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A generalization of the Turaev cobracket
and the minimal self-intersection number

of a curve on a surface

Patricia Cahn

Abstract. Goldman and Turaev constructed a Lie bialgebra structure
on the free Z-module generated by free homotopy classes of loops on a
surface. Turaev conjectured that his cobracket ∆(α) is zero if and only
if α is a power of a simple class. Chas constructed examples that show
Turaev’s conjecture is, unfortunately, false. We define an operation
µ in the spirit of the Andersen–Mattes–Reshetikhin algebra of chord
diagrams. The Turaev cobracket factors through µ, so we can view µ
as a generalization of ∆. We show that Turaev’s conjecture holds when
∆ is replaced with µ. We also show that µ(α) gives an explicit formula
for the minimum number of self-intersection points of a loop in α. The
operation µ also satisfies identities similar to the co-Jacobi and coskew
symmetry identities, so while µ is not a cobracket, µ behaves like a Lie
cobracket for the Andersen–Mattes–Reshetikhin Poisson algebra.
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1. Introduction

We work in the smooth category. All manifolds and maps are assumed to
be smooth unless stated otherwise, where smooth means C∞.

Goldman [16] and Turaev [22] constructed a Lie bialgebra structure on
the free Z-module generated by nontrivial free homotopy classes of loops
on a surface F . Turaev [22] conjectured that his cobracket ∆(α) is zero
if and only if the class α is a power of a simple class, where we say a
free homotopy class is simple if it contains a simple representative. Chas
[9] constructed examples showing that, unfortunately, Turaev’s conjecture
is false. In this paper, we show that Turaev’s conjecture is almost true.
We define an operation µ in the spirit of the Andersen–Mattes–Reshetikhin
algebra of chord diagrams, and show that Turaev’s conjecture holds on all
orientable surfaces when one replaces ∆ with µ.

Figure 1. Two terms of Turaev’s cobracket ∆(α) with co-
efficients +1 and −1.

Turaev’s cobracket ∆(α) is a sum over the self-intersection points p of
a loop a in a free homotopy class α. Each term of the sum is a tensor
product of two free homotopy classes of loops. The two loops are obtained
by smoothing a at the self-intersection point p according to the orientation
of a. Each tensor product of loops is equipped with a sign (see Figure 1).



A GENERALIZATION OF THE TURAEV COBRACKET 255

Figure 2. Two terms of the operation µ(α) with coefficients
+1 and −1.

Turaev’s conjecture is false because it is not uncommon for the same simple
tensor of loops to appear twice in the sum ∆(α), but with different signs.

We define the operation µ(α) as a sum over the self-intersection points p
of a loop a in α, as in the definition of the Turaev cobracket. Rather than
smoothing at each self-intersection point to obtain a tensor product of two
loops, we glue those loops together to create a wedge of two circles mapped
to the surface. This can also be viewed as a chord diagram with one chord.

More precisely, for the reader already familiar with chord diagrams, we
define

µ([D]) =
∑

(t1,t2)∈SI0

[D+
p ]− [D−p ],

where D : S1 → F is the given loop, [D] is its free homotopy class, SI0
is the set of self-intersections of D (excluding those where one of the two
loops obtained by smoothing at that self-intersection is trivial), [D+

p ] is the
labeled chord diagram obtained by adding one chord between the preimages
t1 and t2 of the self-intersection point p and ordering the two circles in the
resulting wedge of circles with a positive labelling, and [D−p ] is the same
chord diagram but with the labelling reversed. For more details and for the
definition of a chord diagram we direct the reader to Section 2.

As a result of replacing the smoothing operation with the gluing operation,
terms of µ are less likely to cancel than terms of ∆, and hence µ(α) is less
likely to be zero. In fact, Turaev’s conjecture holds when formulated for µ
rather than ∆:

1.1. Theorem. Let F be an oriented surface with or without boundary,
which may or may not be compact. Let α be a free homotopy class on F .
Then µ(α) = 0 if and only if α is a power of a simple class.

There is a simple relationship between ∆ and µ; namely, if one smoothes
each term of µ at the gluing point, and tensors the resulting loops, one
obtains a term of ∆ (see Figure 3). Hence the Turaev cobracket factors

Figure 3. The Turaev cobracket factors through µ.
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through µ, and we can view µ as a generalization of ∆. The relationship
between µ and ∆ is analogous to the relationship between the Andersen–
Mattes–Reshetikhin Poisson bracket for chord diagrams and the Goldman
Lie bracket. While µ is not a cobracket, in the final section of the paper, we
show that µ satisfies identities similar to coskew symmetry and the co-Jacobi
identity.

The operation µ also gives a formula for the minimum number of self-
intersection points of a generic loop in a given free homotopy class α. By
a generic loop, we mean a loop whose self-intersection points are transverse
double points. We call this number the minimal self-intersection number of
α and denote it by m(α). Both Turaev’s cobracket and the operation µ give
lower bounds on the minimal self-intersection number of a given homotopy
class α. We call a free homotopy class primitive if it is not a power of another
class in π1(F ). Any class α can be written as βn for some primitive class β
and n ≥ 1. It follows easily from the definitions of ∆ and µ that m(α) is
greater than or equal to n−1 plus half the number of terms in the (reduced)
linear combinations ∆(α) or µ(α).

1.2. Definition. The number of terms t(L) of a reduced linear combination
L of simple tensors of classes of loops, or of classes of chord diagrams, is the
sum of the absolute values of the coefficients of the classes.

Chas’ counterexamples to Turaev’s conjecture show that the lower bound
given by ∆(α) cannot, in general, be used to compute the minimal self-
intersection number of α. In order to compute the minimal self-intersection
number of α using ∆ on surfaces with boundary, Chas and Krongold showed
that one should instead count the number of terms of ∆(αk) for k ≥ 3 [12].
However the lower bound given by µ(α) is always equal to m(α):

1.3. Theorem. Let F be an oriented surface with or without boundary,
which may or may not be compact. Let α be a nontrivial free homotopy
class on F such that α = βn, where β is primitive and n ≥ 1. Then the
minimal self-intersection number of α is equal to n− 1 plus half the number
of terms of µ(α).

In order to prove the case of Theorem 1.3 where n > 1, we make use
of the results of Hass and Scott [17] who describe geometric properties of
curves with minimal self-intersection (see also [15]).

1.1. Related results. We briefly summarize some results related to Tu-
raev’s conjecture and computations of the minimal self-intersection number.
Le Donne [18] proved that Turaev’s conjecture is true for genus zero surfaces.
For surfaces of positive genus, one might wonder to what extent Turaev’s
conjecture is false. Chas and Krongold [12] approach this question by show-
ing that, on surfaces with boundary, if ∆(α) = 0 and α is at least a third
power of a primitive class β, then β is simple.
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A nice history of the problem of determining when a homotopy class
is represented by a simple loop is given in Rivin [20]. Birman and Series
[6] give an explicit algorithm for detecting simple classes on surfaces with
boundary. Cohen and Lustig [14] extend the work of Birman and Series
to obtain an algorithm for computing the minimal intersection and self-
intersection numbers of curves on surfaces with boundary, and Lustig [19]
extends this to closed surfaces. We give an example which shows how one can
algorithmically compute m(α) using µ on surfaces with boundary, though
generally we do not emphasize algorithmic implications in this paper.

A different algebraic solution to the problem of computing the minimal
intersection and self-intersection numbers of curves on a surface is given by
Turaev and Viro [24]. However µ has a simple relationship to ∆ and pairs
well with the Andersen–Mattes–Reshetikhin Poisson bracket. Chernov [13]
used the Andersen–Mattes–Reshetikhin bracket to compute the minimum
number of intersection points of loops in given free homotopy classes which
are not powers of the same class.

After this work was completed, the techniques developed in this paper
allowed the author, together with Chernov, to prove that the Andersen–
Mattes–Reshetikhin bracket computes the minimal intersection number of
any two distinct free homotopy classes even when the given loops are powers
of the same loop [8]. As a result, the author and Chernov obtained a formula
for the minimal self-intersection number of a free homotopy class in terms
of the Andersen–Mattes–Reshetikhin Poisson bracket. In particular m(α)
is equal to 1

2|pq| t({α
p, αq}) + n − 1, where n is the largest positive integer

such that α = βn in π1(F ), and p and q are any two distinct integers.
Around the same time, Chas and Gadgil showed that by counting terms of
the Goldman bracket [αp, βq] for p and q large enough, one can compute
intersection numbers on surfaces and orbifolds [11].

