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Co-Higgs bundles on P1

Steven Rayan

Abstract. Co-Higgs bundles are Higgs bundles in the sense of Simp-
son, but with Higgs fields that take values in the tangent bundle instead
of the cotangent bundle. Given a vector bundle on P1, we find necessary
and sufficient conditions on its Grothendieck splitting for it to admit a
stable Higgs field. We characterize the rank-2, odd-degree moduli space
as a universal elliptic curve with a globally-defined equation. For ranks
r = 2, 3, 4, we explicitly verify the conjectural Betti numbers emerging
from the recent work of Chuang, Diaconescu, Pan, and Mozgovoy on
the ADHM formula. We state the result for r = 5.

Contents

1. Introduction 925

2. Morphisms, stability, and S-equivalence 926

3. Higher genus 928

4. Nitsure’s moduli space 928

5. Hitchin morphism and spectral curves 929

6. Stable Grothendieck numbers 930

7. Odd degree 932

8. Even degree 935

9. Betti numbers and holomorphic chains 936

10. ADHM recursion formula 942

References 943

1. Introduction

Let X be an algebraic variety with cotangent bundle T ∗. A Higgs bundle
on X, in the sense of Simpson [22], is a vector bundle E → X together with
a Higgs field φ ∈ H0(X; (EndE)⊗ T ∗) for which

φ ∧ φ = 0 ∈ H0(X; (EndE)⊗ ∧2T ∗).
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Higgs bundles have been studied intensely, and appear naturally in areas of
mathematics as diverse as string theory and number theory — see [3] for an
overview.

An alternative kind of Higgs bundle arises when we replace T ∗ with T
in the definition of the Higgs field. We call these objects co-Higgs bundles.
They are only beginning to attract interest; however, there are discussions
related to them in [17, 15, 21]. One motivation for studying co-Higgs bundles
comes from generalized geometry, because generalized holomorphic bundles
on ordinary complex manifolds are precisely co-Higgs bundles [11].

The purpose of this note is to characterize co-Higgs bundles over curves.
In this case, φ∧φ = 0 is automatic. From now on X is a curve, by which we
mean a nonsingular, connected, projective curve over C. By vector bundle,
we will always mean a holomorphic vector bundle.

We show that stability restricts our study to the projective line. We
then classify the vector bundles on P1 admitting semistable Higgs fields by
their splitting types, and use this classification to study explicitly the odd-
degree component of the rank-2 moduli space. The main result is a global
description of this smooth moduli space as the variety of solutions of an
algebraic equation. This equation is a universal one for the fibres of the
associated Hitchin map, whose generic fibre in this case is a nonsingular
elliptic curve. An immediate consequence of our description is that the
Betti numbers of the moduli space are those of S2. In the even case, we
characterize a section of the fibration by the splitting type of E.

For r = 3 and r = 4 with odd degree, we use Morse theory to calculate
the Betti numbers, verifying conjectural Betti numbers due to Chuang, Di-
aconescu, and Pan in [4], which was adapted to genus 0 by Mozgovoy in
[18]. We state the result for r = 5 without proof, although the method of
computation is described in §9.

Notation. We denote the canonical line bundle ofX byK. Accordingly, the
anticanonical line bundle — equivalently the holomorphic tangent bundle —
is K∗. As we agree that φ is always a K∗-valued endomorphism, there is
no cause for confusion if we omit the parentheses around EndE in φ ∈
H0(X; (EndE)⊗K∗).

Acknowledgements. I thank Nigel Hitchin for pointing me to this topic
and for his guidance. I acknowledge Steven Bradlow, Jonathan Fisher,
Marco Gualtieri, Peter Gothen, Tamás Hausel, Lisa Jeffrey, and Sergey Moz-
govoy for enlightening discussions. I thank Ruxandra Moraru for pointing
out an error in a remark in the original manuscript, as well as the referee for
suggesting corrections, clarifications, and a number of other improvements
to the manuscript.

2. Morphisms, stability, and S-equivalence

The following notions carry over from Higgs bundles without modification.
A morphism taking (E, φ) to (E′, φ′) is a commutative diagram
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E
ψ−−−−→ E′

φ

y yφ′
E ⊗K∗ ψ⊗1−−−−→ E′ ⊗K∗

in which ψ : E → E′ is a morphism of vector bundles. The pairs (E, φ)
and (E′, φ′) are isomorphic or equivalent when we have such a diagram in
which ψ is an isomorphism of bundles. In particular, (E, φ) and (E, φ′) are
isomorphic if and only if there exists an automorphism ψ of E such that
ψφψ−1 = φ′.

The appropriate stability condition for moduli of co-Higgs bundles on X
is Hitchin’s slope-stability condition, which he defined for Higgs bundles in
[16]. Following his definition, we have:

Definition 2.1. A co-Higgs bundle (E, φ) over X is (semi)stable if

degU

rkU
<

degE

rkE
(2.1)

(respectively, ≤) for each proper nonzero subbundle U ⊂ E that is invariant
under φ (meaning φ(U) ⊆ U ⊗K∗). The rational number

µ(U) := degU/rkU

is called the slope of U .

Clearly, if E is stable as a vector bundle — meaning that all of its sub-
bundles satisfy (2.1) — then for any Higgs field φ ∈ H0(X; End E ⊗K∗),
the pair (E, φ) is also stable.

Remark 2.2. An important property of stable co-Higgs bundles is that they
are simple: if (E, φ) is stable, then every endomorphism of E that commutes
with φ is a multiple of the identity. A proof can be quickly adapted from
the analogous result for stable vector bundles; see for instance [19].

If (E, φ) is semistable but not stable, E has a proper subbundle U for
which (U, φ) is stable. It follows that (E/U, φ) is semistable. This process,
which terminates eventually, gives us a Jordan–Hölder filtration of E:

0 = E0 ⊂ · · · ⊂ Em = E

for some m, where (Ej , φ) is semistable for 1 ≤ i ≤ m − 1, and where
(Ej/Ej−1, φ) is stable and µ(Ej/Ej−1) = µ(E) for 1 ≤ j ≤ m. While this
filtration is not unique, the isomorphism class of the following object is:

gr(E, φ) :=
m⊕
j=1

(Ej/Ej−1, φ).

