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Separating pants decompositions in the
pants complex

Harold Sultan

Abstract. We study the topological types of pants decompositions of
a surface by associating to any pants decomposition P, its pants de-
composition graph, Γ(P ). This perspective provides a convenient way to
analyze the maximum distance in the pants complex of any pants de-
composition to a pants decomposition containing a nontrivial separating
curve for all surfaces of finite type. We provide an asymptotically sharp
approximation of this nontrivial distance in terms of the topology of
the surface. In particular, for closed surfaces of genus g we show the
maximum distance in the pants complex of any pants decomposition to
a pants decomposition containing a separating curve grows asymptoti-
cally like the function log(g). The lower bounds follow from an explicit
constructive algorithm for an infinite family of high girth log-length con-
nected graphs, which may be of independent interest.
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1. Introduction

The large scale geometry of Teichmüller space has been an object of
interest in recent years, especially within the circles of ideas surrounding
Thurston’s Ending Lamination Conjecture. In this context, the pants com-
plex, P(S), associated to a hyperbolic surface, S, becomes relevant, as by a
theorem of Brock P(S) is quasi-isometric to the Teichmüller space of a sur-
face equipped with the Weil–Petersson metric, [Bro]. Accordingly, in order
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to study large scale geometric properties of Teichmüller space with the Weil–
Petersson metric, it suffices to study the pants complex of a surface. For
instance, significant recent results of [BF, Beh, BeMi, BrM] among others
can be viewed from this perspective.

One feature of the coarse geometry of the pants complex in common to
many analyses of the subject is the existence of natural quasi-isometrically
embedded product regions in the thin part of Teichmüller space. These
product regions, which are obstructions to δ-hyperbolicity, correspond to
pants decompositions of the surface containing a fixed nontrivially separat-
ing (multi)curve. In fact, often in the course of studying the coarse geometry
of the pants complex it proves advantageous to pass to the net of pants de-
compositions that contain a nontrivially separating curve. See for instance
[BrM, BDM] in which such methods are used to prove that the certain pants
complexes are relatively hyperbolic or thick, respectively. Similarly, work of
[MS], uses similar methods to prove the pants complex is one ended.

In this paper, we study the net of pants decompositions of a surface that
contain a nontrivially separating curve within the entire pants complex.
Specifically, for all surfaces of finite type we approximate the maximum dis-
tance in the pants complex of any pants decomposition to a pants decom-
position containing a nontrivially separating curve. The following theorem
is a highlight of the paper:

Theorem 1.1. Let S = Sg,n and set Dg,n = max
P∈P(S)

(dP(S)(P,Psep(S))).

Then, for any fixed number of boundary components (or punctures) n, Dg,n

grows asymptotically like the function log(g), that is Dg,n = Θ(log(g)). On
the other hand, for any fixed genus g ≥ 2, ∀n ≥ 6g − 5, Dg,n = 2.

There is a sharp contrast between the nets provided by the subcomplexes
Csep(S) ⊂ C(S) and Psep(S) ⊂ P(S). It is easy to see that N1(Csep(S)) =
C(S). On the other hand, Theorem 1.1 says that the maximal distance from
an arbitrary pants decomposition to any pants decompositions containing a
nontrivial separating curve is a nontrivial function depending on the topol-
ogy of the surface. The lower bounds in Theorem 1.1 follow from an original
and explicit constructive algorithm for an infinite family of high girth at
most cubic graphs with the following expander like property, namely the
minimum cardinality of connected cutsets is a logarithmic function with re-
spect to the vertex size of the graphs. This family of graphs may be of
independent interest.

The following lemma used in the course of proving the lower bounds in
Theorem 1.1 may also be of independent interest. Its proof brings together
ideas related to the topology of the surfaces and graph theory in a simple
yet elegant manner.

