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Mixing subalgebras of finite von
Neumann algebras
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and Kunal Mukherjee

Abstract. Jolissaint and Stalder introduced definitions of mixing and
weak mixing for von Neumann subalgebras of finite von Neumann alge-
bras. In this note, we study various algebraic and analytical properties
of subalgebras with these mixing properties. We prove some basic re-
sults about mixing inclusions of von Neumann algebras and establish a
connection between mixing properties and normalizers of von Neumann
subalgebras. The special case of mixing subalgebras arising from inclu-
sions of countable discrete groups finds applications to ergodic theory, in
particular, a new generalization of a classical theorem of Halmos on the
automorphisms of a compact abelian group. For a finite von Neumann
algebra M and von Neumann subalgebras A, B of M , we introduce a
notion of weak mixing of B ⊂ M relative to A. We show that weak
mixing of B ⊂ M relative to a subalgebra A ⊂ B is equivalent to the
following property: if x ∈M and there exist a finite number of elements
x1, . . . , xn ∈ M such that Ax ⊂

∑n
i=1 xiB, then x ∈ B. We conclude

the paper with an assortment of further examples of mixing subalge-
bras arising from the amalgamated free product and crossed product
constructions.
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1. Introduction

In [6], Jolissaint and Stalder defined weak mixing and mixing for abelian
von Neumann subalgebras of finite von Neumann algebras. These properties
arose as natural extensions of corresponding notions in ergodic theory in the
following sense: If σ is a measure preserving action of a countable discrete
abelian group Γ0 on a finite measure space (X,µ), then the action is (weakly)
mixing in the sense of [1] if and only if the abelian von Neumann subalgebra
L(Γ0) is (weakly) mixing in the crossed product finite von Neumann algebra
L∞(X,µ) o Γ0.

In this note, we extend the definitions of weak mixing and mixing to gen-
eral von Neumann subalgebras of finite von Neumann algebras, and study
various algebraic and analytical properties of these subalgebras. In a forth-
coming note, the authors will specialize to the study of mixing properties
of maximal abelian von Neumann subalgebras. If B is a von Neumann
subalgebra of a finite von Neumann algebra M , and EB denotes the usual
trace-preserving conditional expectation onto B, we call B a weakly mixing
subalgebra of M if there exists a sequence of unitary operators {un} in B
such that

lim
n→∞

‖EB(xuny)− EB(x)unEB(y)‖2 = 0, ∀x, y ∈M.

We call B a mixing subalgebra of M if the above limit is satisfied for all
elements x, y in M and all sequences of unitary operators {un} in B such
that limn→∞ un = 0 in the weak operator topology. When B is an abelian
algebra, our definition of weak mixing is precisely the weak asymptotic ho-
momorphism property introduced by Robertson, Sinclair and Smith [15].
Although our definitions of weak mixing and mixing are slightly different
from those of Jolissaint and Stalder, our definitions coincide with theirs
in the setting of the action of a countable discrete group on a probability
space. Using arguments similar to those in the proofs of Proposition 2.2 and
Proposition 3.6 of [6], one can show:

Proposition 1.1. If σ is a measure preserving action of a countable dis-
crete group Γ0 on a finite measure space (X,µ), then the action is (weakly)
mixing in the sense of [1] if and only if the von Neumann subalgebra L(Γ0)
is (weakly) mixing in the crossed product finite von Neumann algebra

L∞(X,µ) o Γ0.

For an inclusion of finite von Neumann algebras B ⊂ M , we call a uni-
tary operator u ∈ M a normalizer of B in M if uBu∗ = B [3]. Clearly,
every unitary in B satisfies this condition; the subalgebra B is said to be
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singular in M if the only normalizers of B in M are elements of B. There
is a close relationship between the concepts of weak mixing and singularity.
Sinclair and Smith [17] noted one connection in proving that weakly mixing
von Neumann subalgebras are singular in their containing algebras. The
converse was proved by Sinclair, Smith, White and Wiggins [20] under the
assumption that the subalgebra is also masa (maximal abelian self-adjoint
subalgebra) in the ambient von Neumann algebra. In other words, the mea-
sure preserving action of a countable discrete abelian group Γ0 on a finite
measure space (X,µ) is weakly mixing if and only if the associated von Neu-
mann algebra L(Γ0) is singular in L∞(X,µ)oΓ0. This provides an operator
algebraic characterization of weak mixing in the abelian setting, which is the
main motivation for the study undertaken here. In contrast to the abelian
case, Grossman and Wiggins [4] showed that for general finite von Neumann
algebras, weakly mixing is not equivalent to singularity, so techniques be-
yond those known for singular subalgebras are required. In what follows, we
develop basic theory for mixing properties of general subalgebras of finite
von Neumann algebras. This leads to a number of new observations about
mixing properties of subalgebras and group actions, a characterization of
weakly mixing subalgebras in terms of their finite bimodules, and a variety
of new examples of inclusions of von Neumann algebras satisfying mixing
conditions. The paper is organized as follows.

Section 2 contains some preliminary technical results. We show that if B
is a diffuse finite von Neumann algebra, then

Bω 	B = {x ∈ Bω : τω(x∗b) = 0, ∀b ∈ B}

is the weak operator closure of the linear span of unitary operators in
Bω 	B, where Bω is the ultra-power algebra of B. This result plays an
important role in the subsequent sections.

In Section 3, we prove that if B is a mixing von Neumann subalgebra of
a finite von Neumann algebra M , one has

lim
n→∞

‖EB(xbny)− EB(x)bnEB(y)‖2 = 0, ∀x, y ∈M,

if {bn} is a bounded sequence of operators in B such that limn→∞ bn = 0 in
the weak operator topology. As applications, we show that if B is mixing
in M , k is a positive integer, and e ∈ B is a projection, then Mk(C) ⊗ B
is mixing in Mk(C) ⊗M and eBe is mixing in eMe. We also show that,
in contrast to weakly mixing masas, one cannot distinguish mixing masas
by the presence or absence of centralizing sequences in the masa for the
containing II1 factor.

Section 4 concerns the special case of inclusions of group von Neumann
algebras. We extend some results of [6] for abelian subgroups to the case
of a general inclusion of countable, discrete groups Γ0 ⊂ Γ in showing that
L(Γ0) is mixing in L(Γ) if and only if gΓ0g

−1 ∩Γ0 is a finite group for every
g ∈ Γ \ Γ0. These two conditions are seen to be equivalent the property
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that for every diffuse von Neumann subalgebra A of B and every y ∈ M ,
yAy∗ ⊂ B implies y ∈ B. Some applications to ergodic theory are given. In
particular, Theorem 4.3 generalizes results of Kitchens and Schmidt [9] and
Halmos [5].

In Section 5, we introduce and study the concept of relative weak mixing
for a triple of finite von Neumann algebras, and obtain several characteri-
zations of weakly mixing triples. It turns out that relative weak mixing of
an inclusion B ⊂ M with respect to a von Neumann subalgebra A ⊂ B
is closely related to the bimodule structure between the two subalgebras A
and B. In particular, we show that B ⊂ M is weakly mixing relative to A
if and only the following property holds: if x ∈M satisfies Ax ⊂

∑n
i=1 xiB

for a finite number of elements x1, . . . , xn in M , then x ∈ B.
The results in Section 6 show that mixing von Neumann subalgebras have

hereditary properties which are notably different from those of general sin-
gular subalgebras. We also consider the relationship between mixing and
normalizers; in particular, we show that subalgebras of mixing algebras in-
herit a strong singularity property from the containing algebra. Finally, we
provide an assortment of new examples of mixing von Neumann subalge-
bras which arise from the amalgamated free product and crossed product
constructions.

