A classic example of a DA-diffeomorphism is derived from the automor-
phism A of T2 represented by the matrix ( 1 1

1 0 ) modified at the fixed point 0
by changing the automorphism in a small disk V containing 0 in its interior
and leaving the automorphism unchanged outside V . The derived diffeo-
morphism h has a source at 0 and is isotopic to the original automorphism
A, as can be seen by isotopically deforming the disk V to a point. The
diffeomorphism h can be made C∞ and has a 1-dimensional attractor that
is locally homeomorphic to the product of an interval and the Cantor set.

Plykin also obtained a corresponding result for unorientable attractors.

Theorem 3.8 ([32, 2.2]). If the continuum A is an unorientable codimen-
sion one expanding attractor of the diffeomorphism h of a Cr≥1-manifold M

of dimension d+ 1 ≥ 3, then there is a manifold W̃ s(A) and a commutative



780 ALEX CLARK AND JOHN HUNTON

diagram

W̃ s(A)
h̃ //

π

��

W̃ s(A)

π

��

W s(A)
h // W s(A)

where h̃ is a diffeomorphism with an orientable expanding attractor Ã =
π−1(A) and π is a two-to-one covering map.

4. Attractors of dimension one

4.1. The shape of a dimension one, codimension one expanding
attractor. In this part we prove the stability of 1 dimensional expanding
attractors that embed in a surface, and in so doing prove Theorem 1.1 in
the case d = 1.

Williams [41, 42] showed that any 1-dimensional expanding attractor is
homeomorphic to the inverse limit space

A = lim←−

(
r∨
S1; s

)
: = lim←−

{
· · · →

r∨
S1 s−→

r∨
S1 → · · · →

r∨
S1

}
for an expansion s : (

∨r S1, p) → (
∨r S1, p) on the one point union of r

copies of the circle S1 that fixes the wedge point p. Notice that this is true
independent of whether or not the attractor is orientable.

Note that π1(
∨r S1, p) is the free group F r on r letters, and, up to homo-

topy, the map s : (
∨r S1, p)→ (

∨r S1, p) is determined by the endomorphism
s∗ in π1(−), that is by the endomorphism s∗ : F r → F r.

Lemma 4.1. Suppose A = lim←−(
∨r S1; s) for some map s : (

∨r S1, p) →
(
∨r S1, p). Let us write s∗ for the corresponding endomorphism of F r =
π1(
∨r S1, p) and G for the resulting inverse sequence of groups. Then A is

stable if and only if lim1 G = 1.

Proof. Any stable space is movable (Theorem 2.7, and see also [27, II §8.1,
p. 200]). Thus, by Proposition 2.14, if A is stable, G is ML and so lim1 G = 1.

We prove the converse. Assume that lim1 G = 1. From Theorem 2.15 we
know that Im sn∗ is eventually constant, say Im sn∗ = H 6 F r for all n > N .
Then H is necessarily a free group of some rank, m say, where m 6 r. We
realise the inclusion H → F r topologically as a map

j :

(
m∨
S1, q

)
−→

(
r∨
S1, p

)
(i.e., we take the m generators of H 6 F r = π1(

∨r S1), and represent them
as loops in

∨r S1; then j∗ in π1(−) realises the inclusion H → F r). Consider
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the diagram of spaces ∨r S1 s //
∨r S1

∨m S1

j

OO

∨m S1.

j

OO

As Im sn∗ = Im sn+1
∗ for all n > N , we can complete the diagram with a

map
∨m S1 w−→

∨m S1 making the square commute up to homotopy and in
particular inducing an isomorphism w∗ : π1(

∨m S1, q) → π1(
∨m S1, q). By

the Whitehead theorem, w is a homotopy equivalence. We then have that X
is shape equivalent to the inverse limit of spaces

∨m S1 and bonding maps
the homotopy equivalences w. Thus X is shape equivalent to

∨m S1. �

Theorem 4.2. Any codimension one expanding attractor A of a diffeomor-
phism of a surface is stable.

Proof. By Williams’ characterisation of 1-dimensional attractors and the
above lemma, the stability of a 1-dimensional expanding attractor A =
lim←−(

∨r S1; s) is equivalent to the vanishing of lim1 for any associated in-

verse sequence of fundamental groups. However, this lim1 must vanish by
Theorem 2.17 since any subcontinuum of a surface is movable. �

Remark 4.3. Consider an attractor A = lim←−(
∨r S1; s) with r = 1. Due to

the expansive nature of s, it will not induce an isomorphism on homology
of S1 and so the resulting attractor A is not stable. Thus, any expanding
attractor of a diffeomorphism of a surface is shape equivalent to

∨r S1 for
some r > 1, which in turn is homotopy equivalent to a 2-torus T2 with r− 1
points removed. This proves Theorem 1.1 for d = 1. Note that this result
does not require that the surface be orientable.

4.2. Realising limit spaces as attractors. We turn now to examine
conditions under which a space presented as a limit lim←−(

∨r S1; s) can be

realised as an expanding attractor for some diffeomorphism h on a surface
M . The question has two parts. From Theorem 4.2, a necessary condition
is that lim←−(

∨r S1; s) is stable, and we begin by considering conditions on the

map s that allow us to know when this is true, which, by Lemma 4.1, means
conditions that tell us when the corresponding lim1(Im(sn∗ )) vanishes. The
second part, the construction of M and h when we know that lim←−(

∨r S1; s)

is stable, is addressed in part in the Remark 4.10 below, but in general this
is a very difficult issue.