Lemma 1.2 (Key Lemma). For P ∈ P(S) and Γ(P ) its pants decomposi-
tion graph, let d be the cardinality of a minimal nontrivial connected cut-set
C ⊂ Γ(P ). Then dP(S)(P, P

′) ≥ min{girth(Γ(P )), d} − 1, for P ′ any pants
decomposition containing a separating curve cutting off genus.
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The results of this paper have some overlap with recent results in [CP,
RT]. Nonetheless, the results presented are in fact distinct from the afore-
mentioned articles. Specifically, due to the fact that the quasi-isometry con-
stants of [Bro] between the pants complex and Teichmüller space equipped
with the Weil–Petersson metric are dependent on the topology of the sur-
face, the results of this paper are more properly related to complex of cubic
graphs than to Moduli Space. Conversely, while methods in [CP] do con-
tain lower bounds on the diameter of entire complex of cubic graphs, this
paper focuses on the finer question of the density of a natural subset in-
side the entire space. On the other hand, while methods in [RT] provide
an independent and alternative (albeit nonconstructive) proof of the lower
bounds achieved in Section 5 of this paper by considering pants decompo-
sitions whose pants decomposition graphs are expanders. The explicit and
constructive nature of the family of graphs in Section 5 is a novelty of this
paper as compared to [RT].

The outline of the paper is as follows. In Section 2 we review relevant
background concepts. In Section 3 we introduce a pants decomposition
graph. In Section 4 we prove Theorem 1.1 modulo a construction of an
infinite family of high girth, log-length connected, at most cubic graphs,
which is explicitly described in Section 5.

Acknowledgements. I want to express my gratitude to my advisors Ja-
son Behrstock and Walter Neumann for their extremely helpful advice and
insights throughout my research, and specifically with regard to this pa-
per. I would also like to acknowledge Maria Chudnovsky and Rumen Zarev
for useful discussions regarding particular arguments, as well the referee for
helpful comments.

2. Preliminaries

2.1. Graph Theory.
Let Γ = Γ(V,E) be an undirected graph with vertex set V and edge set

E. The degree of a vertex v ∈ V, is the number of times that the vertex v
arises as an endpoint in E. The degree of a graph is the maximal degree over
all vertices. Γ is called at most cubic if the degree of Γ is at most three, and
cubic if every vertex has degree exactly three. A simple closed path in a
graph is called a cycle. A cycle of length one is a loop. The girth of a graph
Γ is defined to be the length of a shortest cycle in Γ, unless Γ is acyclic, in
which case the girth is infinity.

Given a graph, Γ(V,E) for any subset S ⊂ V (Γ), the complete subgraph
of S in Γ, denoted Γ[S], is the subgraph of Γ with vertex set S and edges
between any pair of vertices x, y ∈ S if and only if there is a corresponding
edge e ∈ E(Γ). A graph Γ is said to be connected if there is a path between
any two vertices of the graph, and disconnected otherwise. If a subset of
vertices, C ⊂ V, has the property that the deletion subgraph, Γ[V \ C], is
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disconnected, then C is called a cut-set of a graph. If the deletion subgraph
Γ[V \C], is disconnected and moreover it has at least two connected compo-
nents each consisting of at least two vertices or a single vertex with a loop,
C is said to be a nontrivial cut-set. A (nontrivial) [connected] cut-set C is
called a minimal sized (nontrivial) [connected] cut-set if |C| is minimal over
all (nontrivial) [connected] cut-sets of Γ.

We will be interested in families of graphs that are robust with regard
to nontrivial disconnection by the removal of connected cut-sets. More for-
mally, we define an infinite family of graphs, Γi(Vi, Ei), with increasing
vertex size to be log-length connected if they have the property that the
size of minimal nontrivial connected cut-sets of the graphs, asymptotically
grows logarithmically in the vertex size of the graphs. Specifically, if we
set the function f(i) to be equal to the cardinality of a minimal nontrivial
connected cut-set of the graph Γi, then f(i) = Θ(log(|Vi|)). The robust con-
nectivity property of log-length connected graphs is quite different than the
connectivity property enjoyed by expander graphs. Informally, a family of
graphs are expanders if the graphs are strongly connected in the sense the
deletion of small number of arbitrary vertices will not separate the graph.
On the other hand, a family of graphs are log-length connected if the graphs
are strongly connected in the sense that the deletion of a small locally con-
nected subgraph will not separate the graph. This seems to be a novel type
of connectivity property for graphs and may be of independent interest.

