New York Journal of Mathematics

New York J. Math. 19 (2013) 145-158.

Computation of the λ_{u}-function in $J B^{*}$-algebras

Akhlaq A. Siddiqui

Abstract

Motivated by the work of Gert K. Pedersen on a geometric function, which is defined on the unit ball of a C^{*}-algebra and called the λ_{u}-function, the present author recently initiated a study of the $\lambda_{u^{-}}$ function in the more general setting of $J B^{*}$-algebras. He used his earlier results on the geometry of the unit ball to investigate certain convex combinations of elements in a $J B^{*}$-algebra and to obtain analogues of some related C^{*}-algebra results, including a formula to compute λ_{u} function on invertible elements in a $J B^{*}$-algebra. The main purpose in this article is to investigate the computation of the λ_{u}-function on noninvertible elements in the unit ball of a $J B^{*}$-algebra. Additional results that relate the λ_{u}-function to convex combinations, unitary rank, and distance to the invertibles in the C^{*}-algebra setting are generalized to the $J B^{*}$-algebra context. Results of G. K. Pedersen and M. Rørdam are generalized. An open problem is presented.

Contents

1. Introduction and preliminaries 145
2. The λ_{u}-function 148
3. The Λ_{u}-condition 152
4. An open problem 156

Acknowledgement 157
References 157

1. Introduction and preliminaries

Inspired by the work of R. M. Aron and R. H. Lohman [2], G. K. Pedersen [11] studied a geometric function, called the λ_{u}-function, which is defined on the unit ball of a C^{*}-algebra. In a recent paper [22], we initiated a study of the λ_{u}-function in the more general setting of $J B^{*}$-algebras (originally, called Jordan C^{*}-algebras [24]).

[^0]In [17, 22], we discussed two related set-valued functions $\mathcal{V}(x)$ and $\mathcal{S}(x)$ defined on the closed unit ball of a unital $J B^{*}$-algebra, which play a significant role in the study of the λ_{u}-function. Using our earlier results on the geometry of the unit ball (cf. [16, 18, 20, 21]), we obtained $J B^{*}$-algebra analogues of certain C^{*}-algebra results due to G. K. Pedersen, C. L. Olsen and M. Rørdam. Besides other related results, we have shown that $\sup \mathcal{S}(x)=$ $(\inf \mathcal{V}(x))^{-1}$ if $\mathcal{V}(x) \neq \emptyset$ (see [22, Theorem 2.5]); $\mathcal{V}(x) \cap[1,2) \neq \emptyset$ if and only if x is invertible (see [22, Corollary 2.8]); and for any invertible element x in the closed unit ball, $\lambda_{u}(x)=(\inf \mathcal{V}(x))^{-1}=\frac{1}{2}\left(1+\left\|x^{-1}\right\|^{-1}\right)$ satisfy$\operatorname{ing} x=\lambda_{u}(x) u_{1}+\left(1-\lambda_{u}(x)\right) u_{2}$ for some unitary elements u_{1}, u_{2} (see [22, Theorem 2.5 and Corollary 2.10]).

In this article, we continue the study of the λ_{u}-function in the general setting of $J B^{*}$-algebras (of course, the λ_{u}-function is not defined in the context of more general $J B^{*}$-triple systems (cf. [7, 23]), which have no unitary elements). Our main goal here is to obtain some formulae to compute the λ_{u}-function for noninvertible elements of the closed unit ball in a $J B^{*}$ algebra. We compute the functions $\mathcal{V}(x), \mathcal{S}(x)$ for noninvertible elements and make some estimates on $\inf \mathcal{V}(x)$ in terms of the distance, $\alpha(x)$, from x to the set of invertible elements in a unital $J B^{*}$-algebra.

Further, we introduce a condition, called the Λ_{u}-condition, which is satisfied by all C^{*}-algebras and all finite-dimensional $J B^{*}$-algebras. For $J B^{*}$ algebras satisfying the Λ_{u}-condition, we obtain sharper bounds for estimates of $\inf \mathcal{V}(x)$, together with estimates of distances to the invertibles and to the unitaries. We also obtain the formula $\lambda_{u}(x)=\frac{1}{2}(1-\alpha(x))$ for all noninvertible elements x in the closed unit ball. In the course of our analysis, we prove several results on convex combinations, unitary rank, and distance to the invertibles related to the λ_{u}-function. These include the extension of some other results on C^{*}-algebras, due to G. K. Pedersen and M. Rørdam, to general $J B^{*}$-algebras. We shall conclude the article with a discussion on $J B^{*}$-algebras satisfying the Λ_{u}-condition and by formulating an open problem.

Our notation and terminology are standard and are the same as those found in $[22]$ and $[5,8]$. We recall that a commutative (but not necessarily associative) algebra \mathcal{J} with product " \circ " is called a Jordan algebra if for all $x, y \in \mathcal{J}, x^{2} \circ(x \circ y)=\left(x^{2} \circ y\right) \circ x$. For any fixed element x in a Jordan algebra \mathcal{J}, the x-homotope $\mathcal{J}_{[x]}$ of \mathcal{J} is the Jordan algebra consisting of the same elements and linear space structure as \mathcal{J} but with a different product, " $\cdot x$ ", defined by $a \cdot_{x} b=\{a x b\}$ for all a, b in $\mathcal{J}_{[x]}$. Here, $\{p q r\}$ denotes the usual Jordan triple product defined in the Jordan algebra \mathcal{J} by $\{p q r\}=(p \circ q) \circ r-(p \circ r) \circ q+(q \circ r) \circ p$.

An element x in a Jordan algebra \mathcal{J} with unit e is said to be invertible if there exists (necessarily unique) element $x^{-1} \in \mathcal{J}$, called the inverse of x, such that $x \circ x^{-1}=e$ and $x^{2} \circ x^{-1}=x$. The set of all invertible elements in the unital Jordan algebra \mathcal{J} is denoted by $\mathcal{J}_{\text {inv }}$. In this case,
we have $x{ }_{x^{-1}} y=y$, and so x acts as the unit in the homotope $\mathcal{J}_{\left[x^{-1}\right]}$ of \mathcal{J}. Henceforth, the homotope $\mathcal{J}_{\left[x^{-1}\right]}$ will be called the x-isotope of \mathcal{J} and denoted by $\mathcal{J}^{[x]}$ (cf. [8]). It is well known that the x-isotope $\mathcal{J}^{[x]}$ of a Jordan algebra \mathcal{J} need not be isomorphic to \mathcal{J} (cf. [9, 7]). However, some important features of Jordan algebras are unaffected by the process of forming isotopes (see [18, Lemma 4.2 and Theorem 4.6]).

A real or complex Jordan algebra (\mathcal{J}, \circ) is called a Banach Jordan algebra if there is a complete norm $\|\cdot\|$ on \mathcal{J} satisfying $\|a \circ b\| \leq\|a\|\|b\|$; if, in addition, \mathcal{J} has unit e with $\|e\|=1$, then \mathcal{J} is called a unital Banach Jordan algebra. A complex Banach Jordan algebra \mathcal{J} with involution " $*$ " is called a $J B^{*}$-algebra if $\left\|\left\{x x^{*} x\right\}\right\|=\|x\|^{3}$ for all $x \in \mathcal{J}$. It follows that $\left\|x^{*}\right\|=\|x\|$ for all elements x of a $J B^{*}$-algebra (cf. [26]). The class of $J B^{*}$-algebras was introduced by Kaplansky in 1976 and it includes all C^{*}-algebras as a proper subclass (cf. [24]). For basic theories of Banach Jordan algebras and $J B^{*}$-algebras, we refer to $[1,4,14,23,24,25,26]$. Throughout this note, \mathcal{J} will denote a unital $J B^{*}$-algebra unless stated otherwise. A unital $J B^{*}$ algebra \mathcal{J}, is said to be of topological stable rank 1 (in short, tsr 1) if $\mathcal{J}_{\text {inv }}$ is norm dense in \mathcal{J}. Such $J B^{*}$-algebras have been recently studied by the present author in [18]. All complex spin factors and all finite-dimensional $J B^{*}$-algebras are of $t s r 1$. Additional properties of $J B^{*}$-algebras of $t s r 1$ are developed in [18].