2. The Goldman–Turaev and Andersen–Mattes–Reshetikhin
algebras and the operation µ

Before defining µ, we review the definitions of the Goldman–Turaev Lie
bialgebra and the Andersen–Mattes–Reshetikhin Poisson algebra. Our goal
in this section is to emphasize that the relationship between µ and the
Andersen–Mattes–Reshetikhin Poisson bracket is analogous to the relation-
ship between the Turaev cobracket and the Goldman bracket.

2.1. The Goldman–Turaev Lie bialgebra. We now define the Gold-
man–Turaev Lie Bialgebra on the free Z-module generated by the set π̂
of free homotopy classes of loops on F , which we denote by Z[π̂]. Let
α, β ∈ π̂, and let a and b be smooth, transverse representatives of α and β,
respectively, and assume that all intersection points of a and b are double
points. We will use square brackets to denote the free homotopy class of a
loop. The set of intersection points Ia,b, or just I when the choice of a and
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b is clear, is defined to be

I = {(t1, t2) ∈ S1 × S1 : a(t1) = b(t2)}.

Let a ·p b denote the product of a and b as based loops in π1(F, p), where
p = a(t1) = b(t2) and (t1, t2) ∈ I.

The Goldman bracket [16] is a linear map [·, ·] : Z[π̂] ⊗Z Z[π̂] → Z[π̂],
defined by

[α, β] =
∑

(t1,t2)∈I

sgn(p; a, b)[a ·p b],

where sgn(p; a, b) = 1 if the orientation given by the pair {a′(t1), b′(t2)} of
vectors agrees with the orientation of F , and sgn(p; a, b) = −1 otherwise.

Next we define the Turaev cobracket [22]. Let α be a free homotopy
class on F , and let a be a smooth representative of α with transverse self-
intersection points. Let SIa, or just SI when the choice of a is clear, denote
the set of self-intersection points of the loop a. Let D be the diagonal in
S1×S1. Elements of SI will be points in S1×S1−D modulo the action of
Z2 which interchanges the two coordinates. Now we define

SI = {(t1, t2) ∈ (S1 × S1 − D)/Z2 : a(t1) = a(t2)}.

Let p = a(t1) = a(t2) be a self-intersection point of a. Let [t1, t2] denote the
arc of S1 going from t1 to t2 in the direction of the orientation of S1, and
let [t2, t1] denote the arc of S1 going from t2 to t1 in the direction of the
orientation of S1. Since p = a(t1) = a(t2), then a([t1, t2]) and a([t2, t1]) are
loops. We assign these loops the names a1p and a2p in such a way that the

ordered pair of initial velocity vectors {(a1p)′(ti), (a2p)′(tj)} (where {i, j} =
{1, 2} are chosen so that these vectors are indeed initial rather than final
velocity vectors) gives the chosen orientation of TpF . Now we let SI0 be
the subset of SI which contains only self-intersection points p such that the
loops aip are nontrivial:

SI0 = {(t1, t2) ∈ SI : p = a(t1) = a(t2), a
1
p, a

2
p 6= 1 ∈ π1(Fp)}.

The Turaev cobracket is a linear map ∆ : Z[π̂]→ Z[π̂]⊗ZZ[π̂] which is given
on a single homotopy class by

∆(α) =
∑

(t1,t2)∈SI0

[a1p]⊗ [a2p]− [a2p]⊗ [a1p].

One can show that the definition of ∆ is independent of the choice of a ∈ α
by showing ∆(α) does not change under elementary moves for a smooth
loop in general position (see Figure 7). Using linearity, this definition of ∆
can be extended to all of Z[π̂].

Together, [·, ·] and ∆ equip Z[π̂] with an involutive Lie Bialgebra structure
[16, 22]. That is, [·, ·] and ∆ satisfy (co)skew-symmetry, the (co) Jacobi
identity, a compatibility condition, and [·, ·] ◦∆ = 0. A complete definition
of a Lie Bialgebra is given in [9].
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2.2. Andersen–Mattes–Reshetikhin algebras of chord diagrams.
We now summarize the Andersen–Mattes–Reshetikhin algebra of chord di-
agrams on F [1, 2]. A chord diagram is a disjoint union of oriented circles
S1, ..., Sk, called core circles, along with a collection of disjoint arcs C1, ..., Cl,
called chords, such that:

(1) ∂Ci
⋂
∂Cj = ∅ for i 6= j, and

(2)
⋃l
i=1 ∂Ci =

(⋃k
i=1 Si

)⋂(⋃l
i=1Ci

)
.

A geometrical chord diagram on F is a smooth map from a chord diagram
D to F such that each chord Ci in D is mapped to a point. A chord diagram
on F is a homotopy class of a geometrical chord diagram D, denoted [D].

Let M denote the free Z-module generated by the set of chord diagrams
on F ([2] uses coefficients in C, but we use Z here for consistency). Let N
be the submodule generated by a set of 4T -relations, one of which is shown
in Figure 4. The other relations can be obtained from this one as follows:
one can reverse the direction of any arc, and any time a chord intersects an
arc whose orientation is reversed, the diagram is multiplied by a factor of
−1.

Figure 4. 4T -relations

Given two chord diagrams D1 and D2 on F , we can form their disjoint
union by choosing representatives (i.e., geometrical chord diagrams) Di of
Di, taking a disjoint union of their underlying chord diagrams, mapping the
result to F as prescribed by the Di, and taking its free homotopy class.
The disjoint union of chord diagrams D1 ∪ D2 defines a commutative mul-
tiplication on M , giving M an algebra structure with N as an ideal. Let
ch = M/N , and call this the algebra of chord diagrams.

Andersen, Mattes, and Reshetikhin [1, 2] constructed a Poisson bracket
on ch, which can be viewed as a generalization of the Goldman bracket for
chord diagrams on F rather than free homotopy classes of loops. Let D1

and D2 be chord diagrams on F , and choose representatives Di of Di. We
define the set of intersection points ID1,D2 , or just I when the choice of D1

and D2 is clear, to be

I = {(t1, t2) : D1(t1) = D2(t2)},

where ti is a point in the preimage of the geometrical chord diagrams Di.
For each (t1, t2) ∈ I with p = Di(ti), let D1 ∪p D2 denote the geometrical
chord diagram obtained by adding a chord between t1 and t2. Later we will
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want to let p have multiplicity greater than 2. In that case, it is necessary to
specify preimages of p for this notation to be well-defined. Since each copy of
S1 in the chord diagram is oriented, we can define sgn(p;D1, D2) as before.
The Andersen–Mattes–Reshetikhin Poisson bracket {·, ·} : ch × ch → ch is
defined by

{D1,D2} =
∑

(t1,t2)∈I

sgn(p;D1, D2)[D1 ∪p D2],

where square brackets denote the free homotopy class of a geometrical chord
diagram. This definition of {·, ·} can be extended to all of ch using bilinearity.
For a proof that {·, ·} does not depend on the choices of Di ∈ Di, i = 1, 2,
see [2]. In particular, it is necessary to check that {·, ·} is invariant under
elementary moves, including the Reidemeister moves in Figure 7, the moves
in Figures 5 and 6, and the 4T -relations.

Figure 5. An elementary move for chord diagrams (with
one of several possible choices of orientations on the arcs).

Figure 6. An elementary move for chord diagrams (with
one of several possible choices of orientations on the arcs).

2.3. The operation µ. The definition of µ given in this section is the
simplest for the purposes of computing the minimal self-intersection number
of a free homotopy class α. In this section, we define µ only on free homotopy
classes. In the final section of this paper, we modify the definition of µ in a
way that allows us to more easily state an analogue of the co-Jacobi identity,
and which allows us to extend the definition of µ to certain chord diagrams
in the Andersen–Mattes–Reshetikhin algebra.

For this defintion of µ, we will consider geometrical chord diagrams with
one core circle and one chord equipped with a sign ε ∈ {+,−}. Soon we
will see that a generic geometrical chord diagram D with one core circle and
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one signed chord can be viewed as a map of a wedge of two circles to our
surface, where the two circles are ordered.

