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Local dimensions for the random
β-transformation

K. Dajani and C. Kalle

Abstract. The random β-transformation K is isomorphic to a full
shift. This relation gives an invariant measure for K that yields the
Bernoulli convolution by projection. We study the local dimension of
the invariant measure forK for special values of β and use the projection
to obtain results on the local dimension of the Bernoulli convolution.
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1. Introduction

The Bernoulli convolution has been around for over seventy years and has
surfaced in several different areas of mathematics. This probability measure

depends on a parameter β > 1 and is defined on the interval
[
0, bβcβ−1

]
, where

bβc is the largest integer not exceeding β. The symmetric Bernoulli con-

volution is the distribution of
∑∞

k=1
bk
βk

where the coefficients bk take values

in the set {0, 1, . . . , bβc}, each with probability 1
bβc+1 . If instead the val-

ues 0, 1, . . . , bβc are not taken with equal probabilities, then the Bernoulli
convolution is called asymmetric or biased. See [PSS00] for an overview of
results regarding the Bernoulli convolution up to the year 2000. Recently
attention has shifted to the multifractal structure of the Bernoulli convolu-
tion. Jordan, Shmerkin and Solomyak study the multifractal spectrum for
typical β in [JSS11], Feng considers Salem numbers β in [Fen12] and Feng
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and Sidorov look at the Lebesgue generic local dimension of the Bernoulli
convolution in [FS11]. In this paper we use a new approach to study the
local dimension function of the Bernoulli convolution.

If x ∈
[
0, bβcβ−1

]
can be written as x =

∑∞
k=1

bk
βk

with bk ∈ {0, 1, . . . , bβc}
for all k ≥ 1, then this expression is called a β-expansion of the point x.
It is well known that Lebesgue almost every x has uncountably many β-
expansions. In [DdV05] a random transformation K was introduced that
generates for each x all these possible expansions by iteration. The map K
can be identified with a full shift which allows one to define an invariant
measure νβ for K of maximal entropy by pulling back the uniform Bernoulli
measure. One obtains the Bernoulli convolution from νβ by projection. In
this paper we study the local dimension of the measure νβ. By projection,
some of these results can be translated to the Bernoulli convolution. For
now, our methods work only for a special set of β’s called the generalised
multinacci numbers. We have good hopes that in the future we can extend
these methods to a more general class of β’s.

The paper is organized as follows. In the first section we will give the
necessary definitions. Next we study the local dimension of νβ. We give a
formula for the lower and upper bound of the local dimension that holds
everywhere using a suitable Markov shift. Moreover, we show that the local
dimension exists and is constant a.e. and we give this constant. We also show
that on the set corresponding to points with a unique β-expansion, the local
dimension of νβ takes a different value. Next we translate these results to a
lower and upper bound for the local dimension of the symmetric Bernoulli
convolution that holds everywhere. We then use a result from [FS11] to
obtain an a.e. value for the Bernoulli convolution in case β is a Pisot number.
Finally we give the local dimension for points with a unique expansion. In
the last section we consider one specific example of an asymmetric Bernoulli
convolution, namely when β is the golden ratio. We give an a.e. lower and
upper bound for the local dimension of both the invariant measure for K and
the asymmetric Bernoulli convolution. This last section is just a starting
point for more research in this direction.

2. Preliminaries

The set of β’s we consider, the generalised multinacci numbers, are defined

as follows. On the interval
[
0, bβcβ−1

]
the greedy β-transformation Tβ is given

by

Tβx =

{
βx (mod 1), if x ∈

[
0, 1),

βx− bβc, if x ∈
[
1, bβcβ−1

]
.
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The greedy digit sequence of a number x ∈
[
0, bβcβ−1

]
is defined by setting

a1 = a1(x) =

k, if x ∈
[
k
β ,

k+1
β

)
, k ∈ {0, . . . , bβc − 1},

bβc, if x ∈
[
bβc
β ,

bβc
β−1

]
,

and for n ≥ 1, an = an(x) = a1(Tn−1
β x). Then Tβx = βx − a1(x) and one

easily checks that x =
∑∞

n=1
an
βn . This β-expansion of x is called its greedy

β-expansion. A number β > 1 is called a generalised multinacci number if
for some n ≥ 2 the greedy β-expansion of the number 1 satisfies

(1) 1 =
a1

β
+
a2

β2
+ · · ·+ an

βn
,

with aj ≥ 1 for all 1 ≤ j ≤ n. (Note that a1 = bβc.) We call n the degree of
β.

Remark 2.1. Between 1 and 2 the numbers that satisfy this definition are
called the multinacci numbers. The n-th multinacci number βn satisfies

βnn = βn−1
n + βn−2

n + · · ·+ βn + 1,

which implies that aj = 1 for all 1 ≤ j ≤ n in (1). The second multinacci
number is better known as the golden ratio.