As the fundamental group of
∨r S1 is a free group F r on r generators, we

analyse the stability of lim←−(
∨r S1; s) via the endomorphism s∗ : F r → F r. It

is useful to consider also the abelianisation of this endomorphism, i.e., the
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corresponding endomorphism sab∗ and the commutative diagram

(4.1) F r
s∗ //

π

��

F r

π

��

Zr
sab∗ // Zr

where the vertical arrows π are both abelianisation.
For convenience, given an inverse system of groups and endomorphisms

· · ·G f−→ G
f−→ · · · −→ G

f−→ G

we write for short lim1(f)n for the corresponding lim1 term.
We note the following simple but useful condition, which is essentially a

restatement of the observation in Remark 3.6.

Lemma 4.4. A necessary condition for lim1(s∗)
n vanishing is the vanish-

ing of lim1(sab∗ )n. In particular, lim1(s∗)
n will not vanish unless sab∗ is an

isomorphism on its eventual range (equivalently, if the nonzero eigenvalues
of sab∗ are all units).

Remark 4.5. The image of s∗ is a free group on t letters, where t 6 r.
Without loss of generality, we shall assume that Im s∗ is of full rank, i.e.,
t = r, since if this is not so, then the rank of Im sn∗ will eventually stabilise,
say Im sn∗

∼= F k for large n, and instead of diagram (4.1) we can consider
the commutative diagram

F k
s∗|Imsn∗//

π

��

F k

π

��

Zk
s|ab∗ // Zk

where the rank of the top map, s∗|Imsn∗ is of full rank (now k). As the towers

· · · → F r
s∗−→ F r → · · · → F r and · · · → F k

s∗|Imsn∗−→ F k → · · · → F k

are equivalent in the pro-category, the lim1 term of one vanishes if and only
if the lim1 term of the other does.

Proposition 4.6. Suppose Im s∗ is free of rank r.

(1) Then lim1(s∗)
n vanishes if and only if s∗ is an isomorphism.

(2) If sab∗ is not an isomorphism then lim1(s∗)
n does not vanish.

Proof. First note that s∗ is injective: as Im s∗ is free of rank r, we may
regard s as an epimorphism from F r onto a group isomorphic to F r (namely
Im s∗). The Hopfian property of F r then tells us that s is injective.

For (1), if s∗ is an isomorphism, then clearly the tower

(4.2) · · · → F r
s∗−→ F r → · · · → F r

is ML and lim1(s∗)
n = 1.



TILING SPACES, CODIMENSION ONE ATTRACTORS AND SHAPE 783

Conversely, if s∗ is not an isomorphism, then as it is injective, it must fail
to be onto. Suppose x ∈ F r is not in the image of s∗. Then for each n, the
element sn−1∗ (x) in the image of sn−1∗ is not in Im sn∗ , for if sn∗ (y) = sn−1∗ (x)
for some y ∈ F r, by the injectivity of s∗, we have s∗(y) = x, contradicting
the assumption on x. The sequence of sets {Im sn∗} is thus strictly decreasing
with n and tower (4.2) is not ML. Hence lim1(s∗)

n 6= 1.
For (2), the case where Im sab∗ is of rank r but sab∗ is not an isomorphism

is dealt with by Lemma 4.4.
If Im sab∗ is of rank less than r, then by the commutativity of diagram

(4.1), the composite π ◦ s∗ cannot be onto, and hence s∗ is not onto. The
result now follows by the argument used in part (1). �

It is certainly not the case that an endomorphism s∗ : F r → F r need
be invertible for the corresponding inverse limit space to be stable, and
the constructions of the Remark 4.5 can be highly relevant. The following
example illustrates this point.

Example 4.7. The endomorphism s∗ on F 3 with generators a, b, c, given
by

a 7→ abc, b 7→ abc, c 7→ a

is not an isomorphism, but lim1(s∗)
n is trivial. This follows from the obser-

vation that the image of any power of s∗ is the free group F 2 generated by
the two words α = a, β = abc, and s∗ on Im s∗ acts as

α 7→ β β 7→ ββα

which is invertible (as is its abelianisation). Thus the inverse system of
groups is ML by part (1) of the proposition.

The following example illustrates part (2) of the proposition.

Example 4.8. Suppose s∗ is the endomorphism on F 2 with generators a, b
given by

a 7→ ababa, b 7→ baaab .

Then s∗ is of rank 2, but its abelianisation, given by the matrix ( 3 2
3 2 ), is of

rank 1. It may also be readily checked that this s∗ is not invertible, and
hence lim1(s∗)

n 6= 1.

Remark 4.9. Proposition 4.6 reduces the question of the stability of the
space lim←−(

∨r S1; s) to questions about the ranks of s∗ and its abelianisation

and a question about the invertibility of s∗; the latter being addressable
by methods such as Stallings’ folding technique. While in practice these
criteria may or may not be easily addressed, our second major question,
that of realising lim←−(

∨r S1; s) as an attractor supposing we have established

its stability, is a good deal harder.

Remark 4.10. In general, the stability of a space of the form lim←−(
∨r S1; s)

alone is not sufficient to guarantee that it occurs as an attractor of a surface
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diffeomorphism. Given such a space which is stable, it remains to geomet-
rically realise the map s :

∨r S1 →
∨r S1. Effectively, this means realising∨r S1 as a subspace of a surface M , thickening it to a 2-dimensional neigh-

bourhood
∨r S1 ⊂ N ⊂ M of the same homotopy type as

∨r S1 in such
a way that s∗ : π1(

∨r S1, p) → π1(
∨r S1) can be realised as the homomor-

phism h′∗ : π1(N) → π1(N) of some (differentiable) embedding h′ : N ↪→ N
which also allows an extension to a diffeomorphism h : M →M of the whole
surface. The space lim←−(

∨r S1; s) is then homeomorphic to the attractor⋂
n∈N h

n(N) ⊂ M . It is known that many automorphisms are not geo-
metrically realisable and in [23] it is even shown that in some sense most
automorphisms s∗ of F r when r > 2 are not geometrically realisable.

