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Essential normality and the
decomposability of algebraic varieties

Matthew Kennedy and Orr Moshe Shalit

Abstract. We consider the Arveson–Douglas conjecture on the essen-
tial normality of homogeneous submodules corresponding to algebraic
subvarieties of the unit ball. We prove that the property of essential nor-
mality is preserved by isomorphisms between varieties, and we establish
a similar result for maps between varieties that are not necessarily in-
vertible. We also relate the decomposability of an algebraic variety to
the problem of establishing the essential normality of the correspond-
ing submodule. These results are applied to prove that the Arveson–
Douglas conjecture holds for submodules corresponding to varieties that
decompose into linear subspaces, and varieties that decompose into com-
ponents with mutually disjoint linear spans.
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1. Introduction

In this paper, we consider a conjecture of Douglas and Arveson that
implies a correspondence between algebraic varieties and C*-algebras of es-
sentially normal operators. In the papers [Sha11] and [Ken12], we showed
that this conjecture can be viewed as a problem of finding certain nice de-
compositions of submodules of C[z1, . . . , zd]. In the present paper, we take
a slightly different perspective, and relate the conjecture to the geometry of
the variety in question.

Let d be a fixed positive integer, and let C[z] = C[z1, . . . , zd] denote the
algebra of complex polynomials in d variables. The Drury–Arveson space
H2
d is the reproducing kernel Hilbert space on the unit ball Bd generated by

the kernel functions

kλ(z) =
1

1− 〈z, λ〉
, λ ∈ Bd.

Equivalently, H2
d is the completion of C[z] with respect to the inner product

〈zα, zβ〉 = δα,β
α1! · · ·αd!

(α1 + · · ·+ αd)!
, α, β ∈ Nd0,

where we have used the notation zα = zα1
1 · · · z

αd
d for α = (α1, . . . , αd) in Nd0.

The d-shift S = (S1, . . . , Sd) is the d-tuple of multiplication operators on
H2
d corresponding to the coordinate functions z1, . . . , zd. They act by

(Sif)(z) = zif(z), f ∈ H2
d .

We will be particularly interested in these operators, which were introduced
and extensively studied in [Arv98]. Together with the d-shift S, the space
H2
d forms a Hilbert module over C[z], with the module action given by

pf = p(S1, . . . , Sd)f, p ∈ C[z], f ∈ H2
d .

Endowed with this module structure, H2
d is known as the d-shift Hilbert

module.
For an ideal I of C[z], we define

FI = H2
d 	 I.

Note that since the closure of I in H2
d is an invariant subspace for each Sj ,

the space FI is coinvariant for each Sj . We let SIj denote the compression
of Sj to FI , i.e.,

SIj = PFI
Sj |FI

.

Then as a Hilbert module, FI is equivalent to the quotient of H2
d by the

closure of I in H2
d .

We will require the following correspondence between ideals of C[z] and
subsets of the unit ball Bd of Cd. For an ideal I of C[z], we define

V (I) = {z ∈ Bd | p(z) = 0 ∀p ∈ I},
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and for a subset V of Bd, we define

I(V ) = {p ∈ C[z] | p(z) = 0 ∀z ∈ V }.

For a homogeneous ideal I we shall call the set V (I) a homogeneous variety
in Bd. All the varieties in this paper will be homogeneous varieties in Bd.

If the ideal I is radical, then the space FI is a reproducing kernel Hilbert
space over V (I). More generally, it was established in [DRS11, Lemma 5.5]
that in this case we have the equality

FI = span{kλ | λ ∈ V (I)}.

Arveson’s conjecture is that for every homogeneous ideal I of C[z], the
quotient operators SI1 , . . . , S

I
d satisfy

(1.1) [SIi , S
I∗
j ] := SIi S

I∗
j − SI∗j SIi ∈ Lp, p > d, 1 ≤ i, j ≤ d,

where for 1 ≤ p ≤ ∞, Lp denotes the set of Schatten p-class operators on
H2
d . The general version of Arveson’s conjecture includes multiplicity, but

we are not worrying about that for now, and in fact, by [Sha11, Section 5],
the full conjecture is equivalent to the scalar case (up to a small modification
of the range of p).