This object is called the associated graded object of (E, φ). Then, two
semistable pairs (E, φ) and (E′, φ′) are said to be S-equivalent whenever
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gr(E, φ) ∼= gr(E′, φ′). If a pair is strictly stable, then the underlying bun-
dle has the trivial Jordan–Hölder filtration consisting of itself and the zero
bundle, and so the isomorphism class of the graded object is nothing more
than the isomorphism class of the original pair.

For an arbitrary line bundle L in place of K∗, the above notions of iso-
morphism, semistability, and S-equivalence are defined identically.

3. Higher genus

Stable co-Higgs bundles with sufficiently interesting Higgs fields occur
only on the projective line. To see this, suppose that X has genus g > 1 and
that (E, φ) is a stable co-Higgs bundle on X. The canonical line bundle K
has g global sections: choose one, say, s. Taking the product sφ contracts
K with K∗; that is, sφ is an endomorphism of E. But sφ and φ commute,
and so sφ must be a multiple of the identity, by the “simple” property of
stability. Because degK = 2g − 2 > 1, s vanishes somewhere, and so φ
must vanish everywhere. In other words, a stable co-Higgs bundle on X
with g > 1 is nothing more than a stable vector bundle.

When g = 1, co-Higgs bundles are Higgs bundles.
This leaves only the projective line. We will see that stable co-Higgs

bundles with nonzero Higgs fields are plentiful here. This is in contrast to
Higgs bundles, which are never stable on P1. Co-Higgs bundles, therefore,
are an extension of the theory of Higgs bundles to genus 0.

4. Nitsure’s moduli space

For the existence and features of the moduli space we rely on [20], in
which Nitsure constructs a quasiprojective variety that is a coarse moduli
space for S-equivalence classes of semistable L-pairs of rank r on a curve
X. Here, L is a sufficiently-ample line bundle and “L-pair” means a pair
(E, φ) in which E is a rank-r vector bundle and φ ∈ H0(X; EndE⊗L). The
construction uses geometric invariant theory, and the stability condition is
the one defined previously. For X = P1 and L = O(2), we have the moduli
space of semistable co-Higgs bundles on the projective line. We useM(r) to
signify this space;M(r, d), the locus inM(r) consisting of degree-d co-Higgs
bundles. When r and d are coprime, M(r, d) is smooth and every point is
strictly stable.

For r = 2, we need only describe the lociM(2,−1) andM(2, 0), as we can
recover co-Higgs bundles of other degrees by tensoring the elements of these
two spaces by O(±1)⊗n for an appropriate n. In [20] Nitsure calculates the
dimension ofM(r) to be 2r2 + 1, and soM(2) is 9-dimensional. (He proves
that the dimension is independent of d.) For a simplification, we consider
only trace-free Higgs fields. The map

M(2)→ H0(P1;O(2))×M0(2)
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defined by

(E, φ) 7→
(

Trφ,

(
E, φ− 1

2
Trφ

))
,

whereM0(2) denotes the 6-dimensional trace-free part of the moduli space,
is an isomorphism. As Trφ is a Higgs field for a line bundle, the factorization
can be thought of as M(2) ∼= M(1) × M0(2), where the first factor is
the space of co-Higgs line bundles of some fixed degree. The piece of the
moduli space that we do not already understand is M0(2), and so there is
no generality lost in restricting attention to it.

5. Hitchin morphism and spectral curves

Consider the Hitchin map h : M(r) →
⊕r

k=1H
0(P1;O(2k)) given by

(E, φ) 7→ charφ, where charφ is the characteristic polynomial of φ. Since
charφ is invariant under conjugation, this map is well-defined on equivalence
classes. Nitsure proves in [20] that h is proper. In particular, pre-images of
points are compact. Therefore, the fibres of h are compact.

Let ρ = (ρ1, . . . , ρr) ∈
⊕r

k=1H
0(P1;O(2k)) be a generic section. It follows

from more general arguments in [2] and [6] that the fibre h−1(ρ) is isomorphic
to the Jacobian of a spectral curve embedded as a smooth subvariety Xρ of
the total space of O(2). The correspondence works like this:

(a) If π is the projection to P1 of the total space of O(2), then the
restriction πρ : Xρ → P1 is an r : 1 covering map.

(b) If y is the coordinate on the total space of O(2) and η is the tauto-
logical section of the pullback of O(2) to its own total space, then
the equation of Xρ is ηr(y) = ρ1(π(y))ηr−1(y) + · · ·+ ρr(π(y)).

(c) The direct image of a line bundle L on a generic Xρ is a rank-r vector
bundle (πρ)∗L = E on P1.

(d) The pushforward of the multiplication map L→ ηL is a Higgs field
φ for E, with characteristic polynomial ρ.

We admit that we are abusing language, by referring to ρ as the character-
istic polynomial when it is the tuple of characteristic coefficients.

The spectral curve ramifies at finitely-many points, which are the z ∈ P1

for which φz has repeated eigenvalues. The generic characteristic polynomial
ρ is irreducible, and so its Xρ is an irreducible curve.

In the case of rank r = 2 and φ trace-free, the characteristic polynomial is
a monic polynomial of degree 2 in η with no linear term, and with a section of
O(4) for the coefficient of η0. This section vanishes at 4 generically distinct
points in P1, which are the ramification points of the double cover Xρ → P1.
By the Riemann–Hurwitz formula, Xρ is an elliptic curve, whose Jacobian
is another elliptic curve. Therefore, the map h on M0(2) is a fibration of
generically nonsingular elliptic curves over the 5-dimensional affine space of
determinants.
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Because the generic Xρ is irreducible, a co-Higgs bundle (E, φ) coming
from a line bundle on Xρ has no φ-invariant subbundles whatsoever, and
therefore is stable. Stability limits the underlying vector bundles that can
be obtained from spectral line bundles. In the next section, we address this.