In [10, Theorem 4.1] Bestvina and Handel derive sufficient conditions in
terms of a cyclic word for an automorphism α of F r to be realisable in
the above sense to a pseudo-Anosov automorphism of a surface with one
boundary component. Given any such pseudo-Anosov automorphism, one
can construct a derived from pseudo-Anosov automorphism of the associ-
ated closed surface (with no boundary) that has a 1-dimensional attractor of
the form A = lim←−(

∨r S1; s) in a way that parallels the DA-automorphisms

of the torus discussed in Section 3.2, where the mapping s induces an auto-
morphism of π1(

∨r S1, p) conjugate to α.
The condition of [10, Theorem 4.1] does not apply to attractors in a closed

surface with multiple components in its complement (which correspond to
modifying the automorphism on more than one periodic orbit), and finding
general necessary and sufficient conditions seems quite difficult and will not
be addressed here. The problem is made more complicated by the fact
that the fundamental group itself does not uniquely determine surfaces with
boundary, and some information about the boundary components must also
be reflected in any sufficient conditions.

4.3. One-dimensional orientable attractors and substitution tiling
spaces. We turn to the issue of realising the orientable one dimensional
attractors as tiling spaces, proving Theorem 1.2 for d = 1. In contrast to
the situation when d > 1 that we will meet in the Section 5, we can realise
the 1-dimensional attractors as spaces of primitive substitution tilings, which
we now introduce.

Definition 4.11. A one dimensional substitution is a function σ from a
finite alphabet A of at least two letters to the set A∗ of nonempty, finite
words composed of letters in A. Such a substitution is called primitive if,
given any pair a, b of letters in A, there is an n such that the letter b occurs
in the word σn(a).

Giving the set A the discrete topology, the Z-fold product AZ (with the
product topology) is a Cantor set which supports the shift homeomorphism
S : AZ → AZ that shifts the index of points in AZ by one: S((xi)) = (yi),
where yi = xi+1.
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Definition 4.12. Given a substitution σ on A, the substitution subshift Σ
associated to σ is the subspace of all points (xi) ∈ AZ satisfying the property
that for all i ∈ Z and all k ∈ N, the word xixi+1 · · ·xi+k is a subword of
σn(a) for some n ∈ N and some a ∈ A. The substitution tiling space Ωσ is
the suspension of the shift homeomorphism S restricted to Σ, i.e., the space
Σ×R/ ∼ where ∼ denotes the equivalence relation which identifies ((xi), t)
with (S((xi)), t+ 1) for all (xi) ∈ Σ and t ∈ R.

It may be shown that for a primitive substitution σ, the space Ωσ coincides
with the tiling space Ω of Section 3.1 associated to any of the elements (xi)
of Σ.

In [4] Barge and Diamond show that any orientable 1-dimensional ex-
panding attractor is homeomorphic to either a solenoid or a substitution
tiling space. We sketch a proof. Consider a 1-dimensional attractor A =
lim←−(

∨r S1, s) as before satisfying the conditions of an elementary presenta-

tion in the sense of Williams [42]. By the orientability of A, we can cover A
by consistently oriented flow box neighborhoods. Choose such a covering.

Now choose a term Xn =
∨r S1 in the inverse sequence defining A such

that the pullbacks in A under the projection pn : A −→ Xn of sufficiently
small arcs in Xn are each contained in a flow box neighborhood. This
allows us to orient each circle in Xn (and in fact, in all Xm for m > n)
consistently with the orientation of A. Now construct an alphabet A =
{a1, . . . , ar} whose letters correspond to each oriented circle in

∨r S1 and
define a function σ from A into the set of nonempty finite words induced
by s : Xn+1 −→ Xn; each circle in Xn+1 is mapped to a finite, ordered
sequence of circles in Xn. Moreover, σ has as values nonempty words with
only positive powers.

To elaborate, the map s : Xn+1 −→ Xn determines how the small neigh-
borhoods given by the pullbacks of small neighborhoods determined by arcs
in Xn+1 fit within the flow box neighborhoods determined by the pullbacks
of arcs in Xn, and the consistent orientation of A then implies that s must
preserve the given orientation of the circles.

Then σ is a substitution when r > 1 and A is a solenoid if r = 1. By
Williams’ construction we may assume that s satisfies the flattening condi-
tion that some neighborhood of the wedge point p is mapped by some power
of s to a set homeomorphic to an interval. This implies that some power of
the substitution σ is proper in the terminology of [5] and so forces the border
in the sense of [1]. By the machinery of [1], Ωσ is therefore homeomorphic
to A.

Proof of Theorem 1.2 for d = 1. Suppose A is an orientable codimen-
sion one attractor. By the argument of Barge and Diamond sketched above,
we can identify A with a space Ωσ which is either a tiling space or a solenoid.
The latter we can rule out since by Theorem 2.17, we know that L(Ωσ)
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must vanish, which is not the case for a solenoid, as in the example of Re-
mark 3.6. �

Example 4.13. A simple but usefully explicit example is given by the DA-
diffeomorphism of the torus mentioned in Section 3.2, which is derived from
the automorphism represented by the matrix ( 1 1

1 0 ) and has an attractor that
is homeomorphic to the tiling space of the Fibonacci substitution

a 7→ ab, b 7→ a.

4.4. Embedding one-dimensional substitution tiling spaces in sur-
faces. Given the realisation in the result above of each orientable one di-
mensional, codimension one attractor as the tiling space of a primitive sub-
stitution, we turn to the converse question of which aperiodic, primitive
substitutions σ have a tiling space Ωσ that can occur as an expanding at-
tractor of a surface diffeomorphism: how close is the correspondence between
these two sets of objects?

