New York Journal of Mathematics

New York J. Math. 19 (2013) 439-442.

On principal left ideals of $\boldsymbol{\beta} \boldsymbol{G}$

Yuliya Zelenyuk

Abstract

Let κ be an infinite cardinal. For every ordinal $\alpha<\kappa$, let G_{α} be a nontrivial group written additively, let $G=\bigoplus_{\alpha<\kappa} G_{\alpha}$, and let $H_{\alpha}=\{x \in G: x(\gamma)=0$ for all $\gamma<\alpha\}$. Let βG be the StoneČech compactification of G as a discrete semigroup and define a closed subsemigroup $T \subseteq \beta G$ by $T=\bigcap_{\alpha<\kappa} \mathrm{cl}_{\beta G}\left(H_{\alpha} \backslash\{0\}\right)$. We show that, for every $p, q \in T$, if $(\beta G+p) \cap(\beta G+q) \neq \emptyset$, then either $p \in \beta G+q$ or $q \in \beta G+p$.

Let S be a discrete semigroup with Stone-Čech compactification βS. The operation on S extends to one on βS in such a way that for each $a \in S$, the left translation

$$
\beta S \ni x \mapsto a x \in \beta S
$$

is continuous, and for each $q \in \beta S$, the right translation

$$
\beta S \ni x \mapsto x q \in \beta S
$$

is continuous.
We take the points of βS to be the ultrafilters on S, identifying the principal ultrafilters with the points of S. The topology of βS is generated by taking as a base the subsets of the form

$$
\bar{A}=\{p \in \beta S: A \in p\},
$$

where $A \subseteq S$. For $p, q \in \beta S$, the ultrafilter $p q$ has a base consisting of subsets of the form

$$
\bigcup_{x \in A} x B_{x}
$$

where $A \in p$ and $B_{x} \in q$.
The semigroup βS is interesting both for its own sake and for its applications to Ramsey theory and to topological dynamics. An elementary introduction to βS can be found in [1].

In the study of algebraic structure of βS an important role is played by the following fact.

Received July 1, 2013.
2010 Mathematics Subject Classification. Primary 22A15, 54D80; Secondary 22A30, 54D35.

Key words and phrases. Stone-Čech compactification, ultrafilter, principal left ideal.
Supported by NRF grant IFR1202220164, the John Knopfmacher Centre for Applicable Analysis and Number Theory, and the Friedel Sellschop Award.

Theorem 1 ([1, Corollary 6.20]). Let G be a countable group. For every $p, q \in \beta G$, if $((\beta G) p) \cap((\beta G) q) \neq \emptyset$, then either $p \in(\beta G) q$ or $q \in(\beta G) p$.

Theorem 1 tells us that for any countable group G and for any two principal left ideals of βG, either one of them is contained in another or they are disjoint.

In this note we prove the following extension of Theorem 1.
Theorem 2. Let κ be an infinite cardinal. For every ordinal $\alpha<\kappa$, let G_{α} be a nontrivial group written additively, let $G=\bigoplus_{\alpha<\kappa} G_{\alpha}$, and let

$$
H_{\alpha}=\{x \in G: x(\gamma)=0 \text { for all } \gamma<\alpha\} .
$$

Define a closed subsemigroup $T \subseteq \beta G$ by $T=\bigcap_{\alpha<\kappa} \overline{H_{\alpha} \backslash\{0\}}$. For every $p, q \in T$, if $(\beta G+p) \cap(\beta G+q) \neq \emptyset$, then either $p \in \beta G+q$ or $q \in \beta G+p$.

Before proving Theorem 2, let us check that T is indeed a subsemigroup. It suffices to show that for every $p, q \in T$ and $\alpha<\kappa, p+q \in \overline{H_{\alpha} \backslash\{0\}}$, equivalently $H_{\alpha} \backslash\{0\} \in p+q$. Define $A \in p$ and $B_{x} \in q$ for every $x \in A$ by $A=H_{\alpha}$ and $B_{x}=H_{\alpha} \backslash\{-x\}$. Then $x+B_{x} \subseteq H_{\alpha} \backslash\{0\}$, and so $\bigcup_{x \in A}\left(x+B_{x}\right) \subseteq H_{\alpha} \backslash\{0\}$. But $\bigcup_{x \in A}\left(x+B_{x}\right) \in p+q$. Hence, $H_{\alpha} \backslash\{0\} \in p+q$.

Proof of Theorem 2. Assume on the contrary that $p \notin \beta G+q$ and $q \notin$ $\beta G+p$ for some $p, q \in T$. We shall show that

$$
(\beta G+p) \cap(\beta G+q)=\emptyset
$$

which is a contradiction.
Since $p \notin \beta G+q$, there are $P \in p$ and $Q_{x} \in q$ for every $x \in G$ such that

$$
P \cap \bigcup_{x \in G}\left(x+Q_{x}\right)=\emptyset
$$

And since $q \notin \beta G+p$, there are $Q \in q$ and $P_{x} \in p$ for every $x \in G$ such that

$$
Q \cap \bigcup_{x \in G}\left(x+P_{x}\right)=\emptyset
$$

For every $x \in G \backslash\{0\}$, let

$$
\phi(x)=\max \operatorname{supp}(x) \text { and } \theta(x)=\min \operatorname{supp}(x) .
$$

As usual, $\operatorname{supp}(x)=\{\alpha<\kappa: x(\alpha) \neq 0\}$. Also let

$$
\phi(0)=-1 \text { and } \theta(0)=\kappa
$$

Define partial orders \leq_{L} and \leq_{R} on G by
$x \leq_{L} y$ if and only if $x(\alpha)=y(\alpha)$ for each $\alpha \leq \phi(x)$,
$x \leq_{R} y$ if and only if $x(\alpha)=y(\alpha)$ for each $\alpha \geq \theta(x)$.

