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Bad intersections and constructive
aspects of the Bloch–Quillen formula

O. Braunling

Abstract. The Bloch–Quillen formula, especially a version with Mil-
nor K-coefficients, makes it possible to express the product of the Chow
ring through an ordinary cup product in sheaf cohomology and the con-
catenation product of symbols. No special care is needed if cycles do
not intersect properly, no moving lemma nor deformation to the normal
cone. We give an explicit formula for the intersection form along this
line, different from the Serre Tor-formula.
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In this paper I would like to discuss a method to compute intersection
multiplicities via the Bloch–Quillen formula inK-theory which — to the best
of my knowledge — does not seem to be used much for concrete computa-
tions (if at all). In particular I want to confirm that actual computations
are possible, even by hand.

It yields a closed formula for intersection multiplicities quite different from
Serre’s Tor-formula.

The basic idea is very simple. Suppose X/k is a smooth variety1 of pure
dimension n. The classical Bloch–Quillen formula is a canonical isomor-
phism of commutative rings

(1) CH∗(X) ∼=
∐
p≥0H

p(X,Kp).
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Here Kp denotes the Zariski sheafification of the p-th K-theory group. The
product on the right-hand side is the cup product in sheaf cohomology,
combined with the product in K-theory Kp ⊗Z Kq → Kp+q, where Z is the
locally constant sheaf associated to Z. For example, say X is a surface, E a
divisor and we want to know the self-intersection E ·E. This is not a proper
intersection, so by classical means we would need to take some detour to
compute E ·E. Trying to avoid this, it seems all the more tempting to just
use the above and compute the cup product

(2) H1(X,O×X)⊗H1(X,O×X) −→ H2(X,K2)
?−→ Z.

(Note that K1
∼= O×X as sheaves.) On some small open, if e is a local section

pinning down the line bundle belonging to E, this product is just

e⊗ e 7−→ {e, e} ?7−→ ?

and so the whole difficulty in computing the self-intersection number is to
understand the map “?”. Or, if we want to be more precise and evaluate the
self-intersection zero cycle instead of just the self-intersection number, we
would need to understand the map H2 (X,K2) → CH0 (X) on an explicit
level. Perhaps surprisingly, it turns out that this method produces a closed
formula for “?”.
Moreover, the same approach works if X has higher dimension. Then an
immediate drawback of the right-hand side in Equation (1) is that it is not
a priori easy to write down a single explicit element of a higher K-theory
group, at least not if one uses Quillen’s definition in terms of homotopy
groups. However, actually there are many variations of the isomorphism in
Equation (1), where K-theory can be replaced by something simpler, for
example Milnor K-theory. We briefly recall that for a ring A we may define

(3) KM
∗ (A) := T (A×)/

〈
x⊗ (1− x) | all x with x, 1− x ∈ A×

〉
,

where T (A×) :=
∐
p≥0(A×)⊗

p
Z denotes the tensor algebra of A× (read as a Z-

module) and we quotient out the two-sided ideal generated by the Steinberg
relation (cf. [Ker10], [Mil70]). The image of a pure tensor a1 ⊗ · · · ⊗ ap
is denoted by {a1, . . . , ap} (and called a symbol). As a consequence of the
Steinberg relation, one finds several useful relations, notably

(4) {x, y} = −{y, x} {x,−x} = 0 {x, x} = {x,−1}.

Being an ideal, these prolong to tensors in more slots, e.g., {x, y, z} =
−{y, x, z} or {x, x, x} = {x,−1,−1}. Now let KM

∗ denote the Zariski sheafi-
fication of Milnor K-theory (we will work with a slightly more convenient
definition below). The Milnor K-theory counterpart of the product map
Kp ⊗Z Kq −→ Kp+q is strikingly simple,

KM
p ⊗Z KM

q −→ KM
p+q(5)

{a1, . . . , ap} ⊗ {b1, . . . , bq} 7−→ {a1, . . . , ap, b1, . . . , bq}
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on the level of stalks. With this definition the Milnor analogue of the right-
hand side in Equation (1) already looks much more amenable to actual
computations.
The only remaining problem is that for any reasonable usability we probably
want to work with algebraic cycle representatives in CHp(X) and not with
less wieldy representatives in sheaf cohomology for Hp(X,KM

p ). Hence, we
need to understand the comparison isomorphisms

αp : CHp(X)→ Hp(X,KM
p ) and βp : Hp(X,KM

p )→ CHp(X)

on a level suitable for computations; and possibly also the map “?” of Equa-
tion (2) if we are just interested in plain intersection numbers (in general
the computation of CH0 (X) is a hard problem). Here, it turns out that
only αp is truly difficult. The case p = 1 however is nice and classical,

(6) ClX = CH1 (X)
α1

−→ H1(X,KM
1 ) = H1(X,O×X) = PicX,

it is the usual identification of Weil divisor classes with Cartier divisor
classes/line bundles. For p > 1 the maps αp are far less pleasant. I am
not aware of any general method or even closed formula to make this mor-
phism concrete; one always needs to make a great number of choices, e.g., if
we model the sheaf cohomology using Čech theory we need to pick a good
open cover, good representatives on the respective opens, etc. . . For the con-
verse direction, the maps βp admit a very pleasant description as a closed
formula:

Theorem 1. Let X/k be a smooth2 variety of pure dimension n over a field.
Suppose an element in Hp(X,KM

p ) is explicitly presented as a Čech cocycle
f = (fβ0...βp) on some finite open cover (Ui)i∈I . Then for every disjoint
decomposition

(7) X =
·⋃
α∈IΣα with Σα ⊆ Uα

we have (βpf) =
∐
xp∈Xp hxp with multiplicities

hxp :=
∑

xp−1,...,x0

∂x
p−1

xp · · · ∂x0x1fα(x0)...α(xp) ∈ Z.