Holton and Martensen show in [24] that whenever Ωσ can be embedded
in a closed orientable surface, it can occur as an attractor of a surface diffeo-
morphism, so our question addresses also the apparently more general issue
of when we can identify a one dimensional tiling space as a subspace of an
orientable surface.

In [24] a necessary condition for Ωσ to be embedded in such a surface is
given, the condition requiring that the asymptotic composants [4] of Ωσ must
form n-cycles for an even integer n, and moreover that the sum of indices
of the cycles in an essential embedding is equal to the Euler characteristic
of the ambient surface.

Theorem 4.2 gives a rather different necessary condition on the realisation
of a tiling space as an attractor of a surface diffeomorphism.

Corollary 4.14. Given a nonperiodic tiling of R with tiling space Ω, a
necessary condition for Ω to be realisable as an attractor of a surface diffeo-
morphism is that L(Ω) = 1.

In the case of a primitive substitution σ on A = {a1, . . . , ar}, we develop
tools for identifying information about the set L(Ωσ) from σ.

First, we recall that in [1] Anderson and Putnam construct (among other
things) a model for Ωσ in the case of a primitive substitution σ on an alpha-
bet A of r letters which satisfies the property of forcing the border. In this
model – precisely that appealed to in the construction of Section 4.3 — the
space Ωσ is described as the inverse limit

Ωσ = lim
←−

{
· · ·

r∨
S1 s−→

r∨
S1 → · · · →

r∨
S1

}
for a self map s which in π1(−) realises the substitution σ. We immediately
have:
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Proposition 4.15. In the case where σ forces the border [1] we have

L(Ωσ) = lim1(s∗)
n.

The techniques such as those developed in the Section 4.2 give methods
of deciding if this vanishes.

However, it may well be that σ does not force the border, and the situation
is then more complex. A number of models for Ωσ as an inverse limit
of a single bonding map are available, for example the Anderson–Putnam
complex of collared tiles [1], or the Barge–Diamond model [5] consisting of
a complex B with self map g and subcomplex Y composed of the so-called
gluing tiles. We consider this latter model. As before, L(Ωσ) = lim1(g∗)

n,
and in principle all the data needed to compute this set is contained in the
substitution σ. The following, however, provides a convenient tool. Recall
from [5] that collapsing the subspace Y to a point yields the space

∨r S1 of
the previous construction, with the commutative diagram of self maps

B //

g

��

∨r S1

s

��

B //
∨r S1.

Proposition 4.16. Suppose Y is path-connected. Then L(Ωσ) 6= 1 if
lim1(s∗)

n 6= 1.

Proof. If Y is path-connected, then the quotient map B →
∨r S1 induces

a surjection π1(B) → π1
(∨r S1

)
; this follows by observing that we can

take the individual S1’s as generating loops of π1
(∨r S1

)
, and, by choosing

a suitable maximal tree in Y , each loop can be lifted. This will not be
possible in general if Y is not path-connected.

Then we have an induced short exact sequence of groups and self maps

1 // Y //

g∗|Y
��

π1(B) //

g∗

��

π1
(∨r S1

)
//

s∗
��

1

1 // Y // π1(B) // π1
(∨r S1

)
// 1

yielding, by Lemma 2.16, an exact sequence finishing

· · · −→ lim1(π1(B); g∗) −→ lim1

(
π1

( r∨
S1

)
; s∗

)
−→ 1 .

Hence if lim1(s∗)
n 6= 1 then lim1(g∗)

n 6= 1. �

The following examples illustrate applications of this result. In each case
it is straightforward to check that the complex Y is path-connected and then
the nonvanishing of the respective lim1(s∗)

n follows by Proposition 4.6 since
each substitution homomorphism s∗ : F r → F r fails to be onto (in each case
its abelianisation is however an isomorphism).
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Example 4.17. The substitution σ,

1 7→ 1131, 2 7→ 1231, 3 7→ 232

is mentioned in [24] as an example of a substitution whose tiling space Ωσ

cannot be embedded in an orientable surface and yet meets the condition
of [24] on even cycles of asymptotic composants. Direct computation shows
that σ has a connected gluing cell subcomplex Y and Im s∗ is of rank 3. How-
ever, the Stallings’ folding technique shows that the endomorphism F 3 → F 3

induced by σ is not onto. Thus by Proposition 4.6 the group lim1(s∗)
n 6= 1,

and so the tiling space is not stable and hence cannot be embedded in a
surface.

Example 4.18. The substitution

φ3 : a 7→ abaab, b 7→ aba (the cube of the Fibonacci substitution)

is invertible and its tiling space is stable and occurs as an attractor for a
DA-diffeomorphism of the torus, as sketched in Example 4.13. However, the
substitution

a 7→ ababa, b 7→ baa

has the same abelianisation and (as it has no bb) has cohomology identical
to that of φ3. Yet, this substitution is not invertible and its tiling space is
not stable, as can be seen by applying Proposition 4.16. Hence, this tiling
space cannot be embedded in a surface.

In particular, we note that these two substitutions have identical coho-
mology (and hence K-theory), but are distinguished by the L-invariant.

Example 4.19. Revisiting Example 4.7, we note that the substitution on
A = {a, b, c} given by

a 7→ abc, b 7→ abc, c 7→ a

is not invertible, but the L-invariant of the tiling space is trivial. In fact
the pro-equivalence of corresponding inverse systems shows its tiling space
is homeomorphic to that generated by the invertible substitution on B =
{α, β}

α 7→ β, β 7→ ββα

whose tiling space is stable and occurs as an attractor for a DA-diffeomor-
phism of the torus.