6. Stable Grothendieck numbers

According to the classical Birkhoff–Grothendieck theorem, if E is a rank-r
holomorphic vector bundle on P1, then

E ∼= O(m1)⊕O(m2)⊕ · · ·O(mr)

for integers m1,m2, . . . ,mr that are unique up to permutation. We find
necessary and sufficient conditions on the Grothendieck numbers mi for the
existence of semistable Higgs fields.

Theorem 6.1. Let E = O(m1) ⊕ O(m2) ⊕ · · · ⊕ O(mr) be a holomorphic
vector bundle of rank r > 1 on P1. If the line bundles are ordered so that
m1 ≥ m2 ≥ · · · ≥ mr, then E admits a semistable φ ∈ H0(P1; EndE⊗O(2))
if and only if mi ≤ mi+1 + 2 for all 1 ≤ i ≤ r − 1. The generic φ leaves
invariant no subbundle of E whatsoever; therefore, the generic φ is stable
trivially.

Proof. We begin with the only if direction, for which we proceed by in-
duction on successive extensions of balanced bundles by each other. (A
rank-r balanced vector bundle over P1 splits into r copies of a single line
bundle.) To arrive at these bundles, we filter the decomposition of E
by its repeated Grothendieck numbers. That is, if the first d1 ordered
Grothendieck numbers are m1 = · · · = md1 = a1, then we write E1 for

the balanced vector bundle
⊕d1 O(a1). If the next d2 numbers are all equal

to the same number, say a2, then we set E2 :=
⊕d2 O(a2); and so on.

Then, E =
⊕k

i=1Ei =
⊕k

i=1

(⊕di O(ai)
)

, where d1 + · · · + dk = r and

a1 > · · · > ak.
Begin with the sequence

E1
φ→ E ⊗O(2)

p→ (E2 ⊕ · · · ⊕ Ek)⊗O(2).

The composition of φ with the quotient map p is a section of

E∗1 ⊗ (E/E1)⊗O(2),

and so has components in O(−a1 + aj + 2), for each of j = 2, 3, . . . , k. If
a1 > a2 + 2, then a1 > aj + 2 for j = 2, 3, . . . , k and

H0(P1;O(−a1 + a2 + 2)) = · · · = H0(P1;O(−a1 + ak + 2)) = 0.

Therefore, p ◦ φ is the zero map. It follows that E1 is φ-invariant, and since
d1 + · · ·+ dk = r and a1 > a2 > · · · > ak, we have

degE1

rkE1
=
d1a1
d1

= a1 =
a1(d1 + · · ·+ dk)

r
>
d1a1 + d2a2 + · · · dkak

r
=

degE

rkE
.
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Because (E, φ) is semistable, such a subbundle of E cannot exist. In light
of the contradiction, we must have a1 ≤ a2 + 2, and so

m1 = · · · = md1 ≤ md1+1 + 2 = · · · = md1+d2 + 2.

Assume now that

a2 ≤ a3 + 2

...

aj−1 ≤ aj + 2,

and examine the sequence

E1 ⊕ E2 ⊕ · · · ⊕ Ej
φ→ E ⊗O(2)

p→ (Ej+1 ⊕ · · · ⊕ Ek)⊗O(2)

in which we abuse notation and re-use p for the quotient of E by E1⊕. . .⊕Ej .
We assume that aj > aj+1 + 2. Because of the induction hypothesis, we
have that ai ≥ aj > au + 2 for each i ≤ j and each u > j. Therefore,
−ai+au+ 2 < 0, and the images of the balanced bundles Ei, i ≤ j, are zero
under the composition of φ and p. Hence, E1 ⊕ · · · ⊕ Ej is φ-invariant and
its slope exceeds that of E. The induction is complete.

Remark 6.2. The validity of the argument above is not exclusive to X =
P1: X could be projective space Pn of any dimension, so long as we are
considering fully decomposable bundles. In that case, the result would say
that semistable Higgs fields exist only if mi ≤ mi+1+s, where s is the largest
integer such that T (−s) has sections.

Conversely, suppose that mi ≤ mi+1 + 2 for each i = 1, . . . , r − 1. Our
strategy is to find a particular Higgs field φ under which no subbundle
of E is invariant, meaning that (E, φ) is trivially stable. Because of the
decomposition of E into a sum of line bundles O(mi), the Higgs field can
be realized as an r × r matrix whose (i, j)-th entry takes values in the
line bundle O(−mj + mi + 2). The subdiagonal elements are sections of
O(−mi−1 +mi + 2) ∼= O(pi) for i = 2, . . . , r, where each pi is one of 0, 1, or
2. Into each of these positions, we enter a ‘1’, which represents the section
of O(pi) that is 1 on P1−{∞} and is 1/zpi on P1−{0}. The (1, r)-th entry
is a section of O(−mr + m1 + 2), which is of degree 2 or more. There, we
insert z. For all other entries, we insert the zero section of the corresponding
line bundle:

φ(z) =


0 0 · · · 0 0 z
1 0 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 0 · · · 1 0

 .

Over P1 − {∞}, the characteristic polynomial of φ is (−1)r−1z + yr, which
is irreducible in C[y][z].
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Because the characteristic polynomial does not split, φ has no proper
eigen-subbundles in E; that is, E has no φ-invariant subbundles. As irre-
ducibility is an open condition, the genericity follows immediately: there is a
Zariski open subset of H0(P1; EndE⊗O(2)) whose elements leave invariant
no subbundles of E whatsoever. �

For the case of rank r = 2, Theorem 6.1 tells us that if E has degree
0, then E admits semistable Higgs fields if and only if E ∼= O ⊕ O or
E ∼= O(1) ⊕ O(−1). On the other hand, if E has degree −1, there is only
one choice: E ∼= O ⊕O(−1).

7. Odd degree

We examine M0(2,−1), where the underlying bundle of every co-Higgs
bundle is isomorphic to E = O ⊕ O(−1). Since E has non-integer slope,
every semistable Higgs field for E is stable. Every Higgs field for E is of the
form

φ =

(
a b
c −a

)
,

where a, b, and c are sections of O(2), O(3), and O(1), respectively. The
stability of φ means that c is not identically zero: because µ(E) = −1/2, φ
cannot leave the trivial sub-line bundle O invariant. Accordingly, c has a
unique zero z0 ∈ P1.