Douglas conjectured further that (1.1) should hold for all p > dim I.
Note that dim I is defined in the following way. It is known that there is
a polynomial hI(x), called the Hilbert polynomial, such that for sufficiently
large n, the dimension of Hn 	 In is equal to hI(n). The dimension dim I
is defined to be deg(hI(x)) + 1 (see, e.g., [CLS92, Chapter 9]). If V is the
affine variety determined by I then dim I = dimV . For example, when the
variety V is a union of subspaces this is just the maximal dimension of the
subspaces.

In this note we will be concerned with the Arveson–Douglas conjecture
for radical homogeneous ideals. To express our ideas in the clearest way, we
are led to introduce the following notation. If X is a subspace of Cd, then
we write Xn for the n-th symmetric tensor power of X with itself. If V ⊆ X
is a homogeneous variety in the ball, i.e., if V is of the form V = V (I),
for some radical homogeneous ideal I of C[z], then we define V n to be the
subspace of Xn spanned by elements of the form

λn = λ⊗ · · · ⊗ λ︸ ︷︷ ︸
n times

, λ ∈ V.

Thus, if V = V1 ∪ · · · ∪ Vk is a union of varieties, then we have that

V n =
k∑
i=1

V n
i .

Using the natural identification of C[z] with symmetric Fock space gives the
decomposition

FI = ⊕∞n=0V
n.
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With this identification, the kernel functions kλ of FI are of the form

kλ =

∞∑
n=0

λ
n
, λ ∈ V.

We remark that (for sufficiently large n) the dimension of V n is bounded by

nd−1, because it is a subspace of (Cd)n, which has dimension (n+d−1)!
n!(d−1)! .

When we consider FI as a reproducing kernel Hilbert space over V (I),
then the operators SIi correspond to multiplication operator Mfi defined by

(Mfig)(z) = (fig)(z), g ∈ FI ,

where fi = zi
∣∣
V (I)

. The algebra AI is defined to be the normed closed

unital algebra generated by (SI1 , . . . , S
I
d). This algebra is a normed closed

subalgebra of the multiplier algebra of FI . If p belongs to C[z], then it will
be convenient to identify p(SI1 , . . . , S

I
d) with the multiplication operator Mp.

For p ≥ 1, we will say that the quotient module FI is p-essentially normal
if

[SIi , S
I∗
j ] ∈ Lp, 1 ≤ i, j ≤ d.

Recall that this is equivalent to |[SIi , SI∗j ]|p being trace class for 1 ≤ i, j ≤ d.

If V = V (I) and I = I(V ), which is the case whenever I is a radical ideal,
then we will write SV1 , . . . , S

V
d for SI1 , . . . , S

I
d . Similarly, we will write FV

for FI , and AV for AI . Using this notation, we now state for reference the
form of the Arveson–Douglas conjecture that we consider in this paper.

Conjecture 1.1 (Geometric Arveson–Douglas Conjecture). Let V be a ho-
mogenous variety in Bd. Then the submodule FV is p-essentially normal for
every p > dimV .

Note that the essential normality of FV is independent of the ambient
space Cd (and in particular of the dimension d) in which we choose to (iso-
metrically) embed V (see [DRS11, Remark 8.1]).

Conjecture 1.1 originated with Arveson’s investigation of the curvature
invariant of a commuting d-tuple [Arv00, Arv02]. In the past decade, it has
drawn a lot of attention, for example in the papers [Arv05, Arv07, Dou06a,
Dou06b, DS11, DW12, Esc11, GW08, Ken12, Sha11], which deal directly
with this conjecture. We also wish to mention two recent papers, [DW11]
and [FX12], which treat the essential normality of a principal ideal gen-
erated by a (not necessarily homogeneous) polynomial. These papers are
worth mentioning, not only because the problem they treat is closely re-
lated, but also because they introduce promising analytic techniques that
are quite different from previous approaches to the general problem of es-
sential normality.

The main result of [DRS11, Section 7.3] is that if V and W are “tractable”
homogeneous varieties, and if A is an invertible linear map that maps W
onto V that is isometric on W , then the map f 7→ f ◦A is an isomorphism
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between the algebras AV and AW [DRS11, Theorem 7.17]. Furthermore, it

was shown that this isomorphism is implemented by a similarity Ã∗, i.e.,

ϕ(Mf ) = Ã∗Mf (Ã∗)−1,

where Ã : FW → FV is an invertible bounded linear map satisfying

Ãkλ = kAλ.