Let E denote the free Z-module generated by chord diagrams on F with
one core circle and one signed chord. Recall that a chord diagram is defined
to be the homotopy class of a geometrical chord diagram. Two geometrical
chord diagrams with one signed chord represent the same chord diagram
on F if and only if they are related by the usual Reidemeister moves for
curves on surfaces (see Figure 7), plus two additional elementary moves
for diagrams with signed chords. These moves, with one possible choice of
orientation on the branches, are shown in Figures 8 and 9, where ε ∈ {+,−}
denotes the sign on the chord. Note that we do not yet need to take a
quotient by 4T-relations on E because our diagrams have only one chord.
We define a linear map µ : Z[π̂]→ E.

Figure 7. Reidemeister moves for curves on surfaces with
one possible choice of orientation on each branch.

Let D : S1 → F be a geometrical chord diagram on F with one core
circle. For each self-intersection point p = D(t1) = D(t2) of D, we let D+

p

(respectively D−p ) be the geometrical chord diagram obtained by adding a
chord with sign ε = + (respectively ε = −) between t1 and t2.

Figure 8. Elementary move for chord diagrams with signed chords.

Figure 9. Elementary move for chord diagrams with signed chords.
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Now we define µ on the class of the geometrical chord diagram D by

µ([D]) =
∑

(t1,t2)∈SI0

[D+
p ]− [D−p ].

Using linearity, we can extend this definition to all of Z[π̂]. It remains to
check that µ([D]) is independent of the choice of representative of [D].

2.4. µ(D) is independent of the choice of representative of D. We
check that µ is invariant under the usual Reidemeister moves:

(1) Regular isotopy: Invariance is clear.
(2) First Reidemeister Move: This follows from the definition of SI0.
(3) Second Reidemeister Move: This follows from the move in Figure 8.
(4) Third Reidemeister Move: This follows from the move in Figure 9.

We note that when checking invariance under the second and third moves,
one must consider the case where some of the self-intersection points are in
SI but not in SI0.

Each signed chord diagram Dε
p with one chord of sign ε and one core circle

corresponds to a map from a wedge of circles to F where the two circles are
ordered. Suppose the chord connects two preimages t1 and t2 of p. As before
this gives rise to two loops a1p and a2p. If ε = + we label the loop a1p with a

1 and label a2p with a 2. If ε = − we label the loop a1p with a 2 and label a2p
with a 1. As one can see from Figures 1 and 2, this makes the relationship
between ∆ and µ transparent.

2.5. Alternative notation for µ. Next we will rewrite the definition of
µ in a way that makes its relationship to ∆ more transparent. Let φ and
ψ : I = [0, 1] → F be loops in F based at p, such that φ′(0) = ψ′(1)
and φ′(1) = ψ′(0). We define a geometrical chord diagram φ •p ψ which,
intuitively, glues the loops φ and ψ at the point p. The underlying chord
diagram of φ •p ψ contains one core circle S1 = I/∂I, and one chord C with
endpoints at 0 ∈ I and 1

2 ∈ I. The geometrical chord diagram φ •p ψ maps
the chord C to p. Then we define (φ •p ψ)|[0, 1

2
] = φ and (φ •p ψ)|[ 1

2
,1] = ψ,

and label φ with a 1 and ψ with a 2. By the discussion above, this is
equivalent to equipping the chord with a positive (respectively, negative)
sign if {φ′(0), ψ′(0)} form a positive (respectively, negative) frame.

Now we are ready to rewrite the definition of µ for α ∈ π̂(F ). Let a be
a representative of α, and for each (t1, t2) ∈ SI0 with p = a(t1) = a(t2), let
a1p and a2p be the loops we defined for the Turaev cobracket. Now

µ(α) =
∑

(t1,t2)∈SI0

[a1p •p a2p]− [a2p •p a1p].

We will make frequent use of the following proposition, whose proof is
straightforward:
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2.1. Proposition. Two generic geometrical chord diagrams D1 = φ1 •p ψ1

and D2 = φ2 •p ψ2 represent the same chord diagram on F , i.e., are related
by flat Reidemeister moves and the moves in Figures 8 and 9, if and only if
there exists γ ∈ π1(F, p) such that γφ1γ

−1 = φ2 and γψ1γ
−1 = ψ2.

2.6. Relationship between µ, the Goldman–Turaev Lie bialgebra,
and the Andersen–Mattes–Reshetikhin algebra of chord diagrams.
Andersen, Mattes and Reshetikhin [2] show that there is a quotient algebra
of ch which corresponds to Goldman’s algebra. Let I be the ideal generated
by the relation in Figure 10. In the quotient ch/I, each chord diagram
is identified with the disjoint union of free homotopy classes obtained by
smoothing the diagram at the intersections which are images of chords.
One can check that P : ch→ ch/I is a Poisson algebra homomorphism and

Figure 10. Generator of I

ch/I is a Poisson algebra with an underlying Lie algebra that corresponds
to Goldman’s algebra [2].

There is a similar relationship between the Turaev cobracket and µ. Let
Q be the map which smoothes the chord diagram according to its orientation
at an intersection which is an image of a chord, and tensors the two resulting
homotopy classes together (see Figure 11). Then ∆ = Q ◦ µ.

Remark. Turaev [22, p. 660] notes that the Turaev cobracket can be ob-
tained algebraically from an operation defined in Supplement 2 of [23]. It
is possible that µ may be obtained from this operation as well. We do not
know a way of obtaining Turaev’s operation from µ.

Figure 11. The map Q.
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3. Proofs of theorems

In this section, we prove Theorems 1.1 and 1.3. Recall that Theorem 1.1
states that µ(α) = 0 if and only if α is a power of a simple class. Theorem 1.3
gives an explicit formula for m(α). We begin by describing two types of self-
intersection points of a loop which is freely homotopic to a power of another
loop. Then we prove Theorem 3.2, which describes when certain terms of µ
cancel. Theorems 1.1 and 1.3 are corollaries of Theorem 3.2.

3.1. Intersection points of powers of loops. Our goal is to understand
the conditions under which different terms of µ(α) cancel, when α ∈ π̂ is
a power of another class β in π1(F ). To do this, we need to distinguish
between two different types of self-intersection points of a curve. Suppose
we choose a geodesic representative g of α. Either all self-intersection points
of g are transverse, or g has infinitely many self-intersection points, and in
particular, g is a power of another geodesic. Let p be a point on the image of
g which is not a transverse self-intersection point of g. Let h be a geodesic
loop such that g = hn in π1(F, p), and such that there is no geodesic f
such that h = fk (it is possible that |n| = 1). Now we know that h has
finitely many self-intersection points, all of which are transverse. Let m be
the number of self-intersection points of h. Since F is orientable, we can
perturb g slightly to obtain a loop g′ as follows: We begin to traverse g
beginning at p, but whenever we are about to return to p, we shift slightly
to the left. After doing this n times, we must return to p and connect to
the starting point. This requires crossing n− 1 strands of the loop, creating
n − 1 self-intersection points. We call these Type 2 self-intersection points.
For each self-intersection point of h, we get n2 self-intersection points of
g (see Figure 12). We call these mn2 self-intersection points Type 1 self-
intersection points. We note that we are counting self-intersections with
multiplicity, as some of the self-intersection points of h may be images of
multiple points in SI. Given a transverse self-intersection point p of h, we

Figure 12. Type 1 and Type 2 self-intersection points.

will denote the corresponding set of n2 Type 1 self-intersection points of g′

by {pi,j}, where i ∈ {1, ..., n} is the label on the strand corresponding first
branch of h at p (i.e., a strand going from top to bottom in Figure 13),
and j ∈ {1, ..., n} is the label on the strand corresponding to the second
branch of h at p (i.e., a strand going from left to right in Figure 13). This
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relationship between the numbers of self-intersection points of g and h can
be found in [24] for both orientable and nonorientable surfaces.

Figure 13. Type 1 intersection points.