The sum runs through all chains of points xi ∈ Xi and α (x) denotes the
unique index such that x ∈ Σα(x).

We will prove this as Proposition 2 in §2 below. The maps

∂xy : KM
q (κ (x)) −→ KM

q−1 (κ (y))

for points x, y ∈ X such that y is of codimension one in {x} are the boundary
maps in Milnor K-theory. We recall their definition in §1. Based on the
above explicit formula, the general version of Equation (2) is given as follows:

2The smoothness assumption can be dropped and the formula still gives a morphism,
see Remark 4 in the main body of the paper. However, it will usually not be an
isomorphism.
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Theorem 2. In the situation of the previous theorem, the intersection form
for Weil divisors Z1, . . . , Zp (with p = n) is given by the explicit formula

(8) hxp :=∑
xp−1,...,x0

∂x
p−1

xp · · · ∂x0x1{f
1
α(x0)α(x1), f

2
α(x1)α(x2), . . . , f

p
α(xp−1)α(xp)

} ∈ Z.

Here f i = (f iα,β)α,β∈I with f iα,β ∈ O
×
X is a Čech representative of the line

bundle determined by Zi.

This will be Proposition 3. The above formula also admits a counter-
part using differential forms and residues instead of symbols and boundaries
(linking to the classical fact that intersection numbers can be computed via
residues), we explain this in §4. We obtain a precise Čech analogue of a
formula of Hübl and Yekutiely in the context of adèles [HY96]. We also
explain that all this generalizes from Milnor K-theory to cycle modules (as
introduced by Rost [Ros96]). We intentionally avoid this quite technical
framework until this point as we have almost no use for the strength or
generality of this theory.

We give an explicit computation of a negative self-intersection on a surface
in §5.

Acknowledgements. I would like to thank Matthew Morrow, as well as
Alberto Cámara for several discussions regarding this problem. I thank the
Research Group of Prof. Marc Levine for the stimulating scientific environ-
ment.

The “hands-on style” of Spencer Bloch’s classic [Blo74] has served as an
inspiration. So has the theory of adèles for schemes [Bĕı80], see Remark 7.
I would also like to thank the anonymous referee, whose remarks led to a
more streamlined presentation.

1. Recollections of the Gersten complex

A variety X is a scheme which is separated and finite type over a field.
Once and for all let us fix a smooth variety X/k of pure dimension over a
field k.
See [GS06, Ch. 8]. Let Xp denote the set of codimension p points. We write
κ (x) for the residue field at a point x ∈ X. We define the Milnor K-theory
sheaf by

(9) KM
p (U) := ker

(∐
x∈U0K

M
p (κ(x)) −→

∐
x∈U1K

M
p (κ(x))

)
for U any open in X and the Milnor K-groups of fields inside the parentheses
are defined as in the introduction, cf. Equation (3). The (proven) Gersten
conjecture, in the version for Milnor K-groups, is the following:
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Proposition 1 (Gersten Conjecture). Let k be a field. Suppose X = SpecA,
where A is a local ring on a smooth k-scheme. Then the sequence of abelian
groups

(10) 0→ KM
p (X)→

∐
x∈X0K

M
p (κ(x))→ · · · →

∐
x∈XqK

M
p−q(κ(x))→ · · ·

is exact.

This was originally proven by Gabber. For a proof see [Ros96, Thm. 6.1].

Remark 1. Instead of the definition in Equation (9) one can also sheafify
the plain definition of Milnor K-groups as in Equation (3). If k is an in-
finite field, both definitions agree and the above proposition remains true.
However, this is a nontrivial theorem. See [EVMS02], [Ker09]. For the case
of k a finite field there is a remedy nonetheless, see [Ker10]

The proposition is known to fail for singular X. See [Mor12, especially
Conj. 1] for a possible workaround in the context of algebraic K-theory.
The differential in the complex is the sum of all Milnor K-boundary maps,
i.e.,

∑
x∈Xp,y∈{x}1 ∂

x
y . Applied to any element, all but finitely many sum-

mands will be zero. For the convenience of the reader we recall the definition
and basic properties:

Assume for simplicity that the codimension one point y ∈ {x} is a normal
point, i.e., O{x},y is normal.

Let v be the valuation coming from interpreting y as a divisor on {x}. Then:

• For q = 1 the map ∂xy : κ (x)× → Z is just the valuation v.

• For q = 2 the map ∂xy : KM
2 (κ (x)) → κ (y)× is the tame symbol:

{f, g} 7→ (−1)v(f)v(g) fv(g)/gv(f).
• In general one has the following formula:

∂xy {π, u2, . . . , uq} :={u2, . . . , uq}
∂xy {u1, . . . , uq} :=0(11)

for u1, . . . , uq ∈ O×{x},y and v (π) = 1 a uniformizer. Via the relations

of Equations (4) any pure symbol can be rewritten as a Z-linear
combination of symbols as they occur on the left-hand side.
• There is a short exact sequence of abelian groups

0→ KM
q (O{x},y) −→ KM

q (κ (x))
∂xy−→ KM

q−1(κ (y)) −→ 0.