Recently, in [Har12], Hartz was able to prove a stronger version of this result
that does not require the varieties to be tractable. We will require this result
for what follows.

In this paper, we study the Arveson–Douglas conjecture for submodules
of the form FV , where V is a homogeneous variety in Bd. In Section 2, we
prove that if W is a homogeneous variety in Bd′ , for some positive integer d′,
and if AV is isomorphic to AW , then FV is p-essentially normal if and only
if FW is p-essentially normal. We also establish a similar result for maps
between varieties that are not necessarily isomorphic.

In Section 3, we consider when it is possible to decompose V as V =
V1 ∪ · · · ∪ Vn, where V1, . . . , Vn are homogeneous varieties in Cd with the
property that the algebraic sum FV1 +· · ·+FVn is closed. This is a geometric
analogue of the notion of the decomposability of a submodule that was
introduced in [Ken12]. We relate this geometric notion of decomposability
to the problem of establishing the p-essential normality of the submodule
FV .

Finally, in Section 4, we apply the results from Section 2 and Section 3 to
establish the Arveson–Douglas conjecture for two new classes of examples.
Using Hartz’s result from [Har12], we prove that FV satisfies the Arveson–
Douglas conjecture when V decomposes as the union of linear subspaces.
We also prove that FV satisfies the Arveson–Douglas conjecture when V
decomposes into varieties V1, . . . , Vn such that each FVi satisfies the con-
jecture, and span(Vi) ∩ span(Vj) = 0 whenever i 6= j. These are perhaps
the simplest classes of examples for which the conjecture was not previously
known to be true.

2. Linear maps between varieties and essential normality

2.1. Invertible maps.

Theorem 2.1. Let V and W be homogeneous varieties in Bd and Bd′ re-
spectively. Suppose the algebras AV and AW are algebraically isomorphic.
Then for p ≥ 1, FV is p-essentially normal if and only if FW is p-essentially
normal.

Proof. Since AV and AW are isomorphic, by results of [DRS11] (Proposi-
tion 7.1, Theorem 7.4 and Proposition 8.3) there is a linear transformation

A : Cd → Cd′ that maps V bijectively onto W . It now follows from [Har12]
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(Proposition 2.5 and Corollary 5.8) that there is an invertible linear map

Ã : FV → FW defined by

Ãkλ = kAλ, λ ∈ V.

It follows that if f is a polynomial in FV then

Ãf = f ◦A∗.

The adjoint Ã∗ : FW → FV is defined by

Ã∗f = f ◦A, f ∈ FW .

Note that for a polynomial f in FV , ÃMf = Mf◦A∗Ã, and similarly for a

polynomial f in FW , Ã∗Mf = Mf◦AÃ
∗.

Fix polynomials f and g in FV . Then using the identities Mg◦A∗ =

ÃMgÃ
−1, M∗f◦A∗Ã = ÃM∗f◦A∗A and M∗f◦A∗ = ÃM∗f◦A∗AÃ

−1, we have

M∗f◦A∗Mg◦A∗ = M∗f◦A∗ÃMgÃ
−1

= ÃM∗f◦A∗AMgÃ
−1

= ÃMgM
∗
f◦A∗AÃ

−1 + Ã[Mf◦A∗A,Mg]Ã
−1

= ÃMgÃ
−1ÃM∗f◦A∗AÃ

−1 + Ã[Mf◦A∗A,Mg]Ã
−1

= Mg◦A∗M
∗
f◦A∗ + Ã[Mf◦A∗A,Mg]Ã

−1.

Therefore,

[M∗f◦A∗ ,Mg◦A∗ ] = Ã[Mf◦A∗A,Mg]Ã
−1.

and hence [M∗f◦A∗ ,Mg◦A∗ ] belongs to Lp if and only if [M∗f◦A∗A,Mg] belongs
to Lp. Letting f and g be suitable linear combinations of the coordinate
functions one sees that FW is p-essentially normal if and only if FV is p-
essentially normal. �

2.2. Maps that are not necessarily invertible.

Proposition 2.2. Let V and W be homogeneous varieties in Bd and Bd′,
respectively, with decompositions into (not necessarily irreducible) subvari-
eties V = V1 ∪ · · · ∪ Vk and W = W1 ∪ · · · ∪ Wk with the property that
span(Wi) ∩ span(Wj) = {0} whenever i 6= j. Suppose that there is a linear

map A : Cd → Cd′ such that A(Vi) = Wi and such that the restriction of A
to span(Vi) is isometric for all i, 1 ≤ i ≤ k. Then the map defined by

Ãkλ = kAλ, λ ∈ V

extends to a bounded linear map Ã : FV → FW . Moreover, Ã is the sum of
a unitary operator and a trace class operator.