It is possible to provide a global description of the odd-degree moduli
space as a universal elliptic curve. Let π : M → P1 stand for the two-
dimensional total space of O(2). We claim that we can assign uniquely to
each stable φ a point in the 6-dimensional space S defined by{

(y, ρ) ∈M ×H0(P1;O(4)) : η2(y) = ρ(π(y))
}
.

That S is a smooth subvariety of the 7-dimensional space M ×H0(P1;O(4))
can be seen as follows. Over the subset U0 of P1 where the coordinate z is
not ∞, we have

S =
{

(z, y, a0, a1, a2, a3, a4) : y2 = a0 + a1z + a2z
2 + a3z

3 + a4z
4
}
,(7.1)

with (z, y) as coordinates on M . If z̃ = 1/z and ỹ = y/z2, then (z̃, ỹ) give
coordinates on M over U1 = P1 − {0}. There, S is given by

ỹ2 = a4 + a3z̃ + · · ·+ a0z̃
4.

Since ∂f/∂a0 6= 0 on M |U0 × C5 and ∂f̃/∂a4 6= 0 on M |U1 × C5, where

f(z, y, a0, . . . , a4) = y2 − a0 − a1z − · · · − a4z4,

f̃(z̃, ỹ, a0, . . . , a4) = ỹ2 − a4 − a3z̃ − · · · − a0z̃4,

the variety S is in fact smooth as a subvariety.
We will define an isomorphism from M0(2,−1) onto S by sending φ to

(z0, a(z0),−detφ), with z0 and a as above. Since a is a section of O(2),
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(z0, a(z0)) is a point in M . The point is determined uniquely by the conju-
gacy class of φ, for if

ψ =

(
d e
0 f

)
is an automorphism of E = O⊕O(−1), in which case e is a section of O(1)
and d, f ∈ C∗, then the Higgs field transforms as

φ′ = ψφψ−1 =

(
a+ d−1ec −f−1(2ea− bd+ e2fc)
d−1fc −a− d−1ec

)
.

Because (a + d−1ec)(z0) = a(z0), the image of φ in the variety S remains
unchanged by φ → φ′. Furthermore, we have (a(z0))

2 = − detφ|z=z0 , and
therefore (z0, a(z0),−detφ) is a point in S.

Now we start with a point (z0, y0, a0, a1, a2, a3, a4) ∈ M × C5. To be in
S, the point must have y20 = a0 + a1z0 + · · · + a4z

4
0 . There are two choices

of y0, corresponding to the two square roots of a0 + a1z0 + · · ·+ a4z
4
0 , unless

a0 + a1z0 + · · ·+ a4z
4
0 = 0, in which case the point in S is (z0, 0, 0, 0, 0, 0, 0).

Let us assume for the moment that z0 is such that a0+a1z0+ · · ·+a4z
4
0 6= 0.

The two corresponding points in S are(
z0,
√
a0 + a1z0 + a2z20 + a3z30 + a4z40 , a0, a1, a2, a3, a4

)
and (

z0,−
√
a0 + a1z0 + a2z20 + a3z30 + a4z40 , a0, a1, a2, a3, a4

)
.

Consider the first of the two points. Its pre-image in M0(2,−1) is a stable
Higgs field

φ =

(
a b
c −a

)
for which z0 is the unique point in P1 at which c vanishes,

detφ = −a0 − a1z − · · · − a4z4,
and a(z0) = y0. A representative Higgs field has

a =
√
a0 + a1z0 + a2z20 + z3z30 + a4z40 ,

b(z) = a1 + a2z0 + a3z
2
0 + a4z

3
0 + (a2 + a3z0 + a4z

2
0)z

+ (a3 + a4z0)z
2 + a4z

3,

c(z) = z − z0.

If we use a = −
√
a0 + a1z0 + a2z20 + z3z30 + a4z40 instead, then we get a

Higgs field for the other point in S.
For convenience, choose a coordinate z that vanishes at z0. Then, the two

points in S are
(
z0,
√
a0 , a0, a1, a2, a3, a4

)
and

(
z0,−

√
a0 , a0, a1, a2, a3, a4

)
,

and their respective Higgs fields become
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φ+(z) =

( √
a0 a1 + a2z + a3z

2 + a4z
3

z −√a0

)
and

φ−(z) =

(
−√a0 a1 + a2z + a3z

2 + a4z
3

z
√
a0

)
.

The two points coincide with each other, and φ+ = φ−, when a0 = 0. Having
a0 = 0 is equivalent to the spectral curve ramifying above z0, because a0 = 0
means that the characteristic equation of φ± is

y2 = −z(a1 + a2z + a3z
2 + a4z

3),

and so y2 = 0 at z0.
Since φ+ and φ− correspond to distinct points in S whenever z0 is not

a ramification point of their corresponding spectral curve, there can be no
automorphism of E = O ⊕O(−1) that takes φ+ to φ−, unless a0 = 0. This
is easy to verify. Suppose that there exists a ψ ∈ H0(AutE), say

ψ =

(
d e
0 f

)
with d, f ∈ C∗ and e a section of O(1), such that ψφ+ψ

−1 = φ−. The matrix
ψφ+ψ

−1 is

1

df

(
df
√
a0 + efz −2de

√
a0 + d2b̃(z)− e2z

f2z −df√a0 − efz

)
,

in which b̃(z) = a1 + a2z + a3z
2 + a4z

3. Equality with φ− requires f = d

and 2
√
a0 = −e

d
z. Since −e/d is a section of O(1) we can write it as lz+m

for some l,m ∈ C, and so the condition becomes 2
√
a0 = lz2 + mz. This

can only be satisfied when a0 = 0 (and l = m = 0).
We can frame this discussion by appealing to the spectral viewpoint. Con-

sider a generic spectral curve, which is a smooth curve of genus 1. According
to Grothendieck–Riemann–Roch, to get E = O ⊕ O(−1) on P1, we need a
degree-1 line bundle L on the spectral curve. The ordinary Riemann–Roch
theorem tells us that L has a one-dimensional space of global holomorphic
sections, and so all of these sections must vanish at a single point. Using
the coordinates on M , this point is either (z0,

√
a(z0) ) or (z0,−

√
a(z0) ).