If y is not a normal point on {x}, all of the above facts need to replaced
by something slightly more complicated:
The stalk O{x},y is a 1-dimensional local domain. The normalization

SpecO′{x},y → SpecO{x},y
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is a finite morphism. Hence, the unique closed point y in SpecO{x},y has

finite preimage {y′1, . . . , y′r} ⊆ SpecO′
{x},y

. By normality the localizations

(O′
{x},y

)y′i are discrete valuation rings. Define

(12) ∂xy :=
∑r

i=1 cor
κ(y′i)

κ(y) ◦∂
x
y′i

: KM
q (κ (x))→ KM

q−1 (κ (y)) ,

where ∂xy′i
refers to the Milnor K-boundary map as described before (the

points y′i are normal!). The map cor
κ(y′i)

κ(y) is the corestriction/norm of Milnor

K-theory (on KM
0 it is multiplication with the degree of the field extension,

on KM
1 it is the usual norm). See [GS06, Constr. 8.1.1] or [Ros96, beginning

of §2, especially Equation 2.1.0] for details regarding this mechanism.
We may now define (obviously flasque!) sheaves

(13)
∐
x∈Uq

KM
p−q(κ(x)) :=

(
U 7−→

∐
x∈Uq

KM
p−q(κ(x))

)
. (for U ⊆ X open)

By a slight abuse of language we may now interpret each entry in sequence
(10) as such a sheaf and replace the initial entry by its sheafification KM

p . As
the exactness of a sequence of sheaves can be checked on the level of stalks,
Proposition 1 can be rephrased as saying that the sheaf KM

p has a flasque
resolution by the sheaves of Equation (13) (the Gersten resolution):

(14) 0 −→ KM
p −→

∐
x∈U0

KM
p (κ(x)) −→

∐
x∈U1

KM
p−1(κ(x)) −→ · · · .

This also implies the Bloch–Quillen formula

Hp(X,KM
p ) = coker

(∐
x∈Xp−1K

M
1 (κ(x))→

∐
x∈XpK

M
0 (κ(x))

)
(15)

= CHp (X) .

See [Blo74], [Qui73] for the original version using ordinary K-theory (the
pattern of proof is the same). It remains to render this abstract map explicit.

2. Čech model for Chow groups

Firstly, recall that for any open cover U = (Uα)α∈I (I the index set)
and Zariski sheaf F there are Čech cohomology groups, which we denote by
Ȟ i(U,F), defined as the cohomology of the Čech complex

Či (U,F) :=
∏

α0...αr∈Ii+1

F (Uα0...αr) , δ : Či (U,F)→ Či+1 (U,F) ,

where we denote by Uα an open in U, and by Uα0...αr :=
⋂
i=0,...,r Uαi the

respective intersections. For any refinement U′ of U, there is a canonical
induced morphism Ȟ i(U,F) → Ȟ i(U′,F) (and ’unique’ on Č• only up to
homotopies). Finally, Ȟ i(X,F) is defined as colimU Ȟ

i(U,F) over the dia-
gram in which U runs through all at most countably indexed open covers
and arrows are the refinements. This is a filtering colimit since any two
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covers admit a common refinement. We have Ȟ i(X,F) ∼= H i(X,F) for all
sheaves we work with (as they all admit a flasque resolution), so we may
express sheaf cohomology this way.

2.1. Algebraic partitions of unity. In the world of real manifolds one
can often patch local sections of suitable sheaves by gluing them along a par-
tition of unity. However, in the algebraic world there is no way to “smoothly
fade contributions in and out”. The best possible approximation in the alge-
braic world are functions which only attain the values 1 and 0; characteristic
functions of subsets. All sheaves which allow some sort of a multiplication
with such functions then admit a similar patching mechanism. More pre-
cisely:

Lemma 1 (Algebraic “Partition of Unity”). Suppose U = (Uα)α∈I is an
open cover and F is a flasque sheaf such that:

(1) For every restriction resUV : F(U)→ F(V ) for any two opens of the
form Uγ0...γsγs+1...γr =: V ⊆ U := Uγ0...γs we are given a morphism

EUV : F(V )→ F(U).

(2) For every open V := Uγ0...γs we have∑
α∈IE

V
Vα ◦ resVVα = idF(V ) , where Vα := V ∩ Uα.

(3) For every open V := Uγ0...γs and all indices β ∈ I we have∐
α∈IF(Vα)→ F(Vβ), where Vα := V ∩ Uα.∑

α∈I resVVβ ◦E
V
Vα =

∑
α∈IE

Vβ
Vαβ
◦ resVαVαβ .

Define a homomorphism

H : Či (U,F)→ Či−1 (U,F)

(Hf)β0...βi−1
:=
∑

α∈IE
Uβ0...βi−1

Uαβ0...βi−1
fαβ0...βi−1

.

Then H is a contracting homotopy for the Čech complex Č• (U,F), i.e.,
Hδ + δH = idČi(U,F).

The statements about the sums
∑

α∈I above are meant to imply that only
finitely many summands are nonzero (otherwise they would not make sense
at all).

Proof. Easy computation. Suppose we are given a cocycle (fβ0...βi−1
) ∈

Či−1 (U,F). For any α ∈ I we compute

(δf)αβ0...βi−1

= res
Uβ0...βi−1

Uαβ0...βi−1
fβ0...βi−1

−
i−1∑
k=0

(−1)k res
U
αβ0...β̂k...βi−1

Uαβ0...βi−1
f
αβ0...β̂k...βi−1
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and thus

(Hδf)β0...βi−1
(16)

= fβ0...βi−1
−

i−1∑
k=0

(−1)k
∑
α∈I

E
Uβ0...βi−1

Uαβ0...βi−1
res

U
αβ0...β̂k...βi−1

Uαβ0...βi−1
f
αβ0...β̂k...βi−1

,

where we have used property (2). Starting from (Hf)β0...βi−2
, we compute

(δHf)β0...βi−1

=
i−1∑
k=0

(−1)k res
U
β0...β̂k...βi−1

Uβ0...βi−1
(Hf)

β0...β̂k...βi−1

=
i−1∑
k=0

(−1)k
∑
α∈I

res
U
β0...β̂k...βi−1

Uβ0...βi−1
E
U
β0...β̂k...βi−1

U
αβ0...β̂k...βi−1

f
αβ0...β̂k...βi−1

.

