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The sl(2) foam cohomology via a TQFT

Carmen Caprau

Abstract. We construct a cohomology theory for oriented links us-
ing singular cobordisms and a special type of 2-dimensional Topological
Quantum Field Theory (TQFT), categorifying the quantum sl(2) in-
variant. In particular, we give a description of the universal dot-free
sl(2) foam cohomology for links via a 2-dimensional TQFT.
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1. Introduction

The author constructed in [5] the universal sl(2) tangle cohomology via
dotted foams modulo a finite set of local relations, using Bar-Natan’s [2] ap-
proach to local Khovanov homology and Khovanov’s work in [11]. We refer
to this as the universal sl(2) foam cohomology. The construction starts at
the topological picture made of resolutions associated to an oriented tangle
diagram, called webs, and of dotted seamed cobordisms between webs, called
foams. A web is a disjoint union of piecewise oriented 1-manifolds contain-
ing 2k bivalent vertices (k ≥ 0), so that for any two adjacent vertices, one is
a sink and the other a source. A foam is a piecewise oriented cobordism be-
tween such webs, and might contain some dots (as Khovanov’s foams in [11];
see also [17]). To switch from the geometric world to an algebraic one, one

Received November 12, 2012.
2010 Mathematics Subject Classification. 57M27; 19D23.
Key words and phrases. Cobordisms, Frobenius Algebras, Link Invariants, TQFTs.
The author was supported in part by NSF grant DMS 0906401.

ISSN 1076-9803/2013

61

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2013/Vol19.htm


62 CARMEN CAPRAU

applies a ‘tautological’ functor and arrives at a cochain complex of mod-
ules and module homomorphisms whose cohomology is a bigraded tangle
invariant. Restricting to the case of links and considering the graded Euler
characteristic of this invariant, one recovers the quantum sl(2) polynomial.
Much as Bar-Natan [2] did in his approach to Khovanov’s homology for
tangles, the invariance was proved at the level of the topological picture by
considering the set of foams modulo local relations.

The universal sl(2) foam cohomology corresponds (in a certain way) to
the Frobenius algebra structure defined on the ringA = R[X]/(X2−hX−a),
for which the counit and comultiplication maps are given in the basis {1, X}
by {

ε(1) = 0

ε(X) = 1,

{
∆(1) = 1⊗X +X ⊗ 1− h1⊗ 1

∆(X) = X ⊗X + a1⊗ 1.
(1.1)

The ground ring is R = Z[i][a, h], where a and h are formal parameters and i
is the primitive fourth root of unity. Imposing a = h = 0 we arrive at an iso-
morphic version of the original Khovanov homology [1, 10]. Moreover, letting
h = 0 we obtain Bar-Natan’s theory [2], while setting a = 1, h = 0, Lee’s the-
ory [16] is recovered. We also remark that the universal sl(2) foam cohomol-
ogy is equivalent to the equivariant Khovanov-Rozansky sl(2) (co)homology,
after tensoring both theories with appropriate rings, as shown in [7]. (The
equivariant Khovanov-Rozansky sl(n)-link homology was introduced in [13],
and generalizes the original Khovanov-Rozansky homology theory [12].)

In [6] the author provided the tools that lead to efficient computations of
the dotted foam cohomology groups, and also showed that if 2−1 exists in
the ground ring, then one can work with a purely topological version of the
foam theory, where no dots are needed on foams.

The advantage of the sl(2) foam cohomology versus the original Khovanov
homology and Bar-Natan’s work in [2] is the well-defined functorial property
with respect to tangle/link cobordisms relative to boundaries. In particular,
it fixes the functoriality of the original Khovanov invariant (for details we
refer the reader to [4, 5]). Other variants of Khovanov homology fixing
functoriality were independently constructed in [9] and [3] (the latter has
the advantage that is defined over Z).

The original Khovanov homology uses a 2-dimensional Topological Quan-
tum Field Theory (TQFT) corresponding to a certain Frobenius algebra. It
is then worthwhile to ask if one can obtain the sl(2) foam cohomology by
applying some type of a TQFT rather than a tautological functor, and then
what the defining algebra structure of this TQFT is.

The purpose of this paper is to answer the above questions, thus to provide
an algebraic framework for the universal sl(2) foam cohomology for links us-
ing a special type of 2-dimensional TQFT defined on foams (in doing so, we
will consider the dot-free foam theory [6, Section 4]). The first step in achiev-
ing this goal was made by the author in [8], were she considered a particular
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type of foams, called singular 2-cobordisms, and showed that the category
Sing-2Cob of singular 2-cobordisms admits a completely algebraic descrip-
tion as the free symmetric monoidal category on, what the author called, a
twin Frobenius algebra. A twin Frobenius algebra (C,W, z, z∗) consists of a
commutative Frobenius algebra C, a symmetric Frobenius algebra W, and an
algebra homomorphism z : C → W with dual z∗ : W → C, satisfying some
additional conditions. The author also introduced in [8] a special type of 2-
dimensional TQFT, so-called twin TQFT, defined on singular 2-cobordisms
and showed that it is equivalent to a twin Frobenius algebra in a symmetric
monoidal category.

The category Sing-2Cob of singular 2-cobordisms, as considered in [8],
has as objects clockwise oriented circles and bi-webs; a bi-web is a closed web
with exactly two bivalent vertices. In this paper we enhance the category
of singular cobordisms by allowing counterclockwise oriented circles as well,
and thus working in a more general setup. We abuse of notation and denote
the enhanced category by Sing-2Cob as well. The algebraic structure of the
enhanced category is coined by the term: enhanced twin Frobenius algebra.
Then we use this category to complete the second step in achieving the goal
of constructing a cohomology theory for oriented links—via singular cobor-
disms and a certain type of 2-dimensional TQFT defined on them—which
is isomorphic to the universal dot-free sl(2) foam cohomology. We chose to
work with the dot-free version of the foam theory as we are interested in a
purely topological construction; the ‘downside’ of this is the need of 2−1 in
the ground ring.

It is clear that in searching for an answer to the above mentioned goal, one
wishes to keep the well-defined functoriality of the sl(2) foam cohomology.
This is our reason for considering the general setup containing both clockwise
and counterclockwise oriented circles, although the method described in this
paper can be employed when working with simpler singular 2-cobordisms
whose boundaries are bi-webs and circles with only one type of orientation.
However, the author conjectures that by allowing both orientations for a
circle, the resulting cohomology via a TQFT is properly functorial, while in
the simpler case the functorial property holds only up to a sign.

The possible TQFT describing the sl(2) foam cohomology should satisfy
the local relations used in the construction of this theory. In [8, Example 1
of Section 5] the author gave an example of a twin TQFT satisfying the sl(2)
foam local relations, but it failed short to satisfy the laws of a twin Frobe-
nius algebra (to be specific, the “genus-one condition” of a twin Frobenius
algebra holds with a minus sign). This tells us that, although the enhanced
category Sing-2Cob is governed by an enhanced twin Frobenius algebra,
the algebraic structure that underlines the sl(2) foam cohomology must be
a minor modification of that of an enhanced twin Frobenius algebra. The
key to finding the appropriate algebraic structure lies within the results of
the foam theory: Let us recall that the local relations that one imposes on
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the set of foams imply a few other local relations, among whom there are
the “curtain identities” (CI-1) and (CI-2) (depicted here in Section 2). A
particular form of the curtain identities are those given in equations (3.8)
and (3.9), hence we need to mod out the morphisms of the category Sing-
2Cob by these latter relations. We show that the new category, let us denote
it by eSing-2Cob, admits an algebraic description as the free symmetric
monoidal category on an identical twin Frobenius algebra (we thought this is
an appropriate name for the corresponding algebraic structure). An identi-
cal twin Frobenius algebra (C,W, z1, z

∗
1 , z2, z

∗
2) consists of two commutative

Frobenius algebras C and W , and two algebra isomorphisms z1, z2 : C →W
with duals z∗1 , z

∗
2 : W → C and inverse isomorphisms iz∗1 ,−iz∗2 , respectively,

where i2 = −1. The 2-dimensional TQFT of interest to us is defined on
the category eSing-2Cob, and is equivalent to an identical twin Frobenius
algebra; hence we call it an identical twin TQFT.