For the Markov shift we will construct later on, we need a suitable par-

tition of the interval
[
0, bβcβ−1

]
. Consider the maps Tkx = βx − k, k =

0, . . . , bβc. For each x ∈
[
0, bβcβ−1

]
, either there is exactly one k ∈ {0, . . . , bβc}

such that Tkx ∈
[
0, bβcβ−1

]
, or there is a k such that both Tkx and Tk+1x are

in
[
0, bβcβ−1

]
. In this way the maps Tk partition the interval

[
0, bβcβ−1

]
into the

following regions:

E0 =

[
0,

1

β

)
, Ebβc=

(
bβc

β(β − 1)
+
bβc − 1

β
,
bβc
β − 1

]
,

Ek=

(
bβc

β(β − 1)
+
k − 1

β
,
k + 1

β

)
, k ∈

{
1, . . . , bβc − 1

}
,

Sk=

[
k

β
,
bβc

β(β − 1)
+
k − 1

β

]
, k ∈

{
1, . . . , bβc

}
.

See Figure 1 for a picture of the maps Tk and the regions Ek and Sk for
2 < β < 3.

Write Ω = {0, 1}N. The random β-transformation is the map K from the

space Ω×
[
0, bβcβ−1

]
to itself defined as follows.

K(ω, x) =

{
(ω, Tkx), if x ∈ Ek, k ∈ {0, . . . , bβc},
(σω, Tk−1+ω1x), if x ∈ Sk, k ∈ {1, . . . , bβc},
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0 1
β

2
β

2
β−1

E2S2E1S1E0

Figure 1. The maps T0x = βx, T1x = βx − 1 and T2x =
βx − 2 and the intervals E0, S1, E1, S2 and E2 for some
2 < β < 3.

where σ denotes the left shift, i.e., σ(ωn)n≥1 = (ωn+1)n≥1. The projection
onto the second coordinate is denoted by π. Let dβe denote the smallest
integer not less than β. The map K is isomorphic to the full shift on dβe
symbols. The isomorphism φ : Ω×

[
0, bβcβ−1

]
→ {0, 1, . . . , bβc}N uses the digit

sequences produced by K. Let

b1(ω, x) =


k, if x ∈ Ek, k ∈ {0, 1, . . . , bβc},

or if x ∈ Sk and ω1 = 1, k ∈ {1, . . . , bβc},
k − 1, if x ∈ Sk and ω1 = 0, k ∈ {1, . . . , bβc},

and for n ≥ 1, set bn(ω, x) = b1
(
Kn−1(ω, x)

)
. Then

φ(ω, x) =
(
bn(ω, x)

)
n≥1

.

This map is a bimeasurable bijection from the set

Z =
{

(ω, x) : π
(
Kn(ω, x)

)
∈ S i.o.

}
to its image. We have φ ◦ K = σ ◦ φ. Let F denote the σ-algebra gener-
ated by the cylinders and let m denote the uniform Bernoulli measure on
({0, 1, . . . , bβc}N,F). Then m is an invariant measure for σ and νβ = m ◦ φ
is invariant for K with νβ(Z) = 1. The projection µβ = νβ ◦ π−1 is the

Bernoulli convolution on
[
0, bβcβ−1

]
. For proofs of these facts and more infor-

mation on the map K and its properties, see [DK03] and [DdV05].
We are interested in the local dimension of the measures νβ and µβ. For

any probability measure µ on a metric space (X, ρ), define the local lower
and local upper dimension functions by

d(µ, x) = lim inf
r↓0

logµ
(
Bρ(x, r)

)
log r

,

d(µ, x) = lim sup
r↓0

logµ
(
Bρ(x, r)

)
log r

,
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where Bρ(x, r) is the open ball around x with radius r. If d(µ, x) = d(µ, x),
then the local dimension of µ at the point x ∈ X exists and is given by

d(µ, x) = lim
r↓0

logµ
(
Bρ(x, r)

)
log r

.

On the sets {0, 1, . . . , bβc}N and Ω we define the metric D by

D
(
ω, ω′

)
= β−min{k≥0 :ωk+1 6=ω′k+1}.

We will define an appropriate metric on the set Ω×
[
0, bβcβ−1

]
later.

3. Local dimension for νβ

We will study the local dimension of the invariant measure νβ of the map
K for generalised multinacci numbers β. It is proven in [DdV05] that for
these β’s the dynamics of K can be modeled by a subshift of finite type.
So, on the one hand there is the isomorphism of K with the full shift on
dβe symbols and on the other hand there is an isomorphism to a subshift
of finite type. This second isomorphism allows us to code orbits of points
(ω, x) under K in an appropriate way for finding local dimensions. We give
the essential information here.

We begin with some notation. We denote the greedy map by Tβ as before,
and the lazy map by Sβ. More precisely,

Tβx =

{
T0x, if x ∈ E0,

Tkx, if x ∈ Sk ∪ Ek, 1 ≤ k ≤ bβc,

Sβx =

{
Tkx, if x ∈ Ek ∪ Sk+1, 0 ≤ k ≤ bβc − 1,

Tbβcx, if x ∈ Ebβc.

We are interested in the K-orbit of the points (ω, 1) and
(
ω, bβcβ−1 − 1

)
.

Proposition 2 (ii) in [DdV05] tells us that the following set F is finite:

(2) F =

{
π(Kn(ω, 1)), π

(
Kn

(
ω,
bβc
β − 1

− 1

))
: n ≥ 0, ω ∈ Ω

}
∪
{
k

β
,
bβc

β(β − 1)
+
k

β
: k ∈ {0, . . . , bβc}

}
.