Defining V := U
β0...β̂k...βi−1

the inner sum over α can be rewritten as∑
α∈I resVVβk

EVVα ,

so by using property (3) we obtain

=
i−1∑
k=0

(−1)k
∑
α∈I

E
Uβ0...βi−1

Uαβ0...βi−1
res

U
αβ0...β̂k...βi−1

Uαβ0...βi−1
f
αβ0...β̂k...βi−1

,

so by revisiting Equation (16) our claim follows. �

Remark 2. Suppose Y is a smooth manifold, (Ui)i∈I an open cover. Let
(ρi) be a classical partition of unity subordinate to the open cover. Consider
the sheaf F := C∞ (R) of smooth real-valued functions. Then

E
Uβ0...βi
Uαβ0...βi

(f) := ρα · f

(and prolonged by zero) satisfies the axioms of the lemma. For example,∑
α∈IE

V
Vα ◦ resVVα f =

∑
α∈Iρα · (f |Vα) =

(∑
α∈Iρα

)
f = f .

Next, we need to make sure that morphisms EUV as in the previous lemma
exist for the flasque sheaves which occur in the Gersten resolution of our
KM-sheaves.

Lemma 2. Assume the open cover U is finite, i.e., I is a finite set. Suppose
F is a sheaf of the shape

F (U) :=
∐
y∈U

Ay,

where each Ay is some abelian group depending only on y. Fix a disjoint
decomposition (always exists!)

(17) X =
·⋃
α∈IΣα with Σα ⊆ Uα.
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Define for any open U := Uγ0...γs and further intersection V := U ∩ Uβ
(= Uγ0...γsβ) the homomorphism

EUV : F(V )→ F(U)∏
y∈VAy 7→

∏
y∈UAy by

{
idAy if y ∈ Σβ

0 otherwise.

and transitively define EUV := EUU∩Uβ ◦E
U∩Uβ
V if V := U ∩Uβ∩Uβ2 etc. Then

the assumptions of Lemma 1 are satisfied.

Remark 3. Of course such a drastic “switch-on / switch-off” definition as
in this lemma would hopelessly fail for a sheaf of smooth functions on a
manifold as in Remark 2.

Proof. A disjoint decomposition as in Equation (17) exists since U is a
cover, so X =

⋃
Uα. For example (well-)order the set I and then let x ∈ Σα

if and only if α is the (unique) smallest element of I such that x ∈ Uα. It
remains to prove the properties (2) and (3). For (2) observe that for every
point y the map EVVα ◦resVVα on Ay is idAy if y ∈ Σα and zero otherwise. Since
U is a finite cover and the Σα form a disjoint decomposition, the equality∑

α∈I
EVVα ◦ resVVα = idF(V )

follows, proving property (2). Next, we need to verify the equation∑
α∈I

resVVβ ◦E
V
Vα =

∑
α∈I

E
Vβ
Vαβ
◦ resVαVαβ .

On the one hand, for every point y the map E
Vβ
Vαβ
◦ resVαVαβ on Ay is idAy

if y ∈ Vαβ ∩ Σα. As U is a finite cover and the Σα are pairwise disjoint,

summing over α ∈ I means that
∑

αE
Vβ
Vαβ
◦ resVαVαβ on Ay is idAy if y lies in

the set
·⋃

α∈I
(Vαβ ∩ Σα) = Vβ ∩

·⋃
α∈I

(Vα ∩ Σα) = Vβ ∩
·⋃

α∈I
Σα = Vβ ∩X = Vβ

since Σα ⊆ Vα, so the right-hand side on Ay is idAy if y ∈ Vβ and zero

otherwise. On the other hand, for every point y the map resVVβ ◦E
V
Vα

on Ay
is idAy if y ∈ Σα ∩ Vβ. Again, for varying α these sets are pairwise disjoint

and the union is all of Vβ, so on the left-hand side
∑

α∈I resVVβ ◦E
V
Vα

on Ay
is idAy if y ∈ Vβ and zero otherwise. This proves (3). �

2.2. Explicit formula for Hn
(
X,KM

n

)
→ CHn (X). We may apply

the general formalism of the previous section to the flasque sheaves which
occur in the Gersten resolution of the KM -sheaves.

Proposition 2. Suppose U = (Uα)α∈I is a finite open cover of X and

f := (fβ0...βn) ∈ Hn
(
U,KM

n

)
→ Hn

(
X,KM

n

)
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a representative of a sheaf cohomology class in Hn
(
X,KM

n

)
. Fix a disjoint

decomposition X =
·⋃
α∈IΣα as in Lemma 2. Then the image of f under the

comparison map βn : Hn(X,KM
n )→ CHn(X) is given by∐

xn∈Xn

hxn ; hxn ∈ Z

with

hxn :=
∑

xn−1∈Xn−1

· · ·
∑
x0∈X0

(∂x
n−1

xn ◦ · · · ◦ ∂x0x1 )fα(x0)α(x1)...α(xn−1)α(xn),

where:

• The sums run over all chains such that xp+1 ∈ {xp}.
• α (xp) denotes the unique index in I such that xp ∈ Σα(xp) holds.

In particular the sum has only finitely many nonzero terms. Define

Ep,q0 (U) := Čq

(
U,
∐
x∈Up

KM
n−p (κ(x))

)
.