Here is a brief plan of the paper. Section 2 provides a review of the
construction giving rise to the universal dot-free sl(2) foam cohomology. In
Section 3 we set up the ground for the paper and introduce the category
Sing-2Cob of singular 2-cobordisms and its related category, eSing-2Cob.
We also describe the algebraic structures of the two categories. Section 4
provides the (identical twin) TQFT that we are concerned with here, and
shows that it satisfies the local relations used in the foam theory without
dots. The most important part of the paper is Section 5, where we construct
a cohomology for oriented links, isomorphic to the universal dot-free sl(2)
foam cohomology. The ‘topology to algebra’ functor used in this construc-
tion is the TQFT of Section 4.

2. Review of the universal dot-free sl(2) foam cohomology

Let us briefly recall the construction of the universal sl(2) foam coho-
mology introduced in [5]. For the purpose of this paper, we consider the
purely topological version of the foam theory in which no dots are present
on foams (for more details we refer the reader to [6, Section 4]). The con-
struction in [4, 5, 6] was given for the general case of tangles, but here we
restrict our attention to links.

We mentioned in the introduction that the ring

A = R[X]/(X2 − hX − a),

endowed with the Frobenius algebra structure defined by the counit and
comultiplication maps given in (1.1), plays a key role in the universal sl(2)
foam cohomology. In the dot-free version of this theory, the ground ring
is R = Z[1

2 , i][a, h], and it is graded by setting deg(a) = 4, deg(h) =
2 and deg(1) = deg(i) = 0. The ring A = 〈1, X〉R is also graded by let-
ting deg(1) = −1 and deg(X) = −1.
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Given an n-crossing diagram D representing an oriented link L, we form
an n-dimensional cube U of resolutions (called ‘webs’) and cobordisms be-
tween them (called ‘foams’). This cube is then flattened to a Bar-Natan
type [2] formal complex in the additive category Foam/˜̀ whose objects are

formally graded webs and whose morphisms are formal linear combinations
of foams, modulo certain local relations ˜̀. Some further degree and height
shifts are applied, which depend only on the number of positive and nega-
tive crossings in D, to arrive at a formal complex [D] living in the category
Kof : = Kom(Mat(Foams/˜̀)) of complexes of formal direct sums of objects

in Foams/˜̀, and which is an up-to-homotopy invariant for L.

The reason for working with foams (which are seamed or disoriented
cobordisms) rather than ordinary cobordisms is that in the sl(2) foam co-
homology one categorifies the oriented version of the quantum sl(2) polyno-
mial of L. The state summation for this polynomial is given by the formula
P2(L) = P2(D) :=

∑
Γ±qα(Γ)〈Γ〉, where the sum is over all resolutions Γ of

D, and the exponents α(Γ) and the ± sign are determined by the relations:

= q − q2 = q−1 − q−2 .(2.1)

The bracket polynomial 〈Γ〉 associated to a web Γ is an element of the
Laurent polynomial ring Z[q, q−1], and it is evaluated via the skein relations:

〈
⋃

Γ〉 = (q + q−1)〈Γ〉 = 〈
⋃

Γ〉,(2.2)

〈 〉 = 〈 〉, 〈 〉 = 〈 〉.(2.3)

Let us now say a few words about our webs and foams. A diagram Γ
obtained by resolving each crossing in D in either the oriented or disoriented
fashion is a collection of disjoint circle graphs, called webs. A web is a
planar graph with bivalent vertices such that the two edges incident to a
vertex are either both entering the vertex or both leaving the vertex. Webs

without vertices are also allowed. For every singular resolution there is

an ordering of the two edges that meet at a vertex. We say that the edge
that ‘goes in’ or ‘goes out’ from the right, respectively, is the preferred edge
for the corresponding vertex. Two adjacent vertices of a web are called of
the same type if the edge they share is for both vertices either the preferred
edge or the non-preferred one. Otherwise, the vertices are called of different
type. The local relations depicted in (2.3) say that we can ‘remove’ adjacent
pairs of vertices of the same type.

A foam is a piecewise oriented cobordism between two webs Γ0 and Γ1,
regarded up to boundary-preserving isotopy. We draw foams with their
source at the top and their target at the bottom (notice that this is the
opposite convention of that used in [4, 5, 6]), and we compose them by
placing one on top the other. Foams have singular arcs (and/or singular
circles)—represented by red curves—where orientations disagree; that is,
the two facets incident with a given singular arc have opposite orientation,
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and because of this, they induce the same orientation on that arc. For each
singular arc of a foam, there is an ordering of the facets that are incident with
it, in the sense that one of the facets is the preferred facet for that singular
arc. This ordering is induced by the ordering of the edges corresponding to
bivalent vertices that the singular arc connects, in the following sense: the
preferred facet of a singular arc contains in its boundary the preferred edges
of the two bivalent vertices that the singular arc connects. In particular, a
pair of vertices can be connected by a singular arc only if the above rule is
satisfied. We indicate facets’ ordering near a singular arc by using labels 1
and 2.

It is necessary to repeat here the local relations that appear in the defi-
nition of the category Foam/˜̀:

= 0(S)

= 2(T)

1

2
= 0 = 2

1

2

1
= 2i = − 2

1
(UFO)

= (h2 + 4a)(G2)

=
1

2
+

1

2
(SF)

To be precise, we mod out the set of morphisms of the category of foams
by the local relations ˜̀ = (S, T, UFO, G2, SF). We remind the reader that
the local relations ` = (2D, SF, S, UFO) used in the dotted sl(2) foam
cohomology are slightly different (see [5, Section 3.2]).

For the purpose of this paper, it is important to recall that the imposed
local relations of the foam theory (either dot-free or dotted theory) imply
the following curtain identities:

21 = i 12 = −i(CI-1)

2
11 = −i

2

2

1
2

1
2 = i

2

1

1

(CI-2)
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as well as the the cutting-neck relation (CN) depicted below:

(CN) =
i

2
+
i

2

The following isomorphisms hold in Foam/˜̀, and are consequences of the

“curtain identities”:

1
!i

2

1

2

1

i
1

2

2

(2.4)

We remark that the “curtain identities” are the local relations imposed on
the set of cobordisms in [9].

The category Foam/˜̀ is graded by defining deg(S) = −χ(S) for every

foam S in Foam/˜̀, where χ is the Euler characteristic.

To obtain a computable invariant, one applies a tautological degree-preser
ving functor F : Foams/˜̀ → R-Mod, which associates to a web Γ the

set HomFoam/˜̀
(∅,Γ) of all morphisms from the empty 1-manifold ∅ to Γ,

and which associates to a homomorphism between two webs the obvious
homomorphism obtained by composition. The functor F mimics the web
skein relations (2.2) and (2.3), and extends in a straightforward manner
to the category Kof. F([D]) is an ordinary complex of graded R-modules
whose cohomology is an up-to-homotopy bigraded invariant of L, and whose
graded Euler characteristic is the quantum sl(2) polynomial P2(L).