Remark. If Vi is irreducible, and if A is isometric on Vi, then it follows
from [DRS11, Proposition 7.6] that the restriction of A to span(Vi) is auto-
matically isometric.
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Proof. It suffices to prove the lemma for the case when V and W are unions
of nontrivial subspaces (see the first paragraph of [DRS11, Theorem 7.16]).
Hence we can suppose that {0} 6= Vi = span(Vi) and {0} 6= Wi = span(Wi).

The fact that the operator Ã is bounded follows from the results in
[Har12]. However, in order to prove that Ã is the sum of a unitary operator
and a trace class operator, we will need to obtain quantitative estimates. If
M and N are two subspaces of a Hilbert space then we denote (following
[Fri37])

cos(M,N)

= sup{|〈x, y〉| : x ∈M 	 (M ∩N), y ∈ N 	 (M ∩N), ‖x‖ = ‖y‖ = 1}.

By the finite-dimensionality of V1, . . . , Vn, cos(Vi, Vj) < 1 and cos(Wi,Wj) <
1 whenever i 6= j. Let

c = max({cos(Vi, Vj) | i 6= j} ∪ {cos(Wi,Wj) | i 6= j}).

Then 0 ≤ c < 1. For v in V n and w in Wn, write v =
∑k

i=1 vi and

w =
∑k

i=1wi, where each wi belongs to Wn
i . Then as in the proof of

[DRS11, Lemma 7.10], for sufficiently large n,

(2.1) (1− kcn)‖v‖2 ≤
k∑
i=1

‖vi‖2 ≤ (1 + kcn)‖v‖2

and

(2.2) (1− kcn)‖w‖2 ≤
k∑
i=1

‖wi‖2 ≤ (1 + kcn)‖w‖2.

The space FV decomposes as FV = ⊕∞n=0V
n, and Ã is defined on V n by

setting

Ãλn = (Aλ)n, λ ∈ V,
and extending by linearity. Since Wn = W⊗n, the operator Ã can also be
realized as

Ã = ⊕∞n=0A
⊗n.

Therefore, by the hypothesis that A is isometric on each Vi, the restriction
of Ã to V n

i is a unitary from V n
i to Wn

i .

As above, for v in V n write v =
∑k

i=1 vi, where each vi belongs to V n
i .

Then by (2.1) and (2.2), for sufficiently large n,

‖Ãv‖2 =

∥∥∥∥∥
k∑
i=1

A⊗nvi

∥∥∥∥∥
2

(2.3)

≤ 1

1− kcn
k∑
i=1

‖A⊗nvi‖2
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=
1

1− kcn
k∑
i=1

‖vi‖2

≤ 1 + kcn

1− kcn
‖v‖2.

By a similar argument, for sufficiently large n,

(2.4) ‖Ãv‖2 ≥ 1− kcn

1 + kcn
‖v‖2.

Let Ã = U |Ã| be the polar decomposition of Ã. Since Ã is graded,

i.e., Ã(V n) = Wn, it follows that U and |Ã| are also graded. Write Ã =

U+U(|Ã|−I). Since A (and hence Ã) is not necessarily invertible, the partial
isometry U is not necessarily a unitary. However, by (2.4), the restriction of

Ã to V n is invertible for sufficiently large n, so U is a finite rank perturbation
of a unitary. Hence we will be done once we show that |Ã| − I is a trace
class operator.

The inequalities (2.3) and (2.4) are equivalent to the existence of a con-
stant M > 0 such that for v in V n,

(1−Mcn)‖v‖ ≤ ‖|Ã|v‖ ≤ (1 +Mcn)‖v‖.