2.2. Curve and Pants Complex.
Given any surface of finite type, S = Sg,n, that is a genus g surface with

n boundary components (or punctures), the complexity of S, denoted ξ(S),
is defined to be 3g− 3 +n. For purposes of this paper there is no distinction
between boundary components and punctures. Throughout this paper while
we will always refer to surfaces with boundary components, the same results
hold mutatis mutandis for surfaces with punctures.

A simple closed curve γ ⊂ S is essential if it does not bound a disk con-
taining at most one boundary component. For S any surface with positive
complexity, the curve complex of S, C(S), is the simplicial complex obtained
by associating to each isotopy class of an essential simple closed curve a
0-cell, and more generally a k-cell to each unordered tuple {γ0, ..., γk} of
k+1 isotopy classes of disjoint homotopically distinct essential simple closed
curves, or multicurves. A maximal dimensional multicurve is called a pants
decomposition.

Among simple closed curves on a surface of finite type we differentiate
between two types of curves. Specifically, a simple closed curve γ ⊂ S is
called a nontrivially separating curve, or simply a separating curve, if S \ γ
consists of two connected components Y1 and Y2 such that ξ(Yi) ≥ 1. Any
other simple closed curve is nonseparating. It should be stressed that a
trivially separating curve, that is a simple closed curve that cuts off two
boundary components of the surface for our purposes is not considered a
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separating curve. While counterintuitive, this point of view is in fact quite
natural in the context of Teichmüller space. Restricting C(S) to the set of
separating curves one obtains the complex of separating curves, Csep(S).

Another related natural complex associated to any surface of finite type
with positive complexity is the pants complex, first developed in [HT]. The
1-skeleton of the pants complex, the pants graph, P(S), has vertices cor-
responding to pants decompositions, and edges between two vertices when
the two corresponding pants decompositions differ by an elementary move.
Specifically, two pants decompositions differ by an elementary move, if the
pants decompositions differ in exactly one curve and those differing curves
intersect minimally inside the unique complexity one component of the sur-
face in the complement of all the other agreeing curves of the pants decom-
positions. Restricting P(S) to the set of pants decompositions containing a
separating curve we have the pants complex of separating curves, Psep(S).
This paper analyzes the net of Psep(S) in P(S).

3. Pants decomposition graph

By topological considerations, for P ∈ P (Sg,n),

|P | = ξ(S) = 3g − 3 + n,

while the number of connected components, or “pairs of pants,” in the com-
plement S \P is equal to |χ(S)| = 2(g−1)+n. Given P ∈ P(S) we define its
pants decomposition graph, Γ(P ), as follows: Γ(P ) is a graph with vertices
corresponding the connected components of S \ P, and edges between ver-
tices corresponding to connected components that share a common bound-
ary curve. See Figure 1 for an example.

P (P)

Figure 1. Γ(P ) for P ∈ P (S2,1).

Remark 3.1. The notion of pants decomposition graphs is considered in
[Bus] as well as in [Par]. Moreover, replacing the vertices in Γ(P ) with edges
and vice versa yields the adjacency graph in [BeMa].

The following self evident lemma organizes elementary properties of Γ(P )
and gives a one to one correspondence between certain graphs and pants
decomposition graphs:

Lemma 3.2. For P ∈ P(Sg,n), and Γ(P ) its pants decomposition graph:

(1) Γ(P ) is a connected graph with 2(g−1) +n vertices and 3(g−1) +n
edges. In particular, π1(Γ(P )) is the free group of rank g.
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(2) Γ(P ) is at most cubic.

Moreover, for all q, p ∈ N, given any connected, at most cubic graph Γ =
Γ(V,E) with |V | = 2(p− 1) + q and |E| = 3(p− 1) + q, there exists a pants
decomposition P ∈ P(Sp,q) with Γ(P ) ∼= Γ.