Now for every $x \in G$, define $A_{x} \in p$ and $B_{x} \in q$ by

$$
\begin{aligned}
& A_{x}=\left(\bigcap_{y \leq R} P_{y}\right) \cap P \cap H_{\phi(x)+1}, \\
& B_{x}=\left(\bigcap_{y \leq R} Q_{y}\right) \cap Q \cap H_{\phi(x)+1} .
\end{aligned}
$$

(Notice that $\left\{y \in G: y \leq_{R} x\right\}$ is finite.) It then follows that:
(1) $\left(\bigcup_{x \in G}\left(x+A_{x}\right)\right) \cap B_{0}=\emptyset$ and $\left(\bigcup_{x \in G}\left(x+B_{x}\right)\right) \cap A_{0}=\emptyset$.
(2) For every $x \in G$ and for every $y \leq_{R} x$, one has $A_{x} \subseteq A_{y}$ and $B_{x} \subseteq B_{y}$, in particular, $A_{x} \subseteq A_{0}$ and $B_{x} \subseteq B_{0}$.
(3) For every $x \in G$, one has $A_{x}, B_{x} \subseteq H_{\phi(x)+1}$.

We claim that

$$
\left(\bigcup_{x \in G}\left(x+A_{x}\right)\right) \cap\left(\bigcup_{x \in G}\left(x+B_{x}\right)\right)=\emptyset .
$$

To see this, let $x, y \in G$. We have to show that $\left(x+A_{x}\right) \cap\left(y+B_{y}\right)=\emptyset$. Consider two cases.

Case 1: neither $x \leq_{L} y$ nor $y \leq_{L} x$. Then $\left(x+H_{\phi(x)+1}\right) \cap\left(y+H_{\phi(y)+1}\right)=\emptyset$. Consequently by (3), $\left(x+A_{x}\right) \cap\left(y+B_{y}\right)=\emptyset$.

Case 2: either $x \leq_{L} y$ or $y \leq_{L} x$. Let $y \leq_{L} x$. By (1), $\left(x-y+A_{x-y}\right) \cap B_{0}=$ \emptyset, so $\left(x+A_{x-y}\right) \cap\left(y+B_{0}\right)=\emptyset$. But $x-y \leq_{R} x$ and $0 \leq_{R} y$. Consequently by (2), again $\left(x+A_{x}\right) \cap\left(y+B_{y}\right)=\emptyset$.

Since the subsets

$$
U=\bigcup_{x \in G}\left(x+A_{x}\right) \quad \text { and } \quad V=\bigcup_{x \in G}\left(x+B_{x}\right)
$$

of G are disjoint, the subsets \bar{U} and \bar{V} of βG are also disjoint. But $\beta G+p \subseteq$ \bar{U} and $\beta G+q \subseteq \bar{V}$. Hence, $(\beta G+p) \cap(\beta G+q)=\emptyset$.
Remark 1. Theorem 2 was inspired by [2, Proposition 3.4].
Remark 2. The semigroup T from Theorem 2 depends only on two cardinals: κ and $\lambda=\min \left\{\left|\bigoplus_{\gamma \leq \alpha<\kappa} G_{\alpha}\right|: \gamma<\kappa\right\}[3]$.

We conclude this note with the following question.
Question. Is it true that for any (Abelian) group G and for any two principal left ideals of βG, either one of them is contained in another or they are disjoint?

References

[1] Hindman, Neil; Strauss, Dona. Algebra in the Stone-Čech compactification. Theory and applications. de Gruyter Expositions in Mathematics, 27. Walter de Gruyter \&6 Co., Berlin, 1998. xiv+485 pp. ISBN: 3-11-015420-X. MR1642231 (99j:54001), Zbl 0918.22001.
[2] Zelenyuk, Yevhen. Finite groups in Stone-Čech compactifications. Bull. London Math. Soc. 40 (2008), no. 2, 337-346. MR2414792 (2009b:22002), Zbl 1152.22003, doi: $10.1112 / \mathrm{blms} / \mathrm{bdn015}$.
[3] Shuungula, Onesmus; Zelenyuk, Yevhen; Zelenyuk, Yuliya. Ultrafilter semigroups generated by direct sums. Semigroup Forum 82 (2011), no. 2, 252-260. MR2783986 (2012h:22004), Zbl 1223.22002, doi: 10.1007/s00233-010-9262-x.

School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
yuliya.zelenyuk@wits.ac.za
This paper is available via http://nyjm.albany.edu/j/2013/19-22.html.