5. Higher dimensional codimension one attractors

In this section we examine the nature of continua A that embed as a codi-
mension one expanding attractor of a diffeomorphism h of a closed manifold
M of dimension at least 3. We continue with the notation that the dimension
of M is d+ 1.

We prove Theorems 1.1 and 1.2 for d > 1 in Corollaries 5.2 and 5.4
below, utilising the work of Plykin detailed in Section 3.2 and the analysis
of projection tiling spaces by Forrest, Hunton and Kellendonk in [17]. We
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conclude with some further results about the restrictions our results imply
on the possible codimension one embeddings of tiling spaces.

5.1. The shape of codimension one attractors. To prove Theorem 3.7,
Plykin constructs a pair of transverse foliations of W s(A), the compactifi-
cation of the basin of attraction W s(A). In one foliation S all leaves are
homeomorphic to R and include (sometimes as subsets) the stable mani-
folds of the points of A. The other foliation U is by leaves homeomorphic
to Rd and among the leaves are the unstable manifolds of points of A. The
nature of closed manifolds admitting such foliations leads to the conclu-
sion that W s(A) is homeomorphic to Td+1. In the construction, the k points
{x1, . . . , xk} that are added become periodic points of a diffeomorphism h of

W s(A) which when restricted to A coincides with h. This diffeomorphism is
then topologically conjugate to a DA-diffeomorphism of Td+1; in particular,
a diffeomorphism of Td+1 that is derived from an expanding automorphism
α with 1–dimensional stable and d–dimensional unstable manifolds by in-
troducing repelling periodic points (sources) at a finite number of periodic
orbits of α. The points {x1, . . . , xk} in the remainder of the compactification

W s(A) correspond under the topological conjugacy to the points at which
a source has been added to construct the DA-diffeomorphism.

Theorem 5.1. If the continuum A occurs as a codimension one expanding
attractor of a diffeomorphism h of a closed manifold M of dimension d+1 >
2, then A is stable.

Proof. The result for dimM = 2 is covered by Theorem 4.2. We first treat
the case of dimM > 3 and A is orientable when Theorem 3.7 and the related
constructions apply. First we replace h by a positive iterate f that fixes all
the points {x1, . . . , xk} in the remainder of the compactification W s(A) and
preserves the orientation at each fixed point in the remainder. We first note
that ∩n∈Nfn(W s(A)) = A and that the pair of transverse foliations S and

U of W s(A) are constructed in such a way that they are invariant under h
and thus f. At each point xi one can form a neighborhood Ui admitting a
homeomorphism hi onto Rd × (−1, 1), where:

(1) Ui ∩A = ∅.
(2) hi(xi) = (0, 0).
(3) For each x ∈ Rd, the segment x× (−1, 1) is contained in a leaf of S.
(4) For each x ∈ (−1, 1), the hyperplane Rd× x is contained in a leaf of
U .

Moreover, we choose our neighborhoods Ui to be pairwise disjoint. In fact,
Plykin [30] constructs such neighborhoods, but their existence also follows
from the usual construction of foliation charts for the foliations S and U
once these foliations are known to exist.

Now let U = ∪ki=1 Ui. Then since ∩n∈Nfn(W s(A)) = A, we also have

that ∩n∈Nfn(N) = A, where N = W s(A) − U. Let Vn = fn(U). For each
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n ∈ N , the set Vn has as its connected components the k sets formed by
the fn images of the sets Ui. By construction, one can isotopically deform
each of the components of Vn within Vn+1 to obtain the components of
Vn+1. To see this, first observe that Vn+1 ⊃ Vn since f has a repelling fixed
point at each xi. Next, observe that f expands the central hyperplane in
each component of Vn given by fn(h−1i (Rd × 0)) while fixing xi, yielding
the central hyperplane of the corresponding component of Vn+1. At the
same time, f maps the hyperplanes fn(h−1i (Rd × x)) onto corresponding
hyperplanes of Vn+1. Thus, Vn sits tamely within Vn+1 as the union of k balls
within k larger balls in a way that can be nicely parameterised. Thus, letting
Wn = W s(A)− Vn we see that for each n ∈ N the inclusion Wn+1 ↪→Wn is
a homotopy equivalence. As the complement of k open balls in Td+1, each
Wn is homotopy equivalent to a finite polyhedron. Thus, the limit of the
inverse sequence

· · · ↪→W2 ↪→W1 ↪→W0

is stable. But this inverse limit is homeomorphic to ∩nWn = A.
We next treat the case that A is unorientable and make use of the double

covering π : W̃ s(A) → W s(A) as in Theorem 3.8. First, as above we con-

struct the neighborhoods Ṽn and W̃n for h̃. One of the important features of

the covering π is that its extension to the compactification W̃ s(A) is conju-
gate to the identification map of an involution I of the torus Td+1 that has
the form of the composition of a translation and the map x 7→ −x. More-

over, the points {x̃1, . . . , x̃n} in the remainder of the compactification W̃ s(A)

correspond to the fixed points of I. We then replace the neighborhoods Ṽn
by saturated neighborhoods Ṽ ′n of the same form satisfying the four above
conditions on Vn; that is, neighborhoods that are closed under application
of the involution I, which is possible since I fixes the points corresponding

to {x̃1, . . . , x̃n}. We then form the neighborhoods W̃ ′n = W̃ s(A)− Ṽ ′n which

satisfy ∩n W̃ ′n = Ã as above. As π ◦ h̃ = h ◦ π, the sets Wn = π(W̃ ′n) satisfy

∩nWn = A. As the sets Ṽ ′n were constructed to be saturated open sets, the

sets Vn = π(Ṽ ′n) are open in W s(A) and the isotopy deformations of Ṽ ′n
into Ṽ ′n+1 can be constructed so that they are mapped by π to homotopy
equivalences of Vn and Vn+1. Then just as above we have that A can be
realised as an inverse limit of the homotopy equivalences Wn+1 ↪→ Wn. At
each stage Wn will be a compact manifold with boundary and so still have
the homotopy type of a finite polyhedron [39]. Thus, the conclusion that A
is shape equivalent to Wn still holds and so A is stable. �

An immediate corollary of this proof is the statement of Theorem 1.1 for
d > 2:

Corollary 5.2. If A is a codimension 1 orientable expanding attractor in
M , then it is shape equivalent to a (d + 1)-torus with some finite number
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of points removed, and, in the unorientable case, it has such a space as a
double cover.