3. Twin Frobenius algebras and singular 2-cobordisms

Let C be an arbitrary symmetric monoidal category with unit object
1 ∈ C. As examples of such a category, we are interested in the category
Vectk of vector spaces over a field k and k-linear maps, and in the category
R-Mod of R-modules and module homomorphisms, where R a commutative
ring; in particular, the category Ab of abelian groups is of interest for us.

In the next two subsections we generalize the concepts introduced in [8].

3.1. Enhanced twin Frobenius algebras. Recall that a Frobenius alge-
bra in C, (C,m, ι,∆, ε), is an associative algebra (C,m, ι) with unit ι : 1→
C and multiplication m : C ⊗ C → C which is also a coassociative alge-
bra (C,∆, ε) with counit ε : C → 1 and comultiplication ∆: C → C ⊗ C
satisfying (m⊗ IdC) ◦ (IdC ⊗∆) = ∆ ◦m = (IdC ⊗m) ◦ (∆⊗ IdC).

A Frobenius algebra (C,m, ι,∆, ε) is called commutative if m◦τ = m, and
is called symmetric if ε◦m = ε◦m◦τ, where τ : C⊗C → C⊗C, a⊗b 7→ b⊗a.
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A homomorhism of Frobenius algebras f : C → C ′ is a linear map which is
both a homomorphism of unital algebras and counital coalgebras.

Definition 1. An enhanced twin Frobenius algebra

eT := (C,W, z1, z
∗
1 , z2, z

∗
2)

in C consists of:

• a commutative Frobenius algebra C = (C,mC , ιC ,∆C , εC),
• a symmetric Frobenius algebra W = (W,mW , ιW ,∆W , εW ),
• four morphisms z1, z2 : C →W and z∗1 , z

∗
2 : W → C,

such that z1 and z2 are homomorphisms of algebra objects in C, and such
that the following hold for k = 1, 2:

(3.1) εC ◦mC ◦ (IdC ⊗z∗k) = εW ◦mW ◦ (zk ⊗ IdW ), (duality)

(3.2) mW ◦(IdW ⊗zk) = mW ◦τW,W ◦(IdW ⊗zk), (centrality condition)

(3.3) zk ◦mC ◦∆C ◦z∗k = mW ◦τW,W ◦∆W . (genus-one condition)

The first equality says that for each k = 1, 2, z∗k is the morphism dual to
zk (implying that z∗k is a homomorphism of coalgebras in C). If C = Vectk,
the second equality says that zk(C) is contained in the center of the algebra
W , for each k = 1, 2.

We remark that a twin Frobenius algebra, as introduced by the author
in [8], is a set (C,W, z, z∗) which mimics the laws of an enhanced twin
Frobenius algebra, with the difference that a twin Frobenius algebra involves
only one morphism z : C → W with dual z∗ : W → C. (Compare with a
knowledgeable Frobenius algebra introduced in [14]; see also [15].)

Definition 2. A homomorphism of enhanced twin Frobenius algebras is a
map

(C,W, z1, z
∗
1 , z2, z

∗
2)

(φ,ψ)−→ (C,W ,z1, z
∗
1, z2, z

∗
2)

consisting of a pair (φ, ψ) of Frobenius algebra homomorphisms φ : C → C
and ψ : W → W, such that zk ◦ φ = ψ ◦ zk and z∗k ◦ ψ = φ ◦ z∗k, for each
k = 1, 2.

The category of enhanced twin Frobenius algebras in C and their homo-
morphisms has a symmetric monoidal structure with respect to the tensor
product of two extended twin Frobenius algebras

eT = (C,W, z1, z
∗
1 , z2, z

∗
2) and eT = (C,W, z1, z

∗
1, z2, z

∗
2),

which is defined as

eT⊗ eT = (C ⊗R C,W ⊗RW, z1 ⊗ z1, z
∗
1 ⊗ z∗1, z2 ⊗ z2, z

∗
2 ⊗ z∗2).

The unit of the monoidal structure is (1,1, Id1, Id1, Id1, Id1).
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3.2. Singular cobordisms and the category Sing-2Cob. The cate-
gory of singular 2-cobordisms is an extension of the category 2Cob of 2-
dimensional cobordisms from oriented manifolds to piecewise oriented (but
globally oriented) manifolds. Singular 2-cobordisms are a particular type
of foams and may contain singular arcs and/or singular circles where ori-
entations disagree. What we call here Sing-2Cob is in fact a skeleton of
the category of singular 2-cobordisms, and is an extension of the category
with the same name introduced in [8], by allowing counterclockwise oriented
circles as well.

We fix a specific bi-web (a closed web with exactly two bivalent vertices)
and we denote it by 1. We also fix a positively oriented circle and a negatively
oriented circle, which we denote by 0+ and 0−, respectively.

1 = 0+ = 0− =

An object in Sing-2Cob is a finite sequence n = (n1, n2, . . . , nk) where
nj ∈ {0+, 0−, 1}. Thus n is a disjoint union of copies of the fixed bi-web
and oriented circles. The length of the sequence, denoted by |n| = k, can
be any nonnegative integer, and equals the number of disjoint connected
components of the object n. If |n| = 0, then n is the empty 1-manifold.

A morphism Σ: n→m in the category Sing-2Cob is a cobordism with
source n and target m, considered up to equivalences. The boundary of
Σ is ∂Σ = n ∪m, where n is n with opposite orientation. Two singular
cobordisms Σ1 and Σ2 are considered equivalent, and we write Σ1

∼= Σ2,
if there exists an orientation-preserving diffeomorphism Σ1 → Σ2 which
restricts to the identity on the boundary.

We read morphisms as cobordisms from top to bottom, by convention,
and we compose them by placing one on top the other. The concatenation
nqm := (n1, n2, . . . , n|n|,m1,m2, . . . ,m|m|) of sequences together with the
free union of singular 2-cobordisms endow the category Sing-2Cob with
the structure of a symmetric monoidal category.

The results in [8] can be easily extended to the new category Sing-2Cob,
and one acquires that every connected singular 2-cobordism in Sing-2Cob
can be obtained by composing the following cobordisms:

(3.4)

(3.5)

(3.6)
2

1
2

1

2

1

1

2

together with the identity cobordisms (that is, cylinders over the bi-web,
and over the positively oriented and negatively oriented circles) and the
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analogue of those depicted in (3.4) but with opposite orientation for the
boundary circles.

We use a dashed red curve to represent a singular arc that lies on the
back of a cobordisms; otherwise we use continuous red curves.

We draw the composite cobordisms 1

2 ◦ 2

1

and 2

1 ◦
2

1 as:

(3.7) 1

2 ◦ 2

1

= 2

1
2

1 ◦
2

1 =
2

1

There is a finite set of relations among the morphisms that mimic the
equations defining an enhanced twin Frobenius algebra. Specifically, the
following diffeomorphisms hold in Sing-2Cob (these can be verified as in
the proof of [8, Proposition 3]).

Proposition 1. The following relations hold in the symmetric monoidal
category Sing-2Cob:

(1) The oriented circles and form commutative Frobenius al-
gebra objects (we give below the relations for the negatively oriented
circle, but the reader should have in mind that there are similar re-
lations for the positively oriented circle):

∼= ∼= ∼=

∼= ∼= ∼=

∼= ∼= ∼=

(2) The bi-web forms a symmetric Frobenius algebra object:

∼= ∼= ∼=

∼= ∼= ∼=
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∼= ∼= ∼=

(3) The “zipper” cobordisms 2

1
and

2

1

form algebra homomorphisms:

2

1

2

1 ∼=
2

1

2

1

∼=

2

1

2

1

∼=
2

1

2

1
∼=

(4) The “cozipper” cobordism 2

1

is dual to the zipper 2

1
. Likewise,

the other cozipper 1

2

is dual to the zipper
2

1

:

2

1

∼=

2

1
1

2

∼=
2

1

(5) Centrality relations.