3.1. Elementary moves and pants decomposition graphs. Recall the
two types of elementary moves:

E1: Inside a S1,1 component of the surface in the complement of all of
the pants curves except α, the curve α is replaced with β where α
and β intersect once.

E2: Inside a S0,4 component of the surface in the complement of all of
the pants curves except α, the curve α is replaced with β where α
and β intersect twice.

Elementary move E1 has a trivial action on Γ(P ), while the impact of the
elementary move E2 can be described as follows: identify any two adjacent
vertices, v1, v2 in the pants decomposition graph connected by an edge e,
then the action of an elementary move E2 on the pants decomposition graph
has the effect of interchanging any edge other than e impacting v1, or pos-
sibly the empty set, with any edge other than e, impacting v2, or possibly
the empty set. The one stipulation is that in the event that the empty set
is being interchanged with an edge, the result of the action must yield a
connected at most cubic graph.

A C

B D

A C

B D

A

B

C

D

A

B

C

D

Figure 2. An example of an elementary pants move action
on Γ(P ).

3.2. Adding boundary components. Any pants decomposition of Sg,n+1

can be obtained by beginning with a suitable pants decomposition of Sg,n,
adding a boundary component appropriately, and then appropriately com-
pleting the resulting multicurve into a pants decomposition of Sg,n+1. The
effect that this process of adding a boundary component has on the pants
decomposition graph has two forms as depicted in Figure 3.

3.3. Separating curves and pants decomposition graphs. Examining
a pants decomposition graph Γ(P ) provides an easy way to determine if a
pants decomposition P contains a separating curve. Specifically, a curve in
a pants decomposition is a separating curve of the surface if and only if the
effect of removing the corresponding edge in Γ(P ) nontrivially separates the
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A C

B D

A C

B D

A C

B D
Option 1 Option 2

Figure 3. Adding a boundary component to a pants de-
composition graph.

graph into two connected components. Recall that a nontrivial separation of
a graph is a separation such that there are at least two connected components
each consisting of at least two vertices or a single vertex and a loop.

We differentiate two categories of separating curves, separating curves
that cut off genus and separating curves that cut off boundary components.
By the former, we refer to separating curves on the surface whose removal
separates that surface into two nontrivial subsurfaces each with genus at
least one. By the latter, we refer to to separating curves on the surface whose
removal separates that surface into two nontrivial subsurfaces at least one
of which is a topological sphere with boundary components. Equivalently,
a separating curve cuts off genus if the removal of the edge in Γ(P ) cor-
responding to the curve disconnects the graph into two cyclic components,
otherwise if at least one of the connected components is acyclic, then the
separating curve cuts off boundary components. Separating curves that cut
off genus only exist on surfaces Sg,n with g ≥ 2,, while separating curves
that cut off boundary components only exist on surfaces with n ≥ 3.

4. Proof of Theorem 1.1

In this section we will prove the following theorem which in particular
implies the statement of Theorem 1.1. The proof will from directly from the
combination of the Lemmas and Corollaries in this section. To simplify the
exposition we will first deal with the case of closed surfaces, and then we
will explain how boundary components affect the arguments.

Theorem 4.1 (Main Theorem). Let S = Sg,n and set

Dg,n = max
P∈P(S)

(dP(S)(P,Psep(S))).

Then, for any fixed number of boundary components (or punctures) n, Dg,n

grows asymptotically like the function log(g). that is Dg,n = Θ(log(g)). In
particular, for closed surfaces of sufficiently large genus,

log2(2g + 2)

2
− 2 ≤ Dg,0 ≤ b2 log2(g − 1) + 1c.

On the other hand, for any fixed genus g ≥ 2, ∀n ≥ 6g − 5, Dg,n = 2.

Remark 4.2. It is not hard to see by direct consideration that D0,6 = 1.
More generally, for n ≥ 7, D0,n = 0, and ∀n ≥ 3, D1,n = 2. The exact terms
in the upper and lower bounds on Dg,0 are not believed to be sharp but
instead come from the technical details in the proofs.
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4.1. Upper bounds for closed surfaces using girth.