These are the endpoints of the intervals Ek and Sk and their forward orbits
under all the maps Tk. The finiteness of F implies that the dynamics of
K can be identified with a topological Markov chain. The corresponding
Markov partition is given by the set F . Let C be the interval partition
consisting of the open intervals between the points from this set. Note that
when we say interval partition, we mean a collection of pairwise disjoint

open intervals such that their union covers the interval
[
0, bβcβ−1

]
up to a set

of λ-measure 0, where λ is the one-dimensional Lebesgue measure. Write
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C = {C1, C2, . . . , CL} and let S =
⋃

1≤k≤bβc Sk. The property p3 from

[DdV05] says that no points of F lie in the interior of S, i.e., each Sk
corresponds to a set Cj in the sense that for each 1 ≤ k ≤ bβc there is a
1 ≤ j ≤ L such that λ(Sk \Cj) = 0. Let s ⊂ {1, . . . , L} be the set containing
those indices j. Consider the L×L adjacency matrix A = (ai,j) with entries
in {0, 1} defined by
(3)

ai,j =


1, if i 6∈ s and λ(Cj ∩ Tβ(Ci)) = λ(Cj),

0, if i 6∈ s and λ(Ci ∩ TβCj) = 0,

1, if i ∈ s and λ(Cj ∩ TβCi) = λ(Cj) or λ(Cj ∩ SβCi) = λ(Cj),

0, if i ∈ s and λ(Ci ∩ TβCj) = 0 and λ(Ci ∩ SβCj) = 0.

Define the partition P of Ω×
[
0, bβcβ−1

]
by

P =
{

Ω× Cj : j 6∈ s
}
∪
{
{ω1 = i} × Cj : i ∈ {0, 1}, j ∈ s

}
.

Then P is a Markov partition underlying the map K. Let Y denote the
topological Markov chain determined by the matrix A. That is,

Y =
{

(yn)n≥1 ∈ {1, . . . , L}N : ayn,yn+1 = 1
}
.

Let Y denote the σ-algebra on Y determined by the cylinder sets, i.e., the
sets specifying finitely many digits, and let σY be the left shift on Y . We
use Parry’s recipe ([Par64]) to determine the Markov measure Q of maximal
entropy for (Y,Y, σY ). By results in [DdV05] we know that νβ is the unique
measure of maximal entropy for K with entropy hνβ (K) = logdβe. By the
identification with the Markov chain we know that hQ(σY ) = logdβe. The
corresponding transition matrix (pi,j) for Y then satisfies pi,j = ai,j

vj
dβevi ,

where (v1, v2, . . . , vL) is the right probability eigenvector ofA with eigenvalue
dβe. From this we see that if [j1 · · · jm] is an allowed cylinder in Y , then

(4) Q([j1 · · · jm]) =
vjm
dβem−1

.

Property p5 from [DdV05] says that for all i ∈ s, ai,1 = ai,L = 1 and ai,j = 0
for all other j. By symmetry of the matrix (pi,j), it follows that

(5) pi,1 = pi,L =
1

2
for all i ∈ s.

Let

X = Ω×
[
0,
bβc
β − 1

]
\

(⋃
n≥0

K−nF

)
.

Then νβ(X) = 1. The isomorphism α : X → Y between (K, νβ) and (σY , Q)
is then given by

αj(ω, x) = k if Kj−1(ω, x) ∈ Ck.
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See Theorem 7 in [DdV05] for a proof of this fact. In Figure 2 we see the
relation between the different systems we have introduced so far.

(
X,K

)
(Y, σY )

(
{0, 1, . . . , bβc}N, σ

) αφ

Figure 2. The relation between the different spaces.

To study the local dimension of νβ, we need to consider balls in X under
a suitable metric. Define the metric ρ on X by

ρ
(
(ω, x), (ω′, x′)

)
= β−min{k≥0 :ωk+1 6=ω′k+1 or αk+1(ω,x) 6=αk+1(ω′,x′)}.

Consider the ball

Bρ
(
(ω, x), β−k

)
=
{

(ω′, x′) : ω′i = ωi, and αi(ω
′, x′) = αi(ω, x), i = 1, · · · , k

}
.

Let

Mk(ω, x) =
k−1∑
i=0

1X∩Ω×S
(
Ki(ω, x)

)
= #{1 ≤ i ≤ k : αi(ω, x) ∈ s}.

To determine νβ
(
Bρ((ω, x), r)

)
for r ↓ 0 we calculate Q

(
α
(
Bρ
(
(ω, x), β−k

)))
.

For all points (ω′, x′) in the ball Bρ
(
(ω, x), β−k

)
the α-coding starts with the

sequence α1(ω, x) · · ·αk(ω, x) and ω′ starts with ω1 · · ·ωk. From the second
part we know what happens the first k times that the K-orbit of a point
(ω′, x′) lands in Ω × S. Since Mk(ω, x) of these values have been used for
α1(ω, x) · · ·αk(ω, x), there are k −Mk(ω, x) unused values left. Note that
Mk(ω

′, x′) = Mk(ω, x) = Mk for all (ω′, x′) ∈ Bρ
(
(ω, x), β−k

)
. Define the

set

Z = X ∩
⋂
n≥1

⋃
i≥1

K−i
(
Ω× S

)
.