2

1 ∼=

2

1

2

1

∼=

2

1

(6) Genus-one relations.

2

1

1

2

∼= ∼=

1

2

1

2

As a result of the above relations, the following holds:
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Proposition 2. The category Sing-2Cob of singular 2-cobordisms is equiv-
alent to the symmetric monoidal category freely generated by an enhanced
twin Frobenius algebra.

3.3. The category eSing-2Cob. We extend the set of morphisms in the
category Sing-2Cob by allowing formal linear combinations of the original
morphisms—with coefficients in the ground field or ring (recall that the cat-
egory C is either Vectk or R-Mod, where k is a field and R a commutative
ring)—and extending the composition maps in the natural bilinear way. For
the remaining of the paper, we require that the ground field/ring contains
the fourth root of unity i.

We mod out the set of morphisms in Sing-2Cob by the following local
relations, and we denote the resulting category by eSing-2Cob:

(3.8)

2

1

2

1

= −i

2

1

2

1 = −i

(3.9)

1

2

2

1

= i
2

1

1

2 = i

A quick inspection reveals that relations (3.8)–(3.9) are particular cases
of the “curtain identities” (CI-1)–(CI-2). The reason for imposing the above
relations is motivated by our goal of constructing a TQFT-approach coho-
mology for links isomorphic to the (tautological) sl(2) foam cohomology,
thus this new theory must satisfy the local relations of the sl(2) foam co-
homology. This reason will become more transparent in Section 5, via the
‘resolution-simplification step’.

Remark 1. Considered as an element in the category eSing-2Cob, the
bi-web forms a commutative Frobenius algebra:

(3.8)
= i2 ∼= i2

2

1

2

1

2

1

2

1
∼= i2

(3.8)
=

Moreover, the “centrality relations” are implied by relations (3.8)-(3.9)
and hold with equality in eSing-2Cob. Furthermore, the “genus-one rela-
tions” take the following form in the new category eSing-2Cob:
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−

2

1

1

2

= = −

1

2

1

2

Noticing the minus signs in the above equations, we recall that the twin
TQFT that we mentioned in the introduction, and given in [8, Example
1], failed to satisfy the “genus-one condition” of a twin Frobenius algebra
because of a minus sign.

Remark 2. The imposed relations (3.8)-(3.9) imply that the zippers 2

1

and
2

1

are isomorphisms in the category eSing-2Cob, with inverses i 2

1

and −i 1

2

, respectively (compare with the isomorphisms (2.4)). It follows

that the cobordisms 2

1
and

2

1 are mutually inverse isomorphisms:

2

1

2

1
=

2

1

2

1

=

Proposition 2 reveals the algebraic structure of the category Sing-2Cob.
Then a natural question arises:

Question 1. What is the algebraic description of the category eSing-
2Cob?

The answer is given by the above two remarks, along with Proposition 1.
First we observe that in the category eSing-2Cob, not only the circle but
also the bi-web forms a commutative Frobenius algebra, and that z1 and iz∗1
must be mutually inverse isomorphisms, as well as z2 and −iz∗2 . That is:

(3.10) (iz∗k) ◦ zk = IdC , zk ◦ (iz∗k) = IdW , for k = 1, 2.

In particular, we have that z1 and z2 are algebra isomorphisms, while z∗1
and z∗2 are coalgebra isomorphisms such that f = z∗2 ◦ z1 and g = z∗1 ◦ z2 are
mutually inverse isomorphisms of algebra objects in C.

Second, the “centrality condition”

mW ◦ (IdW ⊗zk) = mW ◦ τW,W ◦ (IdW ⊗zk)
and the “genus-one condition” zk ◦mC ◦∆C ◦ z∗k = mW ◦ τW,W ◦∆W that
an enhanced twin Frobenius algebra is required to satisfy need not appear
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in the definition of the new algebra, as they are implied by the imposed
relations (3.10) (actually the genus-one condition ‘holds’ with a minus sign
in the new algebra; i.e., the new algebra satisfies −zk ◦ mC ◦ ∆C ◦ z∗k =
mW ◦ τW,W ◦∆W , for each k = 1, 2.)

We put these together and give a formal definition/description of the
algebraic structure governing the category eSing-2Cob.

Definition 3. An identical twin Frobenius algebra

iT := (C,W, z1, z
∗
1 , z2, z

∗
2)

in C consists of two commutative Frobenius algebras

C = (C,mC , ιC ,∆C , εC) and W = (W,mW , ιW ,∆W , εW )

and four morphisms z1, z2 : C →W and z∗1 , z
∗
2 : W → C, such that z1, z2 are

isomorphisms of algebra objects in C with dual (coalgebra) isomorphisms
z∗1 , z

∗
2 , respectively, and inverse isomorphisms iz∗1 ,−iz∗2 , respectively.

A homomorphism of identical twin Frobenius algebras and the tensor
product of two identical twin Frobenius algebras are defined similarly as
their analogues corresponding to enhanced twin Frobenius algebras (see Def-
inition 2).

Definition 4. An identical twin TQFT in C is a symmetric monoidal func-
tor eSing-2Cob → C. A homomorphism of identical twin TQFTs is a
monoidal natural transformation of such functors.

Given an identical twin TQFT, call it T , there is an associated identical
twin Frobenius algebra iT = (C,W, z1, z

∗
1 , z2, z

∗
2) such that T (∅) = 1 and

T (0−) = C = T (0+), T (1) = W . The structure maps of the algebra iT
are the images under T of the generators of eSing-2Cob, as explained in
Figure 1.

T : → ∆C , T : → mC , T : → ιC , T : → εC

T : → ∆C , T : → mC , T : → ιC , T : → εC

T : → ∆W , T : → mW , T : → ιW , T : → εW

T : 2

1

→ z1, T : 2

1 → z∗1 , T :
2

1 → z2, T : 1

2 → z∗2 .

Figure 1. The assignments of T on generators.

Proposition 3. The category eSing-2Cob is equivalent to the symmetric
monoidal category freely generated by an identical twin Frobenius algebra.
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Proof. The proof is similar to that of Theorem 3 in [8], and for the sake of
brevity, we leave the details to the enthusiastic reader. �

Corollary 1. The category of identical twin Frobenius algebras in C is
equivalent, as a symmetric monoidal category, to the category of identical
twin TQFTs in C.

Definition 5. Let Σ ∈ Sing-2Cob be a singular 2-cobordism. Define the
degree of Σ as deg(Σ) := −χ(Σ), where χ(Σ) is the Euler characteristic of
Σ.

The degree of a cobordism is additive under composition. We also re-
mark that the degree of multiplication/comultiplication cobordisms and
unit/counit cobordisms (the first two and last two cobordisms, respectively,
given in (3.4) and (3.5)) is 1 and −1, respectively, while the singular cobor-
disms depicted in (3.6) have degree zero.

Thus the category Sing-2Cob is now graded, and since relations (3.8)
and (3.9) are degree-homogeneous, so is the category eSing-2Cob.

4. An identical twin TQFT

We are ready to describe now the degree-preserving (identical twin) TQFT
which allows the recovery of the universal dot-free sl(2) foam cohomology
for links.

Let R = Z[1
2 , i][a, h] be the graded ring considered in Section 2, and let C

be the category R-Mod. Consider the R-module A = R[X]/(X2−hX−a)
with inclusion map ι : R→ A, ι(1) = 1, and make it graded by deg(1) = −1
and deg(X) = 1. Equip A with two commutative Frobenius structures

AC = (A,mC , ιC ,∆C , εC), AW = (A,mW , ιW ,∆W , εW ),

where ιC = ιW = ι. The multiplication maps mC ,mW : A ⊗ A → A are
given in the basis {1, X} by{
mC(1⊗X) = mC(X ⊗ 1) = mW (1⊗X) = mW (X ⊗ 1) = X

mC(1⊗ 1) = mW (1⊗ 1) = 1, mC(X ⊗X) = mW (X ⊗X) = hX + a.