We collect here some basic facts about finite von Neumann algebras, which
will be used in the sequel. Throughout this paper, M is a finite von Neumann
algebra with a given faithful normal trace τ . Denote by L2(M) = L2(M, τ)
the Hilbert space obtained by the GNS-construction of M with respect to
τ . The image of x ∈M via the GNS-construction is denoted by x̂, and the
image of a subset L of M is denoted by L̂. The trace norm of x ∈ M is
defined by ‖x‖2 = ‖x‖2,τ = τ(x∗x)1/2. Suppose that B is a von Neumann
subalgebra of M . Then there exists a unique faithful normal conditional
expectation EB from M onto B preserving τ . Let eB be the projection of
L2(N) onto L2(B). Then the von Neumann algebra 〈M, eB〉 generated by
M and eB is called the basic construction of M , which plays a crucial role
in the study of von Neumann subalgebras of finite von Neumann algebras.
There is a unique faithful tracial weight Tr on 〈M, eB〉 such that

Tr(xeBy) = τ(xy), ∀x, y ∈M.

For ξ ∈ L2(〈M, eB〉,Tr), define ‖ξ‖2,Tr = Tr(ξ∗ξ)1/2. For more details of the
basic construction, we refer to [2, 7, 11, 18]. For a detailed account of finite
von Neumann algebras and the theory of masas, we refer the reader to [18].

Acknowledgements. The authors thank Ken Dykema, David Kerr, Roger
Smith, and Stuart White for valuable discussions throughout the completion
of this work.

2. Unitary operators in M 	 B

Let M be a finite von Neumann algebra with a faithful normal trace τ ,
and let B be a von Neumann subalgebra of M . We denote by M 	 B
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the orthogonal complement of B in M with respect to the standard inner
product on M , that is,

M 	B = {x ∈M : τ(x∗b) = 0 for all b ∈ B}.
Then x ∈M 	B if and only if EB(x) = 0, where EB is the trace-preserving
conditional expectation of M onto B. Note that if x ∈M 	B, then τ(x) =
τ(EB(x)) = 0, so the unique positive element in M 	 B is 0. On the other
hand, it is easy to see that M 	B is the linear span of self-adjoint elements
in M 	B.

In the following section, we will use the fact that a bounded sequence
(bn) in a finite von Neumann algebra B converges to 0 in the weak operator
topology if and only if it defines an element of the ultrapower Bω which is
orthogonal to B in the above sense. A key step in the proof of Theorem 3.3
will then be to approximate an arbitrary z ∈ Bω	B by linear combinations
of unitary operators in Bω 	 B. That such an approximation is possible is
the main technical result of this section.

When B ⊂M comes from an inclusion of countable discrete groups, there
is an obvious dense linear subspace of M	B: if G is a subgroup of a discrete
group Γ, then L(Γ)	L(G) is the weak closure of the linear span of unitary
operators corresponding to elements in Γ \ G. Although in the case of a
general inclusion B ⊆ M , such a canonical set of unitaries is not available,
we nevertheless obtain a partial answer to the following question: If B is a
subalgebra of a diffuse finite von Neumann algebra M such that eMe 6= eBe
for every nonzero projection e ∈ B, is M 	B the weak closure of the linear
span of unitaries in M 	B ?

The assumption that eMe 6= eBe for every nonzero projection e ∈ B is
necessary, as is the assumption that M is diffuse. For instance, if M = C⊕C
and B = C and τ(1⊕ 0) 6= τ(0⊕ 1), then there are no unitary operators in
M 	B.

Let (M)1 be the operator norm-closed unit ball of M , and let

Λ = {x ∈ (M)1 : x = x∗,EB(x) = 0}.
Then Λ is a convex set which is closed, hence also compact, in the weak
operator topology. By the Krein–Milman Theorem, Λ is the weak opera-
tor closure of the convex hull of its extreme points. Thus, we need only
characterize the extreme points of Λ.

Lemma 2.1. Suppose that for every nonzero projection p ∈M , there exists
a nonzero element xp ∈ pMp satisfying EB(xp) = 0. Then the extreme
points of Λ are{

2e− 1 : e ∈M a projection, with EB(e) =
1

2

}
.

Proof. If e ∈M is a projection with EB(e) = 1
2 , then it is easy to see that

the operator u = 2e−1 ∈ Λ is an extreme point of the unit ball (M)1, hence
also an extreme point of Λ. On the other hand, suppose that a ∈ Λ is an
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extreme point of Λ, but is not of the form 2e−1, for some projection e ∈M,
as above. By the spectral decomposition theorem, there exists an ε > 0 and
a nonzero spectral projection e of a such that

(−1 + ε)e ≤ ae ≤ (1− ε)e.

By assumption, there is a nonzero self-adjoint element x ∈ eMe such that
EB(x) = 0. By multiplying by a scalar, we may insist that −εe ≤ x ≤ εe.
Then a+ x, a− x ∈ Λ and a = 1

2(a+ x) + 1
2(a− x), so a is not an extreme

point of Λ, contradicting our assumption. Therefore, a = 2e − 1 for some
projection e ∈ M . Since EB(a) = 0, EB(e) = 1

2 . This completes the
proof. �

The following example shows that the assumptions of the above lemma
are essential.

Example 2.2. In the inclusion C ⊂ M3(C), there is no projection e ∈
M3(C) satisfing τ(e) = 1

2 . In this case, the partial isometry 1 0 0
0 0 0
0 0 −1


is an extreme point of Λ.

Corollary 2.3. Let M be a diffuse finite von Neumann algebra with a faith-
ful normal trace τ . Then M 	 C1 is the weak operator closure of the linear
span of self-adjoint unitary operators in M 	 C1.

Proof. For every nonzero projection p ∈ M , pMp is diffuse and hence
pMp 6= Cp. So there is a nonzero operator xp ∈ pMp with τ(xp) = 0.
By Lemma 2.1, M 	 C1 is the weak operator closure of the linear span of
self-adjoint unitary operators in M 	 C1. �

For the next result, recall that every diffuse finite von Neumann algebra
N with faithful trace τ contains a Haar unitary, that is, a unitary element
u ∈ N such that τ(un) = 0 for all n ∈ N.

Lemma 2.4. Suppose B is a diffuse finite von Neumann algebra with a
faithful normal trace τ . For ε > 0 and x1, . . . , xn ∈ B, there exists a Haar
unitary operator u ∈ B such that

|τ(xiu
∗)| < ε, 1 ≤ i ≤ n.

Proof. Since B is diffuse, B contains a Haar unitary operator v. Note that
vn → 0 in the weak operator topology. So there exists an N such that

|τ(xi(v
N )∗)| < ε, 1 ≤ i ≤ n.

Let u = vN . Then u is a Haar unitary operator and the lemma follows. �
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Given a separable diffuse von Neumann algebra B with faithful normal
trace τ and an ultrafilter ω ∈ βN \ N, denote by Bω the corresponding
ultrapower algebra, and the induced faithful normal trace by τω (see [16]).
We again use the standard notation of (Bω 	 B)1 for the norm-closed unit
ball of Bω 	B. The following proposition is the main result of this section.