An invertible element u in a unital $J B^{*}$-algebra \mathcal{J} is called unitary if $u^{-1}=u^{*}$. We denote the set of all unitary elements of the $J B^{*}$-algebra \mathcal{J} by $\mathcal{U}(\mathcal{J})$ and its convex hull by $\operatorname{co} \mathcal{U}(\mathcal{J})$. If $u \in \mathcal{U}(\mathcal{J})$ then the u-isotope $\mathcal{J}{ }^{[u]}$ is called a unitary isotope of \mathcal{J}. It is well known (see [7, 3, 18]) that for any unitary element u in a unital $J B^{*}$-algebra \mathcal{J}, the unitary isotope $\mathcal{J}{ }^{[u]}$ is a $J B^{*}$-algebra with u as its unit with respect to the original norm and the involution " $*_{u}$ " defined by $x^{* u}=\left\{u x^{*} u\right\}$. Like invertible elements, the set of unitary elements in a unital $J B^{*}$-algebra \mathcal{J} is invariant on passage to isotopes of \mathcal{J} (cf. [18, Theorem 4.2 (ii) and Theorem 4.6]).

A self-adjoint element x (which means $x^{*}=x$) is called positive in \mathcal{J} if its spectrum $\sigma_{\mathcal{J}}(x):=\left\{\lambda \in \mathbb{C}: x-\lambda e \notin \mathcal{J}_{\text {inv }}\right\}$ is contained in the set of nonnegative real numbers, where \mathbb{C} denotes the field of complex numbers. Every element in a finite-dimensional $J B^{*}$-algebra \mathcal{J} is positive in some unitary isotope of \mathcal{J} (cf. [18, Theorem 5.9]). One of the main results (namely, Theorem 4.12) in [18] states that every invertible element x of a unital $J B^{*}$-algebra \mathcal{J} is positive in the unitary isotope $\mathcal{J}^{[u]}$ of \mathcal{J}, where the unitary u is given by the usual polar decomposition $x=u|x|$ of x considered as an operator in the algebra $\mathcal{B}(\mathcal{H})$ of bounded linear operators on certain Hilbert space \mathcal{H}; indeed, the same unitary u is the unitary approximant of x, meaning that $\operatorname{dist}(x, \mathcal{U}(\mathcal{J}))=\|x-u\|$. More generally, $\operatorname{dist}(y, \mathcal{U}(\mathcal{J}))=$ $\|y-e\|$ for any positive element in a $J B^{*}$-algebra \mathcal{J} with unit e. In [17, 18], we obtained some formulae to compute $\operatorname{dist}(x, \mathcal{U}(\mathcal{J}))$ including the cases when $x \in(\mathcal{J})_{1}$, the closed unit ball of \mathcal{J}, when \mathcal{J} is finite-dimensional, and
when \mathcal{J} is of tsr1. In general, one may not have unitary approximants for elements even in the case of von Neumann algebras (for such an example, see [10]).

In $[17,18]$, the author observed some interesting properties of the distance function $\alpha(x)$, in the context of $J B^{*}$-algebras. Here, we continue studying the function $\alpha(x)$ and we investigate its connections with the convex hull $\operatorname{co} \mathcal{U}(\mathcal{J})$ of the unitaries. We connect it with the unitary rank $u(x)$ of an element x - which is the least integer n such that x can be expressed as a convex combination of n unitary elements in $\mathcal{J} ; u(x)=\infty$ otherwise - and with the λ_{u}-function.

2. The λ_{u}-function

We begin this section by recalling (from [22]) the following construction of the functions $\mathcal{V}(x), \mathcal{S}(x)$, and $\lambda_{u}(x)$ at elements x of the closed unit ball $(\mathcal{J})_{1}$ in a unital $J B^{*}$-algebra \mathcal{J} : for each number $\delta \geq 1$,

$$
\operatorname{co}_{\delta} \mathcal{U}(\mathcal{J}):=\left\{\delta^{-1} \sum_{i=1}^{n-1} u_{i}+\delta^{-1}(1+\delta-n) u_{n}: u_{j} \in \mathcal{U}(\mathcal{J}), j=1, \ldots, n\right\}
$$

where n is the integer given by $n-1<\delta \leq n$;

$$
\begin{gathered}
\mathcal{V}(x):=\left\{\delta \geq 1: x \in \operatorname{co}_{\delta} \mathcal{U}(\mathcal{J})\right\} \\
\mathcal{S}(x):=\left\{0 \leq \lambda \leq 1: x=\lambda v+(1-\lambda) y \text { with } v \in \mathcal{U}(\mathcal{J}), y \in(\mathcal{J})_{1}\right\}
\end{gathered}
$$

and

$$
\lambda_{u}(x):=\sup \mathcal{S}(x) .
$$

Before presenting further results involving these constructions, it may be helpful to recall some of our results from [22]. Part (i) of the following theorem extends a C^{*}-algebra result due to Rørdam (see [13, Proposition 3.1]). The proof given in [22, Theorem 2.2] follows his argument with suitable changes necessitated by the nonassociativity of Jordan algebras.

Theorem 2.1. Let \mathcal{J} be a unital $J B^{*}$-algebra and let $x \in(\mathcal{J})_{1}$.
(i)

Let $\left\|\gamma x-u_{o}\right\| \leq \gamma-1$ for some $\gamma \geq 1$ and some $u_{o} \in \mathcal{U}(\mathcal{J})$. Let $\left(\alpha_{2}, \ldots, \alpha_{m}\right) \in \mathbb{R}^{m-1}$ with $0 \leq \alpha_{j}<\gamma^{-1}$ and $\gamma^{-1}+\sum_{j=2}^{m} \alpha_{j}=1$. Then there exist unitaries u_{1}, \ldots, u_{m} in \mathcal{J} such that

$$
x=\gamma^{-1} u_{1}+\sum_{j=2}^{m} \alpha_{j} u_{j} .
$$

Moreover, $(\gamma, \infty) \subseteq \mathcal{V}(x)$.
(ii) If $(\gamma, \infty) \subseteq \mathcal{V}(x)$ then for all $r>\gamma$ there is $u_{1} \in \mathcal{U}(\mathcal{J})$ such that $\left\|r x-u_{1}\right\| \leq r-1$.

This immediately gives the following result (cf. [22, Corollary 2.3]).

Corollary 2.2. For any unital $J B^{*}$-algebra $\mathcal{J}, \operatorname{co}_{\gamma} \mathcal{U}(\mathcal{J}) \subseteq \cos _{\delta} \mathcal{U}(\mathcal{J})$ whenever $1 \leq \gamma \leq \delta$. Thus, for each $x \in(\mathcal{J})_{1}, \mathcal{V}(x)$ is either empty or equal to $[\gamma, \infty)$ or (γ, ∞) for some $\gamma \geq 1$.