The comultiplication maps ∆C : A → A ⊗ A and ∆W : A → A ⊗ A
are dual to the multiplication maps via the trace maps εC : A → R and
εC : A → R, respectively,{

εC(1) = 0

εC(X) = 1,

{
εW (1) = 0

εW (X) = −i,
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and are defined by the rules{
∆C(1) = 1⊗X +X ⊗ 1− h1⊗ 1

∆C(X) = X ⊗X + a1⊗ 1,{
∆W (1) = i(1⊗X +X ⊗ 1− h1⊗ 1)

∆W (X) = i(X ⊗X + a1⊗ 1).

We remark that AW is a twisting of AC . Specifically, the comultiplication
∆W and counit εW are obtained from ∆C and εC by ‘twisting’ them with
the invertible element −i ∈ A:

εW (x) = εC(−ix), ∆W (x) = ∆C((−i)−1x) = ∆C(ix), for all x ∈ A.

We define the following homomorphisms:

z1 : AC → AW ,

{
z1(1) = 1

z1(X) = X,

z∗1 : AW → AC ,

{
z∗1(1) = −i
z∗1(X) = −iX.

z2 : AC → AW ,

{
z2(1) = 1

z2(X) = h−X,

z∗2 : AW → AC ,

{
z∗2(1) = i

z∗2(X) = i(h−X).

Straightforward computations show that (AC ,AW , z1, z
∗
1 , z2, z

∗
2) satisfies the

axioms of an identical twin Frobenius algebra.
The corresponding identical twin TQFT T : eSing-2Cob → R-Mod

assigns the ground ring R to the empty 1-manifold, and assigns A⊗k to
an object n = (n1, n2, . . . , nk) in eSing-2Cob. The i-th factor of A⊗k is
endowed with the structure AC if ni = 0− = or ni = 0+ = , and
with the structure AW if ni = 1 = . On the generating morphisms of
the category eSing-2Cob, the functor T is defined as depicted in Figure 1.

Since (AC ,AW , z1, z
∗
1 , z2, z

∗
2) forms an identical twin Frobenius algebra,

the functor T respects the relations among the set of generators for eSing-
2Cob, and therefore, it is well defined. It is also easy to verify that T is
degree-preserving. (Note that mC ,mW and ∆C ,∆W are maps of degree 1,
while ιC , ιW and εC , εW are maps of degree −1.)

Proposition 4. The functor T satisfies the local relations ˜̀ of the universal
dot-free sl(2) foam theory.
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Proof. First, let us find the composite morphisms f = z∗2◦z1 and g = z∗1◦z2:

f : AC → AC ,

{
f(1) = i

f(X) = i(h−X),

g : AC → AC ,

{
g(1) = −i
g(X) = −i(h−X).

Then, notice that T
( )

= 2 since T
( )

= εC ◦mC ◦∆C ◦ ιC ,
and (εC ◦mC ◦∆C ◦ ιC)(1) = (εC ◦mC ◦∆C)(1) = εC(2X − h) = 2.

Also T
(

1

2

)
= 0 = T

( )
since (εC◦f◦ιC)(1) = 0 and (εC◦ιC)(1) =

εC(1) = 0.

We have that T
( )

= mC ◦∆C ◦mC ◦∆C ◦ ιC . Moreover,

(mC ◦∆C)(1) = mC(1⊗X +X ⊗ 1− h1⊗ 1) = 2X − h

and (mC ◦∆C)(X) = mC(X ⊗X + a1⊗ 1) = hX + 2a. Furthermore,

(mC ◦∆C ◦mC ◦∆C ◦ ιC)(1) = (mC ◦∆C)(2X − h)

= 2(hX + 2a)− h(2X − h)

= h2 + 4a = (h2 + 4a)ιC(1).

Therefore T
( )

= (h2 + 4a) T
( )

.

Furthermore,

(εC ◦ f ◦mC ◦∆C ◦ ιC)(1) = (εC ◦ f)(2X − h)

= εC(2i(h−X)− ih) = −2i,

which corresponds to the local relation T
(

2

1

)
= −2i.

Similar computations show that T
(

2

1

)
= 2i and T

(
2

1

)
= 0.

Finally, T

( )
+T

( )
= [ιC◦(εC◦mC◦∆C)]+[(mC◦∆C◦ιC)◦εC ].

Then

[ιC ◦ (εC ◦mC ◦∆C)](1) + [(mC ◦∆C ◦ ιC) ◦ εC ](1)

= (ιC ◦ εC)(2X − h) + 0 = 2,

and

[ιC ◦ (εC ◦mC ◦∆C)](X) + [(mC ◦∆C ◦ ιC) ◦ εC ](X)

= (ιC ◦ εC)(hX + 2a) + (mC ◦∆C)(1) = h+ (2X − h) = 2X.
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Therefore, the following holds:

T

( )
=

1

2
T

( )
+

1

2
T

( )
. �

Observe that i
2 [ιW ◦(εC◦mC◦∆C◦z∗1)]+ i

2 [(z1◦mC◦∆C◦ιC)◦εW ] = IdAW
,

implying that T satisfies the “cutting-neck” relation (CN) given in Section 2:

(4.1) T


 =

i

2
T


+

i

2
T


 .

Proposition 5. The R-module map αC : AC → R{1} ⊕R{−1} given by

αC =

(
T ( ), T

(
1

2
+
h

2

))t
realizes the isomorphism AC ∼= R{1} ⊕R{−1}.

Proof. First, we remark that αC is degree-preserving. Consider the R-
module map βC : R{1} ⊕R{−1} → AC given by

βC =

(
T
(

1

2
− h

2

)
, T
( ))

,

and notice that it is degree-preserving, and that it satisfies βC ◦ αC =

T
( )

= IdAC
and αC ◦ βC = IdR{1}⊕R{−1} . Therefore, αC and βC are

mutually inverse isomorphisms in R-Mod. �

Proposition 6. The R-module map αW : AW → R{1} ⊕R{−1} given by

αW =

(
T ( ), T

(
1

2
+
h

2

))t
realizes the isomorphism AW ∼= R{1} ⊕R{−1}.

Proof. First observe that αW is degree-preserving. Consider the R-module
map βW : R{1} ⊕R{−1} → AC given by

βW =

(
T
(
i

2
− ih

2

)
, T
(
i

))
.

We have that βW ◦ αW = T
( )

= IdAW
and αW ◦ βW = IdR{1}⊕R{−1} .

Therefore, αW and βW are mutually inverse isomorphisms in R-Mod. �
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Figure 2. Resolutions.

5. A new link cohomology

Given a plane diagram D representing an oriented link L, we construct
a cochain complex C(D) of graded modules over the commutative ring R
considered before, whose graded Euler characteristic is P2(L), the quantum
sl(2) polynomial of L.

Let I be the set of crossings in D, and n+ (respectively n−) be the number
of positive (respectively negative) crossings; let n = |I| = n+ + n−. We
associate to D an n-dimensional cube U described below, whose vertices
and edges are objects and morphisms, respectively, in the category eSing-
2Cob. Vertices of the cube are in one-to-one correspondence with subsets
of I.

We begin by associating to each crossing in D either the oriented reso-
lution or the singular resolution, as explained in Figure 2. To J ⊂ I we
associate a web ΓJ , namely the J-resolution of D, where the crossing k re-
ceives its 1-resolution if k ∈ J, otherwise it receives the 0-resolution. Each
resolution ΓJ is a disjoint union of oriented circles and closed webs with an
even number of vertices. Notice that these are exactly the webs decorat-
ing the vertices of the n-dimensional cube U in the sl(2) foam cohomology
construction.