All points in Z land in the set Ω × S infinitely often under K. Since Z is
K-invariant, by ergodicity of K we have νβ(Z) = 1. So, all points (ω′, x′) ∈
Bρ
(
(ω, x), β−k

)
∩Z make a transition to S some time after k. Moreover, after

this transition these points move to C1 if ωMk+1 = 1 and to CL otherwise.
The image of a point (ω′, x′) ∈ Bρ

(
(ω, x), β−k

)
under α will thus have the

form

α1 · · ·αk ak+1 · · · am1−1︸ ︷︷ ︸
6∈s

am1︸︷︷︸
∈s

am1+1 · · · am2−1︸ ︷︷ ︸
6∈s

am2︸︷︷︸
∈s

· · · amN−1−1 · · · amN−1︸ ︷︷ ︸
6∈s

amN︸︷︷︸
∈s

amN+1amN+2 · · ·︸ ︷︷ ︸
tail

,
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where amj+1 ∈ {1, L}, mj+1 −mj − 2 ≥ 1 and N = k −Mk. Note that by
the ergodicity of νβ we have

Q

⋃
m≥1

[a1 · · · am] : am ∈ s and ai 6∈ s, i < m


= νβ

X ∩ ⋃
m≥1

K−m(Ω× S)

 = 1.

So, the transition from any state to s occurs with probability 1. Then one
of the digits ωj , Mk+1 ≤ j ≤ k, specifies what happens in this event and by
(5) both possibilities happen with probability 1

2 . To determine the measure

of all possible tails of sequences in α
(
Bρ
(
(ω, x), β−k

))
, note that again by

p5 of [DdV05] this tail always belongs to a point in Ω×C1 or Ω×CL. Since
the νβ-measure of these sets is the same, the Q-measure of the set of all
possible tails is given by νβ(Ω × C1) = µβ(C1). Putting all this together
gives
(6)

Q
(
α
(
Bρ
(
(ω, x), β−k

)))
= dβe−(k−1)vαk(ω,x) · 1 ·

1

2
· 1 · 1

2
· · · 1 · 1

2︸ ︷︷ ︸
k−Mk times

·µβ(C1),

and hence,

(7) νβ
(
Bρ((ω, x), β−k)

)
= dβe−(k−1)vαk(ω,x) 2−(k−Mk) µβ(C1).

This gives the following theorem.

Theorem 3.1. Let β > 1 be a generalised multinacci number. For all
(ω, x) ∈ X we have

(8)
logdβe
log β

+
log 2

log β

[
1− lim sup

k→∞

Mk(ω, x)

k

]
≤ d
(
νβ, (ω, x)

)
≤ d
(
νβ, (ω, x)

)
≤ logdβe

log β
+

log 2

log β

[
1− lim inf

k→∞

Mk(ω, x)

k

]
.

Proof. Let 1
βk+1 < r ≤ 1

βk
. Set

vmin = min
1≤i≤L

vi and vmax = max
1≤i≤L

vi.

Then, by (7),

log νβ
(
Bρ((ω, x), r)

)
log r

≤ (k − 1) logdβe
k log β

+
(k −Mk) log 2

k log β
−

log
(
vmin µβ(C1)

)
k log β

.
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Hence,

d
(
νβ, (ω, x)

)
= lim sup

k→∞

log νβ
(
Bρ((ω, x), r)

)
log r

≤ logdβe
log β

+
log 2

log β

[
1− lim inf

k→∞

Mk

k

]
.

On the other hand,

log νβ
(
Bρ((ω, x), r)

)
log r

≥ (k − 1) logdβe
(k + 1) log β

+
(k −Mk) log 2

(k + 1) log β
−

log
(
vmax µβ(C1)

)
(k + 1) log β

.

Since Mk+1 − 1 ≤Mk ≤Mk+1, we have that

d
(
νβ, (ω, x)

)
= lim inf

k→∞

log νβ
(
Bρ((ω, x), r)

)
log r

≥ logdβe
log β

+
log 2

log β

[
1− lim sup

k→∞

Mk

k

]
. �

Remark 3.2. From the above proof it follows that if limk→∞
Mk(ω,x)

k exists,

then d
(
νβ, (ω, x)

)
exists and is equal to logdβe

log β + log 2
log β

[
1− limk→∞

Mk(ω,x)
k

]
.

Corollary 3.3. Let β be a generalised multinacci number. The local dimen-
sion function d

(
νβ, (ω, x)

)
is constant νβ-a.e. and equal to

d
(
νβ, (ω, x)

)
=

logdβe
log β

+
log 2

log β

(
1− µβ(S)

)
.

Proof. Since νβ is ergodic, the Ergodic Theorem gives that for νβ-a.e. (ω, x),

lim
k→∞

Mk(ω, x)

k
= νβ

(
Ω× S

)
= µβ(S). �

Recall that φ maps points (ω, x) to digit sequences (bn(ω, x))n≥1. It is

easy to see that x =
∑

n≥1
bn(ω,x)
βn for each choice of ω ∈ Ω. Note that a point

x has exactly one β-expansion if and only if for all n ≥ 0, π
(
Kn(ω, x)

)
6∈ S.