The objects (Ep,q0 (U)) can be arranged as a bicomplex. The two differentials

are taken from the Gersten and Čech complex respectively. Along with
it we obtain the bicomplex spectral sequence of cohomological type with
differentials (p, q) 7→ (p+ r, q − r + 1) on the r-th page, denote its pages by
↑E•,•r . The ↑E1 -page has entries

↑Ep,q1 (U) := Ȟq

(
U,
∐
x∈Up

KM
n−p (κ(x))

)
.

Any refinements of the open cover U induce a morphism between the re-
spective bicomplexes. Then the colimit of the ↑E1 -page over all refinements
yields

colimU
↑Ep,q1 (U) =

{ ∐
x∈Xp KM

n−p (κ(x)) for q = 0
0 for q 6= 0

since the colimit of the Čech complex computes sheaf cohomology and the
above sheaf is flasque. We conclude,

(18) colimU
↑En,02 (U) = coker

 ∐
x∈Xn−1

κ (x)× →
∐
x∈Xn

Z

 = CHn (X) .

We also see that in the colimit the entire second page is supported in a
single row, so it is clear that this page is already the same as the ↑E∞ -page.
Moreover, for the second spectral sequence associated to the bicomplex, call
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it →E•,•r , we get

→E0,q
1 (U) = Čq

U, ker(
∐
x∈U0

KM
n (κ(x))→

∐
x∈U1

KM
n−1 (κ(x)))

(19)

= Čq
(
U,KM

n

)
.

Again, after taking the colimit of all refinements, we arrive at Hq
(
X,KM

n

)
on →E0,q

2 = →E0,q
∞ . All entries of the second page outside this column

vanish. As a result, we may explicitly compute the comparison maps

Hn
(
X,KM

n

)
−→ CHn (X) .

Proof of Proposition 2. Suppose we start with an element inHn(X,KM
n ).

This element comes with an open cover U on which it can be defined, say

(fβ0...βn) ∈ Hn
(
U,KM

n

)
→ Hn

(
X,KM

n

)
.

After fixing this cover, it remains to take (arbitrary) representatives of the

element in Ȟn (U,KM
n ) = →E0,q

2 (U) on the E0-page, i.e., in →E0,n
0 (U) .

Ȟq (U,KM
n ) � →E0,q

1 ↪→ →E0,q
0 (as it stems from Equation (19)), follow a

zig-zag in the bicomplex

(20)

E0,n
0
↑

E0,n−1
0 −→ E1,n−1

0
↑
. . . −→ En−1,0

0 −→ En,00

and conclude by sending the resulting representative in ↑En,00 (U) along

↑En,02 (U) → CHn (X) .

The arrow comes from taking the colimit over all refinements of the cover,
as in Equation (18). Write

f
(p,q)
β0...βq |x ∈ K

M
n−p (κ(x)) with β0, . . . , βq ∈ I, x ∈ Xp

for the components of an element in Ep,q0 (U). Then for each step

Ep,q

↑↓
Ep,q−1 −→ Ep+1,q−1

we may use the contracting homotopy of Lemmata 1 and 2 to find a preimage
of an element in Ep,q in Ep,q−1: So, pick a disjoint decomposition Σ• for the
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fixed open cover U. This yields

f
(p,q−1)
β0...βq−1|x =

∑
α∈I

E
Uβ0...βq−1

Uαβ0...βq−1
f

(p,q)
αβ0...βq−1|x

= f
(p,q)
α(x)β0...βq−1|x

if we agree to write α (x) for the (unique!) α ∈ I such that x ∈ Σα. For the
rightward arrow Ep,q−1 → Ep+1,q−1 we just need to follow the map induced
by the differential of the Gersten complex. Thus, for y ∈ Xp−1

f
(p+1,q−1)
β0...βq−1|y =

∑
{xp∈Xp|y∈{x}}

∂xy f
(p,q)
α(xp)β0...βq−1|xp ,

where ∂xy denotes the component of the differential in the Gersten complex

going from x ∈ Xp to y ∈ Xp+1. Now, use induction along the whole zig-zag
in Diagram (20) (for this it is advisable to write xp instead of x and xp+1

instead of y). This shows that the resulting

f (n,0) =
(
f

(n,0)
β0|xn

)
∈ En,00 = Č0

(
U,
∐
x∈Xn

Z

)
is given by the Čech 0-cocycle

f
(n,0)
β0|xn =

∑
xn−1∈Xn−1

· · ·
∑
x0∈X0

(∂x
n−1

xn ◦ · · · ◦ ∂x0x1 )fα(x0)α(x1)...α(xn−1)β0 ,

where the sums run over all chains such that xn−1 ∈ {xn−2}, . . . , x1 ∈ {x0}
(i.e., the closures of x0, . . . , xn−1 form a chain of irreducible closed subsets of
X of increasing codimension). This 0-cocycle glues to a global section, so if
we want to read off the xn-component of the global section, we may use for
this any open Uβ0 such that xn ∈ Uβ0 . To make the formula as symmetric
as possible, we may in particular choose β0 := α (xn), giving the claim. �

Remark 4 (Dropping smoothness). Let us explore what happens if we drop
the assumption that X be smooth. Even in the nonsmooth case we have a
morphism

KM
n −→

 ∐
x∈U0

KM
n (κ(x))→

∐
x∈U1

KM
n−1 (κ(x))→ · · ·


0,n

as in Equation (14); but it need not be a quasi-isomorphism anymore. The
sheaves in the complex on the right-hand side are still flasque. Thus, we
still get a morphism

βn : Hn
(
X,KM

n

)
−→ CHp+q (X) ,

but it will usually neither be injective nor surjective. This should not come
as a surprise, for n = 1 this is just the classical map from Cartier to Weil
divisors. See [Gil05, §2.6] for a discussion to what extent the cohomology
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groupsHn
(
X,KM

n

)
provide a good replacement for Chow groups for singular

varieties. Note that the product on the right-hand side of Equation (1)
(resp. Equation (5)) still makes sense for singular varieties

Hp
(
X,KM

p

)
⊗Z H

q
(
X,KM

q

)
−→ Hp+q

(
X,KM

p+q

) βn−→ CHp+q (X) ,

while there is no natural product structure on the Chow groups.