Whether we have φ+ or φ− depends on which sheet of the double cover con-
tains the point at which the sections of L vanish. The covering map for the
spectral curve projects (z0,

√
a(z0) ) and (z0,−

√
a(z0) ) onto z0, the point

in P1 at which the O(1)-components of φ+ and φ− vanish. If the vanishing
point of the global sections of L is a point where the two sheets coincide,
then we get a single stable Higgs field φ+ = φ−.

Our construction of φ± and our argument regarding automorphisms of
E are independent of whether the spectral curve is singular or nonsingular,
and so our isomorphism M0(2,−1) ∼= S holds globally.
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8. Even degree

The moduli space M0(2, 0) does not yield such an explicit description;
however, we can still say something about the fibres of the Hitchin map.

Recall that Theorem 6.1 allows for two choices of underlying bundle:
E 1
−1 := O(1)⊕O(−1) or the trivial rank-2 bundle E0 := O ⊕O, the latter

of which is the generic splitting type. If a pair (E 1
−1, φ) is not unstable,

then it is strictly stable: every sub-line bundle of degree 0 is contained in
O(1), and is therefore φ-invariant if and only if O(1) is φ-invariant. On the
other hand, E0 admits semistable but not stable Higgs fields φ: these are
the upper-triangular Higgs fields, in which the three matrix coefficients in
the polynomial φ(z) = A0 +A1z +A2z

2 admit a common eigenvector. The
S-equivalence class of such a φ is represented by the graded object

gr(φ) =

(
a 0
0 −a

)
,

for some a ∈ H0(P1;O(2)). Consequently, every point in a generic fibre of
the Hitchin map is strictly stable, because ρ = −a2 is a reducible spectral
curve, whereas the generic spectral curve is irreducible. One example of
a non-generic fibre is the nilpotent cone over ρ = 0: in addition to stable
Higgs fields it also contains the zero Higgs field for E0, which is semistable
but not stable.

To study Higgs fields for E 1
−1, we define a section of the Hitchin map h :

M0(2, 0) → H0(P1;O(4)) in the following way: to each ρ ∈ H0(P1;O(4)),
we assign the Higgs field

Q(ρ) =

(
0 −ρ
1 0

)
for E 1

−1, with the symbol 0 denoting the zero section of O(2), and where 1 is
unity. This section is the genus-0 analogue of Hitchin’s model of Teichmüller
space [16], but with our ρ replacing the quadratic differential in his model.

Proposition 8.1. The section Q is the locus in M0(2, 0) of stable co-Higgs
bundles with underlying bundle isomorphic to E 1

−1 = O(1)⊕O(−1).

Proof. If

φ =

(
a b
c −a

)
is a stable Higgs field for E 1

−1, then a is a section of O(2), b is a section of
O(4), and c is a constant. Stability implies that c 6= 0. To study the orbit
of φ under automorphisms of E 1

−1, we take

ψ =

(
1 d
0 e

)
,

in which d is a section of O(2) and e ∈ C∗. The transformed Higgs field is
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φ′ = ψφψ−1 =

(
a+ dc −2de−1a+ e−1b− d2e−1c
ec −a− dc

)
.

Taking the automorphism ψ with e = c−1, d = −ac−1, we get

φ′ = ψφψ−1 =

(
0 a2 + bc
1 0

)
.

In other words, the conjugacy class of a trace-free Higgs field acting on E 1
−1

is determined by a unique ρ = a2 + bc = −detφ ∈ H0(P1;O(4)). �

Consider a generic spectral curve Xρ, which again is a smooth curve of
genus 1. Grothendieck–Riemann–Roch tells us the following: for the direct
image of a line bundle L on Xρ to be a rank-2 vector bundle of degree 0
on P1, then we must have degL = 2. On P1, twisting E0 by O(−1) gives
O(−1)⊕O(−1), which has no global sections. On the other hand, twisting
E 1
−1 by O(−1) gives O⊕O(−2), which still has a global section. Because the

direct image functor preserves the number of global sections, this is the same
as asking whether or not L ⊗ π∗ρOP1(−1) has global sections. The twisted
line bundle L ⊗ π∗ρOP1(−1) has degree degL + (−1) deg πρ = 2 − 2 = 0.
The only line bundle of degree 0 on Xρ with a global section is the trivial
line bundle OXρ . Therefore, pushing down OXρ ⊗ π∗ρOP1(1) produces the

co-Higgs bundle (E 1
−1, Q(ρ)), while pushing down any other line bundle of

degree 2 gives a Higgs field for E0.

9. Betti numbers and holomorphic chains

In this section, we reincorporate the trace of φ; that is, we consider the
full moduli spaceM(r, d) of stable rank-r and degree-d co-Higgs bundles on
P1.

As with the conventional Higgs bundle moduli space, M(r, d) enjoys a
circle action, (E, φ) 7→ (E, eiθφ), which induces a localization of the Poincaré
series of M(r, d) whenever gcd(r, d) = 1. This localization originates in
Morse–Bott theory and is developed in [16, 9, 10, 12, 14] for the case of the
Hitchin system. All of the arguments carry over to co-Higgs bundles without
modification. (The Morse–Bott function, defined to be a scalar multiple of
the norm squared of the Higgs field using the natural Kähler metric, is a
proper moment map for the action and is perfect and nondegenerate, as
discussed in Proposition 7.1 and Theorem 7.6 of [16]. We will not need to
interact with the function directly.) Before we state the main features of
the theory, we need the following notion: if k is a nonnegative integer and
(U1, . . . , Un) is an ordered n-tuple of vector bundles such that E =