Proposition 2.5. Suppose B is a separable diffuse finite von Neumann
algebra with a faithful normal trace τ . Then (Bω 	 B)1 is the trace norm
closure of the convex hull of self-adjoint unitary operators in Bω 	B.

Proof. We claim that for every nonzero projection p ∈ Bω, there exists
a nonzero element xp in pBωp such that EB(xp) = 0, where EB is the
conditional expectation of Bω onto B preserving τω. Let p = (pn) ∈ Bω,
where pn ∈ B is a projection with τ(pn) = τω(p) > 0. Since B is separable,
there is a sequence {yk} in B which is dense in the trace norm. We may
assume that y1 = 1. By Lemma 2.4, for any initial segment {y1, . . . , yn} of
the dense sequence, there is a Haar unitary operator un ∈ pnBpn such that

|τ(pnyipnu
∗
n)| < 1

n
, ∀1 ≤ i ≤ n.

Now define an element xp of Bω by xp = (un). Then

‖xp‖22 = lim
n→ω
‖un‖22 = τ(p) > 0.

Hence, xp 6= 0 and xp ∈ pBωp. Note that for each k ∈ N, we have

τω(yk(xp)
∗) = τω((pykp)(xp)

∗) = lim
n→ω

τ(pnykpnu
∗
n) = 0.

Since {yk} is dense in B in the trace norm topology, τω(y(xp)
∗) = 0 for

all y ∈ B. This implies EB(xp) = 0. By Lemma 2.1, (Bω 	 B)1 is the
weak operator closure of the convex hull of self-adjoint unitary operators in
Bω 	B. Note that (Bω 	B)1 is a convex set, so its weak operator closure
coincides with its closure in the strong operator and trace norm topologies.
This proves the result. �

Corollary 2.6. Suppose B is a separable diffuse finite von Neumann algebra
with a faithful normal trace τ . Then Bω 	B is the weak operator closure of
the linear span of self-adjoint unitary operators in Bω 	B.

Using a similar approach, we can also prove the following result.

Proposition 2.7. If M is a separable type II1 factor and B is an abelian
von Neumann subalgebra of M , then M 	B is the weak operator closure of
the linear span of unitary operators in M 	B.

It is not clear whether Proposition 2.7 holds for nonabelian subalgebras.
We are unable, for instance, to establish the conclusion of the result when
B is a hyperfinite subfactor of a nonhyperfinite type II1 factor M , e.g. LF2.
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3. Mixing von Neumann subalgebras

Let M be a finite von Neumann algebra with a faithful normal trace τ ,
and let B be a von Neumann subalgebra of M .

Definition 3.1. An algebra B is a mixing von Neumann subalgebra of M
if

lim
n→∞

‖EB(xuny)− EB(x)unEB(y)‖2 = 0

holds for all x, y ∈ M and every sequence of unitary operators {un} in B
such that lim

n→∞
un = 0 in the weak operator topology. If B is a mixing von

Neumann subalgebra of M , then we say B ⊆M a mixing inclusion of finite
von Neumann algebras.

It is easy to see that B is a mixing von Neumann subalgebra of M if and
only if for all elements x, y in M with EB(x) = EB(y) = 0, one has

lim
n→∞

‖EB(xuny)‖2 = 0

whenever {un} is a sequence of unitary operators in B such that lim
n→∞

un = 0

in the weak operator topology.

Remark 3.2. By the Kaplansky density theorem, we may assume that x
and y are in a subset F of M such that M is the von Neumann algebra
generated by F in Definition 3.1.

The following theorem, which is the main result of this section, provides
a useful equivalent condition for mixing inclusions of finite von Neumann
algebras.

Theorem 3.3. If B is a mixing von Neumann subalgebra of M and x, y ∈M
with EB(x) = EB(y) = 0, then

lim
n→∞

‖EB(xbny)‖2 = 0

whenever {bn} is a bounded sequence of operators in B such that lim
n→∞

bn = 0

in the weak operator topology.

Proof. Let ω be a free ultrafilter of the set of natural numbers and let Mω

be the ultrapower algebra of M . Then Mω is a finite von Neumann algebra
with a faithful normal trace τω. We can identify Bω with a von Neumann
subalgebra of Mω in the natural way. Every bounded sequence (bn) in B
defines an element z of Bω. We may assume that ‖z‖ ≤ 1. It is easy to see
that limn→ω bn = 0 in the weak operator topology if and only if

τω(zb) = 0, ∀b ∈ B.

Recall that M 	 B = {x ∈ M : τ(x∗b) = 0 for all b ∈ B}. It is easy to see
that Definition 3.1 is equivalent to the following: For any x, y in M 	 B,
and any unitary operator u ∈ Bω 	B, one has EBω(xuy) = 0.
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Note that B is a diffuse subalgebra of M . Indeed, suppose p ∈ B is
a minimal projection. Since B is mixing, then in particular we have that
B′ ∩M ⊂ B, so Theorem 12.2.4 of [18] implies that there exists a masa
A of M such that p ∈ A ⊂ B. But then p is a minimal projection of A,
a contradiction. Thus, Proposition 2.5 applies, and (Bω 	 B)1 is the trace
norm closure of the convex hull of unitary operators in Bω 	B. Let ε > 0.
Then there exist unitary operators u1, . . . , un inBω	B and positive numbers
α1, . . . , αn with α1 + · · ·+ αn = 1 such that∥∥∥∥∥z −

n∑
k=1

αkuk

∥∥∥∥∥
2,τω

< ε.

For any elements x and y of M 	B,

‖EBω(xzy)‖2,τω =

∥∥∥∥∥EBω
(
x

(
z −

n∑
k=1

αkuk

)
y

)∥∥∥∥∥
2,τω

≤

∥∥∥∥∥x
(
z −

n∑
k=1

αkuk

)
y

∥∥∥∥∥
2,τω

≤ ‖x‖ ·

∥∥∥∥∥z −
n∑
k=1

αkuk

∥∥∥∥∥
2,τω

· ‖y‖

≤ ε‖x‖‖y‖.

Since ε > 0 is arbitrary, EBω(xzy) = 0, which is equivalent to

lim
n→∞

‖EB(xbny)‖2 = 0. �

Two applications of the above theorem are the following.

Corollary 3.4. If B is a mixing von Neumann subalgebra of M and k is a
positive integer, then Mk(C)⊗B is mixing in Mk(C)⊗M .

Proof. Note that x = (xij) ∈ (Mk(C) ⊗M) 	 (Mk(C) ⊗ B) if and only
if xij ∈ M 	 B for all 1 ≤ i, j ≤ k. Moreover, bn = (bnij) ∈ Mk(C) ⊗ B
converges to 0 in the weak operator topology if and only if bnij converges to 0
in the weak operator topology for all 1 ≤ i, j ≤ k. Now the corollary follows
from Theorem 3.3. �

Corollary 3.5. If B is a mixing von Neumann subalgebra of M and e is a
projection of B, then eBe is mixing in eMe.