Hence the eigenvalues of the restriction of |Ã| to V n are contained in the
interval [1−Mcn, 1+Mcn], and it follows that the eigenvalues of the restric-

tion of |Ã| − I to V n are contained in the interval [−Mcn,Mcn]. Therefore,

since the dimension of V n is less than nd−1, it follows that |Ã| − I is a trace
class operator. �

Theorem 2.3. Let V and W be homogeneous varieties in Bd and Bd′,
respectively, with decompositions into (not necessarily irreducible) subva-
rieties V = V1 ∪ · · · ∪ Vk and W = W1 ∪ · · · ∪Wk with the property that
span(Wi) ∩ span(Wj) = {0} whenever i 6= j. Suppose that there is a linear

map A : Cd → Cd′ such that A(Vi) = Wi and such that the restriction of
A to span(Vi) is isometric for all i, 1 ≤ i ≤ k. Then for p ≥ 1, FW is
p-essentially normal if and only if FV is.

Proof. Let Ã : FV → FW be as in Proposition 2.2, so that we can write
Ã = U +T , where U : FV → FW is a unitary operator and T : FV → FW is
a trace class operator. Then the identity ÃMf = Mf◦A∗Ã implies that for
every polynomial f in FV ,

Mf◦A∗(U + T ) = (U + T )Mf ,

and hence that

Mf◦A∗ = UMfU
∗ + TMfU

∗ −Mf◦ATU
∗.

Therefore, for polynomials f and g in FV , we can write

[M∗f◦A∗ ,Mg◦A∗ ] = U [M∗f ,Mg]U
∗ +R,
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where R is a trace class operator. Letting f and g be coordinate functions,
it immediately follows that FV is p-essentially normal if FW is. To obtain
the converse, assume without loss of generality that Cd′ = span(W ). Then
A is surjective, hence A∗ is left invertible. Let B be a left inverse of A∗.
Put f = zi ◦B and g = zj ◦B, where zi and zj are considered as coordinate

functions in Cd′ . Then f and g are linear combinations of coordinate function
in Cd. Now if FV is p-essentially normal then [M∗f ,Mg] ∈ Lp, whence

[M∗zi ,Mzj ] = [M∗f◦A∗ ,Mg◦A∗ ] ∈ Lp. Thus FW is p-essentially normal. �

3. Decompositions of varieties and essential normality

3.1. A refinement of a lemma.

Lemma 3.1. Let I be a homogeneous ideal of C[z] and let P denote the
projection onto FI . Then for p > dim I, FI is p-essentially normal if and
only if the commutator [Si, P ] belongs to L2p for each 1 ≤ i ≤ d.

Remark 3.2. A slightly weaker form of this conjecture, holding only for
p > d instead of p > dim I, is well known (see, e.g., [Arv07, Proposition
4.2]).

Proof. In [Arv98], it is shown that

(3.1) ‖[S∗i , Sj ] |Hn ‖ ≤ 2/(n+ 1).

It follows that trace(|[S∗i , Sj ]|p) <∞ for all p > d, since

trace(|[S∗i , Sj ]|p) ≤
∞∑
n=0

2p dimHn

(n+ 1)p
,

and this is finite for p > d, since dimHn = O(nd−1).
Write Ti = SIi = PSiP , i = 1, . . . , d. Since F⊥I is an invariant subspace

for the d-shift,

[T ∗i , Tj ]− P [S∗i , Sj ]P = −PS∗i (I − P )SjP = −[P, Si]
∗[P, Sj ],

which we can rewrite as

(3.2) [T ∗i , Tj ] = P [S∗i , Sj ]P − [P, Si]
∗[P, Sj ].

By (3.1) we know that ‖[S∗i , Sj ] |Hn ‖ = O(n−1), so it follows that there is a
constant M > 0 such that

trace(|P [S∗i , Sj ]P |p) ≤M
∞∑
n=0

dim(Hn 	 In)

np
,

and this is finite for p > dim I. Therefore, P [S∗i , Sj ]P belongs to Lp for
every p > dim I. Furthermore, for every p ≥ 1, [P, Si] belongs to L2p for
all i if and only if [P, Si]

∗[P, Si] belongs to Lp for all i, j. The desired result
now follows from (3.2). �
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3.2. Decomposability and essential normality.

Lemma 3.3. Let M1, . . . ,Mk be subspaces of a Hilbert space H. For p ≥ 1,
suppose that the projections PM1 , . . . , PMk

each commute modulo Lp with an
operator T in B(H). If the algebraic sum M1 + · · · + Mk is closed, then
the projection PM1+···+Mk

onto the subspace M1 + · · · + Mk also commutes
modulo Lp with T .