3. The cup product

We quickly recall the construction of the cup product in Čech cohomology.
For general sheaves F ,G with values in abelian groups, the tensor sheaf
F ⊗Z G (where Z denotes the locally constant sheaf with value Z) has stalks

(F ⊗Z G)x = Fx ⊗Zx
Gx = Fx ⊗Z Gx.

For Čech cochains on an open cover U = (Uα)α∈I one defines the Z-bilinear
pairing

^: Čp(U,F)× Čq(U,G)→ Čp+q(U,F ⊗Z G)(21)

(f ^ g)α0...αp+q
:= F res

Uα0...αp
Uα0...αp+q

fα0...αp ⊗ G res
Uαp...αp+q
Uα0...αp+q

gαp...αp+q ,

where F res and G res denote the restrictions to smaller opens of the sheaves
F , G respectively. The identity

δ(f ^ g) = δf ^ g + (−1)p f ^ δg

is easy to show and proves that Equation (21) induces a pairing of Čech
cohomology groups, the cup product. It becomes associative on the level of
cohomology groups.

Remark 5. If one defines the cup product in a derived setting as the mor-
phism ’∪’ in

^: RΓ(X,F)⊗L
Z RΓ(X,G)

∪→ RΓ(X,F ⊗L
Z G),

this cup product relates (after taking the colimit over all refinements of
covers) to the one in Equation (21) by composing with RΓ(pr), where pr :
F ⊗L

Z G → F ⊗Z G is the natural morphism.

Next, the product morphism in Milnor K-theory induces a morphism of
KM-sheaves

· : KM
p ⊗Z KM

q → KM
p+q;

it is defined as the usual multiplication in the Milnor K-groups KM
p (κ(x))

which appear in the term
∐
x∈U0KM

p (κ(x)) in Equation (9). One checks
easily that this is well-defined. Whenever the Milnor K-theory sheaf agrees
with the plain sheafification of Milnor K-theory (as explained in Remark 1),
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this agrees with the multiplication as discussed in Equation (5) in the intro-
duction. This induces a morphism of Čech cochain groups and composing
this with the cup product, we get morphisms

Čp(U,KM
p )⊗Z Čq(U,KM

q )
^−→ Čp+q(U,KM

p ⊗Z KM
q )

·−→ Čp+q(U,KM
p+q).

After taking the colimit over refinements of the cover, this yields cup prod-
uct counterpart of the product on the Chow ring as in

(22) CHp(X)⊗Z CHq(X) //

��

CHp+q(X)

��

Hp(X,KM
p )⊗Z H

q(X,KM
q ) // Hp+q(X,KM

p+q).

For algebraic K-theory the compatibility of products was first established by
Grayson [Gra78]. If X is smooth proper of pure dimension p, an inductive
use of this compatibility yields the intersection form on Weil divisors (=
Chow 1-cocycles)

CH1 (X)⊗ · · · ⊗ CH1 (X) −→ CHp (X)

[Z1]⊗ · · · ⊗ [Zp] 7−→ [Z1] ^ · · ·^ [Zp].

Proposition 3. In the situation of Proposition 2 the intersection form for
Weil divisors Z1, . . . , Zn is given by the explicit formula

〈Z1, . . . , Zn〉 =
∐
xn∈Xnhxn ∈ CHn (X)

hxn :=
∑

xn−1,...,x0

∂x
n−1

xn · · · ∂x0x1{f
1
α(x0)α(x1), f

2
α(x1)α(x2), . . . , f

n
α(xn−1)α(xn)} ∈ Z,

where f i = (f iα,β)α,β∈I with f iα,β ∈ O
×
X is a Čech representative of the line

bundle isoclass determined by Zi under the usual map

(23) DivX → H0
(
X,K×X/O

×
X

)
/H0(K×X)→ H1

(
X,O×X

)
,

where the middle term is the group of Cartier divisor classes.

Proof. Firstly, KM
1
∼= O×X , so the passage α1 : CH1 (X) ∼= H1

(
X,KM

1

)
reduces to the classical comparison of Weil and Cartier divisors as in Equa-
tion (23) (or Equation (6)). Now, if each Zi is given by a Čech 1-cocycle
(f iα,β)α,β∈I on a fixed open cover U = (Uα)α∈I , we may unwind the lower

row in diag. 22 explicitly (using Equations (5) and (21) inductively):(
f1 ^ · · ·^ fp

)
β0···βn = f1

β0β1 · f
2
β1β2 · · · · · f

n
βn−1βn

= {f1
β0β1 , f

2
β1β2 , . . . , f

n
βn−1βn} ∈ K

M
n (Uβ0...βn) .

Now invoke Proposition 2 to translate this into a conventional representative
for an algebraic cycle. �

Remark 6. If one prefers to think in terms of H0
(
X,K×X/O

×
X

)
, let giα ∈

K×X (Uα) be a local equation cutting out the divisor Zi. Then under the map

in Equation (23) we find f iα,β = giβ/g
i
α.
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4. Relation to residue calculus

There is a natural morphism of sheaves of abelian groups,

dlog : KM
p −→ Ωp

X/k

{a1, . . . , αp} 7−→
da1

a1
∧ · · · ∧ dap

ap
.

For p = 0 this is supposed to mean that dlog : Z→ OX , 1Z 7→ 1k. The map
respects the product structures on either side and the Steinberg relation due
to

{a, 1− a} 7→ da

a
∧ d (1− a)

1− a
= −da

a
∧ da

1− a
= 0.