⊕
Ui,

then an element ψ ∈ H0(EndE) is said to act with weight k on (U1, . . . , Un)
if ψ(Ui) ⊆ Ui+k. (If i + k > n, then ψ(Ui) = 0.) This notion extends to
twisted morphisms as well, that is, when ψ ∈ H0(EndE ⊗ L) for some line
bundle L.
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Now, the main features of Morse theory for co-Higgs bundles, as adapted
from Higgs bundles, are:

• The downward gradient flow of the Morse–Bott function is coincident
with the nilpotent cone, and the moduli space deformation retracts
onto the cone (§4.4 of [12]).
• A fixed point of the circle action is a co-Higgs bundle with a spe-

cial form: a holomorphic chain. Such an object is a (2n − 1)-tuple
(U1, . . . , Un;φ1, . . . , φn−1) for some n ≤ r, in which each Ui is a
holomorphic vector bundle on P1 and each φi is a holomorphic map
Ui → Ui+1 ⊗O(2). (We refer to §7 of [16] for r = 2, and to Lemma
2 of [23] and p.18 of [10] for higher rank.) For the case of ordinary
Higgs bundles, where the twist is by the canonical line bundle, these
objects are complex variations of Hodge structure [23]. The term
“holomorphic chain”, which accommodates more general twisting,
originates in [1].

The total rank of a chain is
∑

rkUi. Its total degree is
∑

degUi.
The type of a chain is the vector (rkU1, . . . , rkUn) and the degree vec-
tor is (degU1, . . . ,degUn). By taking E =

⊕
Ui and writing down a

block matrix φ with sub-diagonal blocks [φ]i+1,i = φi and zero blocks
elsewhere, we get a nilpotent co-Higgs bundle. The Higgs field is an
element of H0(EndE ⊗O(2)) acting with weight 1 on (U1, . . . , Un).
We define a chain to be (semi)stable when its associated Higgs bun-
dle is (semi)stable. Since gcd(r, d) = 1, all of the chains we shall
consider are strictly stable.
• The Morse index at a fixed point is the number of negative eigen-

values of the Hessian of the Morse–Bott function at the fixed point.
Let (E, φ) be any fixed point, with decomposition E =

⊕
Ui. We

denote its Morse index by β((E, φ)). After a calculation involving
the Hessian, Gothen shows (p.19 of [10]) that β((E, φ)) is a sum of
two integers β1,0 and β0,1, where β1,0 is the real dimension of the
subspace in

H0(EndE ⊗O(2))

im H0(EndE)
[−,φ]−→ H0(EndE ⊗O(2))

(9.1)

consisting of the elements acting with weight ≥ 2 on (U1, . . . , Un),
and β0,1 is the real dimension of the subspace of

ker H1(EndE)
[−,φ]−→ H1(EndE ⊗O(2))(9.2)

consisting of elements acting with weight ≥ 1 on (U1, . . . , Un).
It is an immediate consequence of the stable ⇒ simple property

and Serre duality that the map in the denominator of (9.1) is injec-
tive, and the map in (9.2) is surjective. This means that the Morse
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index is given by the more compact formula

β((E, φ)) = dimRH
0
≥2(EndE ⊗O(2))− dimRH

0
≥1(EndE))

+ dimRH
1
≥1(EndE)− dimRH

1
≥2(EndE ⊗O(2)),

where the subscripts ≥k refer to which weight subspace is being iso-
lated. Notice that there are two Riemann–Roch identities interlaced
by this formula. Taking advantage of this allows us to further reduce
the formula to

β((E, φ)) = 4δn2

n−2∑
i=1

n∑
j=i+2

rirj − 2δn1

n−1∑
i=1

(deg(U∗i Ui+1) + riri+1),(9.3)

where ri = rkUi and δnj = 1 if n > j and 0 otherwise. (Note that

deg(U∗i Ui+1) = −ri+1 degUi+ri degUi+1, and so the formula for the
Morse index at a fixed point depends only on the ranks and degrees
of the bundles in the chain.)

For calculation purposes, it is useful to know that the chain type and
degree vector are constant on connected components of the fixed point set.
(This is Lemma 9.2 in [14], which is attributed by the authors to Carlos
Simpson.) Therefore, to each component of the fixed point set, we may
associate a vector r = (r1, . . . , rn) ∈ Zn>0 and a vector d = (d1, . . . , dn) ∈ Zn,
with

∑
ri = r and

∑
di = d. Since the Morse index depends only on r and

d, as in formula (9.3), we have that the Morse index is constant on connected
components of the fixed point set.

The main tool for our calculation of Betti numbers is the Morse-theoretic
localization formula (§7 of [16]): the Poincaré series of M(r, d) is

P(r, d;x) =
∑
N
xβ(N )P(N ;x),

where N stands for a connected component of the fixed point set of the
circle action; P(N ;x), for the Poincaré polynomial of N ; and β(N ), for the
Morse index of any point in N .

Two different connected components can have the same r and the same d.
This will occur when the set of stable chains with type r and degree vector
d is disconnected inside M(r, d). However, two such components will have
the same Morse index, determined by r and d. Therefore, we can rewrite
the localization formula as

P(r, d;x) =
∑
r,d

xβ(r,d)
∑

i∈I(r,d)

P(Ni;x),

in which:

• The outer sum is taken over all vectors r = (r1, . . . , rn) ∈ Zn>0 and
d = (d1, . . . , dn) ∈ Zn with

∑
ri = r and

∑
di = d.
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• The exponent β(r,d) is the right side of formula (9.3) evaluated at
r and d.
• I(r,d) indexes the connected components of the set of chains in
M(r, d) with type r and degree vector d.
• Ni is a connected component of the set of stable chains of type r

and degree vector d.
• If the set of stable chains of type r and d is empty, then we declare

its Poincaré series to be 0.

Remark 9.1. Since the nilpotent cone is a deformation retract of M(r, d),
the Betti numbers of M(r, d) and M0(r, d) will be identical.

If we wish to calculate Betti numbers of M(r, d), we need to determine
all of the stable chains with total rank r and total degree d. Note that for
r > 1, there are no stable chains of type (r), as these are vector bundles on
P1 with the zero Higgs field.