Lemma 4.3. For P ∈ P(S) and Γ(P ) its pants decomposition graph

dP(P,Psep) ≤ girth(Γ(P ))− 1.

In particular, Dg,0 ≤ b2 log2(g − 1) + 1c.

Proof. By valence considerations, a loop in Γ(P ) implies P contains a sep-
arating curve. Hence, in order to prove the first statement it suffices to
show that given any cycle of length n ≥ 2, there exists an elementary move
decreasing the length of the cycle by one. See Figure 4.

Regarding the second statement, it is known that a girth h cubic graph
must have at least 2h/2 vertices, [Big]. It follows that any cubic graph Γ with
2(g − 1) vertices, has girth(Γ) ≤ 2 log2(g − 1) + 2c. The second statement
now follows from the first one. �

n-cycle (n-1)-cycle

Figure 4. Elementary pants move decreasing the length of
a cycle in Γ.

4.2. Lower bounds for closed surfaces. Recall that a separating curve
γ ∈ Csep(S) is said to cut off genus if S\γ consists of two connected complex-
ity at least one subsurfaces neither of which is topologically a sphere with
boundary components. Also recall that for a graph Γ(V,E), a subset C ⊂ V
is called a nontrivial connected cut-set of Γ if Γ[C] is a connected graph
and Γ[V \ C] has at least two connected components each consisting of at
least two vertices or a vertex and a loop. The following lemma gives a lower
bound on the distance of a pants decomposition to a pants decomposition
which cuts off genus.

Lemma 4.4 (Key Lemma). For P ∈ P(S) and Γ(P ) its pants decomposition
graph, let d be the cardinality of a minimal nontrivial connected cut-set C ⊂
Γ(P ). Then

dP(S)(P, P
′) ≥ min{girth(Γ(P ))− 1, d− 1}

for P ′ any pants decomposition containing a separating curve cutting off
genus.
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Proof. Let γ be any curve in the pants decomposition P , and let α be any
separating curve of the surface S that cuts off genus. It suffices to show
that the number of elementary moves needed to take the curve γ to α is
at least min{girth(Γ(P )) − 1, d − 1}. In fact, considering the effect of an
elementary move, it suffices to show that α nontrivially intersects at least
min{girth(Γ(P )), d} different connected components of S \ P .

Corresponding to α consider the subgraph [α] ⊂ Γ(P ) consisting of all
vertices in Γ(P ) corresponding to connected components of S\P nontrivially
intersected by α, as well as all edges in Γ(P ) corresponding to curves of the
pants decomposition P nontrivially intersected by α. By construction, the
subgraph [α] is connected. Note that the subgraph [α] need not be equal to
the induced subgraph Γ[α], but may be a proper subgraph of it. Nonetheless,
V (Γ[α]) = V ([α]). (See Figure 5 for an example of a subgraph [a] ⊂ Γ(P ).)

As noted, it suffices to show |V (Γ[α])| ≥ min{girth(Γ(P )), d}. Assuming
not, by the girth condition it follows that Γ[α] is acyclic. However, this
implies that α is entirely contained in a union of connected components of
S \ P such that in the ambient surface S, the connected components glue
together to yield an essential subsurface Y, which is topologically a sphere
with boundary components. Moreover, by the cardinality of the minimal
nontrivial connected cut-set condition, it follows that the removal of the
essential subsurface Y, or any essential subsurface thereof, from the ambient
surface S does not, nontrivially separate S. In particular, for all U ⊂ Y, S\U
consists of a disjoint union of at most one nontrivial essential subsurface
as well as some number of pairs of pants. It follows that α cannot be a
separating curve cutting off genus. �

(P)

[a]

a

Figure 5. An example of a subgraph [a] ⊂ Γ(P ) correspond-
ing to a separating curve a ⊂ S3,0, cutting off genus. In this
example, the girth of Γ(P ) is three and there are no nontriv-
ial connected cut-sets of Γ(P ) . By Lemma 4.4, the distance
from P to any pants decomposition with a separating curve
cutting off genus is at least (and in fact exactly) two.