3.1. Lemma. Let g be a geodesic representative of α ∈ π̂(F ), with g = hn,
and h and n are as defined in the paragraph above. Then the contribution
to µ(α) of a Type 1 self-intersection point pi,j is

[(XY )IX •p (Y X)JY ]− [(Y X)JY •p (XY )IX],

where X = h1p, Y = h2p, and I, J ∈ N such that I + J = n− 1.

Proof. We will compute the contribution to µ for a Type 1 self-intersection
point pi,j of g′, where g′ is the perturbed version of g described in the above
paragraph. These terms are [(g′)1pi,j •pi,j (g′)2pi,j ] and −[(g′)2pi,j •pi,j (g′)1pi,j ].

However, when we record the terms of µ, we perturb g′ back to g, so that the
terms we record are geometrical chord diagrams whose images are contained
in the image of g and whose chords are mapped to p. To compute (g′)1pi,j , we

begin at pi,j along the branch corresponding to X = h1p, and wish to know

how many times we traverse branches corresponding to X = h1p and Y = h2p
before returning to pi,j . The first time we return to pi,j , we must return along

the jth branch of X. Therefore [(g′)1pi,j ] = [(XY )IX] for some integer I ≥ 0.

If we begin at pi,j along the branch corresponding to Y = h2p, we return to

pi,j for the first time on the ith branch of Y . Therefore [(g′)2pi,j ] = [(Y X)JY ]

for some integer J ≥ 0. But if we traverse (g′)1pi,j followed by (g′)2pi,j , we

must traverse g′ exactly once, so I + J = n− 1. �
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3.2. Canceling terms of µ. Throughout this section, we will use the fol-
lowing facts, which hold for a compact surface F with negative scalar cur-
vature (though compactness is not needed for (3)).

(1) Nontrivial abelian subgroups of π1(F ) are infinite cyclic.
(2) There is a unique, maximal infinite cyclic group containing each

nontrivial α ∈ π1(F ).
(3) Two distinct geodesic arcs with common endpoints cannot be homo-

topic.
(4) Each nontrivial α ∈ π̂(F ) contains a geodesic representative which

is unique up to choice of parametrization.

The first fact holds by Preissman’s Theorem. The second fact is true if
∂F 6= ∅ because π1(F ) is free. If F is closed, the second fact follows from
the proof of Preissman’s Theorem [13]. The third and fourth facts can be
found in [7], as Theorems 1.5.3 and 1.6.6 respectively.

We now show that for any free homotopy class α on a compact surface,
it is possible to choose a representative of α such that no two terms coming
from Type 1 intersection points cancel. This proof is based on ideas in [24]
and [13]. Later we will see that if F = S2, T 2, or the annulus A, geodesic
loop on F has no Type 1 self-intersection points, so in Theorem 3.2, we only
consider surfaces of negative curvature.

3.2. Theorem. Let F be a compact surface equipped with a metric of nega-
tive curvature. Let α ∈ π̂(F ). If g is a geodesic representative of α, then no
two terms of µ(α) corresponding to Type 1 intersection points of g cancel.

Proof. Throughout this proof, [·] denotes a free homotopy class (either of
a geometrical chord diagram or a loop), [·]p denotes a homotopy class in
π1(F, p), and [·]pq denotes the homotopy class of a path from p to q with
fixed endpoints. When we concatenate two paths p1 and p2, we write p1p2,
where the path written on the left is the path we traverse first.

We write g = hn for some geodesic loop h and some n ≥ 1, where h
is not a power of another loop. Suppose h has m self-intersection points,
and let g′ be a perturbation of g with mn2 Type 1 self-intersection points
and n − 1 Type 2 self-intersection points. Let {pi,j : 1 ≤ i, j ≤ n} and
{qk,l : 1 ≤ k, l ≤ n} be the sets of n2 self-intersection points corresponding
to the (transverse) self-intersection points p and q of h respectively, with
the indexing as defined in the previous section. We assume [h] is nontrivial,
since the theorem clearly holds when [h] is trivial (SI0 is in fact empty).

We wish to show that the terms of µ corresponding to points pi,j and qk,l
cannot cancel. We suppose these terms cancel, and derive a contradiction.

First, we consider the case where p = q = h(t1) = h(t2) for (t1, t2) ∈ SI0,
but i and k may or may not be equal, and j and l may or may not be equal.
In other words, pi,j and qk,l = pk,l come from the same set of n2 Type 1
self-intersection points. Let X = h1p and let Y = h2p. If either i 6= k or j 6= l,
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then by Lemma 3.1, the terms corresponding to pi,j and pk,l are

[(XY )IX •p (Y X)JY ]− [(Y X)JY •p (XY )IX], and

[(XY )KX •p (Y X)LY ]− [(Y X)LY •p (XY )KX],

for integers I, J,K,L such that I + J = K + L = n− 1. If i = k and j = l,
then pi,j = pk,l corresponds to a single element of SI0, so we have just the
first two of the above terms. In either case, it suffices to assume that the
terms [(XY )IX •p (Y X)JY ] and [(Y X)LY •p (XY )KX] cancel, where I and
K may or may not be equal, and J and L may or may not be equal.

Suppose that

[(XY )IX •p (Y X)JY ] = [(Y X)LY •p (XY )KX].

Then there exists γ ∈ π1(F, p) such that

(3.1) γ[(XY )IX]pγ
−1 = [(Y X)LY ]p

and

(3.2) γ[(Y X)JY ]pγ
−1 = [(XY )KX]p.

We multiply Equations (3.1) and (3.2) in both possible orders to obtain the
equations

(3.3) γ[(XY )IX]p[(Y X)JY ]pγ
−1 = [(Y X)LY ]p[(XY )KX]p

and

(3.4) γ[(Y X)JY ]p[(XY )IX]pγ
−1 = [(XY )KX]p[(Y X)LY ]p.

Conjugating Equation (3.3) by [X]p ∈ π1(F, p) tells us that [X]pγ and
[(XY )n]p commute, since I +J + 1 = K+L+ 1 = n. Similarly, conjugating
Equation (3.4) by [Y ]p tells us [Y ]pγ and [(Y X)n]p commute. Therefore
the subgroups 〈[X]pγ, [(XY )n]p〉 and 〈[Y ]pγ, [(Y X)n]p〉 are infinite cyclic,
and are generated by elements s and t of π1(F, p), respectively. Note that
these subgroups are nontrivial since h is nontrivial. Fact (2) states that
each nontrivial element of π1 is contained in a unique, maximal infinite
cyclic group. Let m1 and m2 be the generators of the unique maximal
infinite cyclic groups containing [(XY )n]p and [(Y X)n]p respectively. Since
[h] = [XY ] = [Y X] is not freely homotopic to a power of another class, we
have that 〈m1〉 = 〈[XY ]p〉 and 〈m2〉 = 〈[Y X]p〉. But 〈s〉 and 〈t〉 are also
infinite cyclic groups containing [(XY )n]p and [(Y X)n]p, respectively. By
the maximality of the 〈mi〉, we have that 〈s〉 ≤ 〈m1〉 and 〈t〉 ≤ 〈m2〉. This
tells us [X]pγ and [Y ]pγ are powers of [XY ]p and [Y X]p respectively, so

(3.5) γ = [X]−1p ([XY ]p)
u = [Y ]−1p ([Y X]p)

v.

The powers u and v can be either zero, positive, or negative. Once we make
all possible cancellations in Equation (3.5), we will have two geodesic loops,
not necessarily closed geodesics, (one on each side of the equation) formed by
products of X, Y , or their inverses, representing the same homotopy class
in π1(F, p). Therefore these geodesic lassos must coincide. The geodesic
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on the left hand side of Equation (3.5) can begin by going along either
X−1 or Y (depending on the sign of u), while the geodesic on the right
hand side can begin along either Y −1 or X (depending on the sign of v).
Therefore [X]p and [Y ]p must either be powers of the same loop, which is
impossible, because we assumed [h] is not a power of another class, or [X]p
and [Y ]p must be trivial, which is impossible because of the definition of
SI0. Therefore the terms of µ corresponding to pi,j and qk,l cannot cancel
when p = q = h(t1) = h(t2).