Remark 5.3. It should be noted that being stable is not a sufficient con-
dition for embedding as a codimension one attractor. In fact, Kalugin [25]
has shown that the Penrose tiling space is stable (a fact also deducible from
[1]), but by Corollary 5.6 below it cannot be embedded as a codimension
one attractor: in short, no tiling space resulting from a canonical projec-
tion scheme with internal space of dimension more than 1 has the right
cohomology.

5.2. Realising as projection tiling spaces. We turn now to the proof of
Theorem 1.2 for manifolds M of dimension at least 3, that is, the realisation
up to homeomorphism of an orientable attractor in M as a tiling space.

By a projection tiling we shall mean a tiling constructed from a projec-
tion scheme, as described in [17, 18, 20, 21]. In keeping with the notation
of those papers, the dimension of the Euclidean space in which the tiling is
constructed (the external space) E is d, and the codimension (the dimension
of the internal space E⊥) is denoted n. To avoid confusion with the codi-
mension of the attractors considered, we shall call n the internal dimension
of the projection scheme. The data for the projection scheme consists of the
total space Rn+d = E ⊕ E⊥ which contains an n + d dimensional lattice Γ
and an acceptance domain K ⊂ E⊥, a nonempty compact set which is the
closure of its interior. The projection scheme is called canonical if K is the
projection to the internal space of an n+d dimensional cube, and otherwise
we shall call it generalised. A related class of projection schemes are the
so-called almost canonical ones, introduced in [21], and to which our results
below also apply.

Given such a projection scheme, a whole family of tilings may be con-
structed, all locally equivalent to each other; indeed in some sense the tiling
space, again denoted Ω, for any (and all) of them is as naturally defined in
terms of the projection scheme data as by any individual tiling. We consider
in particular those with internal dimension 1.

The case of a generalised projection tiling space for general d but n = 1 is
studied in detail in [17, Chapt. III]. There K consists of a (countable) dis-
joint union of closed intervals, and the resulting tiling space is given by the
(d+ 1)-torus Td+1 = (E ⊕E⊥)/Γ cut on a set of E-orbits generated by the
image of the boundary points of K in Td+1. In particular, it is shown how
using such a scheme one can construct any Denjoy-like example, obtaining
a Zd action on a Cantor set given by cutting open any countable number of
orbits of a Zd action by translations on the circle. These actions lead to gen-
eralised projection tiling spaces that include as special cases the orientable
attractors described in Theorem 3.7. Hence, we have the following.
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Corollary 5.4. Any orientable codimension one attractor in a manifold of
dimension at least 3 is homeomorphic to the tiling space of a generalised
projection with internal dimension one.

This, together with the work of the previous section, proves Theorem 1.2
of the Introduction.

We conclude with two further points about the realisability or unrealis-
ability of attractors as tiling spaces, or tiling spaces as attractors.

First, the use of the generalised projection tilings of internal dimension 1
to realise all attractors in manifolds of dimension at least 3 might lead one to
wonder if the same projection schemes could also realise all the 1 dimensional
attractors in surfaces as well. This is not so. As any such projection tiling
can be embedded in a torus, this shows that an attractor A that may occur
only in surfaces of genus greater than one cannot be homeomorphic to a
projection tiling space. See, for example, [16] for a specific higher genus
case worked out in detail. Thus we need a different supply of tilings, such
as those considered in the previous section, than the projection tilings to
account for all the surface cases.

Secondly, the shape equivalence of an attractor to a (d + 1)-torus less
k points, or to a space of which that is a double cover, puts considerable
constraints on realising a given tiling space as an attractor, especially as d
gets large. We illustrate this by considering the cohomology of such a space.

Proposition 5.5. Suppose A is a codimension one attractor of a manifold
of dimension at least 3. Then if A is orientable, its Čech cohomology is
given by

Hp(A) =


0 if p > d,
Zd+k if p = d,

Hp(Td+1) = Z(d+1
p ) if 0 6 p < d

for a finite positive integer k. In the unorientable case, the free part of
H∗(A) includes in these groups.

Proof. By Theorem 5.1, in the unorientable case we know that A will have
the same cohomology as Td+1−{k} for some finite positive k. The cohomol-
ogy follows from an elementary Mayer–Vietoris calculation ofH∗(Td+1−{k}).

In the unorientable case, A has a 2-fold cover (Td+1− {k}) π−→ A. The
transfer map τ∗ of a covering [13] in cohomology with coefficients in a ring
R gives a diagram

Hp(A;R)
π∗−→ Hp(Td+1− {k};R)

τ∗−→ Hp(A;R)

whose composite is multiplication by 2. If we choose R = Q, then π∗ must
be injective and the result follows. �

So, we see for example that most canonical projection tilings (in fact all
those of codimension 2 or more, such as the Penrose tiling) do not embed
as codimension one attractors:
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Corollary 5.6. Suppose the tiling space Ω of a dimension d > 1, internal
dimension n canonical projection tiling has the shape of a finite polyhedron
P , and suppose P is homotopy equivalent either to a (d + 1)-torus with k
points removed, (Td+1−{k}), or else has (Td+1−{k}) as a 2-fold cover. Then
n = 1. In particular, no internal dimension n > 1 canonical projection tiling
space can appear as a codimension one attractor of a C1 diffeomorphism of
a closed manifold.