In Section 5 for any even number 2m, such that h is the largest inte-

ger satisfying
(⌈

2h−4
h−4

⌉)
· h ≤ 2m, we construct a graph, Γ2m, such that

|V (Γ2m)| = 2m, girth(Γ2m) = h, and any connected cut-set of the graph
contains at least bh2 c vertices. By Lemma 4.4, the pants decomposition cor-

responding to Γ2m is distance at least h
2 − 2 from a pants decomposition
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containing a separating curve. Because the pants decomposition graph Γ2m

corresponds to a pants decomposition of a closed surfaces of genus m− 1, it
follows that h

2 − 2 < Dm−1,0. Since for large enough values of h,

2m <

(⌈
2h+1 − 4

h− 3

⌉)
· (h+ 1) < 2h+2,

after algebraic manipulation one obtains log2(2(m−1)+2)
2 − 2 < h

2 − 2. In
conjunction with Lemma 4.3 we have proven the following:

Corollary 4.5. For large enough values of g, we have the bounds on Dg,0

recorded in Theorem 4.1. In particular, Dg,0 = Θ(log(g)).

4.3. Adding boundary components. In this section we modify the pre-
viously described arguments to allow for the case that our surface S has
boundary components. We begin with a lemma describing a local situa-
tion in Γ(P ) which can be manipulated to generate a pants decomposition
containing a separating curve.

Lemma 4.6. For P ∈ P(S) and Γ(P ) its pants decomposition graph. If
Γ(P ) has three consecutive vertices of degree at most two, then

dP(P,Psep) ≤ 2.

Proof. See Figure 6. �

A C

B D

A C

B D

A

B

C

D

Figure 6. Two elementary moves creating a separating
curve cutting off boundary components.

Using Lemma 4.6, presently we generalize Lemma 4.3 to surfaces with
boundary.

Corollary 4.7. ∀g ≥ 2, Dg,n ≤ b2 log2(g − 1) + 3c.

Proof. Recall that Lemma 4.3 gives an upper bound of b2 log2(g−1)+1c on
Dg,0. Specifically, this upper bound was obtained by taking the smallest cycle
C in the graph Γ(P ) which had length at most b2 log2(g− 1) + 2c and then
successively decreasing the length of cycle C by elementary pants moves as in
the proof of Lemma 4.3. Consider what can happen to this cyclic subgraph
C as we add boundary components to our surface as in Subsection 3.2. If the
added boundary components do not affect the length of cycle C, the upper
bound is unaffected. On the other hand, if the added boundary components
increase the length of the cycle C by adding one (two) degree two vertex
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(vertices) to the cycle C, then the distance to a separating curve increases
by at most one (two). However, once at least three degree two vertices have
been added to the cycle C, instead of reducing the cycle to a loop, we can
instead use elementary moves to gather together three consecutive vertices
of degree two and then create a separating curve locally, as in Lemma 4.6.
The statement of the corollary follows. �

Again using Lemma 4.6 we have the following corollary, also proving a
special case of Theorem 4.1.

Corollary 4.8. For all g ≥ 2, n ≥ 6g − 5 =⇒ Dg,n = 2.

Proof. By Lemma 3.2 for P ∈ P(Sg,n), Γ(P ) is a connected at most cubic
graph with 2(g − 1) + n vertices and 3(g − 1) + n edges. Since n ≥ 6g − 5,
by pigeon hole considerations it follows that Γ(P ) has three consecutive
vertices of degree at most two. By Lemma 4.6, Dg,n ≤ 2. Then to see that
Dg,n = 2 it suffices to explicitly exhibit connected at most cubic graphs with
2(g − 1) + n vertices and 3(g − 1) + n edges for all g ≥ 2, n ≥ 6g − 5 such
that the graphs neither contain nontrivial cut edges nor are one elementary
move away from a graph with a nontrivial cut edge. See Figure 7 for an
explicit construction of such a family of graphs. �

1

2

3

3(g-1)-1

3(g-1)-2 3(g-1)

3(g-1)+13(g-1)+n

Figure 7. Pants decompositions graphs of pants decompo-
sitions which are distance two from a pants decomposition
containing a separating curve.