For r = 2, there is only one chain type to consider: (1, 1). ForM(2,−1) in
particular, chains of this type have the form (O(a),O(−a− 1);φ1) for some
integer a, where φ1 ∈ H0(O(a)∗ ⊗ O(−a − 1) ⊗ O(2)) = H0(O(−2a + 1)).
If a > 0, then φ1 must be zero, since O(−2a+ 1) has no global holomorphic
sections. This means that O(a) is an invariant sub-line bundle of positive
slope in the associated Higgs bundle, which has slope −1/2. If a < 0, there is
an invariant sub-line bundle of degree −a−1 ≥ 0, which is also destabilizing.
Therefore, stability necessitates a = 0, in which case φ1 ∈ H0(O(1)) = C2.
If φ1 = 0, then O is a destabilizing sub-line bundle. If φ1 6= 0, then the only
invariant subbundles are those contained in O(−1), and so their degrees are
strictly less than −1/2. Therefore, the stable chains are precisely those of
the form (O,O(−1);φ1) with φ1 6= 0 ∈ C2.

Automorphisms of O ⊕ O(−1) preserving the chain structure are para-
metrized by Aut(O)⊕ Aut(O(−1)) = C∗ ⊕ C∗. The quotient of C2\ {0} by
either right multiplication by the first summand or left multiplication by the
second summand of C∗⊕C∗ gives us a connected fixed point set, isomorphic
to P1. Because there is only one component of the fixed point set, this P1 is
the minimal component, whose Morse index is 0. Putting this together, we
have P(2,−1;x) = 1 + x2.

Since the downward Morse flow and the nilpotent cone are coincident, the
cone is therefore isomorphic to P1. This is consistent with our concrete model
(7.1). The nilpotent cone in M(2,−1) is the subvariety of S consisting of
points of the form (z, 0, 0, 0, 0, 0, 0). Since z is just the coordinate on the base
P1, the nilpotent cone is a copy of P1. Since the moduli space deformation
retracts onto the cone, we can read from our model that the Betti numbers
of M(2,−1) are those of the 2-sphere.

For chains of type (1, . . . , 1), we can generalize the discussion from rank 2
to higher rank and arbitrary degree. If (L1, . . . , Lr;φ1, . . . , φr−1) is a chain
of type (1, . . . , 1), then the stability condition is equivalent to φi 6= 0 for
1 ≤ i ≤ n− 1 and
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degLr < d/r

degLr−1 + degLr
2

< d/r

...
degL2 + · · ·+ degLr

r − 1
< d/r.

If one of the maps φi were zero, then L1⊕· · ·⊕Li and Li+1⊕· · ·⊕Lr would
be subbundles of E that are invariant under the associated Higgs field φ. It
is easy to show that they cannot simultaneously have slopes less than d/r.
When every φi is nonzero, the slopes of any remaining invariant subbundles
are constrained by the inequalities above. Note that the condition φi 6= 0
requires that −degLi + degLi+1 + 2 ≥ 0 for 1 ≤ i ≤ n − 1. The set
of all chains on (L1, . . . , Lr) is an iterated bundle of projective spaces. If
Li = O(di) for each i, then the Poincaré series of this iterated bundle is
equal to the Poincaré series of the product P−d1+d2+2 × · · · × P−dr−1+dr+2.

An algorithm can be elicited for determining which tuples (U1, . . . , Un) can
admit stable chains and which ones cannot. Roughly, it works by recursion
on rank.

(1) Start with a tuple (U1, . . . , Un) of rank r − 1 and degree d − a, for
some a, such that neither its slope nor the slopes of its subbundles
exceeds or is equal to d/r.

(2) Replace U1 of this chain with U1 ⊕O(a).
(3) Check if there is a subbundle of Ea = (O(a)⊕U1)⊕· · ·⊕Un containing

the O(a) that has slope larger than or equal to d/r and which is
necessarily annihilated by all possible Higgs fields for Ea that act
with weight 1 on (O(a)⊕ U1, . . . , Un).

(4) If there is, discard (O(a)⊕ U1, . . . , Un).
(5) Repeat for the tuple (O(a), U1, . . . , Un).

It can be shown that this algorithm terminates, as there are only finitely-
many a for which stability is possible, just as in the rank-2 case above.

For rank 3 and degree −1, the ordered tuples of bundles admitting sta-
ble chains are (O(1),O,O(−2)), (O(1),O(−1),O(−1)), (O,O,O(−1)), and
(O ⊕ O,O(−1)). The first three are of type (1, 1, 1) and the latter is of
type (2, 1). There are none of type (3), as expected, but there are also none
of type (1, 2) by the algorithm above. The sets of chains on the (1, 1, 1)
tuples have Poincaré polynomials equal to those of P−1+0+2 × P−0−2+2,
P−1−1+2×P1−1+2, and P−0+0+2×P0−1+2, respectively. For (O⊕O,O(−1)),
a map φ1 : O ⊕ O → O(−1) ⊗ O(2) is stable if and only if it is surjective.
If it is not surjective, then its image is either 0, in which case the kernel is
O ⊕ O and therefore destabilizing, or is a sub-line bundle of degree k < 1
in O(−1)⊗O(2) = O(1). The kernel, accordingly, is a line bundle of degree
−k > −1, which is destabilizing. If the image is all of O(1), then the kernel
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Table 1. Tuples admitting stable chains for rank 4 and de-
gree −1.