Proof. Let (bn) be a bounded sequence in eBe which converges to 0 in the
weak operator topology. For x, y ∈ eMe	 eBe, we have x, y ∈ M 	 B. By
Theorem 3.3,

lim
n→∞

‖EeBe(xbny)‖2 = lim
n→∞

‖EB(xbny)‖2 = 0. �
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It is well-known that the presence of centralizing sequences in a masa for
its containing II1 factor is a conjugacy invariant for the masa. More gener-
ally, it is possible to build nonconjugate masas of a II1 factor by controlling
the existence of centralizing sequences in various cutdowns of each masa.
Sinclair and White [19] developed this technique to produce uncountably
many nonconjugate weakly mixing masas in the hyperfinite II1 factor with
the same Pukánszky invariant. The final result of this section implies that,
in contrast to the larger class of weakly mixing masas, there is no hope of
distinguishing mixing masas along these lines. Following the notation of [19],
for a von Neumann subalgebra B of a II1 factor M , we denote by Γ(B) the
maximal trace of a projection e ∈ B for which eBe contains a nontrivial
centralizing sequences for eMe.

Proposition 3.6. If B is a mixing subalgebra of a type II1 factor M and
eBe 6= eMe for each nonzero projection e ∈ B, then Γ(B) = 0.

Proof. By Corollary 3.5, we need only show that there is no nontrivial
sequence {bn} in B which is centralizing for M . Suppose {bn} ⊂ B is such
a centralizing sequence for M . We may assume that τ(bn) = 0 for each n.
Suppose that limn→ω bn = z ∈ B in the weak operator topology. Then for
all x ∈M,

zx = lim
n→ω

bnx = lim
n→ω

xbn = xz.

Since M is a type II1 factor, z = τ(z)1 = 0. Hence limn→ω bn = 0 in
the weak operator topology. Choose a nonzero element x ∈ M such that
τ(xb) = 0 for all b ∈ B. Note that

‖xbn − bnx‖22 = ‖xbn‖22 + ‖bnx‖22 − 2 Re τ(b∗nx
∗bnx)

≥ τ(b∗nx
∗xbn)− 2 Re τ(b∗nEB(x∗bnx))

= τ(x∗xbnb
∗
n)− 2 Re τ(b∗nEB(x∗bnx)).

Since {bn} is a central sequence of M , {bnb∗n} is also a central sequence of
M . The uniqueness of the trace on M implies that

lim
n→ω

τ(x∗xbnb
∗
n) = lim

n→ω
τ(x∗x)τ(bnb

∗
n) = lim

n→ω
‖x‖22 · ‖bn‖22.

By Theorem 3.3,

0 = lim
n→∞

‖xbn − bnx‖2 ≥ ‖x‖2 lim
n→∞

‖bn‖2,

which implies that limn→ω ‖bn‖2 = 0. This completes the proof. �

Corollary 3.7. If B is a mixing masa of a type II1 factor M , then Γ(B) = 0.

4. Mixing inclusions of group von Neumann algebras

In this section, we apply our operator-algebraic machinery to the special
case of mixing inclusions of von Neumann algebras that arise from actions
of countable, discrete groups. This direction was taken up in [6], where it
was shown that, for an infinite abelian subgroup Γ0 of a countable group Γ,
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the inclusion L(Γ0) ⊂ L(Γ) is mixing if and only if the following condition
(called (ST)) is satisfied:

For every finite subset C of Γ \ Γ0, there exists a finite exceptional set
E ⊂ Γ0 such that gγh /∈ Γ0 for all γ ∈ Γ0 \ E and g, h ∈ C.

Theorem 4.3 of this section supplies a similar characterization for the case
in which Γ0 is not abelian, and also establishes a connection between the
group normalizer of the subgroup Γ0 and the “analytic” normalizer of its
associated group von Neumann algebra. The key observation required is
the following, which shows that mixing subalgebras satisfy a much stronger
form of singularity.

Theorem 4.1. Let B be a mixing von Neumann subalgebra of M , and
suppose that A is a diffuse von Neumann subalgebra of B. If y ∈M satisfies
yAy∗ ⊆ B, then y ∈ B.

Proof. We may assume that A is a diffuse abelian von Neumann alge-
bra. Then A is generated by a Haar unitary operator w. In particular,
limn→∞w

n = 0 in the weak operator topology. Let x ∈ M and EB(x) = 0.
Then

|τ(xy)|2 ≤ ‖EA′∩M (xy)‖22.
Note that

EA′∩M (xy) = lim
n→ω

∑n
k=1w

k(xy)(w∗)k

n
in the weak operator topology. Hence,

|τ(xy)|2 ≤ ‖EA′∩M (xy)‖22

≤ lim
n→ω

∥∥∥∥∑n
k=1w

k(xy)(w∗)k

n

∥∥∥∥2
2

= lim
n→ω

1

n2

n∑
i,j=1

τ(wi(xy)(w∗)iwj(y∗x∗)(w∗)j)

≤ lim
n→ω

1

n2

n∑
i,j=1

|τ(x(ywj−iy∗)x∗(w∗)j−i)|

≤ lim
n→ω

1

n2

n∑
i,j=1

‖EB(x(ywj−iy∗)x∗(w∗)j−i)‖2

= lim
n→ω

1

n2

n∑
i,j=1

‖EB(x(ywj−iy∗)x∗)‖2.

By hypothesis, ywny∗ ∈ B. Note that limn→∞ yw
ny∗ = 0 in the weak

operator topology. By Theorem 3.3,

lim
n→∞

‖EB(x(ywny∗)x∗)‖2 = 0.
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So

|τ(xy)|2 ≤ lim
n→ω

1

n2

n∑
i,j=1

‖EB(x(ywj−iy∗)x∗)‖2 = 0.

Therefore, τ(xy) = 0 for all y ∈M 	B. This implies that y ∈ B. �

Remark 4.2. In Theorem 4.1, it is not necessary that the unit of A be the
same as the unit of B.

Theorem 4.3. Let M = L(Γ) and B = L(Γ0). Then the following condi-
tions are equivalent:

(1) B = L(Γ0) is mixing in M = L(Γ).
(2) gΓ0g

−1 ∩ Γ0 is a finite group for every g ∈ Γ \ Γ0.
(3) For every diffuse von Neumann subalgebra A of B and every unitary

operator v ∈M , if vAv∗ ⊆ B, then v ∈ B.
(4) For every diffuse von Neumann subalgebra A of B and every operator

y ∈M , if yAy∗ ⊆ B, then y ∈ B.

Proof. (1) ⇒ (4) follows from Theorem 4.1 and (4) ⇒ (3) is trivial.
(3)⇒ (2) SupposeM = L(Γ) andB = L(Γ0). Suppose for some g ∈ Γ\Γ0,

gΓ0g
−1∩Γ0 is an infinite group. Let Γ1 = Γ0∩g−1Γ0g = g−1(gΓ0g

−1∩Γ0)g.
Then Γ1 is an infinite group, and gΓ1g

−1 ⊆ Γ0. So λ(g)L(Γ1)λ(g−1) ⊆
L(Γ0). By the third statement, λ(g) ∈ L(Γ0) and g ∈ Γ0. This is a contra-
diction.

(2)⇒ (1) First, we show that if g1, g2 ∈ Γ\Γ0, then g1Γ0g2∩Γ0 is a finite
set. Suppose h1, h2 ∈ Γ0 and g1h1g2, g1h2g2 ∈ Γ0. Then

g1h1h
−1
2 g−11 = g1h1g2(g1h2g2)

−1 ∈ Γ0 ∩ g1Γ0g
−1
1 .