Generalizing the aforementioned family of cubic graphs, Γ2m, in Section 5
we show that for any fixed n ∈ N we can add n boundary components to
the our graphs, Γ2m, creating a family of pants decomposition graphs Γn

2m,
whose corresponding pants decompositions have girth, minimum nontrivial
cut-set size, and distance between valence less than three vertices growing
logarithmically in the vertex size of the graph. By Lemma 4.4, the fact that
girth and minimum nontrivial connected cut-set size grow logarithmically in
the vertex size of the graph implies that the distance between pants decom-
positions corresponding to the constructed graphs to any pants decomposi-
tions containing a separating curve cutting off genus grows logarithmically
in the vertex size of the graph. Moreover, the fact that the distance between
valence less than three vertices grows logarithmically in the vertex size of
the graphs, implies that the distance between pants decompositions corre-
sponding to the constructed graphs to any pants decompositions containing
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a separating curve cutting off boundary components also grows logarithmi-
cally in the vertex size of the graphs. As a corollary, we have:

Corollary 4.9. For any fixed n ∈ N, Dg,n = Θ(log(g)).

5. Construction of large girth, log-length connected graphs

We first describe a construction for a family, Γh, of cubic girth h ≥ 5
graphs with (⌈

2h − 4

h− 4

⌉)
· h+ {0, 1}

vertices (where the final term is simply to ensure the total number of ver-
tices is even), which have the property that any connected cut-set of Γh

contains at least bh2 c vertices. Afterward, we generalize our construction,
interpolating between the family of graphs Γh. Specifically, for all m ∈ N,
such that h ≥ 5 is the largest integer satisfying 2m ≥

(⌈
2h−4
h−4

⌉)
· h, there

exists a cubic girth h graph Γ2m with 2m vertices and the property that any
connected cut-set of the graph contains at least bh2 c vertices. Finally, we
demonstrate that for any fixed number of boundary components n, we can
add n boundary components to our graphs Γ2m yielding a family of graphs
Γn

2m with the same desired properties.

5.1. Construction of Γh. Begin with
(⌈

2h−4
h−4

⌉)
disjoint cycles each of

length h (possibly one of length h+ 1 if necessary to make the total number
of vertices even). Then, chain together these disjoint cycles into an at most
cubic connected tower Th, connecting each cycle to its neighboring cycle(s)
by adding two edges between pairs of vertices, one from each cycle, such
that each of the two vertices from the same cycle, to which edges are being
attached, are of distance at least bh2 c. See Figure 8 for an example of T8.

Figure 8. T8, an at most cubic girth eight tower graph.

By construction, the tower graphs, Th, have the following properties:

T1: Th has
(⌈

2h−4
h−4

⌉)
· h+ {0, 1} vertices.

T2: Th is an at most 3-regular and at least 2-regular graph with girth h.
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T3: If we denote the subset of vertices of Th of valence two by V Th
2 , then

|V Th
2 | ≥ 2h.

T4: Any connected cut-set of Th has at least bh2 c vertices.

5.2. Algorithm completing Th to a 3-regular graph Γh. Motivated
by ideas in [Big], presently we describe a constructive algorithm to add edges
to the tower Th completing it to a 3-regular graph Γ = Γh which also has
girth h, and retains the property that any connected cut-set of Γh has at
least bh2 c vertices. By abuse of notation, we will always refer to the graph
that has been constructed up to the current point as Γ. In terms of ensuring
the girth condition, the main observation being used implicitly throughout
is that removing edges from a graph never decreases girth, while adding an
edge connecting vertices which were previously at least distance h−1 apart,
in a girth at least h graph, yields a girth at least h graph.

Step One (An easy opportunity to add an edge). If Γ is 3-regular, we’re

done. If not, fix a vertex v ∈ V Th
2 of valence two. If there exists some other

vertex x ∈ V Th
2 with dΓ(v, x) ≥ h− 1, add an edge between x and v.