The following result gives some interesting relationship between the sets $\mathcal{S}(x)$ and $\mathcal{V}(x)$; in particular, $(\inf \mathcal{V}(x))^{-1}=\sup \mathcal{S}(x)$ if $\mathcal{V}(x) \neq \emptyset$:
Theorem 2.3 ([22, Theorem 2.5]). Let \mathcal{J} be a unital $J B^{*}$-algebra and let $x \in(\mathcal{J})_{1}$. Then:
(i) If $\lambda \in \mathcal{S}(x)$ and $\lambda>0$ then $\left(\lambda^{-1}, \infty\right) \subseteq \mathcal{V}(x)$.
(ii) If $\delta \in \mathcal{V}(x)$ then $\delta^{-1} \in \mathcal{S}(x)$.
(iii) $\lambda_{u}(x)=0$ if and only if $\mathcal{V}(x)=\emptyset$.
(iv) If $\lambda_{u}(x)>0$ then $\mathcal{S}(x)=\left[0, \lambda_{u}(x)\right)$ or $\left[0, \lambda_{u}(x)\right]$.
(v) If $\lambda_{u}(x)>0$ and if $0<\lambda<\lambda_{u}(x)$ then $\lambda^{-1} \in \mathcal{V}(x)$.
(vi) If $\lambda_{u}(x)>0$ then $(\inf \mathcal{V}(x))^{-1}=\lambda_{u}(x)$.
(vii) If $\inf (\mathcal{V}(x)) \in \mathcal{V}(x)$ then $\lambda_{u}(x) \in \mathcal{S}(x)$.

As the next example shows, $\lambda_{u}(x) \in \mathcal{S}(x)$ may not imply inf $\mathcal{V}(x) \in \mathcal{V}(x)$.
Example 2.4. Let $\mathcal{J}=\mathcal{C}_{\mathbb{C}}(\Delta)$ be the algebra of all complex-valued continuous functions on the closed unit disk Δ in the complex plane \mathbb{C}. For any integer $n \geq 2$, let the functions $f_{n} \in \mathcal{C}_{\mathbb{C}}(\Delta)$ be given by $f_{n}(z)=\left(1-\frac{1}{n}\right) z+\frac{1}{n}$. Then $\lambda_{u}\left(f_{n}\right) \in \mathcal{S}\left(f_{n}\right)$ but $\inf \mathcal{V}\left(f_{n}\right) \notin \mathcal{V}\left(f_{n}\right)$.

Indeed, since $f_{n}=\frac{1}{n} e+\left(1-\frac{1}{n}\right) g$ where $e \in \mathcal{U}(\mathcal{J}), g \in(\mathcal{J})_{1}$ are given by $e(z)=1$ and $g(z)=z$ for all $z \in \Delta$, we have $\lambda_{u}\left(f_{n}\right) \geq \frac{1}{n}$. Suppose $\lambda_{u}\left(f_{n}\right)>\frac{1}{n}$. Then by Part (v) of Theorem 2.3, $\left(\frac{1}{n}\right)^{-1} \in \mathcal{V}\left(f_{n}\right)$ so that $n \in \mathcal{V}\left(f_{n}\right)$. This contradicts the fact that the unitary rank $u\left(f_{n}\right) \neq n$ (cf. [17, Example 2.5]). Therefore, $\lambda_{u}\left(f_{n}\right)=\frac{1}{n}$. Hence, $\lambda_{u}\left(f_{n}\right) \in \mathcal{S}\left(f_{n}\right)$. But, by Part (vi) of Theorem 2.3, inf $\mathcal{V}\left(f_{n}\right)=\left(\lambda_{u}\left(f_{n}\right)\right)^{-1}=n \notin \mathcal{V}\left(f_{n}\right)$.

The following example shows the existence of an element x in a C^{*}-algebra of $t s r 1$ with $\lambda_{u}(x)>0$ but $\inf \mathcal{V}(x) \notin \mathcal{V}(x)$:
Example 2.5. Let $\mathcal{J}=\mathcal{C}_{\mathbb{C}}((\mathbb{N} \cup\{\infty\}))$ be the C^{*}-algebra of all convergent complex sequences, where \mathbb{N} denotes the set of natural numbers (cf. [18, Remark 5.11]). If $f \in(\mathcal{J})_{1}^{\circ}$ (the open unit ball of \mathcal{J}) is defined by

$$
f(n)= \begin{cases}(2 n)^{-1} e^{\frac{1}{2} i \pi n} & \text { if } n \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

then $\inf \mathcal{V}(f) \notin \mathcal{V}(f)$ even though \mathcal{J} is of $t s r 1$.
This is because \mathcal{J} is of $t s r 1$ by [12, Proposition 1.7]. Since $f \in(\mathcal{J})_{1}^{\circ}$, we get $f \in \mathrm{co}_{2^{+}} \mathcal{U}(\mathcal{J})$ by [15, Theorem 11], where

$$
\begin{aligned}
\mathrm{co}_{2^{+}} \mathcal{U}(\mathcal{J})=\{x \in \mathcal{J}: \text { for each } \epsilon>0, & x \text { has convex decomposition } \\
& \left.\sum_{i=1}^{3} \alpha_{i} u_{i} \text { with } u_{i} \in \mathcal{U}(\mathcal{J}), \alpha_{3}<\epsilon\right\} .
\end{aligned}
$$

Hence, $\inf \mathcal{V}(x)=2$ by [17, Theorem 30]. However, $u(x)>2$ by [6, Remark 19]. Thus, $\inf \mathcal{V}(x) \notin \mathcal{V}(x)$ by [17, Lemma 24].

From Part (iii) of Theorem 2.3, we get the following connections among $\alpha(x), \mathcal{V}(x)$ and $\lambda_{u}(x)$ (cf. [22, Corollary 2.6]):
Corollary 2.6. For any $x \in(\mathcal{J})_{1} \backslash \mathcal{J}_{\text {inv }}$, the following statements are equivalent:
(i) $\alpha(x)<1 \Rightarrow \mathcal{V}(x) \neq \emptyset$.
(ii) $\lambda_{u}(x)=0 \Rightarrow \alpha(x)=1$.
(iii) $\alpha(x)<1 \Rightarrow \lambda_{u}(x)>0$.

For the elements x with $\mathcal{V}(x) \cap[1,2) \neq \emptyset$, we know the following relations among $\operatorname{dist}(x, \mathcal{U}(\mathcal{J})), \mathcal{V}(x)$ and $\mathcal{S}(x)$ (see [22, Theorem 2.7]):
Theorem 2.7. Let $0 \leq \gamma<\frac{1}{2}$. Let \mathcal{J} be a unital JB*-algebra and let $x \in(\mathcal{J})_{1}$. Then the following statements are equivalent:
(i) $\operatorname{dist}(x, \mathcal{U}(\mathcal{J})) \leq 2 \gamma$.
(ii) $x \in \gamma \mathcal{U}(\mathcal{J})+(1-\gamma) \mathcal{U}(\mathcal{J})$.
(iii) $(1-\gamma)^{-1} \in \mathcal{V}(x)$.
(iv) $1-\gamma \in \mathcal{S}(x)$.

This leads us to the following characterizations of the invertible elements in the unit ball; for such elements x, we obtain $\inf \mathcal{V}(x)=2\left(1+\left\|x^{-1}\right\|^{-1}\right)^{-1}$ (see [22, Corollary 2.8]):
Corollary 2.8. Let \mathcal{J} be a unital $J B^{*}$-algebra and let $x \in(\mathcal{J})_{1}$. Then:
(a) The following statements are equivalent:
(i) x is invertible.
(ii) $x \in \gamma \mathcal{U}(\mathcal{J})+(1-\gamma) \mathcal{U}(\mathcal{J})$ for some $0 \leq \gamma<\frac{1}{2}$.
(iii) $\operatorname{dist}(x, \mathcal{U}(\mathcal{J})) \leq 2 \gamma$ for some $0 \leq \gamma<\frac{1}{2}$.
(iv) $1-\gamma \in \mathcal{S}(x)$ for some $0 \leq \gamma<\frac{1}{2}$.
(v) $(1-\gamma)^{-1} \in \mathcal{V}(x)$ for some $0 \leq \gamma<\frac{1}{2}$.
(vi) $\lambda \in \mathcal{V}(x)$ for some $1 \leq \lambda<2$.
(b) Moreover, if x is invertible then $\inf \mathcal{V}(x)=2\left(1+\left\|x^{-1}\right\|^{-1}\right)^{-1}$ and $\mathcal{V}(x)=\left[2\left(1+\left\|x^{-1}\right\|^{-1}\right)^{-1}, \infty\right)$.