Let Aβ ⊂
[
0, bβcβ−1

]
be the set of points with a unique β-expansion. Then

Aβ 6= ∅, since 0, bβcβ−1 ∈ Aβ for any β > 1. By Proposition 2 from [DdV05]

all elements from ∪n≥0K
−nF will be in S at some point and hence they will

have more than one expansion. So, Aβ ⊂ X. The next result also follows
easily from Theorem 3.1. The measure νβ is called multifractal if the local
dimension takes more than one value on positive Hausdorff dimension sets.

Corollary 3.4. Let β be a generalised multinacci number. If x ∈ Aβ, then
d
(
νβ, (ω, x)

)
= logdβe+log 2

log β for all ω ∈ Ω. The measure νβ is multifractal.
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Proof. If x ∈ Aβ, then Mk(ω, x) = 0 for all ω ∈ Ω and k ≥ 1. Hence, by

(8), d
(
νβ, (ω, x)

)
= logdβe+log 2

log β . From standard results in dimension theory

and our choice of metric it follows that dimH

(
Ω×{x}

)
= log 2

log β for all x ∈ Aβ.

Hence, νβ is a multifractal measure. �

Example 3.5. We give a example to show what can happen on points in

F . Let β = 1+
√

5
2 be the golden ratio. Then, 1 = 1

β + 1
β2 . Figure 3 shows the

maps T0 and T1 for this β. Note that F = {0, 1
β , 1, β}. The partition C has

0 1
β

1 β

Figure 3. The maps T0x = βx and T1x = βx − 1 for β =
1+
√

5
2 . The region S is colored yellow.

only three elements and the transition matrix and stationary distribution of
the Markov chain are

P =

 1/2 1/2 0
1/2 0 1/2
0 1/2 1/2

 and v = (1/3, 1/3, 1/3).

Hence, µβ(S) = 1/3 and Corollary 3.3 gives that for νβ-a.e. (ω, x) ∈ Ω ×
[0, β],

d
(
νβ, (ω, x)

)
=

log 2

log β

[
2− µβ(S)

]
= (2− 1/3)

log 2

log β
=

5 log 2

6 log β
.

Now consider the α-code of the points (10, 1) and (01, 1/β), where the bar
indicates a repeating block:

α
(
(10, 1)

)
= α

(
(01, 1/β)

)
= (s, s, s, · · · ),

which is not allowed in the Markov chain Y . Then for any point

(ω, x) ∈
∞⋃
m=0

K−m
(
{(10, 1), (01, 1/β)}

)
,

one has Bρ
(
(ω, x), β−k

)
is a countable set for all k sufficiently large. For the

local dimension this implies that

d
(
νβ, (ω, x)

)
= lim

r↓0

log 0

log r
=∞.
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4. Local dimensions for the symmetric Bernoulli convolution

Consider now the Bernoulli convolution measure µβ = νβ ◦ π−1 on the

interval
[
0, bβcβ−1

]
for generalised multinacci numbers. In [FS11], the local

dimension of µβ with respect to the Euclidean metric was obtained for all
Pisot numbers β. A Pisot number is an algebraic integer that has all its
Galois conjugates inside the unit circle. It is well known that all multinacci
numbers are Pisot numbers, but not all generalised multinacci numbers are
Pisot, see Remark 4.3(i). Before stating the results from [FS11], we intro-
duce more notation. Let

(9) Nk(x, β)

= #

{
(a1, . . . , ak) ∈ {0, . . . , bβc}k : ∃(ak+n)n≥1 s.t. x =

∞∑
m=1

am
βm

}
.

A straightforward calculation (see also Lemma 4.1 of [Kem12]) shows that

Nk(x, β) =

∫
Ω

2Mk(ω,x) dm(ω),

where m is the uniform Bernoulli measure on {0, . . . , bβc}N. In [FS11], it
was shown that if β is a Pisot number, then there is a constant γ = γ(β,m)
such that

(10) lim
k→∞

logNk(x, β)

k
= γ

for λ-a.e. x in
[
0, bβcβ−1

]
, where λ is the one-dimensional Lebesgue measure.

Using this, Feng and Sidorov obtained that for λ-a.e. x,

d(µβ, x) =
logdβe − γ

log β
.

In fact, the result they obtained was stronger, but we will use their result in
this form. We will show that one has the same value for the local dimension
when the Euclidean metric on R is replaced by the Hausdorff metric. To

this end, consider the metric ρ̄ on
[
0, bβcβ−1

]
defined by

ρ̄(x, y) = dH
(
π−1(x), π−1(y)

)
,

where dH is the Hausdorff distance given by

dH
(
π−1(x), π−1(y)

)
= inf

{
ε > 0 : π−1(y) ⊂

⋃
ω∈Ω

Bρ
(
(ω, x), ε

)
and π−1(x) ⊂

⋃
ω∈Ω

Bρ
(
(ω, y), ε

)}
.
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Theorem 4.1. Let β be a generalised multinacci number. For all x ∈[
0, bβcβ−1

]
,

1

log β

[
logdβe − lim sup

k→∞

logNk(x, β)

k

]
≤ d(µβ, x)

≤ d(µβ, x) ≤ 1

log β

[
logdβe − lim inf

k→∞

logNk(x, β)

k

]
.