In particular, we get an induced morphism of sheaf cohomology groups

Hp(X,KM
p )

dlog−→ Hp(X,Ωp
X/k).

The left-hand side term is only an abelian group. For the right-hand side
we recall that both the categories of abelian group sheaves as well as quasi-
coherent sheaves have enough injectives; one can choose a simultaneous
resolution in both categories, so it does not matter in which of these two
categories one computes the right-hand side (except that the k-vector space
structure is not visible if one works with sheaves of abelian groups). Assume
p+ q = n. We get a pairing

Hp(X,KM
p )⊗Z H

q(X,KM
q ) //

��

Hn(X,KM
n )

��

∼= // CH0(X)

��

Hp(X,Ωp
X/k)⊗Z H

q(X,Ωq
X/k)

// Hn(X,Ωn
X/k) ∼=

// k,

where the isomorphism in the upper row is our usual comparison map ∼=
CHn (X) = CH0 (X) (since we assume X is smooth of pure dimension n),
the isomorphism of the lower row is the trace map coming from residue
calculus. Moreover, there are commutative squares

KM
p (κ (x))

∂xy
//

��

KM
p−1 (κ (y))

��

Ωp
κ(x)/k resxy

// Ωp−1
κ(y)/k.
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This transforms the formula of Proposition 3 into

dlog hxp(24)

=
∑

xp−1...x0

resx
p−1

xp · · · resx
0

x1(
d log f1

α(x0)α(x1) ∧ · · · ∧ d log fp
α(xp−1)α(xp)

)
=

∑
xp−1...x0

resx
p−1

xp · · · resx
0

x1

(
d log

g1
α(x1)

g1
α(x0)

∧ · · · ∧ d log
gpα(xp)

gp
α(xp−1)

)
if giα denotes a local equation cutting out the divisor Zi as in Remark 6.
This is also a formula for intersection multiplicities, yet it is less precise as
Proposition 3 as it does not give a zero cycle, but just an intersection numer
(= degree of the zero cycle).

Remark 7. This formula is a Čech cohomology analogue of an intersection
multiplicity formula due to Hübl and Yekutieli in the context of higher
adèles, see [HY96, Proposition 2.6]. This in turn generalizes a formula due
to Parshin [Par83, §2.2, eq. 4. & use Corollary].

Concluding this section, we shall use slightly more technology than in the
previous ones, but otherwise continue our discussion seamlessly.
Following Rost [Ros96, §5] we may more generally pick a cycle module M
instead of just Milnor K-theory. Denote by

(25) M (U) := ker
(∐

x∈U0M (κ(x)) −→
∐
x∈U1M (κ(x))

)
the associated Zariski sheaf. By [Ros96, Cor. 6.5] there is a canonical
isomorphism Hp (X,M) → Ap(X;M) (the latter group is the cohomology
of Rost’s cycle complex). Without any change in the argument in §2.2 we
obtain an explicit description for this map as well (with the same formula!).
The only change is that the boundary maps ∂ run along the graded parts
of the cycle module M → M−1 → · · · → M−p where they would run down
KM
p → · · · → KM

0 = Z in the above case. Picking Milnor K-theory as the
cycle module one recovers precisely the discussion of §2.2. For the record:

Proposition 4. Let M be a Rost cycle module, M the associated Zariski
sheaf. Suppose U = (Uα)α∈I is a finite open cover of X and

f := (fβ0...βn) ∈ Hn (U,M)→ Hn (X,M)

a representative of a sheaf cohomology class. Fix any disjoint decomposition

X =
·⋃
α∈IΣα as in Lemma 2. Then the image of f under the comparison

map Hn(X,M)→ An(X;M) is given by∐
xn∈Xnhxn ; hxn ∈M−n (κ (x))

with

hxn :=
∑

xn−1∈Xn−1 · · ·
∑

x0∈X0(∂x
n−1

xn ◦ · · · ◦ ∂x0x1 )fα(x0)α(x1)...α(xn−1)α(xn),
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where ∂xy is the boundary map of the cycle module, xi and α(xi) as in Propo-
sition 2.

Proof. Exact copy of the proof of Proposition 2, except two details: The
cokernel in Equation (18) becomes a cohomology group of the cycle com-
plex, namely Rost’s An(X;M). The kernel in Equation (19) is precisely the
definition of M (see Equation (25)). �

5. Example with negative self-intersection

We wish to give an example of an explicit computation of a negative
self-intersection number using the methods of this text. For the sake of ex-
position we shall use the formula based on Milnor K-theory (Proposition 3),
although for this particular computation the simpler residue formula, Equa-
tion (24), would be sufficient. No moving will be used. To keep the example
sufficiently simple, we consider Hirzebruch surfaces Fn (n ∈ Z). They can
be described either as the toric surface of the fan (see [Dan78] §1-3 for toric
generalities; or [CLS11], [Ful93])

σ0 = Rex + Rey σ1 = Rey + R(−ex + ney)

σ2 = R(−ex + ney)−Rey σ3 = Rex −Rey

Σ
1

Σ
2

Σ
3

σ
0

σ
1

σ
2 σ

3

(depicted left for n = 2) or as the projectivization of the vector bundle
π : E → P1

k given through OP1
k
(n) ⊕ OP1

k
on P1

k. For n = 0 one has

F0 ' P1
k × P1

k. Explicitly, the smooth proper surface Fn is patched from
affine opens

U0 = Spec k[X,Y ] U1 = Spec k[X−1, XnY ]

U2 = Spec k[X−1, X−nY −1] U3 = Spec k[X,Y −1]