Proof. The proof of this result follows the outline of the proof of [Ken12,
Theorem 3.3] or [Arv07, Theorem 4.4]. �

Proposition 3.4. Let I1, . . . , Ik be homogeneous ideals of C[z1, . . . , zd].

(1) If FI1 , . . . ,FIk are p-essentially normal for

p > max{dim I1, . . . ,dim Ik},

and the algebraic sum F⊥I1 + · · ·+F⊥Ik is closed, then FI1+···+Ik is also
p-essentially normal.

(2) If FI1 , . . . ,FIk are p-essentially normal for p > dim I1∩· · ·∩ Ik, and
the algebraic sum FI1 + · · · + FIk is closed, then FI1∩···∩Ik is also
p-essentially normal.

Proof. First, note that the submodule FI1+···+Ik is the orthogonal comple-
ment of the algebraic sum F⊥I1 + · · · + F⊥Ik , and the submodule FI1∩···∩Ik is
the closure of the algebraic sum FI1 + · · ·+ FIk .

If FI1 , . . . ,FIk are p-essentially normal for p > max{dim I1, . . . ,dim Ik},
then by Lemma 3.1, each of the commutators [Si, P

⊥
FIj

] belongs to L2p for

1 ≤ i ≤ d and 1 ≤ j ≤ k. If the algebraic sum F⊥I1 + · · ·+F⊥Ik is closed, then
since

F⊥I1 + · · ·+ F⊥Ik = F⊥I1+···+Ik ,

Lemma 3.3 implies that the commutators [Si, PF⊥I1+···+Ik

] also belong to L2p,
and hence that the commutators [Si, PFI1+···+Ik

] belong to L2p for 1 ≤ i ≤ d.

Therefore, since dim(I1+· · ·+Ik) ≤ max{dim I1, . . . ,dim Ik}, it follows from
Lemma 3.1 that FI1+···+Ik is also p-essentially normal.

If FI1 , . . . ,FIk are p-essentially normal for p > dim I1 ∩ · · · ∩ Ik, and the
algebraic sum FI1 + · · ·+FIk is closed, then the proof that FI1∩···∩Ik is also
p-essentially normal follows in the same way after noting that

FI1 + · · ·+ FIk = FI1∩···∩Ik ,

and that dim(I1 ∩ · · · ∩ Ik) ≥ max{dim I1, . . . ,dim Ik}. �

Proposition 3.5. Let V1, . . . , Vk be homogeneous varieties in Bd.
(1) For p > max{dimV1, . . . ,dimVk}, if FV1 , . . . ,FVk are p-essentially

normal and the algebraic sum F⊥V1+· · ·+F⊥Vk is closed, then FV1∩···∩Vk
is also p-essentially normal.
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(2) For p > dimV1 ∪ · · · ∪ Vk, if FV1 , . . . ,FVk are p-essentially normal
and the algebraic sum FV1 + · · · + FVk is closed, then FV1∪···∪Vk is
p-essentially normal.

Proof. The proof of this result follows immediately from Proposition 3.4
using the correspondence between ideals of C[z1, . . . , zd] and varieties in
Cd. �

3.3. Some decomposable varieties. The following theorem was proved
by Michael Hartz in [Har12]. We shall say that V is a linear subspace in Bd
if V = L ∩ Bd where L ⊆ Cd is a subspace.

Theorem 3.6 (Hartz). Let V1, . . . , Vk be linear subspaces in Bd. Then the
algebraic sum FV1 + · · ·+ FVk is closed.

We can also handle the following additional case.

Theorem 3.7. Let V1, . . . , Vn be homogeneous varieties in Bd. Suppose
that span(Vi) ∩ span(Vj) = {0} whenever i 6= j. Then the algebraic sum
FV1 + · · ·+ FVn is closed.

Proof. We can suppose that each of the varieties V1, . . . , Vn are nonempty.
For 1 ≤ i ≤ d, let Li = span(Vi). Then, as in the proof of Proposition 2.2,
since L1, . . . , Ln are finite dimensional and disjoint, if we let

c = max{cos(Li, Lj) | i 6= j},

then 0 ≤ c < 1. Following the proof of [DRS11, Lemma 7.11], this implies
that

cos(V k
i , V

k
j ) ≤ ck,

which we can rewrite as

(3.3) sup{|〈xi, xj〉|/(‖xi‖‖xj‖) | 0 6= xi ∈ V k
i , 0 6= xj ∈ V k

j , i 6= j} ≤ ck.