Next step consists in simplifying each web component of each resolution
ΓJ by removing pairs of adjacent vertices of the same type, thus ‘imitating’
the web skein relations (2.3), until each web is replaced by a bi-web. Each
simplified resolution, call it ΓJ , is then a disjoint union of oriented circles
and bi-webs, and is an object in the category eSing-2Cob.

Number the components of each ΓJ by 1, . . . , kJ , with kJ ∈ N, and define

a sequence m(J) = (m
(J)
1 , . . . ,m

(J)
kJ

), where m
(J)
l = 0− or m

(J)
l = 0+ if the

l-th component is a negatively or positively oriented circle, respectively, and

m
(J)
l = 1 if the l-th component is a bi-web.

For every k ∈ I and J ⊂ I\{k}, the components of the resolutions ΓJ and
ΓJ∪k differ by either an oriented circle or a bi-web. Consider the singular
2-cobordism S(J,k) : ΓJ → ΓJ∪k which is a cylinder over ΓJ except for a
small neighborhood of the crossing k, where it looks like one of the following
singular cobordisms:
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(5.1)
2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

(5.2)

- 2

1

2

1

- 2

1

2

1

i
2

1 i
2

1 i
2

1

2

1

i
2

1

2

1

We define the n-dimensional cube U to have as vertices the sequences
m(J){2n+−n−−|J |}, and as edges the singular 2-cobordisms S(J,k) regarded
as morphisms in the category eSing-2Cob. Here {m} is the grading shift
operator that lowers the grading by m.

We remark that the resolution-simplification step used above suggests
that we need to impose the relations (3.8) and (3.9) right at the ‘topological
world’, before we apply any possible TQFT. (Compare again the web skein
relations (2.3) with the isomorphisms (2.4), and then with relations (3.8)-
(3.9).) Hence the cube U is regarded as lying in the category eSing-2Cob,
rather than Sing-2Cob.

The morphism decorating an edge of the cube U is a disjoint union of
a finite number of cylinders over an oriented circle and/or a bi-web with
a saddle cobordism S that looks like one of those in (5.1) or (5.2); such
a saddle cobordism S is a composition of generating morphisms of eSing-
2Cob. Relations (3.8) and (3.9), together with the fact that the bi-web
forms a commutative Frobenius algebra object in eSing-2Cob imply that
each face of U commutes.

Now that we have the topological picture, namely the cube U , we are
ready to apply the degree-preserving TQFT T : eSing-2Cob → R-Mod
given in Section 4, and turn the commutative cube U in eSing-2Cob into a
commutative cube T (U) in R-Mod. The degree shift of each vertex assures
that each edge of T (U) is a grading-preserving homomorphism.

We have seen that the functor T associates AC to both, positively and
negatively oriented circles. However, it will be useful to work with different
bases for AC , namely

T ( ) = 〈1, X〉R and T ( ) = 〈1, h−X〉R.

Under this convention for AC , the homomorphisms decorating the commu-
tative cube T (U) are given by the following rules (we omit here mW and
∆W , whose rules are already clear):
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T

 2

1

2

1

 = z1 ◦mC ◦ (g ⊗ IdAC
) :


1⊗ 1→ −i
1⊗X → −iX
(h−X)⊗ 1→ −iX
(h−X)⊗X → −i(hX + a)

T

 2

1

2

1

 = z1 ◦mC ◦ (IdAC
⊗ g) :


1⊗ 1→ −i
1⊗ (h−X)→ −iX
X ⊗ 1→ −iX
X ⊗ (h−X)→ −i(hX + a)

T

(
2

1

)
= mW ◦ (z1 ⊗ IdAW

)

= mW ◦ (IdAW
⊗ z1) = T

(
2

1

)
:


1⊗ 1→ 1

1⊗X → X

X ⊗ 1→ X

X ⊗X → hX + a

T

 2

1

2

1

 = mW ◦ ((z1 ◦ g)⊗ IdAW
) :


1⊗ 1→ −i
1⊗X → −iX
(h−X)⊗ 1→ −iX
(h−X)⊗X → −i(hX + a)

T

 2

1

2

1

 = mW ◦ (IdAW
⊗ (z1 ◦ g)) :


1⊗ 1→ −i
1⊗ (h−X)→ −iX
X ⊗ 1→ −iX
X ⊗ (h−X)→ −i(hX + a).

For the comultiplication type maps we have:

T

-
2

1

2

1

 :

{
1→ −[1⊗X + (h−X)⊗ 1− h1⊗ 1]

X → −[(h−X)⊗X + a1⊗ 1]

T

-
2

1

2

1

 :

{
1→ −[1⊗ (h−X) +X ⊗ 1− h1⊗ 1]

X → −[X ⊗ (h−X) + a1⊗ 1]

T

i
2

1

 = T

i
2

1

 :

{
1→ i(1⊗X +X ⊗ 1− h1⊗ 1)

X → i(X ⊗X + a1⊗ 1)
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T

i 2

1

2

1

 :

{
1→ −[1⊗X + (h−X)⊗ 1− h1⊗ 1]

X → −[(h−X)⊗X + a1⊗ 1]

T

i 2

1

2

1

 :

{
1→ −[1⊗ (h−X) +X ⊗ 1− h1⊗ 1]

X → −[X ⊗ (h−X) + a1⊗ 1].

We add minus signs to some maps to make each square face of T (U)
anti-commutes; an intrinsic way to do this can be found in [2, Section 2.7].

Finally, we form the total complex C(D) of the anti-commutative cube
T (U), in such a way that its first non-zero term T (Γ∅){2n+−n−} is placed
in the cohomological degree −n+. The complex C(D) is non-zero in coho-
mological degrees between −n+ and n−; the cochain object Cr−n+(D) is the
direct sum of all R-modules decorating the vertices of the cube T (U) with
height r. The complex C(D) is well defined up to isomorphisms; specifically,
it is independent of the ordering of crossings in D, and of the numbering of
components of any resolution.

Let Kom(R-Mod) be the category of complexes over R-Mod, and denote
by KR := Kom/h(R-Mod) its homotopy subcategory. Two chain complexes
in Kom(R-Mod) are homotopy equivalent if they are isomorphic in KR.

Theorem 1. If D and D′ are oriented link diagrams that are related by
a Reidemeister move, then the complexes C(D) and C(D′) are homotopy
equivalent. That is, C(D) and C(D′) are isomorphic in the category KR.

Proof. Reidemeister I. Consider diagrams D1 and D′1 that differ only in a
circular region as shown below.

D1 = D′1 =

The chain complex C(D1) associated to the diagram D1 has the form

C(D1) : 0 −→
[
T
( )

{2}
]

d−→
[
T
( )

{1}
]
−→ 0,

where the underlined object is at cohomological degree 0. Depending on the
shape of D1 (and D′1) outside the circular region, the differential d is the
tensor product of

T

−
2

1

2

1

 or T

i
2

1


with a finite number of identity maps IdAC

and IdAW
(since diagrams D1

and D′1 are identical outside the circular region). For simplicity, we will
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omit these identity maps. The complex C(D1) is isomorphic in KR to the
complex

0 −→
[
T
( )

{2}
] (

(IdAC ⊗αC,1) ◦ d
(IdAC

⊗αC,2) ◦ d

)
−−−−−−−−−−−−−−−−−→

 T
( )

{2}

T
( )

{0}

 −→ 0,

where the maps αC,1 and αC,2 are the components of the isomorphism αC
given in Proposition 5.