Now we will show that the terms of µ which correspond to pi,j and qk,l
cannot cancel when p and q correspond to different ordered pairs in SI0.
Let X = h1p, Y = h2p, Z = h1q , and W = h2q . By Lemma 3.1 the terms which
pi,j and qk,l contribute to µ are:

[(XY )IX •p (Y X)JY ]− [(Y X)JY •p (XY )IX]

and

[(ZW )KZ •q (WZ)LW ]− [(WZ)LW •q (ZW )KZ],

where I + J = K + L = n− 1. We will suppose that

[(XY )IX •p (Y X)JY ] = [(WZ)LW •q (ZW )KZ],

and derive a contradiction. Switching the orders of the two loops on both
sides of the equation gives us the equality

[(Y X)JY •p (XY )IX] = [(ZW )KZ •q (WZ)LW ],

so if we assume that one of these equalities holds, all four terms above will
cancel.

As in the case where p = q, we will use the equality

[(XY )IX •p (Y X)JY ] = [(WZ)LW •q (ZW )KZ]

to find abelian subgroups of π1(F, q). To do this, we examine the Gauss
diagram of h with two oriented chords corresponding to the self-intersection
points p and q. The four possible Gauss diagrams with two oriented chords
are pictured in Figure 14.

Figure 14. (a.) − (d.) The four Gauss diagrams of an ori-
ented loop h with two self-intersection points.
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We use the convention that each oriented chord points from the second
branch of h to the first branch of h, where the branches of h at a self-
intersection point are ordered according to the orientation of F . As shown
in Figure 14, we let ai, i = 1, . . . , 4, denote the arcs between the preimages
of p and q. We let bi denote the image of the arc ai under h.

We first change the basepoint of the first term from p to q, replacing
[(XY )IX •p (Y X)JY ] by [b−12 (XY )IXb2 •q b−12 (Y X)JY b2]. Assuming the
terms cancel, we can find γ ∈ π1(F, q) such that

(3.6) γ[(WZ)LW ]qγ
−1 = [b−12 (XY )IXb2]q

and

(3.7) γ[(ZW )KZ]qγ
−1 = [b−12 (Y X)JY b2]q.

Multiplying Equations (3.6) and (3.7) in both possible orders, and using the
fact that n− 1 = I + J = K + L, we have:

(3.8) γ[(WZ)n]qγ
−1 = [b−12 (XY )nb2]q

and

(3.9) γ[(ZW )n]qγ
−1 = [b−12 (Y X)nb2]q.

Table 1 lists the values of X,Y, Z and W in terms of the bi for each Gauss
diagram in Figure 14. This allows us to rewrite Equations (3.8) and (3.9)

Table 1. The values of X,Y, Z and W for each Gauss dia-
gram in Figure 14.

Gauss Diagram X = h1p Y = h2p Z = h1q W = h2q
(a.) b2b3b4 b1 b3 b4b1b2
(b.) b2b3b4 b1 b4b1b2 b3
(c.) b1 b2b3b4 b3 b4b1b2
(d.) b2b3 b4b1 b3b4 b1b2

just in terms of γ and the bi. Note that for diagrams (b.) and (c.), we get the
same two equations from 3.8 and 3.9, because the values of X and Y , and
the values of Z and W , are interchanged. Therefore it suffices to consider
diagrams (a.), (b.), and (d.). The arguments for diagrams (a.) and (b.) are
similar, so we will only examine (a.) and (d.).

Diagram (a.). In this case, X = b2b3b4, Y = b1, Z = b3, and W = b4b1b2
(see Table 1). We express Equations (3.8) and (3.9) in terms of the bi to
obtain

(3.10) γ[(b4b1b2b3)
n]qγ

−1 = [b−12 (b2b3b4b1)
nb2]q

and

(3.11) γ[(b3b4b1b2)
n]qγ

−1 = [b−12 (b1b2b3b4)
nb2]q.
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We conjugate Equation (3.10) by [b3]
−1
q ∈ π1(F, q) and Equation (3.11) by

[b3b4b2]q ∈ π1(F, q) to obtain the equations

[b3]
−1
q γ[(b4b1b2b3)

n]qγ
−1[b3]q = [(b4b1b2b3)

n]q

and

[b3b4b2]qγ[(b3b4b1b2)
n]qγ

−1[b3b4b2]
−1
q = [(b3b4b1b2)

n]q.

Thus [b3]
−1
q γ and [(b4b1b2b3)

n]q commute, as do [b3b4b2]qγ and [(b3b4b1b2)
n]q.

Since abelian subgroups of π1(F, q) are infinite cyclic, the subgroups

〈[b3]−1q γ, [(b4b1b2b3)
n]q〉 and 〈[b3b4b2]qγ, [(b3b4b1b2)n]q〉

are generated by elements s and t in π1(F, q) respectively. Each nontrivial
element of π1(F, q) is contained in a unique, maximal infinite cyclic group by
Fact (2). Let m1 and m2 be the generators of the unique maximal infinite
cyclic groups containing [(b4b1b2b3)

n]q and [(b3b4b1b2)
n]q respectively. By

assumption, [h] = [b4b1b2b3] = [b3b4b1b2] is not freely homotopic to a power
of another class. Therefore 〈m1〉 = 〈[b4b1b2b3]q〉 and 〈m2〉 = 〈[b3b4b1b2]q〉.
But 〈s〉 and 〈t〉 are also infinite cyclic groups containing [(b4b1b2b3)

n]q and
[(b3b4b1b2)

n]q, respectively, so by the maximality of 〈m1〉 and 〈m2〉, we have
〈s〉 ≤ 〈m1〉 and 〈t〉 ≤ 〈m2〉. Thus

[b3]
−1
q γ = ([b4b1b2b3]q)

u and [b3b4b2]qγ = ([b3b4b1b2]q)
v

for some u and v ∈ Z. Now

γ = [b3(b4b1b2b3)
u]q = [b−12 b−14 b−13 (b3b4b1b2)

v]q,

so the path homotopy classes [b2b3(b4b1b2b3)
u]pq and [b−14 b−13 (b3b4b1b2)

v]pq are

equal. Once we cancel bi with b−1i wherever possible, p1 = b2b3(b4b1b2b3)
u

and p2 = b−14 b−13 (b3b4b1b2)
v will be two geodesic arcs from p to q representing

the same path homotopy class. Therefore p1 and p2 must coincide. Note that
some of the bi may be trivial. We know b1 and b3 cannot be trivial because
of the definition of SI0. Given that b2 or b4 may be trivial, and that u and
v may be positive, negative, or zero, we see that p1 can begin along b2, b3,
or b−11 and p2 can begin along b−14 , b−13 , or b1. Thus p1 and p2 can only

coincide if the beginnings of the arcs bi and b±1j coincide, and the initial
velocity vectors of these arcs coincide for some i 6= j. This is impossible
since h is a geodesic which is not homotopic to a power of another loop.

Diagram (d.). In this case, X = b2b3, Y = b4b1, Z = b3b4, and W = b1b2;
see Table 1. We rewrite Equations (3.8) and (3.9) in terms of the bi to obtain

(3.12) γ[(b1b2b3b4)
n]qγ

−1 = [b−12 (b2b3b4b1)
nb2]q

and

(3.13) γ[(b3b4b1b2)
n]qγ

−1 = [b−12 (b4b1b2b3)
nb2]q.
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We conjugate Equation (3.12) by [b1b2]q ∈ π1(F, q) and Equation (3.13) by
[b3b2]q ∈ π1(F, q) to obtain the equations

[b1b2]qγ[(b1b2b3b4)
n]qγ

−1[b1b2]
−1
q = [(b1b2b3b4)

n]q

and

[b3b2]qγ[(b3b4b1b2)
n]qγ

−1[b3b2]
−1
q = [(b3b4b1b2)

n]q.