Since Γ0 ∩ g1Γ0g
−1
1 is a finite group,

{h1h−12 : h1, h2 ∈ Γ0 and g1h1g2, g1h2g2 ∈ Γ0}

is a finite set. Hence, g1Γ0g2 ∩ Γ0 is a finite set.
Let {vn} be a sequence of unitary operators in B such that lim

n→∞
vn = 0

in the weak operator topology. Write vn =
∑∞

k=1 αn,kλ(hk). Then for each
k, limn→∞ αn,k = 0. Suppose g1, g2 ∈ Γ \ Γ0. There exists an N such that
for all m ≥ N , g1hmg2 /∈ Γ0. Hence,

‖EB(g1vng2)‖2 =

N∑
i=1

‖αn,iEB(g1λ(hi)g2)‖2 ≤
N∑
i=1

|αn,i| → 0

when n→∞. By Remark 3.2, M is mixing relative to B. �

We now apply Theorem 4.3 to the group-theoretic situation arising from
a semidirect product Γ = GoΓ0, where Γ0 is an infinite group. Let σh(g) =
hgh−1 for h ∈ Γ0 and g ∈ G. Then σh is an automorphism of G. Note that
hg = hgh−1h = σh(g)h for h ∈ Γ0 and g ∈ G.
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Proposition 4.4. Let M = L(Go Γ0) and B = L(Γ0). Then B is mixing
in M if and only if for each g ∈ G, g 6= e, the group

{h ∈ Γ0 : σh(g) = g}
is finite.

Proof. Let g ∈ G and h ∈ Γ0. Suppose h ∈ gΓ0g
−1∩Γ0. Then ghg−1 ∈ Γ0.

Note that ghg−1 = hh−1ghg−1 = h(σh−1(g)g−1). So ghg−1 ∈ Γ0 implies
that σh−1(g)g−1 ∈ Γ0 ∩ G = {e}, i.e., σh−1(g) = g and hence σh(g) = g.
Conversely, suppose σh(g) = g. Then σh−1(g) = g and hence ghg−1 =
hσh−1(g)g−1 = h ∈ Γ0 ∩ gΓ0g

−1. This proves

{h ∈ Γ0 : σh(g) = g} = {h ∈ Γ0 : h ∈ gΓ0g
−1 ∩ Γ0}.

Suppose B is mixing in M . By (2) of Theorem 4.3, gΓ0g
−1∩Γ0 is a finite

group for every g ∈ G with g 6= e. So the group {h ∈ H : σh(g) = g} is
finite. Conversely, suppose that for each g ∈ G, g 6= e, the group {h ∈ Γ0 :
σh(g) = g} is finite. Our previous observations then imply that the group
gΓ0g

−1∩Γ0 is finite. A group element of Γ\Γ0 can be written as gh, g ∈ G,
g 6= e, h ∈ Γ0. Note that

ghΓ0h
−1g−1 ∩ Γ0 = gΓ0g

−1 ∩ Γ0

is finite. So B is mixing in M by 2 of Theorem 4.3. �

Recall that the action σ of a group H on a finite von Neumann algebra
N is called ergodic if σh(x) = x for all h ∈ H implies that x = λ1. The
following result extends Theorem 2.4 of [9] to the noncommutative setting.

Corollary 4.5. Let M = L(GoΓ0) and B = L(Γ0). Suppose Γ0 is a finitely
generated, infinite, abelian group or Γ0 is a torsion free group. Then B is
mixing in M if and only if every element h ∈ Γ0 of infinite order is ergodic
on L(G).

Proof. If B is mixing in M , then clearly every element h ∈ Γ0 of infinite
order is ergodic on L(G). Now suppose every element h ∈ Γ0 of infinite
order is ergodic on L(G). If B is not mixing in M , then there is a g ∈ G,
g 6= e, such that {h ∈ Γ0 : σh(g) = g} is an infinite group. Under the
above hypotheses on Γ0, there exists an element h0 of infinite order such
that σh0(g) = g. This implies that the action of h0 on L(G) is not ergodic,
which is a contradiction. �

Corollary 4.6. Let M = L(G o Z) and B = L(Z). Then the following
conditions are equivalent:

(1) The action of Z on L(G) is mixing, i.e., B is mixing in M .
(2) The action of Z on L(G) is weakly mixing, i.e., B is weakly mixing

in M .
(3) The action of Z on L(G) is ergodic.
(4) For every g ∈ G, g 6= e, the orbit {σh(g)} is infinite.
(5) For every g ∈ G, g 6= e, {h ∈ Z : σh(g) = g} = {e}.
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Proof. Let γ be a generator of Z. Clearly (1) ⇒ (2) ⇒ (3).
(3) ⇒ (4) Suppose σγn(g) = g and n is the minimal positive integer

satisfies this condition. Let x = Lg+Lσγ(g)+· · ·+Lσγn−1 (g). Then x ∈ L(G),

x 6= λ1, and σh(x) = x for all h ∈ Z. This implies that the action of Z on
L(G) is not ergodic.

(4)⇒ (5) Suppose σγn(g) = g for some positive integer n. Then the orbit
{σh(g)} has at most n elements.

(5) ⇒ (1) follows from Proposition 4.4. �

A special case of Corollary 4.6 implies the following classical result of
Halmos [5].

Corollary 4.7 (Halmos’s Theorem). Let X be a compact abelian group, and
T : X → X a continuous automorphism. Then T is mixing if and only if T
is ergodic.

Proof. By the Pontryagin duality theorem, the dual group G of X is a
discrete abelian group. Furthermore, there is an induced action of Z on G,
and the action is unitarily conjugate to the action of T on X. Now the
corollary follows from Corollary 4.6. �

5. Relative weak mixing

Suppose M is a finite von Neumann algebra with a faithful normal trace
τ , and A, B are von Neumann subalgebras of M . We say B ⊂M is weakly
mixing relative to A if there exists a sequence of unitary operators un ∈ A
such that

lim
n→∞

‖EB(xuny)− EB(x)unEB(y)‖2 = 0, ∀x, y ∈M.

So B is weakly mixing in M if and only if B ⊂M is weakly mixing relative to
B. Since every diffuse von Neumann algebra contains a sequence of unitary
operators converging to 0 in the weak operator topology, B is mixing in
M implies that B ⊂ M is weakly mixing relative to A for all diffuse von
Neumann subalgebras A of B.

It is easy to see that B ⊂M is weakly mixing relative to A if and only if
there exists a sequence of unitary operators un ∈ A such that for all elements
x, y in M with EB(x) = EB(y) = 0, one has

lim
n→∞

‖EB(xuny)‖2 = 0.

The main result of this section is the following, which is inspired by [14].

Theorem 5.1. Let M be a finite von Neumann algebra with a faithful nor-
mal trace τ , and let A, B be von Neumann subalgebras of M with A ⊂ B.
Then the following conditions are equivalent:
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(1) B ⊂ M is weakly mixing relative to A, i.e., there exists a sequence
of unitary operators {uk} in A such that

lim
k→∞

‖EB(xuky)‖2 = 0, ∀x, y ∈M 	B.

(2) If z ∈ A′ ∩ 〈M, eB〉 satisfies Tr(z∗z) <∞, then eBzeB = z.
(3) If p ∈ A′ ∩ 〈M, eB〉 satisfies Tr(p) <∞, then eBpeB = p.
(4) If x ∈ M satisfies Ax ⊂

∑n
i=1 xiB for a finite number of elements

x1, . . . , xn ∈M , then x ∈ B.