This complex decomposes into the direct sum of the complexes

0 −→
[
T
( )

{2}
]

(IdAC
⊗αC,1)◦d

−−−−−−−−−−→
[
T
( )

{2}
]
−→ 0

C(D′1) : 0 −→
[
T
( )]

−→ 0.

The morphism (IdAC
⊗αC,1) ◦ d is equal to

−T

( )
◦

2

1

2

1

 = −T

(
2

1

2

1

)

or

T

( )
◦

2

1

 = i T
( )

,

and, in either case, it is an isomorphism. Thus the first complex in the direct
sum above is acyclic, and C(D1) and C(D′1) are isomorphic in KR.

The invariance under the type I move containing a negative crossing can
be verified similarly.

Reidemeister IIa. Consider diagrams D2a and D′2a that differ in a circular
region, as represented below.

D2a = D′2a =
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The chain complex C(D2a) associated to the diagram D2a has the form:

0→
[
T
( )

{1}
]  d−1

1

d−1
2


−−−−−−−→

 T
( )
T
( )


(
d0

1

d0
2

)t

−−−−−−→
[
T
( )

{−1}
]
→ 0.

Using the result of Proposition 6, this complex is isomorphic to the complex:

0 −→
[
T
( )

{1}
]


(IdAW
⊗αW,1) ◦ d−1

1

(IdAW
⊗αW,2) ◦ d−1

1

d−1
2


−−−−−−−−−−−−−−−−−−−−→


T
( )

{1}

T
( )

{−1}

T
( )

{0}



d0

1 ◦ (IdAW
⊗βW,1)

d0
1 ◦ (IdAW

⊗βW,2)
d02


t

−−−−−−−−−−−−−−−−−−−→
[
T
( )

{−1}
]
−→ 0,

which decomposes into the following three complexes:

0 −→
[
T
( )

{1}
]

(IdAW
⊗αW,1)◦d−1

1−−−−−−−−−−−−→
[
T
( )

{1}
]
−→ 0

0 −→
[
T
( )

{−1}
]

d01◦(IdAW
⊗βW,2)

−−−−−−−−−−−→
[
T
( )

{−1}
]
−→ 0

C(D′2a) : 0 −→
[
T
( )]

−→ 0,

where αW,1, αW,2 and βW,1, βW,2 are the components of the isomorphisms
αW and βW appearing in Proposition 6. We have that:

d−1
1 = T

( )
and d0

1 = T
( )

,

(IdAW
⊗αW,1) ◦ d−1

1 = T
(( )

◦
)

= T
( )

,

d0
1 ◦ (IdAW

⊗βW,2) = T
(

◦
(
i

))
= i T

( )
.
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Thus (IdAW
⊗αW,1) ◦ d−1

1 and d0
1 ◦ (IdAW

⊗βW,2) are isomorphisms, and
consequently, the first two complexes above are acyclic. (Note that all dif-
ferentials above are tensored with a finite number of identity maps IdAC

and IdAW
.) Moreover, the last complex corresponds to the diagram D′2a.

Therefore, C(D2a) and C(D′2a) are isomorphic in KR.
Reidemeister IIb. Consider now diagrams D2b and D′2b that differ in a

circular region as shown below.

D2b = D′2b =

The chain complex associated to D2b has the form:

0 −→
[
T
( )

{1}
]
−→

 T
( )
T
( )

 −→ [
T
( )

{−1}
]
−→ 0.

As in the proof of the invariance under the Reidemeister IIa move, the
complex C(D2b) is isomorphic (via Proposition 5) to the complex which is
the direct sum of the following three complexes:

0 −→
[
T
( )

{1}
]
−→

[
T
( )

{1}
]
−→ 0

0 −→
[
T
( )

{−1}
]
−→

[
T
( )

{−1}
]
−→ 0

0 −→
[
T
( )

{−1}
]
−→ 0.

The first two complexes are acyclic, and the last one is isomorphic to C(D′2b).
Therefore, C(D2b) and C(D′2b) are isomorphic in the category KR.

Reidemeister III. We consider diagramsD3 andD′3 that differ in a circular
region as depicted below.

D3 =
3

1

2 D′3 =
3

2
1

The cube of (simplified) resolutions corresponding to the diagram D3 is
given in Figure 3, and that corresponding to D′3 in Figure 4. Note that the

resolutions Γ000 and Γ′000 are obtained by simplifying (or removing adjacent
pairs of vertices of the same type in) the original resolutions

Γ000 = and Γ′000 =
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corresponding to D3 and D′3, respectively. The reader will notice that we
drew a circle at the tail of those edges of the cubes that received an additional
minus sign (to make each square face anti-commutes).

000

!100

!010

!001

!101

!110

!011

!111!

Figure 3. The cube of resolutions of D3.

The complex C(D3) has the form

0 −→
[
T (Γ000){6}

]
−→

 T (Γ001){5}
T (Γ010){5}
T (Γ100){5}

 −→
 T (Γ011){4}
T (Γ101){4}
T (Γ110){4}


−→

[
T (Γ111){3}

]
−→ 0.

Using the isomorphism given in Proposition 6, we have that

T (Γ010){5} ∼= T (Γ000){6} ⊕ T (Γ110){4}.
Therefore the complex C(D3) is isomorphic to the complex which is the

direct sum of the contractible complexes

0 −→ T (Γ000){6}
∼=−→ T (Γ000){6} −→ 0

0 −→ T (Γ110){4}
∼=−→ T (Γ110){4} −→ 0

and the complex

C : 0 −→
[
T (Γ001){5}
T (Γ100){5}

]
d−2

−→
[
T (Γ011){4}
T (Γ101){4}

]
d−1

−→
[
T (Γ111){3}

]
−→ 0.
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’ !000

!010

!100

!001 !011

!101

!110

!111
’ 

’ 

’ 

’ ’ 

’ 

’ 

Figure 4. The cube of resolutions of D′3.

In other words, C(D3) and C are isomorphic in KR.
The complex C(D′3) has a similar form as C(D3), with the only difference

that the resolutions Γijk are replaced by Γ
′
ijk. Using the fact that,

T (Γ
′
010){5} ∼= T (Γ

′
000){6} ⊕ T (Γ

′
110){4},

we have that the complex C(D′3) is isomorphic to the complex

C′ : 0 −→

[
T (Γ

′
001){5}

T (Γ
′
100){5}

]
d′−2

−→

[
T (Γ

′
011){4}

T (Γ
′
101){4}

]
d′−1

−→
[
T (Γ

′
111){3}

]
−→ 0,

after stripping off the contractible direct summands

0 −→ T (Γ
′
000){6}

∼=−→ T (Γ
′
000){6} −→ 0,

0 −→ T (Γ
′
110){4}

∼=−→ T (Γ
′
110){4} −→ 0.

Thus, C(D′) is isomorphic to C′ in KR. It remains to show that com-
plexes C and C′ are isomorphic. We give the resolutions contained in these
complexes in Figure 5 and Figure 6.

Denote by d−2 =

(
f1 f3

f2 f4

)
and d−1 = (f5, f6) the differentials in C.

Similarly, let d′−2 =

(
g1 g3

g2 g4

)
and d′−1 = (g5, g6) be the differentials in

C′. Then f1 = g2, f2 = g1, f3 = g4 and f4 = g3. Moreover, f5 = −g6 and
f6 = −g5.
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001

!101

!111

100!

!011 ~= !110!

Figure 5. Resolutions forming the complex C.

001

!101’ 

!’ 111

100!’ 

!’ 011 ~= !110’ !’ 

Figure 6. Resolutions forming the complex C ′.