Thus [b1b2]qγ and [(b1b2b3b4)
n]q commute, as do [b3b2]qγ and [(b3b4b1b2)

n]q.
Since abelian subgroups of π1(F, q) are infinite cyclic, the subgroups

〈[b1b2]qγ, [(b1b2b3b4)n]q〉 and 〈[b3b2]qγ, [(b3b4b1b2)n]q〉

are generated by elements s and t in π1(F, q) respectively. Each nontrivial
element of π1(F, q) is contained in a unique, maximal infinite cyclic group by
Fact (2). Let m1 and m2 be the generators of the unique, maximal infinite
cyclic groups containing [(b1b2b3b4)

n]q and [(b3b4b1b2)
n]q, respectively. Since

[h] = [b1b2b3b4] = [b3b4b1b2] is not freely homotopic to a power of another
class, we have 〈m1〉 = 〈[b1b2b3b4]q〉 and 〈m2〉 = 〈[b3b4b1b2]q〉. But 〈s〉 and
〈t〉 are also infinite cyclic groups containing [(b1b2b3b4)

n]q and [(b3b4b1b2)
n]q,

respectively. Thus by the maximality of the 〈mi〉, we have 〈s〉 ≤ 〈m1〉 and
〈t〉 ≤ 〈m2〉. Hence [b1b2]qγ = ([b1b2b3b4]q)

u and [b3b2]qγ = ([b3b4b1b2]q)
v for

some u and v ∈ Z. Now

γ = [b−12 b−11 (b1b2b3b4)
u]q = [b−12 b−13 (b3b4b1b2)

v]q,

so the path homotopy classes [b−11 (b1b2b3b4)
u]pq and [b−13 (b3b4b1b2)

v]pq are

equal. Once we cancel bi with b−1i wherever possible, p1 = b−11 (b1b2b3b4)
u

and p2 = b−13 (b3b4b1b2)
v will be two geodesic arcs from p to q representing

the same path homotopy class. Therefore p1 and p2 must coincide. Again,
some of the bi may be trivial. Because of the definition of SI0, adjacent arcs
(e.g. b2 and b3 or b4 and b1) cannot both be trivial. If arcs opposite each
other (e.g. b2 and b4) are both trivial, then p = q; that case was already
examined. So we may assume at most one of the bi is trivial. Depending
on whether u is positive, negative, or zero, and on which bi is trivial, p1
can begin along either b−11 , b2, b

−1
4 , b3, or p1 can be trivial (if u = 0 and

b1 is trivial). Similarly, p2 can begin along b4, b1, b
−1
3 , or b−12 , or p2 can be

trivial (if v = 0 and b3 is trivial). Therefore, in order for the pi to coincide,
either the beginnings and initial velocity vectors of the arcs bi and b±1j must
coincide for some i 6= j, which is impossible since h is a geodesic and is not a
power of another loop, or both pi must be trivial. But if both pi are trivial,
then b1 and b3 are both trivial, and we assumed at most one of the bi are
trivial, so this is impossible as well. �

The following lemma allows us to reduce the proofs of Theorems 1.1
and 1.3 to the case where F is compact.

3.3. Lemma. Suppose F is noncompact, and let g : S1 → F . Suppose
t(µ([g])) = T , where [g] ∈ π̂(F ). Then there exists a compact subsurface FC
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of F containing Im(g) such that t(µ([g]C)) = T , where [g]C is the class of g
in π̂(FC).

Proof. First note that we may assume g has finitely many transverse self-
intersection points (if it did not, we could perturb g slightly to obtain a loop
that does). Suppose that the pair of terms [g1p •p g2p] and [g2q •q g2q ] of µ([g])
cancel. Let D be a chord diagram with one chord attached to one copy of
S1 at its endpoints. Let Dp : D → F and Dq : D → F be the geometrical
chord diagrams associated with [g1p •p g2p] and [g2q •q g1q ] respectively. Since

[g1p •p g2p] and [g2q •q g1q ] cancel, we have a homotopy Hp,q : D × [0, 1] → F

between Dp and Dq. Note this homotopy takes g1p to g2q and takes g2p to g1q .
Since Im(Hp,q) is compact, and since g has finitely many self-intersection
points, we may choose a compact subsurface FC of F containing Im(Hp,q)
for all pairs (p, q) corresponding to terms that cancel. Note that once FC
contains Im(Hp,q), FC must also contain the image of g. If we compute
µ([g]C) on FC , the terms [g1p •p g2p] and [g2q •q g1q ] will cancel, since Hp,q can
be viewed as a homotopy in FC . Thus t(µ([g])) ≥ t(µ([g]C)). Furthermore,
any terms which cancel on FC must cancel on F , so the inequality becomes
an equality. �

Now we state our main results. Theorems 1.1 and 1.3 are stated as Corol-
laries 3.4 and 3.5 of Theorem 3.2, respectively, though for now we restrict
Theorem 1.3 to the case where α is not a power of another class. Recall that
Theorem 1.1 states that µ(α) is zero if and only if α is a power of a sim-
ple class, and Theorem 1.3 gives a formula for the minimal self-intersection
number of α.

3.4. Corollary. Let α ∈ π̂(F ). Then µ(α) = 0 if and only if α = βn for
some β ∈ π1(F ), where m(β) = 0.

Proof. Suppose α = βn for some β ∈ π1(F ), where m(β) = 0. We may
assume n > 0. We will compute µ(α), and see that µ(α) = 0. We begin by
choosing a simple representative h of β and a point p on h. Then g = (hp)

n

is a representative of α. We perturb g slightly so that it has n − 1 self-
intersection points (of Type 2), all with image p. Now

µ(α) =

n−1∑
i=1

[(hp)
i •p (hp)

n−i]− [(hp)
n−i •p (hp)

i],

which equals zero, since the positive term corresponding to i = k cancels
with the negative term corresponding to i = n−k. Note that this argument
actually shows that the terms of µ corresponding to Type 2 self-intersection
points always cancel with each other, even if m(β) 6= 0.

To prove the converse, we assume α cannot be written as a power of a
simple class. By Lemma 3.3, we may assume F is compact. Therefore,
either F = S2, A, or T 2, or F can be equipped with a metric of negative
curvature. In this situation, F clearly cannot be S2 or A.
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F also cannot be T 2. We will show that every free homotopy class on
the torus is a power of a simple class (this fact is well-known). Let g be a
representative of α, and consider [g]p ∈ π1(T 2, p) for some p on the image
of g. Let a and b be the generators of π1(T

2, p) which lift to the paths from
(0, 0) to (1, 0) and (0, 1) respectively under the usual covering map R2 →
R2/Z2. Then we can write [g]p = ([ae1be2 ]p)

k where the ei are relatively
prime. Taking β = [ae1be2 ]p, we have m(β) = 0, since the lift of ae1be2 is
homotopic to a path from (0, 0) to (e1, e2).

Now we may assume F 6= S2, A or T 2, so we can apply Theorem 3.2. We
choose a geodesic representative g of α, and write g = hn where h is not a
power of another loop in π1(F ). Suppose h has m self-intersection points.
Then we can perturb g to obtain a loop g′ with mn2 +n−1 self-intersection
points, where mn2 of the self-intersections are of Type 1, and n − 1 are
of Type 2. By Theorem 3.2, no two terms of µ corresponding to Type 1
self-intersection points can cancel. As we saw above, all of the Type 2 terms
cancel with each other. So, after all cancellations are made, 2mn2 terms of
µ remain. Since m ≥ 1, we know µ(α) 6= 0. �

3.5. Corollary. Let α ∈ π̂(F ) be primitive. Then m(α) = t(µ(α))/2. Thus
µ computes the minimal self intersection number of α.

Proof. By Lemma 3.3, we may assume F is compact. If α 6= βn for any
β ∈ π1(F ) and |n| > 1, we can choose a geodesic representative g of α such
that the self-intersection points of its perturbation g′ are all of Type 1. If
F 6= S2, A or T 2, then by Theorem 3.2, no two terms of µ(α) can cancel.
Thus m(α) = t(µ(α))/2.

If F = S2, T 2 or A, we can choose a representative of α with no self-
intersection points, implying that the equality m(α) = t(µ(α))/2 holds triv-
ially. This is clear for S2 and A. If F = T 2, we choose a representative g
of α, and consider [g]p ∈ π1(T 2, p) for some point p on the image of g. If
a and b are generators the of π1(T

2, p) as in the proof of Corollary 3.4, we
can write [g]p = ([ae1be2 ]p)

k where the ei are relatively prime. Since α is not
a power of another class, k = ±1, so [g]p = ([ae1be2 ]p)

±1. This class has a
simple representative, as shown in the proof of Corollary 3.4. �

3.3. Using µ to compute the minimal self-intersection number of
a class which is not primitive. If we combine our results above with
those of Hass and Scott in [17], we can use µ to compute the minimal self-
intersection number of any class α, even if α is not primitive. We will use
the following result, which we state for orientable surfaces (their result is
more general):

3.6. Lemma (Hass, Scott). Let f be a loop on F 6= S2 in general position.
Suppose that f is a representative of the class α = βn, where β is a nontrivial
and primitive element of π1(F ). Let F̃ be the universal cover of F and let

Fβ denote the quotient of F̃ by the cyclic subgroup of π1(F ) generated by β.
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Let fβ : S1 → Fβ be the lift of f , and let l denote one of the lines in F̃ above
fβ(S1). Then f has least possible self-intersection if and only if fβ has least
possible self-intersection and, for all γ in π1(F ) such that γ is not a power
of β, the intersection γl ∩ l consists of at most one point.