To prove this we need:

Lemma 5.7. For Ω the tiling space of a dimension d, internal dimension
n canonical projection tiling with finitely generated cohomology, the group
H1(Ω) contains a free abelian subgroup of rank at least n+ d.

Sketch Proof. This follows from the work of [17] and Cor. 4.3 of [7] and
Cor. 3 of [8] (see also [21] which covers the more general case of ‘almost
canonical’ projections).

The work of [17] sets up a method to compute the Čech cohomology
H∗(Ω) via certain exact sequences in group homology. In particular, there
is a short exact sequence of Γ modules

0 −→ Cn −→ Cn−1 −→ Cn−20 −→ 0

which induces a long exact sequence

(5.1) · · · −→ Hs+1(Γ;Cn−1) −→ Hs+1(Γ;Cn−20 ) −→ Hs(Γ;Cn) −→ · · · .

The groups and map Hs+1(Γ;Cn−20 ) −→ Hs(Γ;Cn) in this sequence may
be identified with the homomorphism Hd−s(Tn+d) −→ Hd−s(Ω) induced by
the almost everywhere one-to-one surjection Ω→ Tn+d to the n+ d torus.

The results of [17] (ch. IV, Thm. 6.7, ch. V, Thm. 2.4) tell us that if H∗(Ω)
is to be finitely generated then n must divide d. In this situation, it can
be deduced that Hs(Γ;Cn−1) is nonzero only for s 6 d

n(n − 1). The exact
sequence (5.1) and these observations taken together yield for cohomology
in dimension 1 the sequence

0 −→ H1(Tn+d) −→ H1(Ω) −→ · · ·
from which the lemma follows. �

Proof of Corollary 5.6. By Proposition 5.5 H1(A;Q) is a vector space of
dimension at most d + 1. If Ω is the tiling space of a canonical projection
scheme of internal dimension n, then H1(Ω;Q) = Qn+d. Clearly n = 1 is
the only possibility for Ω being shape equivalent to A. �

References

[1] Anderson, Jared E.; Putnam, Ian F. Topological invariants for substi-
tution tilings and their associated C∗-algebras. Ergodic Theory Dynam. Sys-
tems 18 (1998), no. 3, 509–537. MR1631708 (2000a:46112), Zbl 1053.46520,
doi: 10.1017/S0143385798100457.

http://www.ams.org/mathscinet-getitem?mr=1631708
http://www.emis.de/cgi-bin/MATH-item?1053.46520
http://dx.doi.org/10.1017/S0143385798100457


794 ALEX CLARK AND JOHN HUNTON

[2] Artin, M.; Mazur, B. Etale homotopy. Lecture Notes in Mathematics, 100.
Springer-Verlag, Berlin-New York 1969. iii+169 pp. MR0245577 (39 #6883), Zbl
0182.26001, doi: 10.1007/BFb0080957.

[3] Barge, Marcy; Bruin, Henk; Jones, Leslie; Sadun, Lorenzo. Homologi-
cal Pisot substitutions and exact regularity. Israel J. Math. 188 (2012), 281–300.
MR2897733. arXiv:1001.2027, doi: 10.1007/s11856-011-0123-4.

[4] Barge, Marcy; Diamond, Beverly. A complete invariant for the topol-
ogy of one-dimensional substitution tiling spaces. Ergodic Theory Dynam. Sys-
tems 21 (2001), no. 5, 1333–1358. MR1855835 (2002k:37026), Zbl 0986.37015,
doi: 10.1017/S0143385701001638.

[5] Barge, Marcy; Diamond, Beverly. Cohomology in one-dimensional substitution
tiling spaces. Proc. Amer. Math. Soc. 136 (2008), no. 6, 2183–2191. MR2383524
(2009c:37005), Zbl 1139.37002, arXiv:math/0702669, doi: 10.1090/S0002-9939-08-
09225-3.

[6] Barge, Marcy; Diamond, Beverly; Hunton, John; Sadun, Lorenzo. Cohomol-
ogy of substitution tiling spaces. Ergodic Theory and Dynam. Systems, 30 (2010),
no. 6, 1607–1627. MR2736888 (2011m:37018), Zbl 1225.37021, arXiv:0811.2507v1,
doi: 10.1017/S0143385709000777.

[7] Barge, Marcy; Kellendonk, Johannes. Proximality and pure point spectrum for
tiling dynamical systems. (2011). arXiv:1108.4065.

[8] Barge, Marcy; Kellendonk, Johannes; Schmieding, Scott. Maximal equicon-
tinuous factors and cohomology for tiling spaces. (2012). To appear in Fund. Math.
arXiv:1204.1432.

[9] Bellissard, J.; Herrmann, D. J. L.; Zarrouati, M. Hull of aperiodic solids
and gap labeling theorems. Directions in mathematical quasicrystals, 207–258. CRM
Monogr. Ser., 13, Amer. Math. Soc., Providence, RI, 2000. MR1798994 (2002a:82101),
Zbl 0972.52014.

[10] Bestvina, Mladen; Handel, Michael. Train tracks and automorphisms of free
groups. Ann. of Math. (2) 135 (1992), no. 1, 1–51. MR1147956 (92m:20017), Zbl
0757.57004, doi: 10.2307/2946562.