Before we prove Theorem 5.1, we state some corollaries of the theorem.

Corollary 5.2. Let M be a finite von Neumann algebra with a faithful
normal trace τ , and let B be a von Neumann subalgebra of M . Then the
following conditions are equivalent:

(1) B is a weakly mixing von Neumann subalgebra of M .
(2) If x ∈ M satisfies Bx ⊂

∑n
i=1 xiB for a finite number of elements

x1, . . . , xn ∈M , then x ∈ B.

The following corollary gives an operator algebraic characterization of
weakly mixing actions of countable discrete groups.

Corollary 5.3. If σ is a measure preserving action of a countable discrete
group Γ0 on a finite measure space (X,µ), then weak mixing of σ is equivalent
to the following property: if x ∈ L∞(X,µ)oΓ0 and L(Γ0)x ⊂

∑n
i=1 xiL(Γ0)

for a finite number of elements x1, . . . , xn in L∞(X,µ)oΓ0, then x ∈ L(Γ0).

Corollary 5.4. Let M be a finite von Neumann algebra with a faithful
normal trace τ , and let B be a mixing von Neumann subalgebra of M . If
A ⊂ B is a diffuse von Neumann subalgebra and x ∈ M satisfies Ax ⊂∑n

i=1 xiB for a finite number of elements x1, . . . , xn ∈M , then x ∈ B.

To prove Theorem 5.1, we need the following lemmas.

Lemma 5.5. Let p ∈ 〈M, eB〉 be a finite projection, p ≤ 1− eB, and ε > 0.
Then there exist x1, . . . , xn ∈ M 	 B, and projections f1, . . . , fn ∈ B such
that EB(x∗jxi) = δijfi, and∥∥∥∥∥p−

n∑
i=1

xieBx
∗
i

∥∥∥∥∥
2,Tr

< ε.

Proof. Let q = eB +p. Then q is a finite projection in 〈M, eB〉. By Lemma
1.8 of [12], there are x0, x1, . . . , xn ∈M , x0 = 1, such that EB(x∗jxi) = δijfi
for 0 ≤ i, j ≤ n and ∥∥∥∥∥q −

n∑
i=0

xieBx
∗
i

∥∥∥∥∥
2,Tr

< ε.

Clearly, ∥∥∥∥∥p−
n∑
i=1

xieBx
∗
i

∥∥∥∥∥
2,Tr

< ε. �
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Suppose that H ⊂ L2(M) is a right B-module. Let LB(L2(B),H) be
the set of bounded right B-modular operators from L2(B) into H. The
dimension of H over B is defined as

dimB(H) = Tr(1),

where Tr is the unique tracial weight on B′ satisfying the following condition

Tr(x∗x) = τ(xx∗), ∀x ∈ LB(L2(B),H).

We say H is a finite right B-module if Tr(1) < ∞. For details on finite
modules, we refer the reader to appendix A of [21].

Suppose that H ⊂ L2(M) is a right B-module. We say that H is finitely
generated if there exist finitely many elements ξ1, . . . , ξn ∈ H such that H
is the closure of

∑n
i=1 ξiB. A set {ξi}ni=1 is called an orthonormal basis of

H if EB(ξ∗i ξj) = δijpi ∈ B, p2i = pi, and for every ξ ∈ H we have

ξ =
∑
i

ξiEB(ξ∗i ξ).

Let p be the orthogonal projection of L2(M) onto H. Then p =
∑n

i=1 ξieBξi,
where ξi ∈ L2(M) is viewed as an unbounded operator affilated with M .
Every finitely generated right B module has an orthonormal basis. For
finitely generated right B-modules, we refer to 1.4.1 of [13].

The following lemma is proved by Vaes in [21] (see Lemma A.1).

Lemma 5.6. Suppose H is a finite right B-module. Then there exists a
sequence of projections zn of Z(B) = B′ ∩ B such that limn→∞ zn = 1
in the strong operator topology and, for each n, there exists a projection
pn ∈ Mkn(B) such that Hzn is unitarily equivalent to the pnMkn(B)pn-

B-bimodule pn(L2(B)(n)). In particular, Hzn is a finitely-generated right
B-module.

The following lemma is motivated by Lemma 1.4.1 of [13].

Lemma 5.7. Suppose H ⊂ L2(M) is an A-B-bimodule, which is finitely
generated as a right B-module. Let p denote the orthogonal projection of
L2(M) onto H. Then there exists a sequence of projections zn in A′ ∩M
such that limn→∞ zn = 1 in the strong operator topology and for each n,
there exist a finite number of elements xn,1, . . . , xn,k ∈M such that

znpzn(x̂) =
k∑
i=1

̂xn,iEB(x∗n,ix), ∀x ∈M.

Proof. Let {ξi}ki=1 ⊂ H ⊂ L2(M, τ) be an orthonormal basis for H, i.e.,
H = ⊕ki=1[ξiB]. As in 1.4.1 of [13], the projection p from L2(M) onto H has

the form p =
∑k

i=1 ξieBξ
∗
i , where ξi ∈ L2(M) is viewed as an unbounded

operator affilated with M . Since H is a left A-submodule of L2(M), in
particular it is an invariant subspace for the von Neumann algebra A, so the
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projection p : L2(M) → H commutes with A. Thus, p ∈ A′ ∩ 〈M, eB〉. For
a ∈ A, we have

a

(
n∑
i=1

ξieBξ
∗
i

)
=

(
n∑
i=1

ξieBξ
∗
i

)
a

and, applying the pull down map to both sides, we obtain

a

(
n∑
i=1

ξiξ
∗
i

)
=

(
n∑
i=1

ξiξ
∗
i

)
a.

Hence aq = qa for all spectral projections q of ξiξ
∗
i . Since

∑n
i=1 ξiξ

∗
i is a

densely defined operator affilated with M , q ∈ A′ ∩M . We thus obtain a
sequence of projections zn ∈ A′ ∩M such that limn→∞ zn = 1 in the strong

operator topology and
∑k

i=1 znξiξ
∗
i zn is a bounded operator for each n. Let

xn,i = znξi, 1 ≤ i ≤ k. Then xn,i ∈M and

znpzn(x̂) =
k∑
i=1

znξieBξ
∗
i zn(x̂) =

k∑
i=1

xn,ieBx
∗
n,i(x̂) =

k∑
i=1

̂xn,iEB(x∗n,ix)

for all x ∈M . �

Proof of Theorem 5.1. (1) ⇒ (2) Suppose eBzeB = z is not true. We
may assume that (1− eB)z 6= 0 (otherwise, consider z(1− eB)). Replacing z
by a nonzero spectral projection of (1− eB)zz∗(1− eB) corresponding to an
interval [c, 1] with c > 0, we may assume that z = p 6= 0 is a subprojection
of 1− eB.

Let ε > 0. By Lemma 5.5, there is a natural number n and x1, . . . , xn ∈
M 	B such that EB(x∗jxi) = δijfi, where fi is a projection in B, and∥∥∥∥∥p−

n∑
i=1

xieBx
∗
i

∥∥∥∥∥
2,Tr

< ε/2.

Let p0 =
∑n

i=1 xieBx
∗
i . Then p0 is a projection. Note that ukpu

∗
k = p. So

‖ukp0u∗k − p0‖2,Tr ≤ ‖uk(p0 − p)u∗k‖2,Tr + ‖p0 − p‖2,Tr < ε.