We now use Lemma 3.6 to get the following corollary, which gives a formula
for m(α) in terms of m(β), where α is a power of β and β is primitive.
For a similar statement for compact surfaces with boundary, see the remark
following Theorem 2 in [21]. (Note that as it seems, the statement in [21]
contains a typo, namely ps2 + (p− 1) should be ps2 + (s− 1)).

3.7. Corollary. Let α ∈ π̂(F ) be a nontrivial class such that α = βn and β
is a primitive class, where F 6= S2 and n ≥ 1. Then m(α) = n2m(β)+n−1.

Proof. First we remark that one can deduce this fact from the proof of
Lemma 3.6 in [17], rather than from the statement of the lemma itself. We
choose to do the latter to avoid repeating most of the proof of Lemma 3.6.

Equip F with a flat or hyperbolic metric. Then F̃ is diffeomorphic to
R2, so Fβ is a cylinder. We begin by choosing a geodesic representative
g of α and perturb g to obtain a new loop g′. If n = 1, we take g′ = g.
Otherwise, we lift g to obtain a geodesic loop gβ in Fβ. We then take a
C∞-small perturbation of gβ to obtain a loop g′β with n− 1 self-intersection

points, and we let g′ be the projection of g′β back to F . We note that g′β
has minimal self-intersection (see, for example, [24]). As mentioned in the
discussion leading up to Theorem 3.2, the number of self-intersection points
of g′ is n2m(β) + n − 1. Let l′ denote one of the lines above g′ in F̃ . To
show that g′ has minimal self-intersection, it remains to show that for all
γ ∈ π1(F ) such that γ is not a power of β, the intersection γl′∩ l′ consists of
at most one point. Suppose that for some γ, the lines γl′ and l′ intersect in
two points p and q. These lines bound a 2-gon in F̃ . Let A1 and A2 denote
the two arcs of the 2-gon in F̃ . Let ρ denote the covering map from F̃ to
F . Since A1 and A2 are homotopic with common ends, their projections
ρ(A1) and ρ(A2) must be as well. Furthermore the arcs ρ(A1) and ρ(A2) are
contained in the image of g′. Since g′ is a perturbation of a geodesic, ρ(p)
and ρ(q) must be Type 2 self-intersection points of g′. Thus each ρ(Ai) is
an arc in the image of g′ connecting two Type 2 self-intersection points, and
hence must be homotopic to gk for some k 6= 0. This implies γ is a power
of β. Hence if γ is not a power of β, the intersection of γl′ and l′ contains
at most one point. �

Recall that, if we make our usual choice of a perturbation of a geodesic
g′ ∈ α, then two terms of µ(α) cancel if and only if they correspond to Type 2
self-intersection points. (The observation that terms corresponding to Type
2 self-intersection points must cancel with other such terms is contained in
the proof of Corollary 3.4.) Together with Corollary 3.7, this allows us to
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use µ to compute the minimal self-intersection number of a class which may
not be primitive.

3.8. Corollary. Let α ∈ π̂(F ) be a nontrivial class such that α = βn where
β is primitive and n ≥ 1. Then m(α) = t(µ(α))/2 + n− 1.

Proof. By Theorem 3.2, we know t(µ(α))/2 is equal to m(β)n2, i.e., the
number of Type 1 self-intersection points. Since m(α) = m(β)n2 + n − 1,
we have m(α) = t(µ(α))/2 + n− 1. �

4. An example

The following example illustrates how one can compute the minimal self-
intersection number of a free homotopy class algorithmically using µ(α). We
will use µ to compute the minimal intersection number of a class

α = a3a1ā2a3a1ā2a3a1ā2ā2ā2

on the punctured surface of genus two, with surface word a1a2ā1ā2a3a4ā3ā4.
This homotopy class has Turaev cobracket zero, as shown in Example 5.8
of [9]. A representative of α with two self-intersection points is pictured
in Figure 15. Using µ, along with the methods in [13], we show that the
minimal self-intersection number of α is 2.

We compute µ, and find that

µ(α) = a3a1ā2a3a1ā2ā2 •p ā2a3a1ā2 − ā2a3a1ā2 •p a3a1ā2a3a1ā2ā2
+ a3a1ā2ā2 •q ā2a3a1ā2a3a1ā2 − ā2a3a1ā2a3a1ā2 •q a3a1ā2ā2.

It is easy to see that terms one and two cannot cancel, since there is no
t ∈ π1(F ) such that ta3a1ā2a3a1ā2ā2t

−1 = ā2a3a1ā2. In general, one can
check whether two reduced words in the generators of π1 are in the same
conjugacy class by comparing two cyclic lists, since the conjugacy class of a
reduced word in a free group consists of all the cyclic permutations of that
word. Similarly terms three and four cannot cancel.

Next, we show terms one and four cannot cancel. First we conjugate term
one by ā2 so that its first loop matches the first loop of term four. The first
term becomes

ā2a3a1ā2a3a1ā2 •p ā2ā2a3a1.
If terms one and four cancel, we can find s ∈ π1(F ) such that s and
ā2a3a1ā2a3a1ā2 commute, and such that

sā2ā2a3a1s
−1 = a3a1ā2ā2.

Abelian subgroups of π1(F ) are infinite cyclic, so the subgroup

〈s, ā2a3a1ā2a3a1ā2〉
is generated by some u ∈ π1(F ). We will see that ā2a3a1ā2a3a1ā2 = u±1.
Suppose ā2a3a1ā2a3a1ā2 = ui, and consider this relation in the abelianiza-
tion of π1(F ), where the generator aj of π1(F ) is sent to the generator of
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Figure 15. The class a3a1ā2a3a1ā2a3a1ā2ā2ā2 on the punc-
tured surface of genus two. Two match this word with the
curve in the picture, begin at the solid arrow.

Z4 with a 1 in position j and zeroes elsewhere. Hence this relation be-
comes (2,−3, 2, 0) = i(u1, u2, u3, u4), which only has solutions when i = ±1.
Therefore s = (ā2a3a1ā2a3a1ā2)

k for some k ∈ Z. However, the relation

(ā2a3a1ā2a3a1ā2)
kā2ā2a3a1(ā2a3a1ā2a3a1ā2)

−k = a3a1ā2ā2

cannot hold for any value of k. Hence none of the terms of µ cancel, and
m(α) = 2.

In general, when deciding whether two terms cancel, we first verify that
the first loops in each term are indeed in the same conjugacy class. If
this is the case, we will have two elements s and t that commute (t =
ā2a3a1ā2a3a1ā2 in the example above), and we know 〈s, t〉 = 〈u〉. Since
every nontrivial element of π1 is contained in a unique maximal infinite
cyclic subgroup, we can write 〈s, t〉 = 〈u〉 ≤ 〈m〉 where m is the generator
of the maximal infinite cyclic subgroup containing u. We need to find m
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given t, as our goal is to write s as a power of m. To find m given t, we first
cyclically reduce t and write the result as a word tr in the generators of π1.
Since tr is cyclically reduced, then in order to be a power of another element,
it must look like a concatenation of i copies of some cyclically reduced word
w in the generators of π1, so we can determine i and w where i is as large
(in absolute value) as possible. Now tr = wi, and there exists c ∈ π1 such
that t = ctrc

−1 = (cwc−1)i, so m = cwc−1. We can now write s as a power
of m and finish the algorithm as in the example above.