Using Part (b) of Corollary 2.8 together with Theorem 2.3 and Theorem 2.7 , one can easily deduce that for any invertible element x in the closed unit ball of a unital $J B^{*}$-algebra $\mathcal{J}, \lambda_{u}(x)=\frac{1}{2}\left(1+\left\|x^{-1}\right\|^{-1}\right)$ and $x=\lambda_{u}(x) u_{1}+\left(1-\lambda_{u}(x)\right) u_{2}$ for some $u_{1}, u_{2} \in \mathcal{U}(\mathcal{J})$ (cf. [22, Corollary 2.10]).

We proceed to obtain formulae for $\lambda_{u}(x)$ when x is a noninvertible element of the closed unit ball in a unital $J B^{*}$-algebra. We shall also compute $\mathcal{V}(x)$ and $\mathcal{S}(x)$ for such elements, and we shall derive some estimates of $\inf \mathcal{V}(x)$ in terms of $\alpha(x)$.

The following result gives an upper bound for $\lambda_{u}(x)$ on noninvertible elements x of the closed unit ball:

Theorem 2.9. Let \mathcal{J} be the $J B^{*}$-algebra and let $x \in(\mathcal{J})_{1}$ be noninvertible. Then $\lambda_{u}(x) \leq \frac{1}{2}(1-\alpha(x))$. Further, if $\alpha(x)=1$ then $\lambda_{u}(x)=0$.
Proof. Since $\|x\| \leq 1, \alpha(x) \leq 1$ and so the inequality is true if $\lambda_{u}(x)=0$. Next, suppose $\lambda_{u}(x)>0$ and $x=\lambda u+(1-\lambda) v$ with $u \in \mathcal{U}(\mathcal{J}), v \in(\mathcal{J})_{1}$ and $0<\lambda \leq 1$. If $1 \geq \lambda>\frac{1}{2}$ then $1 \leq \lambda^{-1}<2$, hence $x=\lambda u+(1-\lambda) v$ gives $\left\|\lambda^{-1} x-u\right\|<1$ and so $\lambda^{-1} x$ is invertible in the isotope $\mathcal{J}^{[u]}$ by [18, Lemma 2.1]. So that $x \in \mathcal{J}_{\text {inv }}$ by [18, Lemma 4.2]; this contradicts the hypothesis. Therefore, $0<\lambda \leq \frac{1}{2}$. Thus we have

$$
\begin{equation*}
\|x-\lambda(u+v)\|=\|(1-2 \lambda) v\| \leq 1-2 \lambda \tag{1}
\end{equation*}
$$

For any positive integer $n,\left\|\left(1-\frac{1}{n}\right) v\right\|<1$, so that $u+\left(1-\frac{1}{n}\right) v$ is invertible in $\mathcal{J}^{[u]}$ again by [18, Lemma 2.1], and hence it is in $\mathcal{J}_{\text {inv }}$ as above. Hence, $\alpha(x) \leq\left\|x-\lambda\left(u+\left(1-\frac{1}{n}\right) v\right)\right\|$ for all positive integers $n \in \mathbb{N}$, and so

$$
\begin{equation*}
\alpha(x) \leq\|x-\lambda(u+v)\| \tag{2}
\end{equation*}
$$

From (1) and (2), we conclude that $\lambda_{u}(x) \leq \frac{1}{2}(1-\alpha(x))$.
Further, if $\alpha(x)=1$, then $\lambda_{u}(x) \leq \frac{1}{2}(1-\alpha(x))$ gives $\lambda_{u}(x) \leq 0$, and hence $\lambda_{u}(x)=0$ because $\lambda_{u}(x) \geq 0$.

We now give the following extension of [17, Theorem 34] for noninvertible elements of the open unit ball in a general $J B^{*}$-algebra; the norm 1 case will be discussed in the next section. For the invertible elements of the unit ball, see Corollary 2.8.

Theorem 2.10. Let \mathcal{J} be a unital $J B^{*}$-algebra and $x \in(\mathcal{J})_{1}^{\circ} \backslash \mathcal{J}_{\text {inv }}$ (so that $\alpha(x)<1)$. Then $\mathcal{V}(x) \neq \emptyset$. Further:
(i) $\mathcal{V}(x)=\left[\left(\lambda_{u}(x)\right)^{-1}, \infty\right)$ or $\mathcal{V}(x)=\left(\left(\lambda_{u}(x)\right)^{-1}, \infty\right)$.
(ii) $u(x)=n$ if $n \neq\left(\lambda_{u}(x)\right)^{-1}$ given by $n-1<\left(\lambda_{u}(x)\right)^{-1} \leq n$.
(iii) $u(x)=n$ or $u(x)=n+1$ if $n=\left(\lambda_{u}(x)\right)^{-1}$.

In any case, for each $0<\epsilon \leq 1$, there exist $u_{1}, \ldots, u_{n+1} \in \mathcal{U}(\mathcal{J})$ such that $x=(\epsilon+n)^{-1}\left(u_{1}+\cdots+u_{n}+\epsilon u_{n+1}\right)$. Moreover, $0<(u(x))^{-1} \leq \lambda_{u}(x) \leq$ $\frac{1}{2}(1-\alpha(x))$. Hence $x \in \operatorname{co}_{n+} \mathcal{U}(\mathcal{J})$.

Proof. By [20, Theorem 2.3], $u(x)<\infty$. Since $u(x)=\min (\mathcal{V}(x) \cap \mathbb{N})$ by [17, Lemma 24], we have $\mathcal{V}(x) \neq \emptyset$. Hence, $\lambda_{u}(x)=(\inf \mathcal{V}(x))^{-1}$ by Theorem 2.3. Thus, Part (i) follows from Corollary 2.2. However, the other parts follow easily from Part (i) and Theorem 2.9.

We close the section with the following realization:
Corollary 2.11. Let \mathcal{J} be a $J B^{*}$-algebra of tsr 1 and let $x \in(\mathcal{J})_{1}^{\circ} \backslash \mathcal{J}_{\mathrm{inv}}$. Then

$$
\mathcal{V}(x)=[2, \infty) \quad \text { or } \quad \mathcal{V}(x)=(2, \infty)
$$

Proof. By Theorem 2.10,

$$
\mathcal{V}(x)=\left[\left(\lambda_{u}(x)\right)^{-1}, \infty\right) \quad \text { or } \quad \mathcal{V}(x)=\left(\left(\lambda_{u}(x)\right)^{-1}, \infty\right)
$$

Since \mathcal{J} is of tsr 1 and $x \in(\mathcal{J})_{1}^{\circ}$, we get $x \in \cos _{2+} \mathcal{U}(\mathcal{J})$ by [15, Theorem 11]. Hence, $2+\epsilon \in \mathcal{V}(x)$ for all $0<\epsilon \leq 1$. Now, since $\alpha(x)=0$, we get

$$
2 \leq\left(\lambda_{u}(x)\right)^{-1}=\inf \mathcal{V}(x) \leq 2
$$

by Theorem 2.3 and Theorem 2.9.

3. The Λ_{u}-condition

In the previous section, we observed several facts about convex combinations of unitaries in relation to the λ_{u}-function. We now introduce a condition on a general $J B^{*}$-algebra, called the Λ_{u}-condition. Under this condition, more precise assertions about the λ_{u}-function can be made. In particular, for any element x in a $J B^{*}$-algebra satisfying the Λ_{u}-condition, we have $\mathcal{V}(x) \neq \emptyset$ and $\lambda_{u}(x)>0$ whenever $\alpha(x)<1$. We shall observe some interesting characterizations of the Λ_{u}-condition, which in turn would give the bound of $\inf \mathcal{V}(x)$ for elements x with $\alpha(x)<1$.