Therefore,

2‖p0‖22,Tr = ‖ukp0u∗k − p0‖22,Tr + 2Tr(ukp0u
∗
kp0)

= ‖ukp0u∗k − p0‖22,Tr + 2
∑

1≤i,j≤n
Tr(ukxieBx

∗
iu
∗
kxjeBx

∗
j )

≤ ε2 + 2
∑

1≤i,j≤n
τ(EB(x∗iu

∗
kxj)x

∗
jukxi)

≤ ε2 + 2
∑

1≤i,j≤n
‖EB(x∗jukxi)‖22,τ .



360 JAN CAMERON, JUNSHENG FANG AND KUNAL MUKHERJEE

By the assumption of the lemma, 2
∑

1≤i,j≤n ‖EB(x∗jukxi)‖22,τ → 0 when

k → ∞. Hence, ‖p0‖2,Tr ≤ ε. Since ε > 0 was arbitrary, this says p = 0.
This is a contradiction.

(2) ⇒ (1) Suppose (1) is false. Then there exist ε0 > 0 and x1, . . . , xn ∈
N 	 B such that

∑
1≤i,j≤n ‖EB(xiux

∗
j )‖22,τ ≥ ε0 for all u ∈ U(A). Let

z =
∑n

i=1 x
∗
i eBxi. Then z ⊥ eB, Tr(z) <∞, and

Tr(zuzu∗) =
n∑

i,j=1

Tr(x∗i eBxiux
∗
jeBxju

∗) =
n∑

i,j=1

Tr(EB(xiux
∗
j )eBxju

∗x∗i )

=
n∑

i,j=1

τ(EB(xiux
∗
j )xju

∗x∗i ) =
n∑

i,j=1

‖EB(xiux
∗
j )‖22 ≥ ε,

for all u ∈ U(A). Let Γz be the weak operator closure of the convex hull
of {uzu∗ : u ∈ U(A)}. Then there exists a unique element y ∈ Γz such that
‖y‖2,Tr = min{‖x‖2,Tr : x ∈ Γz}. The uniqueness implies that uyu∗ = y for
all u ∈ U(A) and hence y ∈ A′ ∩ 〈N, eB〉. Since Tr(zuzu∗) ≥ ε0, Tr(zy) ≥
ε0 > 0. So y > 0 and y ⊥ eB. Note that

Tr(y2) ≤ ‖y‖Tr(y) ≤ ‖y‖Tr(z) <∞.

This contradicts the assumption of (2).
(2) ⇔ (3) is easy to see.

(3) ⇒ (4) Suppose Ax ⊂
∑n

i=1 xiB. Let H be the closure of ÂxB in
L2(N, τ). Then H is a left A finitely generated right B bimodule. Let p be
the projection of L2(N, τ) ontoH. Then p ∈ A′∩〈N, eB〉 is a finite projection

of 〈N, eB〉. By the assumption of (3), p ≤ eB. So x̂ = p(x̂) = eB(x̂) ∈ B̂
and x ∈ B.

(4) ⇒ (3) Suppose p ∈ A′ ∩ 〈M, eB〉 satisfies Tr(z∗z) < ∞. Then H =
pL2(M) is a left A finite right B bimodule. By Lemma 5.6, we may assume
that H is a left A finitely generated right B bimodule. By Lemma 5.7, there
exists a sequence of projections zn in A′ ∩M such that limn→∞ zn = 1 in
the strong operator topology and for each n, there exist xn,1, . . . , xn,k ∈ M
such that

znpzn(x̂) =
k∑
i=1

̂xn,iEB(x∗n,ix), for all x ∈M.

Note that znpzn ∈ A′ ∩ 〈M, eN 〉, and for every x ∈M ,

A (znpzn(x̂)) = (znpzn)(Âx) ⊂
n∑
i=1

x̂n,iB.

By the assumption of (4), znpzn(x̂) ∈ B̂ ⊂ L2(B) for every x ∈ M . Hence,
for each ξ ∈ L2(M), znpzn(ξ) ∈ L2(B). Since limn→∞ zn = 1 in the strong
operator topology, p(ξ) = limn→∞ znpzn(ξ) ∈ L2(B), i.e., p ≤ eB. �
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6. Further results and examples

In this section, we explore the hereditary properties of mixing subalgebras
of finite von Neumann algebras; that is, we show that if B ⊂M is a mixing
inclusion, then the properties of an inclusion B1 ⊂ B can force certain
mixing properties on the inclusion B1 ⊂ M . In particular, Proposition 6.1
below allows us to construct examples of weakly mixing subalgebras which
are not mixing. We also use the crossed product and amalgamated free
product constructions to produce further examples of mixing inclusions.

6.1. Hereditary properties of mixing algebras.

Proposition 6.1. Let B be a mixing von Neumann subalgebra of M , and
let B1 be a diffuse von Neumann subalgebra of B. We have the following:

(1) B′1 ∩M = B′1 ∩B.
(2) If B1 is singular in B, then B1 is singular in M .
(3) NM (B1)

′′ ⊆ B, where NM (B1) = {u ∈ U(M) : uB1u
∗ = B1}.

(4) If B1 is weakly mixing in B, then B1 is weakly mixing in M .
(5) If B1 is mixing in B, then B1 is mixing in M .

Proof. (1)–(3) follow from Theorem 4.1.
(4) By Corollary 5.2, we need to show that if x ∈ M satisfies B1x ⊂∑n
i=1 xiB1 for a finite number of elements x1, . . . , xn ∈ M , then x ∈ B1.

Note that B is mixing in M . By Corollary 5.4, x ∈ B. Let bi = EB(xi) for
1 ≤ i ≤ n. Applying EB to both sides of the inclusion B1x ⊂

∑n
i=1 xiB1,

we have B1x ⊂
∑n

i=1 biB1. Since B1 is weakly mixing in B, x ∈ B1 by
Corollary 5.2.

(5) Suppose B1 is mixing in B and un is a sequence of unitary operators
in B1 with limn→∞ un = 0 in the weak operator topology. For x, y ∈M , we
have

lim
n→∞

‖EB(xuny)− EB(x)unEB(y)‖2 = 0

since B is mixing in M . Applying EB1 to EB(xuny) − EB(x)unEB(y), we
have

(6.1) lim
n→∞

‖EB1(xuny)− EB1(EB(x)unEB(y))‖2 = 0.

Since B1 is mixing in B,

(6.2) lim
n→∞

‖EB1(EB(x)unEB(y))− EB1(x)unEB1(u)‖2 = 0.

Combining (6.1) and (6.2), we have

lim
n→∞

‖EB1(xuny)− EB1(x)unEB1(u)‖2 = 0,

which implies that B1 is mixing in M . �

Remark 6.2. Suppose Bi is a diffuse von Neumann subalgebra of Mi for
i = 1, 2. If B1 6= M1 or B2 6= M2, then B1 ⊗̄B2 is not a mixing von
Neumann subalgebra of M1 ⊗̄M2 by Proposition 6.1. On the other hand, it
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is easy to check that B1 ⊗̄B2 is weakly mixing in M1 ⊗̄M2 if B1 and B2 are
weakly mixing in M1 and M2, respectively. This gives examples of weakly
mixing but not mixing subalgebras.