5. Algebraic properties of µ

We conclude by stating properties of µ which allow one to view µ as a
generalization of a Lie cobracket. In particular, we exhibit analogues of the
following properties of the Turaev cobracket ∆:

• ∆ satisfies co-skew symmetry: τ ◦∆ = −∆, where τ(a⊗ b) = b⊗ a.
• ∆ satisfies the co-Jacobi identity: (1 +ω+ω2) ◦ Id⊗∆ ◦∆ = 0, and
ω(a⊗ b⊗ c) = b⊗ c⊗ a.

We begin by modifying the definition of µ given for free loops, and
then extend this operation to certain chord diagrams in the Andersen–
Mattes–Reshetikhin algebra. For the purposes of computing the minimal
self-intersection number, this definition is equivalent to the previous one.
However, it is easier to state the analogues of co-skew symmetry and the
co-Jacobi identity for this modified definition.

Recall that M denotes the free Z-module generated by the set of chord
diagrams on F , and N denotes the submodule generated by the 4T -relations
in Figure 4 (and relations obtained from them by reversing orientations on
arrows). The Andersen–Mattes–Reshetikhin bracket is defined on the quo-
tient ch = M/N . Given a chord p of a geometrical chord diagram, we say p
is an external chord if the endpoints of p lie on distinct core circles. Other-
wise, we call p an internal chord. Now we let Me denote the free Z-module
generated by diagrams with only external chords, and let Ne denote the
submodule of Me generated by the relations in Figures 16 and 17, their mir-
ror images, and relations obtained from these by reversing the orientation
on any branch in the picture. From these relations, one can obtain the 4T
relations of the Andersen–Mattes–Reshetikhin algebra in which the orien-
tations of the arcs in the four pictures are identical. We will define µ on
che = Me/Ne. From now on, we also assume that the core circles of our
chord diagrams are labeled with the digits {1, ..., n}, where n is the number
of core circles in the diagram.

Throughout this section we invite the reader to compare our relations
with those of Andersen and Turaev [3, 4].

The operation µ will add a chord between the preimages of each self-
intersection point of each core circle, in the same way as before. However,
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Figure 16. We can slide one exterior chord past another.

Figure 17. We can slide one exterior chord from one core
circle to another.

rather than adding a signed chord, whose sign induces a labelling on the
resulting two loops in the image of the geometrical chord diagram, we split
the abstract diagram into two labeled loops connected by an unsigned chord.

We define two maps S+
p and S−p which split a core circle labelled i into

two new core circles labeled i and i+ 1 (see Figures 18 and 19). Suppose a :
Ci → F is the restriction of our original chord diagram to the ith core circle.
The map S+

p (respectively S−p ) maps the new circle labeled i (respectively

i + 1) to a1p and the new circle labeled i + 1 (respectively, i) to a2p. The
splitting map also increases by one the label on all core circles formerly
labeled with numbers greater than or equal to i + 1. Note that the image
of smooth chord diagram under S±p may not be smooth at p, but we can
always find a smooth diagram in its homotopy class.

Figure 18. The splitting map S+
p .

5.1. The definitions of µi and µ. Now let SIi0 denote the set of self-
intersection points of the ith core circle in our chord diagram such that
neither of the maps formed by the splitting map at that point are homotopy
trivial. Let Dp denote the diagram obtained by adding a chord between t1
and t2 in a chord diagram D where (t1, t2) ∈ SIi0 and p = D(t1) = D(t2).
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Figure 19. The splitting map S−p .

We define

µi(D) =
∑
p∈SIi0

[S+
p (Dp)]− [S−p (Dp)],

and we let

µ(D) =
n∑
i=1

µi(D).

Using linearity, we extend this definition so that µ becomes a map from che
to che.

Remark. The identification in Figure 17 arises because µ splits the original
core circle into two new circles. If we define µ without the splitting map,
this identification is not needed.

5.2. The maps µ and µi are well-defined. We need to verify that µi(D)
does not depend on the choice of diagram D in D. Clearly µi does not change
when D undergoes regular isotopy. Applying the first Reidemeister move to
D does not affect µi([D]) because we only sum over self-intersection points
such that the two new maps produced by S±p are not homotopy trivial. The
fact that µi does not change under other elementary moves follows from
either other elementary moves or identifications we make:

• Second Reidemeister move. This follows from the move in Figure 5.
• Third Reidemeister move. This follows from the move in Figure 6.
• The move in Figure 5. Because the existing chord is an exterior

chord, we do not sum over the intersection point in this diagram
because it must be an intersection point of different core circles.
• The move in Figure 6. This follows from the following identifications

in Figures 16 and 17. Note that the 4T relations in the Andersen–
Mattes–Reshetikhin algebra imply that their bracket is invariant un-
der this move. In our case, the relations only contain two terms
because the fact that the chord is an exterior chord implies we only
sum over at most one of the intersection points before and after the
move in Figure 6.
• The identification in Figure 16. This follows from the following iden-

tifications in Figures 16 and 17.
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• The identification in Figure 17. Because the chords in the picture
are exterior chords, the one intersection point cannot be a self-
intersection point, so we do not sum over it.

− + −

− + −

− + −

Figure 20. The generalized co-Jacobi identity.

5.3. Algebraic properties of µ and µi. Let τi be a map which swaps
labels the i and i+ 1 in a chord diagram with enumerated core circles. We
have the following analogue of co-skew symmetry:

5.1. Proposition. τi ◦ µi = −µi.

Proof. Clear. �

Let ωi be a map which cyclically permutes the labels i, i+1, i+2. Specif-
ically, ωi decreases the labels i + 1 and i + 2 by one, and sends i to i + 2.
We have the following analogue of the co-Jacobi identity:

5.2. Proposition. For all 1 ≤ i ≤ n− 1, (1 + ωi + ω2
i ) ◦ µi+1 ◦ µi = 0.

Proof. It suffices to show that, for a diagram with one core circle C1, we
have (1 + ω1 + ω2

1) ◦ µ2 ◦ µ1 = 0. Each diagram in the sum µ2 ◦ µ1(C1)
has three core circles and two chords corresponding to two self-intersection
points of C1, which we call p and q. The idea of the proof is as follows:
µ2 ◦ µ1(C1) is a sum of four terms, two of which are positive and two of
which are negative. Relative to some fixed initial order on the three core
circles, the labellings on each diagram form an even or odd permutation in
S3, the symmetric group on three elements. The labellings on two of the
four terms of µ2 ◦ µ1(C1) form even permutations, and the other two form
odd permutations. Of the “even” terms, one has coefficient equal to −1
and one has coefficient equal to +1. The same holds for the “odd” terms.
Therefore, when we apply (1 + ω1 + ω2

1) to the terms with coefficient equal
to +1, we get six terms with coefficient equal to +1, one for each element of
S3. When we apply (1 + ω1 + ω2

1) to the terms with coefficient equal to −1,
we get the same six terms with negative coefficients, so all terms cancel. To
verify the above claims, one can examine all possible Gauss diagrams of C1

with two noncrossing arrows, corresponding to the self-intersection points
p and q (there are three such diagrams). Figure 16 lists the terms in the
sum (1 +ωi +ω2

i ) ◦µi+1 ◦µi before cancellations are made for a sample free
loop. �
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We conclude by stating the relationship between µi and the Turaev co-
bracket. Let E be a map which erases all chords from a diagram, and tensors
the resulting loops, putting Ci in the ith position of the tensor product. Let
∆i = Id⊗ ...⊗ Id⊗∆⊗ Id⊗ ...⊗ Id, where ∆ is in the ith position.

5.3. Proposition. E ◦ µi = ∆i ◦ E.

Proof. This follows from the fact that E ◦ µ1 = ∆([α]) for any free loop α
on F . �

Remark. One might hope to find analogues of the compatibility and invo-
lutivity conditions in the Goldman–Turaev Lie bialgebra:

• ∆ and [, ] satisfy the compatibility condition

∆ ◦ [α, β] = [α,∆(β)] + [∆(α), β],

where [α, β ⊗ γ] is given by [α, β]⊗ γ + β ⊗ [α, γ].
• The Lie bialgebra formed by [, ] and ∆ is involutive, i.e., [, ] ◦∆ = 0.

However, we do not see a way of doing this unless we allow internal chords
in our chord diagrams, and once we do this, the maps involved in analogues
of these identities (and µ in particular) are not well-defined.
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