Definition 3.1. We say that a unital $J B^{*}$-algebra satisfies the Λ_{u}-condition if and only if every noninvertible unit vector $y \in \mathcal{J}$ with $\lambda_{u}(y)=0$ satisfies $\alpha(y)=1$.

It may be noted that for any $x \in(\mathcal{J})_{1}^{\circ}$, we have $\mathcal{V}(x) \neq \emptyset$ by $[20$, Theorem 2.3] and [17, Lemma 24]. Hence, $\lambda_{u}(x) \neq 0$ by Theorem 2.3. Here, it is worth recalling from Theorem 2.9 that $\lambda_{u}(x)=0$ if $\alpha(x)=1$ with $x \in(\mathcal{J})_{1}$. Thus, in any unital $J B^{*}$-algebra satisfying the Λ_{u}-condition, we have $\lambda_{u}(x)=0$ if and only if $\alpha(x)=1$.

Example 3.2. Any finite-dimensional $J B^{*}$-algebra and all unital C^{*}-algebras satisfy the Λ_{u}-condition by [17, Theorem 34] and [11, Theorem 5.1]), respectively.

The Λ_{u}-condition is good enough to guarantee an appropriate $J B^{*}$-algebra analogue of [13, Theorem 3.3], and hence that of [11, Theorem 5.1].
Theorem 3.3. Suppose the unital JB*-algebra \mathcal{J}, satisfies the Λ_{u}-condition and let $x \in(\mathcal{J})_{1}$ be noninvertible with $\alpha(x)<1$. Then:
(i) $\lambda_{u}(x)>0$.
(ii) $\mathcal{V}(x)=\left[\left(\lambda_{u}(x)\right)^{-1}, \infty\right)$ or $\mathcal{V}(x)=\left(\left(\lambda_{u}(x)\right)^{-1}, \infty\right)$.
(iii) $u(x)=n$ if $n \neq\left(\lambda_{u}(x)\right)^{-1}$ given by $n-1<\left(\lambda_{u}(x)\right)^{-1} \leq n$.
(iv) $u(x)=n$ or $u(x)=n+1$ if $n=\left(\lambda_{u}(x)\right)^{-1}$.

In either case, for each $0<\epsilon \leq 1$, there exist $u_{1}, \ldots, u_{n+1} \in \mathcal{U}(\mathcal{J})$ such that $x=(\epsilon+n)^{-1}\left(u_{1}+\cdots+u_{n}+\epsilon u_{n+1}\right)$, hence $x \in \operatorname{co}_{n+} \mathcal{U}(\mathcal{J})$.

Proof. If $\|x\|=1$ then from Corollary 2.6 we get $\mathcal{V}(x) \neq \emptyset$ since $\alpha(x)<1$. Hence, assertion (ii) follows for $\|x\|=1$ from Theorem 2.3 and Corollary 2.2. In the case $\|x\|<1$, assertion (ii) follows from Theorem 2.10. The remaining assertions can easily be deduced from the assertion (i).

Corollary 3.4. Let \mathcal{J} be a unital $J B^{*}$-algebra satisfying the Λ_{u}-condition. Then:
(i) $(\mathcal{J})_{1} \backslash \operatorname{co} \mathcal{U}(\mathcal{J}) \subseteq\{y \in \mathcal{J}:\|y\|=\alpha(y)=1\}$.
(ii) If $\alpha(x)<1$ for all $x \in(\mathcal{J})_{1}$ then $(\mathcal{J})_{1}=\operatorname{co} \mathcal{U}(\mathcal{J})$.
(iii) If \mathcal{J} is of tsr 1 then $(\mathcal{J})_{1}=\operatorname{co} \mathcal{U}(\mathcal{J})$.

Proof. (i) If $x \in(\mathcal{J})_{1} \backslash \operatorname{co} \mathcal{U}(\mathcal{J})$, then $\|x\|=1$ (because $\|x\|<1$ gives $x \in \operatorname{co} \mathcal{U}(\mathcal{J})$ by [20, Thorem 2.3]) and $\alpha(x)=1$ (for otherwise, $\lambda_{u}(x)>0$ so that $\mathcal{V}(x) \neq \emptyset$ by Theorem 2.3, and hence $x \in \operatorname{co} \mathcal{U}(\mathcal{J}))$. Thus,

$$
(\mathcal{J})_{1} \backslash \operatorname{co} \mathcal{U}(\mathcal{J}) \subseteq\{y \in \mathcal{J}:\|y\|=\alpha(y)=1\}
$$

(ii) Since $\alpha(x)<1$ for all $x \in \mathcal{J},\{y \in \mathcal{J}:\|y\|=\alpha(y)=1\}$ is the empty set and hence $(\mathcal{J})_{1}=\operatorname{co} \mathcal{U}(\mathcal{J})$ by assertion (i).
(iii) As \mathcal{J} is of $\operatorname{tsr} 1, \alpha(x)=0$ for all $x \in \mathcal{J}$. So the result follows from assertion (ii).

The next result provides motivation for the subsequent results.
Corollary 3.5. Suppose the unital $J B^{*}$-algebra \mathcal{J} satisfies the Λ_{u}-condition, and let $x \in(\mathcal{J})_{1}$ be noninvertible with $\alpha(x)<1$. Then $\lambda_{u}(x)>0$ and so $\mathcal{V}(x) \neq \emptyset$. Moreover:
(i) $\left(\left(\lambda_{u}(x)\right)^{-1}, \infty\right) \subseteq \mathcal{V}(x)$.
(ii) $\left(\lambda_{u}(x)\right)^{-1}=\inf (\mathcal{V}(x))$.
(iii) If $\lambda>\left(\lambda_{u}(x)\right)^{-1}$, then there is $u \in \mathcal{U}(\mathcal{J})$ with $\|\lambda x-u\| \leq \lambda-1$.

Proof. Since \mathcal{J} satisfies the Λ_{u}-condition and since $\alpha(x)<1, \lambda_{u}(x)>0$. Now, the result follows from Theorem 2.1 and Theorem 2.3.

Next, we see if we can identify $\inf \mathcal{V}(x)$ in terms of $\alpha(x)$. For any noninvertible element x of the closed unit ball in a unital $J B^{*}$-algebra \mathcal{J} with $\alpha(x)<1$, the number β_{x} is defined by $\beta_{x}=2(1-\alpha(x))^{-1}$:

Theorem 3.6. Let \mathcal{J} be a unital JB*-algebra and suppose $x \in(\mathcal{J})_{1}$ with $\alpha(x)<1$. Then the following conditions are equivalent:
$\left(\Lambda_{1}\right)\left(\beta_{x}, \infty\right) \subseteq \mathcal{V}(x)$.
$\left(\Lambda_{2}\right)\left(\lambda_{u}(x)\right)^{-1}=\inf \mathcal{V}(x)=\beta_{x}$.
$\left(\Lambda_{3}\right)$ For all $\gamma>\beta_{x}$, there exists $u \in \mathcal{U}(\mathcal{J})$ such that $\|\gamma x-u\| \leq \gamma-1$.
($\left.\Lambda_{4}\right) \lambda_{u}(x) \geq \beta_{x}^{-1}$.
Proof. $\left(\Lambda_{1}\right) \Rightarrow\left(\Lambda_{2}\right)$: By [17, Theorem 30], $\mathcal{V}(x) \subseteq\left[\beta_{x}, \infty\right)$. Then, by the condition $\left(\Lambda_{1}\right), \inf \mathcal{V}(x)=\beta_{x}$. Hence, the required equality follows from Theorem 2.3.
$\left(\Lambda_{2}\right) \Rightarrow\left(\Lambda_{3}\right)$: See [17, Theorem 30].
$\left(\Lambda_{3}\right) \Rightarrow\left(\Lambda_{4}\right)$: Let $\gamma>\beta_{x}$. Then, by the condition $\left(\Lambda_{3}\right)$, there exists $u \in \mathcal{U}(\mathcal{J})$ such that $\|\gamma x-u\| \leq \gamma-1$. Then, by Theorem 2.1, $(\gamma, \infty) \subseteq \mathcal{V}(x)$ so that $\inf \mathcal{V}(x) \leq \gamma$. Hence, by Theorem 2.3, $\lambda_{u}(x) \geq \gamma^{-1}$. It follows that $\lambda_{u}(x) \geq \beta_{x}^{-1}$.
$\left(\Lambda_{4}\right) \Rightarrow\left(\Lambda_{1}\right)$: Let $\gamma>\beta_{x}$. Then, by the condition $\left(\Lambda_{4}\right), 0<\gamma^{-1}<\beta_{x}^{-1} \leq$ $\lambda_{u}(x)$. Thus, $\gamma^{-1} \in \mathcal{S}(x)$, and so $(\gamma, \infty) \subseteq \mathcal{V}(x)$ by the assertion (i) of Theorem 2.3. It follows that $\left(\beta_{x}, \infty\right) \subseteq \mathcal{V}(x)$.
Corollary 3.7. Let \mathcal{J} be a unital JB*-algebra and $x \in(\mathcal{J})_{1}$ with $\alpha(x)<1$ satisfy any of the conditions $\left(\Lambda_{1}\right)-\left(\Lambda_{4}\right)$. If $\alpha(x)<1-\frac{2}{m}$ then $u(x) \leq m$.
Proof. As $\alpha(x)<1-\frac{2}{m}, m>2(1-\alpha(x))^{-1}$. Hence, for the case when $x \notin \mathcal{J}_{\text {inv }}$, we have by [17, Theorem 30] that $m \in \mathcal{V}(x)$, or equivalently, $u(x) \leq m$. If $x \in \mathcal{J}_{\text {inv }}$ then we get from Corollary 2.8 that $m \in \mathcal{V}(x)$ since $m \geq 2$, and hence $u(x) \leq m$.

Corollary 3.8. Let \mathcal{J} be a unital JB*-algebra of tsr 1 and let x be a noninvertible element of $(\mathcal{J})_{1}$. Let $0<\epsilon \leq 1$. If x satisfies any one of the conditions $\left(\Lambda_{1}\right)-\left(\Lambda_{4}\right)$, then there exist unitaries u_{1}, u_{2} and u_{3} in \mathcal{J} such that $x=(2+\epsilon)^{-1}\left(u_{1}+u_{2}+\epsilon u_{3}\right)$.

Proof. Since \mathcal{J} is of $\operatorname{tsr} 1, \alpha(x)=0$ for all $x \in \mathcal{J}$. If the $J B^{*}$-algebra \mathcal{J} satisfies any one of the conditions $\left(\Lambda_{1}\right)-\left(\Lambda_{4}\right)$, then for each noninvertible $x \in(\mathcal{J})_{1}$ we have $(2, \infty) \subseteq \mathcal{V}(x)$ since $\alpha(x)=0$ gives $2+\epsilon>2(1+\alpha(x))^{-1}$ for any $\epsilon \in(0,1]$. This proves the result.
Remark 3.9. [15, Theorem 11] states the same fact for elements of $(\mathcal{J})_{i}^{\circ}$.
If in Theorem 3.6 we restrict x to be of norm 1, then we obtain more equivalent conditions in the following result:
Theorem 3.10. Let \mathcal{J} be a unital $J B^{*}$-algebra and let $x \in \mathcal{J} \backslash \mathcal{J}_{\text {inv }}$ with $\|x\|=1$ and $\alpha(x)<1$. Then the following are equivalent:
(i) $\left(\Lambda_{1}\right)$ holds for x.
(ii) $\left(\Lambda_{2}\right)$ holds for x.
(iii) $\left(\Lambda_{3}\right)$ hold for x.
(iv) $\left(\Lambda_{4}\right)$ holds for x.
(v) $\left(\Lambda_{1}\right)$ holds for each $r x$ with $0<r \leq 1$.
(vi) $\left(\Lambda_{2}\right)$ holds for each $r x$ with $0<r \leq 1$.
(vii) $\left(\Lambda_{3}\right)$ holds for each $r x$ with $0<r \leq 1$.
(viii) $\left(\Lambda_{4}\right)$ holds for each $r x$ with $0<r \leq 1$.
(ix) If $y \in \operatorname{Sp}(x)$ (the linear span of x) and $\|y\|>\alpha(y)+2$, then

$$
\|y-u\| \leq\|y\|-1
$$

for some $u \in \mathcal{U}(\mathcal{J})$.
Moreover, if any one of the above conditions (i) to (ix) holds for all $y \in$ $\mathcal{J} \backslash \mathcal{J}_{\text {inv }}$ with $\|y\|=1$ and $\alpha(y)<1$, then \mathcal{J} satisfies the Λ_{u}-condition.
Proof. We first establish the equivalence of the listed conditions. By Theorem 3.6, (i)-(iv) are equivalent. It is clear that $r x \in(\mathcal{J})_{1}$; and by [18, Lemma 6.2], $\alpha(r x)=r \alpha(x)<1$ (as $\alpha(x)<1)$ for each $0<r \leq 1$. Hence, again by Theorem 3.6, (v)-(viii) are equivalent. Next, we show (ii) \Leftrightarrow (vi), (iv) \Rightarrow (ix) and (ix) \Rightarrow (i).
(ii) \Leftrightarrow (vi): Of course, (vi) \Rightarrow (ii). Conversely, suppose

$$
\left(\lambda_{u}(x)\right)^{-1}=\inf \mathcal{V}(x)=\beta_{x} .
$$

Let r be any fixed number such that $0<r<1$. Then $r x \in(\mathcal{J})_{1}^{\circ} \backslash \mathcal{J}_{\text {inv }}$; so that $\lambda_{u}(r x) \leq \beta_{r x}^{-1}$ by Theorem 2.9. Let $\lambda>\beta_{x}$. Then, by the condition (ii) and Corollary 2.2, $\lambda \in \mathcal{V}(x)$ so that $x \in \operatorname{co}_{\lambda} \mathcal{U}(\mathcal{J})$. Hence, there exist $u_{1}, \ldots, u_{n} \in \mathcal{U}(\mathcal{J})$ with $n-1<\lambda \leq n \in \mathbb{N}$ such that

$$
x=\lambda^{-1}\left(u_{1}+\cdots+u_{n-1}+(1+\lambda-n) u_{n}\right),
$$

so that

$$
r x=r \lambda^{-1}\left(u_{1}+\cdots+u_{n-1}+(1+\lambda-n) u_{n}\right)+\frac{1-r}{2} u_{1}+\frac{1-r}{2}\left(-u_{1}\right) .
$$

This implies

$$
\begin{aligned}
\lambda_{u}(r x) \geq r \lambda^{-1}+ & \frac{1-r}{2}=r \beta_{x}^{-1}+\frac{1-r}{2}+r \lambda^{-1}-r \beta_{x}^{-1} \\
& =\frac{1}{2}(1-r \alpha(x))+r\left(\lambda^{-1}-\beta_{x}^{-1}\right)=\beta_{r x}^{-1}+r\left(\lambda^{-1}-\beta_{x}^{-1}\right)
\end{aligned}
$$

Hence, $\lambda_{u}(r x) \geq \beta_{r x}^{-1}+r\left(\lambda^{-1}-\beta_{x}^{-1}\right)$ for all $\lambda>\beta_{x}$. Thus, $\lambda_{u}(r x)=\beta_{r x}^{-1}$.
(iv) \Rightarrow (ix): Let $y \in \operatorname{Sp}(x)$ with $\|y\|>\alpha(y)+2$. Clearly, $\|y\|^{-1}$ exists and satisfies

$$
\|y\|^{-1}<\frac{\|y\|^{-1}}{2}(\|y\|-\alpha(y))=\frac{1}{2}\left(1-\alpha\left(\|y\|^{-1} y\right)\right)
$$