Proof. Let Bρ̄(x, ε) = {y : ρ̄(x, y) < ε}. We want to determine explicitly

the set π−1
(
Bρ̄(x, β

−k)
)
. First note that for any (ω, x), and any k ≥ 0,

one has (ω′, y) ∈ Bρ
(
(ω, x), β−k

)
, and Bρ

(
(ω, x), β−k

)
= Bρ

(
(ω′, y), β−k

)
for any (ω′, y) ∈ [ω1 · · ·ωk]× [α1(ω, x) · · ·αk(ω, x)]. We denote the common
set by Bρ

(
([ω1 · · ·ωk], x), β−k

)
. This implies that

π−1
(
Bρ̄(x, β

−k)
)

=
⋃

[ω1···ωk]

Bρ
(
([ω1 · · ·ωk], x), β−k

)
,

where the summation on the right is taken over all possible cylinders of
length k in Ω. Again set vmin = min1≤i≤L vi and vmax = max1≤i≤L vi.
Then,

µβ
(
Bρ̄(x, β

−k)
)

=
∑

[ω1···ωk]

νβ
(
Bρ
(
([ω1 · · ·ωk], x), β−k

))
≤

∑
[ω1···ωk]

dβe−(k−1)vαk(ω,x) 2−(k−Mk) µβ(C1)

≤ dβe−(k−1)vmax µβ(C1)
∑

[ω1···ωk]

2Mk2−k

= dβe−(k−1)vmax µβ(C1)

∫
Ω

2Mk dm(ω)

= dβe−(k−1) vmax µβ(C1)Nk(x, β).

Now taking logarithms, dividing by log β−k, and taking limits we get

d(µβ, x) ≥ logdβe
log β

− 1

log β
lim sup
k→∞

logNk(x, β)

k
.

Similarly we get that

µβ
(
Bρ̄(x, β

−k)
)
≥ dβe−(k−1) vmin µβ(C1)Nk(x, β),

which gives

d(µβ, x) ≤ logdβe
log β

− 1

log β
lim inf
k→∞

logNk(x, β)

k
. �

By the results from [FS11] we have the following corollary.

Corollary 4.2. If β is Pisot, then d(µβ, x) exists for λ-a.e. x and is equal

to logdβe−γ
log β , where γ is the constant from (10).
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Remark 4.3.

(i) We give some examples of generalised multinacci numbers that are
Pisot numbers. The generalised multinacci numbers in the interval
[1, 2], are all Pisot. In the interval [2,∞) the numbers β satisfying
β2 − kβ − 1 = 0, k ≥ 2, are all Pisot as well. Recall that if

1 =
a1

β
+ · · ·+ an

βn

with ai ≥ 1 for all 1 ≤ i ≤ n, then n is called the degree of β. From
Theorem 4.2 in [AG05] by Akiyama and Gjini we can deduce that
all generalised multinacci numbers of degree 3 are Pisot numbers.
Similarly, Proposition 4.1 in [AG05] gives that all generalised multi-
nacci numbers of degree 4 with a4 = 1 are Pisot. An example of
a generalised multinacci number that is not Pisot is the number β
satisfying

1 =
3

β
+

1

β2
+

2

β3
+

3

β4
.

(ii) In [Kem12] it is shown that for all β > 1 and λ-a.e. x,

lim inf
k→∞

logNk(x, β)

k
≥ µβ(S) log 2,

so we get

d(µβ, x) ≤ 1

log β

[
logdβe − µβ(S) log 2

]
.

Kempton also remarks that this lower bound is not sharp.

5. Asymmetric random β-transformation: the golden ratio

In the previous section, we considered the measure νβ = νβ,1/2 which is
the lift of the uniform Bernoulli measure m = m1/2 under the isomorphism
φ(ω, x) = (bn(ω, x))n≥1. The projection of νβ in the second coordinate is
the symmetric Bernoulli convolution. In this section, we will investigate the
asymmetric Bernoulli convolution in case β is the golden ratio.

Let β = 1+
√

5
2 . Consider the (p, q)-Bernoulli measure mp on {0, 1}N where

q = 1 − p, i.e., with mp([0]) = p and mp([1]) = q. Let νβ,p = mp ◦ φ on
Ω × [0, β]. Since mp is shift invariant and ergodic, we have that νβ,p is K-
invariant and ergodic. We first show that νβ,p is a Markov measure with the
same Markov partition as in the symmetric case (see Example 3.5), but the
transition probabilities as well as the stationary distribution are different.
This is achieved by looking at the α-code as well. The Markov partition is
given by the partition {E0, S, E1}, and the corresponding Markov chain has
three states {e0, s, e1} with transition matrix

Pp =

 p q 0
p 0 q
0 p q
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and stationary distribution

u = (ue0 , us, ue1) =
( p2

p2 − p+ 1
,

pq

p2 − p+ 1
,

q2

p2 − p+ 1

)
.

We denote the corresponding Markov measure by Qp, that is

Qp
(
[j1 · · · jk]

)
= uj1pj1,j2 · · · pjk,jk+1

,

and the space of realizations by

Y =
{

(y1, y2, . . .) : yi ∈ {e0, s, e1}, and pyi,yi+1 > 0
}
.