Step Two (Exhaust easy opportunities). Iterate Step One until all possibil-
ities to add edges to Γ are exhausted.

Step Three (One step backward, two steps forward). If Γ is 3-regular, we’re
done. If not, since the total number of vertices is even, there must exist at
least two vertices, x and y, of valence two. Consider the sets U = NΓ

h−2(x)∪
NΓ

h−2(y) and I = NΓ
h−2(x) ∩ NΓ

h−2(y). Due to the valence considerations,
since x, y are valence TWO vertices in an at most cubic graph it follows
that |NΓ

h−2(x)| ≤ 1 + 2 + ... + 2h−2 = 2h−1 − 1, and similarly for NΓ
h−2(y).

Note that |U | = |NΓ
h−2(x)| + |NΓ

h−2(y)| − |I| ≤ 2h − 2 − |I|. Then consider

the set W = V Th
2 \ U. Since |V Th

2 | ≥ 2h, it follows that |W | ≥ 2 + |I|. In
particular, the set W is nonempty. Furthermore, considering that Step Two
was completed to exhaustion, it follows that ∀w ∈ W, w is of valence three
in Γ. Moreover, by definition, the vertex w is of valence two in Th. Denote
the vertex that is connected to w in Γ but not in Th by w′. Perforce, w′

is distance at least h − 2 from both x and y. In fact, we can assume that
w′ is not exactly distance h − 2 from both x and y because |W | > |I|. For
concreteness, we can assume that dΓ(x,w′) ≥ h− 1.

Remove from Γ the edge e connecting w to w′, and in its place include two
edges: e1 between x and w′, and e2 between w and y. Adding the two edges
e1 and e2 does not decrease girth to less than h as they each connect vertices
that were distance at least h−1 apart: After removing e, the vertices w and
w′ are distance at least h − 1 because Γ was girth at least h. Hence, even
after adding edge e1 we can still be sure that the vertices y and w remain
distance at least h − 1 apart, thereby allowing us to add edge e2 without
decreasing girth to less than h.
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Step Four (Repeat). If Γ is not yet 3-regular, return to Step Three.

The algorithm terminates as Step Three can always be performed if the
graph is not yet 3-regular, and the net effect of Step Three increases the
number of edges in the at most 3-regular graph by one. By construction the
graph Γh has girth h. Moreover, as that the algorithm never removes edges
from the tower Th, and hence the resulting graph Γh includes the tower Th
as a subgraph. Using the girth condition in conjunction with the fact that
any connected cut-set of Γh is a cut-set of Th, it is not hard to see that any
connected cut-set of Γh has at least bh2 c vertices.

5.3. Construction of Γ2m. For any even number of vertices 2m such that
2m ≥ |V (Γh)|, for some h, we can construct a 3-regular girth h graph on
2m vertices, which we denote Γ2m, with the property that any connected
cut-set of Γ2m contains at least bh2 c vertices. In fact, we can construct the
graphs Γ2m using the exact same process as in the construction of Γh with
the exception that we now start with additional cycles in the building our
initial tower which is subsequently completed to a cubic graph. Specifically,
to construct Γ2m, we begin with b2m

h c cycles of length h and (h + 1) as
necessary.

5.3.1. Adding a fixed number n of boundary components to Γ2m.
For any fixed number n ∈ N, we can add n boundary components to the
graphs Γ2m, to obtain graphs Γn

2m. Moreover, we can easily ensure that no

two added boundary components are within distance bh2 c from each other,
past some minimal threshold for 2m. This is because for x, an added bound-

ary component in Γ2m, |Nbh
2
c(x)| ≤ 2b

h
2
c+1, while |V (Γ2m)| ≥ 2h. It follows

that that for any fixed number of boundary components n, we have a family
of graphs Γn

2m with girth, nontrivial minimum cut-set size, and the distance
between valence less than three vertices all growing logarithmically in the
vertex size of the graph.
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