Since $x=\|y\|^{-1} y$, we get by (iv) that

$$
\|y\|^{-1}<\frac{1}{2}(1-\alpha(x)) \leq \lambda_{u}(x) .
$$

Then, by Theorem 2.3, for $\lambda=\|y\|^{-1}$ there exist $u \in \mathcal{U}(\mathcal{J})$ and $v \in(\mathcal{J})_{1}$ such that $x=\lambda u+(1-\lambda) v$. Hence, $\|x-\lambda u\| \leq 1-\lambda$ as $\lambda \leq 1$ (in fact, $\lambda \leq \frac{1}{2}$ as $\left.\lambda=\|y\|^{-1}<\frac{1}{\alpha(x)+2} \leq \frac{1}{2}\right)$. Thus, $\|y-u\| \leq\|y\|-1$.
(ix) $\Rightarrow(\mathrm{i})$: For any $\gamma>2(1-\alpha(x))^{-1}$, we have $\|\gamma x\|-\alpha(\gamma x)=\gamma-\gamma \alpha(x)>$ 2 so that $\|\gamma x\|>\alpha(\gamma x)+2$. Hence, by (ix), $\|\gamma x-u\| \leq\|\gamma x\|-1$ for some $u \in \mathcal{U}(\mathcal{J})$. So, by Theorem 2.1, $(\gamma, \infty) \subseteq \mathcal{V}(x)$. Thus, $\left(\beta_{x}, \infty\right) \subseteq \mathcal{V}(x)$.

Finally, suppose $x \in \mathcal{J} \backslash \mathcal{J}_{\text {inv }}$ with $\|x\|=1$ and $\lambda_{u}(x)=0$. Then $\alpha(x)=1$: for otherwise, $\alpha(x)<1$ would give $\lambda_{u}(x) \neq 0$ by (iv); a contradiction. However, all of the conditions (i) to (ix) are equivalent as seen above.

We close this section by observing the following fact about the norm 1 noninvertible elements in a $J B^{*}$-algebra of $t s r 1$.

Corollary 3.11. Let \mathcal{J} be a unital JB*-algebra of tsr 1 and $x \in \mathcal{J} \backslash \mathcal{J}_{\text {inv }}$ with $\|x\|=1$. If x satisfies any of the conditions (i)-(ix) given in Theorem 3.10, then:
(i) $\mathcal{V}(x)=[2, \infty)$ or $\mathcal{V}(x)=(2, \infty)$.
(ii) $u(x)=2$ or $u(x)=3$.

Further, for each $\epsilon \in(0,1]$, there are unitaries $u_{1}, \ldots, u_{3} \in \mathcal{J}$ such that $x=(2+\epsilon)^{-1}\left(u_{1}+u_{2}+\epsilon u_{3}\right)$. Hence, $x \in \mathrm{co}_{2+} \mathcal{U}(\mathcal{J})$.

Proof. For this, we only have to show that $(2, \infty) \subseteq \mathcal{V}(x)$. Suppose $\gamma>2$. Then $\|\gamma x\|=\gamma>2$ and hence, by the condition (ix) in Theorem 3.10, there exists some unitary $u \in \mathcal{U}(\mathcal{J})$ such that $\|\gamma x-u\|=\|\gamma x\|-1=\gamma-1$. Then, by Theorem 2.1, $(\gamma, \infty) \subseteq \mathcal{V}(x)$. We conclude that $(2, \infty) \subseteq \mathcal{V}(x)$.

4. An open problem

The following question remains unanswered:
Does every $J B^{*}$-algebra satisfy the Λ_{u}-condition?
As noted in the previous section, every unital C^{*}-algebra satisfies the $\Lambda_{u^{-}}$ condition. This fact follows immediately from a result due to G. K. Pedersen: $\lambda_{u}(x)=\frac{1}{2}(1-\alpha(x))$ for $\|x\| \leq 1$ with $\alpha(x)<1$ (see [11, Theorem 5.1]). We do not know if an appropriate analogue of [11, Theorem 5.1] holds for general $J B^{*}$-algebras. The proof of this result for C^{*}-algebras given in [11] by Pedersen depends fundamentally on another result [13, Theorem 2.1], due to M. Rørdam, which may be expressed as follows: for any element T of a C^{*}-algebra \mathcal{U}, if $a>\alpha(T)$ then there is an invertible element S in \mathcal{U} such that $V\left(I-E_{a}\right)=S\left(I-E_{a}\right)$, where V is a partial isometry in the polar decomposition of T and E_{a} denotes the spectral projection corresponding to the interval $[0, a]$ for $|T|$. We do not know if this holds for a general $J B^{*}$ algebra but we will show that the proof given in [13] for the C^{*}-algebra case does not work in the setting of the finite-dimensional $J B^{*}$-algebra, $\mathcal{M}_{2}^{s}(\mathbb{C})$, consisting of all 2×2 complexified symmetric matrices.

Recall the following steps in the proof of [13, Theorem 2.1]: For $0<b<a$, let f and g be continuous functions defined on the interval $[0, \infty]$ by

$$
f(t)=\left\{\begin{array}{ll}
b^{-1} & \text { if } t \leq b, \\
t^{-1} & \text { otherwise, }
\end{array} \quad \text { and } \quad g(t)= \begin{cases}0 & \text { if } t \leq b, \\
\frac{t-b}{a-b} & \text { if } b<t \leq a \\
1 & \text { otherwise }\end{cases}\right.
$$

Choose b such that $\alpha(T)<b<a$ and $A \in \mathcal{U}_{\text {inv }}$ such that $\left\|T^{*}-A\right\|<b$. Let $B=A f\left(\left|T^{*}\right|\right), C=(1-B V) g(|T|)$ and $D=I-C$. Then the required element S is given by $S=B^{-1} D$.
Example 4.1. Let \mathcal{J} be the $J B^{*}$-algebra $\mathcal{M}_{2}^{s}(\mathbb{C})$ and $T=\left[\begin{array}{cc}i & i+1 \\ i+1 & 2\end{array}\right]$. Then $|T|=\left[\begin{array}{cc}1 & 1-i \\ 1+i & 2\end{array}\right],\left|T^{*}\right|=\left[\begin{array}{cc}1 & 1+i \\ 1-i & 2\end{array}\right]$ so that $f\left(\left|T^{*}\right|\right)=$ $\frac{1}{18}\left[\begin{array}{cc}8 & -i-1 \\ i-1 & 7\end{array}\right]$ and $g(|T|)=\frac{1}{3}\left[\begin{array}{cc}1 & 1-i \\ 1+i & 2\end{array}\right]$. It is easy to see that $\alpha(T)=0$ (cf. [18, Theorem 5.2]). Let $a=3$. Choosing $b=2$ we have $\alpha(T)<$ $b<a$. We take $A=\left[\begin{array}{cc}1-i & 1-i \\ 1-i & 3\end{array}\right] \in \mathcal{J}$. Then A is invertible and satisfies

$$
\begin{aligned}
& \left\|T^{*}-A\right\|=\|I\|<b \text {, so that } B=A f\left(\left|T^{*}\right|\right)=\frac{1}{18}\left[\begin{array}{cc}
8-6 i & 5-7 i \\
5-5 i & 19
\end{array}\right] \text { with } \\
& \text { the inverse } B^{-1}=\frac{3+i}{30}\left[\begin{array}{cc}
19 & 7 i-5 \\
5 i-5 & 8-6 i
\end{array}\right] \text {. Next, the polar decomposition } \\
& T=V|T| \text { gives } V=\left[\begin{array}{cc}
i & 0 \\
0 & 1
\end{array}\right] \text {, so we calculate } C=(I-B V) g(|T|)= \\
& \frac{1}{9}\left[\begin{array}{cc}
-i & -i-1 \\
-i-1 & -2
\end{array}\right] \text {. Hence, } D=I-C=\frac{1}{9}\left[\begin{array}{cc}
9+i & 1+i \\
1+i & 11
\end{array}\right] \text {. Thus, } \\
& \qquad S=B^{-1} D=\frac{1}{90}\left[\begin{array}{cc}
152+74 i & -68 i+84 i \\
-50+30 i & 100-40 i
\end{array}\right]
\end{aligned}
$$

is not in the algebra \mathcal{J}, unfortunately.
Acknowledgement. The author would like to thank the editor for his help and guidance in improving the paper, both in terms of language and $\mathrm{T}_{\mathrm{E}} \mathrm{X}$.