Note that in the proof of statement (4) of Proposition 6.1, we use an
equivalent condition of weak mixing (Corollary 5.2) instead of the definition.
The essential difficulty is that in the definition of weak mixing, we do not
assume that limn→∞ un = 0 in the weak operator topology. However, we
have the following result.

Proposition 6.3. Let M be a type II1 factor with the faithful normal trace
τ , and let B be a proper subfactor of M . If {un} is a sequence of unitary
operators in B such that for all elements x, y in M with EB(x) = EB(y) = 0,
one has

lim
n→∞

‖EB(xuny)‖2 = 0,

then lim
n→∞

un = 0 in the weak operator topology.

Proof. Note that B is weakly mixing in M and hence singular in M . In
particular B′ ∩ M = C1. Let ω be a non principal ultrafilter of N and
suppose limn→ω un = b in the weak operator topology. For x, y in M with
EB(x) = EB(y) = 0,

EB(xby) = lim
n→ω

EB(xuny) = 0.

Let b = u|b| be the polar decomposition of b. Note that

EB(xu∗) = EB(x)u∗ = 0.

Hence,

EB(x|b|y) = EB(xu∗u|b|y) = EB(xu∗by) = 0.

Let x = y∗. Then EB(y∗|b|y) = 0 and hence y∗|b|y = 0. This implies that
|b|y = 0 for all y ∈ M with EB(y) = 0. For b′ ∈ B, EB(b′y) = b′EB(y) = 0.
Hence, |b|b′y = 0. This implies that |b|R(b′y) = 0, where R(b′y) is the range
projection of b′y. Let p = ∨b′∈BR(b′y). Then |b|p = 0. On the other hand,
0 6= p ∈ B′ ∩M , so p = 1. We then have |b| = 0, and b = 0. Therefore,
limn→ω un = 0 in the weak operator topology. Since ω is an arbitrary non
principal ultrafilter of N, limn→∞ un = 0 in the weak operator topology. �

6.2. Further examples of mixing subalgebras.

Lemma 6.4. Let B be a von Neumann subalgebra of M . Then the following
conditions are equivalent:

(1) B is atomic type I.
(2) For every bounded sequence {xn} in M with limn→∞ xn = 0 in the

weak operator topology, limn→∞ ‖EB(xn)‖2 = 0.
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Proof. (1) ⇒ (2) Since B is a finite atomic type I von Neumann algebra,
B = ⊕Nk=1Mnk(C), where 1 ≤ N ≤ ∞. So there exists a sequence of finite
rank central projections pn ∈ B such that pn → 1 in the strong operator
topology. Therefore, τ(pn) → 1. Let {xn} be a bounded sequence in M
with xn → 0 in the weak operator topology, and let ε > 0. We may assume
that ‖xn‖ ≤ 1. Choose pk such that τ(1 − pk) < ε2/4. Note that the map
x ∈ M → pkEB(x) is a finite rank operator. There is an m > 0 such that
for all n ≥ m, ‖pkEB(xn)‖2 < ε/2. Then

‖EB(xn)‖2 ≤ ‖pkEB(xn)‖2 + ‖(1− pk)EB(xn)‖2 ≤ ε/2 + ε/2 = ε.

This proves that ‖EB(xn)‖2 → 0.
(2) ⇒ (1) If M is not atomic type I, then there is a nonzero central

projection p ∈ M such that pM is diffuse. Thus, there is a Haar unitary
operator v ∈ pM . Note that vn → 0 in the weak operator topology. But
‖EB(vn)‖2 = ‖vn‖2 = τ(p)1/2 does not converge to 0. This contradicts
(2). �

Proposition 6.5. Let M = M1 ∗AM2 be the amalgamated free product of
diffuse finite von Neumann algebras (M1, τ1) and (M2, τ2) over an atomic fi-
nite von Neumann algebra A. Then M1 is a mixing von Neumann subalgebra
of M .

Proof. The following spaces are mutually orthogonal with respect to the
unique trace τ on M : M2	A, (M1	A)⊗ (M2	A), (M2	A)⊗ (M1	A),
(M1	A)⊗ (M2	A)⊗ (M1	A), · · · . Furthermore, the trace-norm closure
of the linear span of the above spaces is L2(M, τ) 	 L2(M1, τ). Suppose
{un} is a sequence of unitary operators in M1 satisfying lim

n→∞
un = 0 in the

weak operator topology. To prove M1 is a mixing von Neumann subalgebra
of M , we need only to show for x in each of the above spaces, we have

lim
n→∞

‖EM1(xunx
∗)‖2 = 0.

We will give the proof for x in one of the following spaces:

(M1 	A)⊗ (M2 	A) and (M2 	A)⊗ (M1 	A).

The other cases can be proved similarly.
Suppose x = x1y1, where x1 ∈M1 	A and y1 ∈M2 	A. Then

xunx
∗ = x1y1(un − EA(un))y∗1x1 + x1y1EA(un)y∗1x

∗
1.

Note that EM1(x1y1(un − EA(un))y∗1x1) = 0 and limn→∞ ‖EA(un)‖2 = 0 by
Lemma 6.4. So

lim
n→∞

‖EM1(xunx
∗)‖2 = 0.

Suppose x = y1x1, where x1 ∈M1 	A and y1 ∈M2 	A. Then

xunx
∗ = y1x1unx

∗
1y1 = y1(x1unx

∗
1 − EA(x1unx

∗
1))y

∗
1 − y1EA(x1unx

∗
1)y
∗
1.
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Note that

EM1(y1(x1unx
∗
1 − EA(x1unx

∗
1))y

∗
1) = 0 and lim

n→∞
‖EA(x1unx

∗
1)‖2 = 0

by Lemma 6.4. So
lim
n→∞

‖EM1(xunx
∗)‖2 = 0. �

Note, in particular, that Proposition 6.5 implies that if A is a diffuse
mixing masa in a finite von Neumann algebra M1, and M2 is also diffuse,
then A is mixing in the free product M1 ∗M2.

Now let B be a diffuse finite von Neumann algebra with a faithful normal
trace τ , and let G be a countable discrete group. Let ∗g∈GBg be the free
product von Neumann algebra, where Bg is a copy of B for each g. The
shift transformation σ(g)((xh)) = (xg−1h) defines an action of G on ∗g∈GBg.
Let M = ∗g∈GBg o G. Then M is a type II1 factor and we can identify B
with Be.

Proposition 6.6. The above algebra B is a mixing von Neumann subalgebra
of M .

Proof. Suppose vg is the classical unitary operator corresponding to the
action g in M . Then for every (xh) in ∗g∈GBg,

vg(xh)v−1g = (σg(xh)) = (xg−1h).

Suppose bn ∈ B = Be, bn → 0 in the weak operator topology, g 6= e, and
xh ∈ Bh. We may assume τ(bn) = 0 for each n. Note that

xhvgvnv
∗
gx
∗
h = xhσg(bn)x∗h.

If h 6= e, it is clear that xhσg(bn)x∗h is free with B = Be and hence orthogonal
to B. If h = e, direct computations show that xeσg(bn)x∗e is orthogonal to
B = Be. So we have

EB(xhvgbnv
∗
gx
∗
h) = EB(xhσg(bn)x∗h) = τ(xhσg(bn)x∗h) = τ(σg(bn)x∗hxh)

= τ(bnσg−1(x∗hxh)),

and this last expression above converges to zero. Note that the linear span
of the above elements xhvg is dense in M 	B in the weak operator topology.
This proves that B is mixing in M . �
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