Consider the map α : Ω× [0, β] of the previous section, namely

αj(ω, x) =


e0, if Kj−1(ω, x) ∈ Ω× E0;

s, if Kj−1(ω, x) ∈ Ω× S;

e1, if Kj−1(ω, x) ∈ Ω× E1.

Define ψ : Y → {0, 1}N by

ψ(y)j =

{
0, if yj = e0 or yjyj+1 = se1;

1, if yj = e1 or yjyj+1 = se0.

It is easy to see that ψ ◦ α = φ. We want to show that Qp ◦ α = νβ,p. Since
νβ,p = mp ◦ φ, we show instead the following.

Proposition 5.1. We have mp = Qp ◦ ψ−1.

Proof. It is enough to check equality on cylinders. To avoid confusion,
we denote cylinders in {0, 1}N by [i1 · · · ik] and cylinders in Y by [j1 · · · jk].
We show by induction that ψ−1([i1 · · · ik]) = [j1 · · · jk]∪ [j′1, . . . , j

′
k+1], where

jk = eik , and j′kj
′
k+1 = se1−ik , and

Qp([j1 · · · jk]) +Qp([j
′
1 · · · j′k+1]) = mp

(
[i1 · · · ik]

)
= pk−

∑k
`=1 i`q

∑k
`=1 i` .

For k = 1 we have ψ−1[0] = [e0]∪[se1] and ψ−1[1] = [e1]∪[se0]. Furthermore,

Qp([e0]
)

+Qp([se1]) =
p2

p2 − p+ 1
+

pq2

p2 − p+ 1
= p = mp([0]),

Qp([e1]) +Qp([se0]) =
q2

p2 − p+ 1
+

p2q

p2 − p+ 1
= q = mp([1]),

as required. Assume now the result is true for all cylinders [i1 · · · ik] of length
k, and consider a cylinder [i1 · · · ik+1] of length k + 1. Then,

ψ−1([i1 · · · ik+1]) = [j1 · · · jk+1] ∪ [j′1 · · · j′k+2],

where ψ−1([i2 · · · ik+1]) = [j2 · · · jk+1] ∪ [j′2 · · · j′k+2] and

j1, j
′
1 =

{
ei1 , if i1 = i2 or i1 6= i2 and j2 = s,

s, if i1 6= i2 and j2 6= s.
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By the definition of Qp, we have

Qp([j1 · · · jk+1]) =
uj1pj1,j2
uj2

Qp([j2 · · · jk+1]),

Qp([j
′
1 · · · j′k+2]) =

uj′1pj′1,j′2
uj′2

Qp([j
′
2 · · · j′k+2]).

One easily checks that

uj1pj1,j2
uj2

=
uj′1pj′1,j′2
uj′2

= p1−i1qi1 =

{
p, if i1 = 0;

q, if i1 = 1.

By the induction hypothesis applied to the cylinder [i2 · · · ik+1], we have
jk+1 = eik+1

, and j′k+1j
′
k+2 = se1−ik+1

, and

Qp([j2 · · · jk+1]) +Qp([j
′
2 · · · j′k+2]) = mp([i2 · · · ik+1]) = pk−

∑k+1
`=2 i`q

∑k+1
`=2 i` .

Thus,

Qp([j1 · · · jk+1]) +Qp([j
′
1 · · · j′k+2]) = p1−i1qi1pk−

∑k+1
`=2 i`q

∑k+1
`=2 i`

= pk+1−
∑k+1
`=1 i`q

∑k+1
`=1 i`

= mp([i1 · · · ik+1]). �

As before, let Mk(ω, x) =
∑k−1

i=0 1Ω×S(Ki
β(ω, x)).

Theorem 5.2. For νβ,p-a.e. (ω, x) for which limk→∞
Mk(ω,x)

k exists, one has

d
(
νβ,p, (ω, x)

)
=
H(p)

log β

(
2− lim

k→∞

Mk(ω, x)

k

)
,

where H(p) = −p log p− q log q.

Proof. We consider the same metric ρ as in the previous section, namely

ρ
(
(ω, x), (ω′, x′)

)
= β−min{k≥0 :ωk+1 6=ω′k+1 or αk+1(ω,x) 6=αk+1(ω′,x′)}.

Consider a point (ω, x) such that limk→∞
Mk
k exists. Write αi = αi(ω, x).

By the same reasoning that led to (6) we have

νβ,p
(
Bρ((ω, x), β−k)

)
= Qp([α1 · · ·αk])p

k−Mk−
∑k
i=Mk+1 ωiq

∑k
i=Mk+1 ωiue1−ωk .

Let umax = max(ue0 , ue1) and umin = min(ue0 , ue1). Then we can bound
log νβ,p

(
Bρ((ω, x), β−k)

)
from above by

logQp([α1 · · ·αk]) +

(
k −Mk −

k∑
i=Mk+1

ωi

)
log p

+
k∑

i=Mk+1

ωi log q + log umax,
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and it is bounded from below by

logQp([α1 · · ·αk]) +

(
k −Mk −

k∑
i=Mk+1

ωi

)
log p

+
k∑

i=Mk+1

ωi log q + log umin.