Type Morse index, [Chain]

(1, 1, 1, 1) 8, [ 0 | 0 | 0 | −1 ] ; 8, [ 0 | 1 | −1 | −1 ] ;
10, [ 0 | 1 | 0 | −2 ] ; 10, [ 1 | −1 | 0 | −1 ] ;
10, [ 1 | 0 | −1 | −1 ] ; 12, [ 1 | 0 | 0 | −2 ] ;

12, [ 1 | 1 | −1 | −2 ] ; 12, [ 2 | 0 | −2 | −1 ] ;
14, [ 2 | 0 | −1 | −2 ] ; 16, [ 2 | 1 | −1 | −3 ]

(4), (3, 1), (1, 3), (2, 2) no output
(2, 1, 1) 4, [ 0 0 | 0 | −1 ] ; 8, [ 1 0 | 0 | −2 ]
(1, 2, 1) 0, [ 0 | 0 0 | −1 ] ; 4, [ 1 | 0 − 1 | −1 ]
(1, 1, 2) 8, [ 1 | 0 | −1 − 1 ]

is isomorphic to O(−1), and the resulting chain is stable. Assuming now

that φ1 is surjective, we have that the induced map φ̃1 from global sections
of O ⊕ O to global sections of O(1) must have full rank; that is, it must
be an element of GL2(C). Quotienting by the right multiplication action of
Aut(O ⊕O) = GL2(C) leaves only the identity, and so the set of chains on
(O ⊕O,O(−1)) has b0 = 1 as its only nonzero Betti number.

What remains to be determined is the Morse index for each of these
components of the fixed point set. According to the formula (9.3), the
Morse index for (O(1),O,O(−2)) is 6; for (O(1),O(−1),O(−1)), it is 4; for
(O,O,O(−1)), it is 2; and for (O ⊕ O,O(−1)), it is 0. Putting all of this
together, we get

P(3,−1;x) = x0(1) + x2(1 + x2 + x4)(1 + x2)

+ x4(1 + x2 + x4) + x6(1 + x2)

which simplifies to 1 + x2 + 3x4 + 4x6 + 3x8.
It follows that the moduli space is topologically connected with three

algebraic components. That the Poincaré series is not palindromic indicates
that, while the total space of M(3,−1) is smooth, the nilpotent cone itself
is not.

Remark 9.2. There is no need to calculate the Betti numbers forM(3,−2)
because there is a degree duality taking points in M(3,−1) to points in
M(3,−2), first by taking the dual co-Higgs bundle (E∗, φ∗), and then by
tensoring E∗ by O(−1). On chains, this duality reverses the type of the
chain, e.g. a (1, 1, 1) chain goes to a (1, 1, 1) chain, but a (2, 1) chain goes to
a (1, 2) chain, and vice-versa. This duality preserves the underlying topo-
logical structure of the moduli spaces.

According to the algorithm, for rank 4 and degree −1 the tuples admitting
stable chains are those given in Table 1. Here, we read a list of the form
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“[ a b | c | d e ]” to mean

(O(a)⊕O(b),O(c),O(d)⊕O(e)).

Computing Poincaré polynomials of sets of chains for the tuples in the table,
and then combining the data with the Morse indices as in the rank-3 case,
gives us

P(4,−1;x) = 1 + x2 + 3x4 + 5x6 + 9x8 + 13x10 + 18x12 + 22x14

+ 20x16 + 10x18.

Remark 9.3. There are several tuples containing a rank-2 bundle, but there
is no tuple with more than one rank-2 bundle. Before the recent work of
Garćıa-Prada, Heinloth, and Schmitt [8], the most formidable obstacle to
computing the Betti numbers for the moduli space of ordinary rank-4 Higgs
bundles was the existence of stable (2, 2) chains, which could not be directly
attacked by Thaddeus’ treatment of chains of length 2 [25].

Remark 9.4. As with the rank-3 moduli space, there is no need to make a
separate calculation for M(4,−3), because of degree duality.

Finally, we note that the Poincaré polynomial for rank 5 and degree −1
is

1 + x2 + 3x4 + 5x6 + 10x8 + 15x10 + 26x12 + 38x14 + 56x16 + 77x18

+ 105x20 + 131x22 + 156x24 + 165x26 + 154x28 + 103x30 + 40x32.

The calculations required for this result are markedly more difficult. There
are many more possible chains to contend with, there exist stable chains
containing more than one rank-2 bundle, and there is a type-change phe-
nomenon. For the previous ranks, the holomorphic type of the bundles did
not change within a component of the fixed point locus. At rank 5, the
holomorphic type of a Ui may change within a component.

We also point out that while degree −1 and degree −4 necessarily have the
same Betti numbers, degree −2 and −3 are a separate degree pair, unrelated
to −1 or −4 by the duality mentioned earlier.

At rank 6, there are several hundred admissible tuples of bundles.

10. ADHM recursion formula

In [4], Chuang, Diaconescu, and Pan give a recursion formula conjectured
to relate the Donaldson–Thomas invariants of the usual Higgs bundle moduli
space for genus g ≥ 1 to so-called “asymptotic ADHM” invariants. In [18],
Mozgovoy finds a multivariable power series solution, and shows that the
coefficients agree with the Hausel–Rodriguez-Villegas conjectures for Hodge
polynomials of ordinary Higgs bundle moduli spaces [13]. Moreover, Moz-
govoy solves a “twisted” version of the recursion formula and extends the
solutions to genus 0. These solutions can be conjectured to be Hodge poly-
nomials of twisted Higgs bundles moduli spaces, where the Higgs field takes
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values in O(t). In particular, for g = 0 and t = 2, these are the co-Higgs
bundle moduli spaces.

For ranks 2 through 5, the conjectural Poincaré polynomials in [18] co-
incide with those in the previous section, therefore verifying conjectures
presented in [18].

Finally, we conjecture that the Betti numbers of co-Higgs moduli spaces
on P1 are independent of the degree. This is implicit in the data coming from
the ADHM formula: once the rank is fixed, there are no further parameters
in the conjectural Poincaré polynomials.

Degree independence is known for ordinary Higgs bundles, but the proof
uses properties of the character variety that are unavailable for co-Higgs
bundles on P1. There is a diffeomorphism between the character variety of a
higher genus curve and the moduli space of ordinary Higgs bundles on that
curve, furnished by the nonabelian Hodge theorem originating in [16, 7, 24,
5, 22], and the Riemann–Hilbert correspondence. Degree independence of
Betti numbers is proven for the character variety in [13]. Unfortunately, the
nonabelian Hodge theorem depends in a crucial way on Higgs fields taking
values in the canonical line bundle, and therefore does not extend in an
obvious way to co-Higgs bundle moduli spaces on P1.

References
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