[11] Borsuk, Karol. On movable compacta. Fund. Math. 66 (1969/1970) 137–146.
MR0251698 (40 #4925), Zbl 0189.53802.

[12] Borsuk, Karol. Theory of shape. Mathematical Monographs, 59, PWN—Polish
Scientific Publishers, Warsaw, 1975. 379 pp. MR0418088 (54 #6132), Zbl 0317.55006.

[13] Bredon, Glen E. Equivariant cohomology theories. Lecture Notes in Mathematics,
34. Springer-Verlag, Berlin-New York 1967. vi+64 pp. MR0214062 (35 #4914), Zbl
0162.27202.

[14] Clark, Alex; Sadun, Lorenzo. When shape matters: deformations of tiling spaces.
Ergodic Theory Dynam. Systems 26 (2006), no. 1, 69–86. MR2201938 (2006k:37037),
Zbl 1085.37011, arXiv:math/0306214, doi: 10.1017/S0143385705000623.

[15] Fedotov, A. G. On Williams solenoids and their realization in two-dimensional
dynamical systems. (Russian) Dokl. Akad. Nauk SSSR 252 (1980), no. 4, 801–804.
MR0580824 (82b:58072), Zbl 0489.58019.

[16] Fitzkee, Thomas L.; Hockett, Kevin G.; Robinson, E. Arthur, Jr. A weakly
mixing tiling dynamical system with a smooth model. Tilings of the plane. The-
oret. Comput. Sci. 303 (2003), no. 2–3, 447–462. MR1990776 (2005a:37018), Zbl
1027.37009, doi: 10.1016/S0304-3975(02)00501-7.

[17] Forrest, Alan; Hunton, John; Kellendonk, Johannes. Topological invariants
for projection method patterns. Mem. Amer. Math. Soc. 159 (2002), no. 758. x+120
pp. MR1922206 (2003j:37024), Zbl 1011.52008, arXiv:math/0010265.

http://www.ams.org/mathscinet-getitem?mr=0245577
http://www.emis.de/cgi-bin/MATH-item?0182.26001
http://www.emis.de/cgi-bin/MATH-item?0182.26001
http://dx.doi.org/10.1007/BFb0080957
http://www.ams.org/mathscinet-getitem?mr=2897733
http://arXiv.org/abs/1001.2027
http://dx.doi.org/10.1007/s11856-011-0123-4
http://www.ams.org/mathscinet-getitem?mr=1855835
http://www.emis.de/cgi-bin/MATH-item?0986.37015
http://dx.doi.org/10.1017/S0143385701001638
http://www.ams.org/mathscinet-getitem?mr=2383524
http://www.emis.de/cgi-bin/MATH-item?1139.37002
http://arXiv.org/abs/math/0702669
http://dx.doi.org/10.1090/S0002-9939-08-09225-3
http://dx.doi.org/10.1090/S0002-9939-08-09225-3
http://www.ams.org/mathscinet-getitem?mr=2736888
http://www.emis.de/cgi-bin/MATH-item?1225.37021
http://arXiv.org/abs/0811.2507v1
http://dx.doi.org/10.1017/S0143385709000777
http://arXiv.org/abs/1108.4065
http://arXiv.org/abs/1204.1432
http://www.ams.org/mathscinet-getitem?mr=1798994
http://www.emis.de/cgi-bin/MATH-item?0972.52014
http://www.ams.org/mathscinet-getitem?mr=1147956
http://www.emis.de/cgi-bin/MATH-item?0757.57004
http://www.emis.de/cgi-bin/MATH-item?0757.57004
http://dx.doi.org/10.2307/2946562
http://www.ams.org/mathscinet-getitem?mr=0251698
http://www.emis.de/cgi-bin/MATH-item?0189.53802
http://www.ams.org/mathscinet-getitem?mr=0418088
http://www.emis.de/cgi-bin/MATH-item?0317.55006
http://www.ams.org/mathscinet-getitem?mr=0214062
http://www.emis.de/cgi-bin/MATH-item?0162.27202
http://www.emis.de/cgi-bin/MATH-item?0162.27202
http://www.ams.org/mathscinet-getitem?mr=2201938
http://www.emis.de/cgi-bin/MATH-item?1085.37011
http://arXiv.org/abs/math/0306214
http://dx.doi.org/10.1017/S0143385705000623
http://www.ams.org/mathscinet-getitem?mr=0580824
http://www.emis.de/cgi-bin/MATH-item?0489.58019
http://www.ams.org/mathscinet-getitem?mr=1990776
http://www.emis.de/cgi-bin/MATH-item?1027.37009
http://www.emis.de/cgi-bin/MATH-item?1027.37009
http://dx.doi.org/10.1016/S0304-3975(02)00501-7
http://www.ams.org/mathscinet-getitem?mr=1922206
http://www.emis.de/cgi-bin/MATH-item?1011.52008
http://arXiv.org/abs/math/0010265


TILING SPACES, CODIMENSION ONE ATTRACTORS AND SHAPE 795

[18] Forrest, A. H.; Hunton, J. R.; Kellendonk, J. Cohomology of canonical
projection tilings. Comm. Math. Phys. 226 (2002), no. 2, 289–322. MR1892456
(2003m:37022), Zbl 0994.52011, doi: 10.1007/s002200200594.

[19] Gaehler, F. Lectures given at workshops. Applications of Topology to Physics and
Biology Max-Planck-Institut für Physik komplexer Systeme, Dresden, June 2002,
and Aperiodic Order, Dynamical Systems, Operator Algebras and Topology, Victo-
ria, British Columbia, August, 2002.

[20] Gaehler, F.; Hunton, J.; Kellendonk, J. Integer Čech Cohomology of Projection
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