Dividing by −k log β and taking limits, we have by the Shannon–McMillan–
Breiman Theorem that

lim
k→∞

logQp([α1 · · ·αk])
−k log β

=
H(p)

log β
,

and by the Ergodic Theorem we have

lim
k→∞

∑k
i=Mk+1 ωi

−k log β
=
−q
(
1− limk→∞

Mk
k

)
log β

,

both for νβ-a.e. (ω, x). Thus, both the upper and the lower bounds converge
to the same value, implying that

d
(
νβ,p, (ω, x)

)
=
H(p)

log β

(
2− lim

k→∞

Mk

k

)
. �

Corollary 5.3. For νβ,p-a.e. (ω, x) one has

d
(
νβ,p, (ω, x)

)
=
H(p)

log β

(
2− νβ,p

(
Ω× S

))
=
H(p)

log β

(
2− pq

p2 − p+ 1

)
.

We now turn to the study of the local dimension of the asymmetric
Bernoulli convolution µβ,p, which is the projection in the second coordi-
nate of νβ,p. Let Nk(ω, x) be as given in Equation (9). In the symmetric
case, it was shown that

Nk(x, β) =

∫
{0,1}N

2Mk(ω,x) dm(ω) =
∑

[ω1···ωk]

2Mk(ω,x)2−k.

We now give a similar formula for the asymmetric case.

Lemma 5.4.

Nk(x, β) =
∑

[ω1···ωk]

p
(k−Mk(ω,x))−

∑k
i=Mk(ω,x)+1 ωiq

∑k
i=Mk(ω,x)+1 ωi .

Proof. We use a similar argument as the one used for the symmetric case
(see [Kem12]). Define

Ω(k, x) =
{
ω1 · · ·ωMk(ω,x) : ω ∈ Ω

}
.
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If x has a unique expansion, then Ω(k, x) consists of one element, the empty
word. We now have |Ω(k, x)| = Nk(x, β), and∑

[ω1···ωk]

p
(k−Mk)−

∑k
i=Mk+1 ωiq

∑k
i=Mk+1 ωi

=
∑

[ω1···ωk]

pk−
∑k
i=1 ωiq

∑k
i=1 ωi

pMk−
∑Mk
i=1 ωiq

∑Mk
i=1 ωi

=

∫
Ω

1

mp([ω1 · · ·ωMk
])
dmp(ω)

=

k∑
j=0

∫
{ω:Mk=j}

1

mp([ω1 · · ·ωj ])
dmp(ω)

=

k∑
j=0

∑
ω1···ωj∈Ω(k,x)

mp([ω1 · · ·ωj ])
mp([ω1 · · ·ωj ])

= |Ω(k, x)| = Nk(x, β). �

Theorem 5.5. For λ-a.e. x ∈ [0, β] one has

−
(

log(max(p, q)) + γ
)

log β
≤ d(µβ,p, x) ≤ d(µβ,p, x) ≤

−
(

log(min(p, q)) + γ
)

log β
,

where limk→∞
logNk(x,β)

k = γ is the constant from (10).

Proof. We use the same metric ρ̄ on [0, β] as in the previous section. Write
Mk = Mk(ω, x) and αi = αi(ω, x). Then

µβ,p
(
Bρ̄(x, β

−k)
)

=
∑

[ω1···ωk]

νβ(Bρ
(
[ω1 · · ·ωk], x), β−k)

)
=

∑
[ω1···ωk]

Qp([α1 · · ·αk])p
(k−Mk)−

∑k
i=Mk+1 ωiq

∑k
i=Mk+1 ωiue1−ωk .

Now,

Qp([α1 · · ·αk]) = uα1p
Lkqk−Lk ,

where

Lk = Lk(ω, x) = #{1 ≤ j ≤ k : αj = e0}+ #{1 ≤ j ≤ k : αjαj+1 = e1s},
and hence

k − Lk = #{1 ≤ j ≤ k : αj = e1}+ #{1 ≤ j ≤ k : αjαj+1 = e0s}.
Let C1 = max(ue0 , us, ue1) and C2 = min(ue0 , us, ue1). Then, from Lem-
ma 5.4 we have

C2

(
min(p, q))

)kNk(x, β) ≤ µβ,p(Bρ̄(x, β−k)) ≤ C1

(
max(p, q))

)kNk(x, β).
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Since β is a Pisot number, limk→∞
logNk(x,β)

k = γ exists λ-a.e. (see [FS11])
and we have

−[log(max(p, q)) + γ]

log β
≤ d(µβ,p, x) ≤ d(µβ,p, x) ≤ −[log(min(p, q)) + γ]

log β
.

�

Remark 5.6.

(i) If p = 1/2, then both sides of the inequality in Theorem (5.5) are

equal to log 2−γ
log β leading to d(µβ,1/2, x) = log 2−γ

log β a.e. as we have seen

earlier.
(ii) We now consider the extreme cases x ∈ {0, β}, the only two points

with a unique expansion. We begin with x = β. In this case

Qp([α1(ω, β) · · ·αk(ω, β)]) = Qp([e1 · · · e1]) = ue1q
k,

and Nk(β, β) = 1, so that C2q
k ≤ µβ,p(Bρ̄(β, β−k)) ≤ C1q

k. Hence,

d(µβ,p, β) =
− log q

log β
and similarly d(µβ,p, 0) =

− log p

log β
.
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