Let V = V1 ∪ · · · ∪ Vn, and define an operator T : FV1 ⊕ · · · ⊕ FVn → FV by

T (x1, . . . , xn) = x1 + · · ·+ xn, (x1, . . . , xn) ∈ FV1 ⊕ · · · ⊕ FVn .

Then the range of T is precisely FV1 + · · ·+FVn , and hence we will be done
if we can prove that T has closed range.

Note that T is graded, in the sense that it maps V k
1 ⊕· · ·⊕V k

n to V k. For
(x1, . . . , xn) in V k

1 ⊕ · · · ⊕ V k
n , the inequality (3.3) implies that

‖T (x1, . . . , xn)‖2 = ‖x1 + · · ·+ xn‖2

=

n∑
i=1

‖xi‖2 +
∑
i 6=j
〈xi, xj〉

≥
n∑
i=1

‖xi‖2 −
∑
i 6=j
|〈xi, xj〉|
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≥
n∑
i=1

‖xi‖2 − ck
∑
i 6=j
‖xi‖‖xj‖

≥ (1− ck(n− 1))
n∑
i=1

‖xi‖2

= (1− ck(n− 1))‖(x1, . . . , xn)‖2.
Therefore, for sufficiently large k, T is uniformly bounded below on the
subspaces V k

1 ⊕· · ·⊕V k
n . Since each of these subspaces is finite dimensional,

it follows that T has closed range. �

4. Applications

We now present two classes of examples for which our results imply the
Arveson–Douglas conjecture.

Theorem 4.1. Let V1, . . . , Vk be homogeneous varieties in Bd such that
span(Vi) ∩ span(Vj) = {0} whenever i 6= j, and let V = V1 ∪ · · · ∪ Vk. Let
p > dimV , and suppose that FV1 , . . . ,FVk are all p-essentially normal. Then
FV is also p-essentially normal.

Proof. This result follows immediately from (2) of Proposition 3.5 and The-
orem 3.7. However, we will present a different and more constructive proof
as an application of Proposition 2.2 and Theorem 2.3.

Let Lj = span(Vj) for j = 1, . . . , k and define dj = dimLj . Put D = d1 +
· · ·+dk, and let {e1, . . . , eD} be some orthonormal basis in CD. Consider the
subspaces of CD given byK1 = span{e1, . . . , ed1}, K2 = span{ed1+1 . . . , ed2},
etc., up to Kk. Let A : CD → Cd be a linear map that takes Kj isometrically
onto Lj for all j = 1, . . . , k. Now define a homogeneous variety W by

W = (A
∣∣
K1

)−1(V1) ∪ · · · ∪ (A
∣∣
Kk

)−1(Vk).

For j = 1, . . . , k, the variety Wj := (A
∣∣
Kj

)−1(Vj) is unitarily equivalent to

Vj , and therefore the Hilbert module FWj is unitarily equivalent to FVj .
It follows from the assumptions that FWj is p-essentially normal for all j.
If we show that FW is p-essentially normal, then Theorem 2.3 will imply
that so is FV . But in the situation where the components Wj all lie in
mutually orthogonal subspaces it is straightforward to check directly that
FW is essentially normal, so we are done. �

Finally, let us observe that the Arveson–Douglas conjecture holds for any
variety which is a union of subspaces.

Theorem 4.2. Let V1, . . . , Vk be linear subspaces in Bd. Then FV1∪···∪Vk is
p-essentially normal for all p > dimV1∪· · ·∪Vk = max{dimV1, . . . ,dimVk}.

Proof. This follows from (2) of Proposition 3.5, from Theorem 3.6, and
from the known result that, for a subspace V , FV is p-essentially normal
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for p > dimV (this last fact is [Arv98, Proposition 5.3], together with the
observation theat FV is unitarily equivalent to H2

dimV ). �

Remark 4.3. A very special case of Theorems 4.1 and 4.2 is that every
quotient module associated with a 1-dimensional homogeneous variety is p-
essentially normal for all p > 1. This special case is a known result, and was
obtained by different techniques in [GW08, Proposition 4.1].
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for helpful comments.
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