(all isomorphic to A2
k) along the intersections

U01 = Spec k[X−1, X, Y ] U12 = Spec k[X−nY −1, XnY,X−1]

U23 = Spec k[X−1, X, Y −1] U03 = Spec k[X,Y, Y −1]

(all isomorphic to A1
k ×Gm,k). All other intersections of two opens, e.g.,

U02 or U13, are 2-tori, Spec k[X,X−1, Y, Y −1] ' G2
m,k. The same holds

for all triple intersections like U012, U013, etc. These opens Ui correspond
to the toric affine opens coming from cones σi (associated to orbits of the
torus action if we view Fn as an equivariant compactification). In particular,
U := (Ui)i=0,1,2,3 is an open cover we may use for Čech cohomology. Define
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V := Fn \U0 as the reduced closed complement of U0. Using the same cover
as for Fn, this locally comes down to

V0 = U0 \ U0 = ∅,

V1 = U1 \ U0 = Spec k[XnY ],

V2 = U2 \DX−1(X−nY −1) = Spec k[X−1, X−nY −1]/(X−1) · (X−nY −1),

V3 = U3 \ U0 = Spec k[X].

In particular V1 ' A1
k, V3 ' A1

k, V2 is reducible and its irreducible compo-

nents are both isomorphic to A1
k. The closures (in the whole surface Fn) V1

and V3 are both isomorphic to P1
k (with V12 ' Gm,k and V23 ' Gm,k the

overlaps of the two copies of A1
k), they intersect in a single closed point in

V2. Moreover, V13 = ∅. For the construction of the contracting homotopy
in Lemma 2 we now may use the disjoint decomposition of Fn (as a set!)

Σ0 := U0, Σ1 := V ∩ U1, Σ2 := (V \ U1) ∩ U2, Σ3 := (V \ (U1 ∪ U2)).

Graphically, the decomposition of the complement V is depicted on the
right in the above figure. The two circles represent V1 and V3 (' P1

k).
Summarized, Fn decomposes as follows:

• (codim. 0) the unique generic point η lies in Σ0;
• (codim. 1) the generic points of all integral curves of U0 are in Σ0.

Σ1
1 contains only the codimension 1 generic point of V1, Σ1

2 contains
only the codimension 1 generic point of V3, Σ3 does not contain any
codimension 1 points;
• (codim. 2) the closed points of U0 all lie in Σ0. The closed points

in Σ1 are the closed points of V1 ' A1
k (the single additional closed

point of its closure V1 lies in Σ2 — it’s the same point as the in-
tersection V1 ∩ V3), the closed points in Σ2 are the closed points of
V3 ' A1

k (the single additional closed point of its closure V3 lies in
Σ3). Σ3 consists only of this closed point.

Now we wish to study the divisor D associated to the cone spanned by
ey, i.e., σ0 ∩ σ1.

Claim. We have self-intersection D ·D = −n.

The divisor D is an effective Cartier divisor in H0(Fn,K×/O×), which we
may represent in our Čech cover through

c0 = Y c1 = XnY c2 = 1 c3 = 1

in Ȟ0(U,K×/O×). The associated line bundle is given by (c̃i,j)i,j in the

group Ȟ1(U,O×) so that

c̃01 = Xn c̃02 = Y −1 c̃03 = Y −1

c̃12 = X−nY −1 c̃13 = X−nY −1 c̃23 = 1.
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Thanks to Proposition 3 the self-intersection number D ·D comes down to
the computation of various boundaries in Milnor K-theory, namely

(26) hx2 =
∑
x1,x0

∂x
1

x2∂
x0

x1{c̃α(x0)α(x1), c̃α(x1)α(x2)}.

As the formula Equation (26) really mostly depends on the values of α(xi)
for various i, it is convenient to do a case-distinction depending on these
values. Since α(x0) = 0 always (there is only one generic point and it lies in
Σ0), we are left with {c̃α(x0)α(x1), c̃α(x1)α(x2)} =

α(x2) / α(x1) 0 1 2 3

0 0 0 ∗ ∗
1 0 0 {Y −1, XnY } {Y −1, XnY }
2 0 {Xn, X−nY −1} 0 0
3 0 {Xn, X−nY −1} 0 0,

where ∗ indicates an element of the shape {a, a−1}.

Remark 8. While these elements are usually nonzero, we have {a, a−1} =
{a,−1}, so they are 2-torsion. Thus, when being mapped to an intersection
number, i.e., to Z, they necessarily vanish, so we may disregard them already
here.

In Equation (26) the value α(x1) = 3 is impossible since Σ3 does not
contain generic points of curves. The value α(x1) = 2 is only possible if
x1 = V3, but the only nontrivial entry is at α(x2) = 1, however by the
nature of our decomposition no closed points on the curve V3 lie in Σ1.
Thus, only for α(x1) = 1 nontrivial symbols occur. Note that α(x1) = 1
implies x1 = V1 and all the closed points of V1 lie in Σ1 and Σ2, so the
case α(x2) = 3 is also impossible. For α(x2) = 2 the closed point must be
V1 ∩ V3, given by x2 = (X−1, X−nY −1) in U2 = Spec k[X−1, X−nY −1] and
x1 |U2= V1 |U2= (X−1). Hence, the whole sum of Equation (26) reduces to
the single expression

D ·D = ∂x
1

x2∂
η
x1
{Xn, X−nY −1} = ∂x

1

x2∂
η
x1

(−n{X−1, X−nY −1})

= −n∂x1x2{X−nY −1} = −n[x2, 1Z] = −n ∈ Z

since x is a closed point of degree 1 on Fn. Here [x2, 1Z] refers to the zero
cycle represented by 1Z at the closed point x2.
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