References

[1] Alfsen, Erik M.; Shultz, Frederic W.; Størmer, Erling. A Gelfand-Neumark theorem for Jordan algebras. Advances in Math. 28 (1978), no. 1, 11-56. MR0482210 (58 \#2292), Zbl 0397.46065, doi: 10.1016/0001-8708(78)90044-0.
[2] Aron, Richard M.; Lohman, Robert H. A geometric function determined by extreme points of the unit ball of a normed space. Pacific J. Math. 127 (1987), no. 2, 209-231. MR0881756 (88f:46031), Zbl 662.46020.
[3] Braun, Robert; Kaup, Wilhelm; Upmeier, Harald. A holomorphic characterization of Jordan C^{*}-algebras. Math. Z. 161 (1978), no. 3, 277-290. MR0493373 (58 \#12398), Zbl 0385.32002, doi: 10.1007/BF01214510.
[4] Devapakkiam, C. Viola. Jordan algebras with continuous inverse. Math. Japon. 16 (1971), 115-125. MR0297830 (45 \#6882), Zbl 0246.17015.
[5] Jacobson, Nathan. Structure and representations of Jordan algebras. American Mathematical Society, Providence, R.I. 1968. x+453 pp. MR0251099 (40 \#4330), Zbl 0218.17010 .
[6] Kadison, Richard V.; Pedersen, Gert K. Means and convex combinations of unitary operators. Math. Scand. 57 (1985), no. 2, 249-266. MR0832356 (87g:47078), Zbl 0573.46034.
[7] Kaup, Wilhelm; Upmeier, Harald. Jordan algebras and symmetric Siegel domains in Banach spaces. Math. Z., 157 (1977), no. 2, 179-200. MR0492414 (58 \#11532), Zbl 0357.32018, doi: 10.1007/BF01215150.
[8] McCrimmon, Kevin. Macdonald's theorem with inverses. Pacific J. Math. 21 (1967), 315-325. MR0232815 (38 \#1138), Zbl 0166.04001, doi: 10.2140/pjm.1967.21.315.
[9] McCrimmon, Kevin. Jordan algebras and their applications. Bull. Amer. Math. Soc. 84 (1978), no. 4, 612-627. MR0466235 (57 \#6115), Zbl 0421.17010.
[10] Olsen, Catherine L.; Pedersen, Gert K. Convex combinations of unitary operators in von Neumann algebras. J. Funct. Anal. 66 (1986), no. 3, 365-380. MR0839107 (87f:46107), Zbl 0597.46061.
[11] Pedersen, Gert K. The λ-function in operator algebras. J. Operator Theory 26 (1991) no. 2, 345-381. MR1225521 (94j:46056), Zbl 0784.46043.
[12] Rieffel, Marc A. Dimension and stable rank in the K-theory of C^{*}-algebras. Proc. London Math. Soc. (3) 46 (1983), no. 2, 301-333. MR0693043 (84g:46085) Zbl 0533.46046, doi: $10.1112 / \mathrm{plms} / \mathrm{s} 3-46.2 .301$.
[13] Rørdam, Mikael. Advances in the theory of unitary rank and regular approximation. Ann. of Math. (2) 128 (1988), no. 1, 153-172. MR0951510 (90c:46072), Zbl 0659.46052.
[14] Shultz, Frederic W. On normed Jordan algebras which are Banach dual spaces. J. Funct. Anal., 31 (1979), no. 3, 360-376. MR0531138 (80h:46096), Zbl 0421.46043, doi: 10.1016/0022-1236(79)90010-7.
[15] Siddiqui, Akhlaq A. Asymmetric decompositions of vectors in $J B^{*}$-algebras. Arch. Math. (Brno) 42 (2006), no. 2, 159-166. MR2240353 (2007c:46051), Zbl 1164.46342.
[16] Siddiqui, AkhlaQ A. Self-adjointness in unitary isotopes of $J B^{*}$-algebras. Arch. Math. (Basel), 87 (2006), no. 4, 350-358. MR2263481 (2007g:46082), Zbl 1142.46020, doi: 10.1007/s00013-006-1718-6.
[17] Siddiqui, Akhlaq A. On unitaries in $J B^{*}$-algebras. Indian J. Math. 48 (2006), no. 1, 35-48. MR2229466 (2007m:46112), Zbl 1115.46058.
[18] Siddiqui, AkhlaQ A. $J B^{*}$-algebras of topological stable rank 1. Int. J. Math. Math. Sci. 2007, Art. ID 37186, 24 pp. MR2306360 (2008d:46074), Zbl 1161.46041, doi: $10.1155 / 2007 / 37186$.
[19] Siddiqui, Akhlaq A. Average of two extreme points in $J B W^{*}$-triples. Proc. Japan Acad. Ser. A Math. Sci., 83 (2007), no. 9-10, 176-178. MR2376600 (2009m:46081), Zbl 1207.46046, doi: 10.3792/pjaa.83.176.
[20] Siddiqui, Akhlaq A. A proof of the Russo-Dye theorem for $J B^{*}$-algebras. New York J. Math. 16 (2010), 53-60. MR2645985 (2011e:17051), Zbl 1231.46015.
[21] Siddiqui, Akhlaq A. Convex combinations of unitaries in $J B^{*}$-algebras. New York J. Math. 17 (2011), 127-137. MR2781910 (2012b:46151), Zbl 1227.46035.
[22] Siddiqui, Akhlaq A. The λ_{u}-function in JB**-algebras. New York J. Math. 17 (2011), 139-147. MR2781911 (2012c:46111), Zbl 1227.46036.
[23] Upmeier, Harald. Symmetric Banach manifolds and Jordan C^{*}-algebras. NorthHolland Mathematics Studies, 104. North-Holland Publishing Co., Amsterdam, 1985. xii+444 pp. ISBN: 0-444-87651-0. MR0776786 (87a:58022), Zbl 0561.46032.
[24] Wright, J. D. Maitland. Jordan C^{*}-algebras. Michigan Math. J. 24 (1977), no. 3, 291-302. MR0487478 (58 \#7108), Zbl 0384.46040, doi: $10.1307 / \mathrm{mmj} / 1029001946$.
[25] Wright, J. D. Maitland; Youngson, M. A. On isometries of Jordan algebras. J. London Math. Soc. (2) 17 (1978), no. 2, 339-344. MR482212 (58\#2294), Zbl 0384.46041.
[26] Youngson, Martin A. A Vidav theorem for Banach Jordan algebras. Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 2, 263-272. MR0493372 (58\#12397). Zbl 0392.46038, doi: 10.1017/S0305004100055092.

Department of Mathematics, College of Science, King Saud University, P.O. Box 2455-5, Riyadh-11451, Kingdom of Saudi Arabia.
asiddiqui@ksu.edu.sa
This paper is available via http://nyjm.albany.edu/j/2013/19-10.html.

[^0]: Received July 15, 2012; revised April 26, 2013.
 2010 Mathematics Subject Classification. 17C65, 46L05, 46H70.
 Key words and phrases. C^{*}-algebra; $J B^{*}$-algebra; unit ball; invertible element; unitary element; unitary isotope; convex hull; λ_{u}-function.