It is an easy exercise to check that the maps F : C → C′ and G : C′ → C
with components

F−2 = G−2 =

(
1 0
0 1

)
, F−1 = G−1 =

(
0 1
1 0

)
, F 0 = G0 = − Id

are chain maps realizing the isomorphism (in KR) between complexes C and
C′. The invariance under the considered version of the type III move follows.

Since the other oriented versions of the Reidemeister III move can be
obtained from the type III move described above and the type II moves, the
proof of invariance under the Reidemester moves is complete. �

Corollary 2. Let H(D) = ⊕i,j∈ZHi,j(D) be the cohomology groups of C(D).
Then the isomorphisms classes of the groups Hi,j(D) are invariants of L.

The following statement follows at once from construction.
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Proposition 7. The graded Euler characteristic of H(L) is the quantum
sl(2) polynomial of L:

P2(L) =
∑
i,j∈Z

(−1)iqj rk(Hi,j(L)).

Final conclusion and question. Our construction together with Proposi-
tion 4 imply that the link cohomology provided in this section is isomorphic
to the universal dot-free sl(2) foam cohomology. In particular, we gave a
description of the universal sl(2) foam cohomology using a 2-dimensional
TQFT characterized by an identical twin Frobenius algebra.

Is there a more natural sl(2) TQFT (co)homology construction that takes
as inputs webs with arbitrarily many pairs of bivalent vertices—thus a con-
struction that doesn’t require first a vertex-reduction (resolution-simplifica-
tion)? And if so, what is the associated algebra structure of that TQFT?

References

[1] Bar-Natan, Dror. On Khovanov’s categorification of the Jones polynomial. Al-
gebr. Geom. Topol. 2 (2002), 337–370. MR1917056 (2003h:57014), Zbl 0998.57016,
arXiv:math/0201043, doi: 10.2140/agt.2002.2.337.

[2] Bar-Natan, Dror. Khovanov’s homology for tangles and cobordisms. Geom.
Topol. 9 (2005), 1443–1499. MR2174270 (2006g:57017), Zbl 1084.57011,
doi: 10.2140/gt.2005.9.1443.

[3] Blanchet, Christian. An oriented model for Khovanov homology. J. Knot Theory
Ramifications 19, (2010), no. 2, 291–312. MR2647055 (2011f:57011), Zbl 1195.57024,
doi: 10.1142/S0218216510007863.

[4] Caprau, Carmen Livia. sl(2) tangle homology with a parameter and singular cobor-
disms. Algebr. Geom. Topol. 8 (2008), no. 2, 729–756. MR2443094 (2009g:57019), Zbl
1148.57016, doi: 10.2140/agt.2008.8.729.

[5] Caprau, Carmen. The universal sl(2) cohomology via webs and foams. Topology
Appl. 156, (2009), no. 9, 1684–1702. MR2521705 (2010g:57010), Zbl 1172.57003,
arXiv:0802.2848v2, doi: 10.1016/j.topol.2009.02.001.

[6] Caprau, Carmen. On the sl(2) foam cohomology computations. J. Knot The-
ory Ramifications 18, (2009), no. 9, 1313–1328. MR2569564 (2010k:57009), Zbl
1230.57011, arXiv:0805.4651, doi: 10.1142/S0218216509007427.

[7] Caprau, Carmen. Universal Khovanov-Rozansky sl(2) cohomology. J. Knot Theory
Ramifications 19 (2010), no. 6, 739–761. MR2665765 (2011m:57011), Zbl 1198.57006,
arXiv:0805.2755v1, doi: 10.1142/S0218216510008091.

[8] Caprau, Carmen. Twin TQFTs and Frobenius algebras. To appear in Journal of
Mathematics. arXiv:0901.2979v3.

[9] Clark, David; Morrison, Scott; Walker, Kevin. Fixing the functoriality
of Khovanov homology. Geom.Topol. 13 (2009), no. 3, 1499–1582. MR2496052
(2010k:57023), Zbl 1169.57012, arXiv:math/0701339v2, doi: 10.2140/gt.2009.13.1499.

[10] Khovanov, Mikhail. A categorification of the Jones polynomial. Duke Math.
J. 101 (2000), no. 3, 359–426. MR1740682 (2002j:57025), Zbl 0960.57005,
arXiv:math/9908171v2, doi: 10.1215/S0012-7094-00-10131-7.

[11] Khovanov, Mikhail. sl(3) link homology. Algebr. Geom. Topol. 4 (2004), 1045–
1081. MR2100691 (2005g:57032), Zbl 1159.57300, arXiv:math/0304375v2.

http://www.ams.org/mathscinet-getitem?mr=1917056
http://www.emis.de/cgi-bin/MATH-item?0998.57016
http://arXiv.org/abs/math/0201043
http://dx.doi.org/10.2140/agt.2002.2.337
http://www.ams.org/mathscinet-getitem?mr=2174270
http://www.emis.de/cgi-bin/MATH-item?1084.57011
http://dx.doi.org/10.2140/gt.2005.9.1443
http://www.ams.org/mathscinet-getitem?mr=2647055
http://www.emis.de/cgi-bin/MATH-item?1195.57024
http://dx.doi.org/10.1142/S0218216510007863
http://www.ams.org/mathscinet-getitem?mr=2443094
http://www.emis.de/cgi-bin/MATH-item?1148.57016
http://www.emis.de/cgi-bin/MATH-item?1148.57016
http://dx.doi.org/10.2140/agt.2008.8.729
http://www.ams.org/mathscinet-getitem?mr=2521705
http://www.emis.de/cgi-bin/MATH-item?1172.57003
http://arXiv.org/abs/0802.2848v2
http://dx.doi.org/10.1016/j.topol.2009.02.001
http://www.ams.org/mathscinet-getitem?mr=2569564
http://www.emis.de/cgi-bin/MATH-item?1230.57011
http://www.emis.de/cgi-bin/MATH-item?1230.57011
http://arXiv.org/abs/0805.4651
http://dx.doi.org/10.1142/S0218216509007427
http://www.ams.org/mathscinet-getitem?mr=2665765
http://www.emis.de/cgi-bin/MATH-item?1198.57006
http://arXiv.org/abs/0805.2755v1
http://dx.doi.org/10.1142/S0218216510008091
http://arXiv.org/abs/0901.2979v3
http://www.ams.org/mathscinet-getitem?mr=2496052
http://www.emis.de/cgi-bin/MATH-item?1169.57012
http://arXiv.org/abs/math/0701339v2
http://dx.doi.org/10.2140/gt.2009.13.1499
http://www.ams.org/mathscinet-getitem?mr=1740682
http://www.emis.de/cgi-bin/MATH-item?0960.57005
http://arXiv.org/abs/math/9908171v2
http://dx.doi.org/10.1215/S0012-7094-00-10131-7
http://www.ams.org/mathscinet-getitem?mr=2100691
http://www.emis.de/cgi-bin/MATH-item?1159.57300
http://arXiv.org/abs/math/0304375v2


90 CARMEN CAPRAU

[12] Khovanov, Mikhail; Rozansky, Lev. Matrix factorizations and link homology.
Fund. Math. 199 (2008), no. 1, 1-91. MR2391017 (2010a:57011), Zbl 1145.57009,
arXiv:math/0401268, doi: 10.4064/fm199-1-1.

[13] Krasner, Daniel. Equivariant sl(n)-link homology. Algebr. Geom. Topol. 10
(2010), no.1, 1–32. MR2580427 (2011d:57016), Zbl 1250.57014, arXiv:0804.3751,
doi: 10.2140/agt.2010.10.1.

[14] Lauda, Aaron; Pfeiffer, Hendryk. Open-closed strings: two-dimensional
extended TQFTs and Frobenius algebras. Topology Appl. 155 (2008), no.
7, 623–666. MR2395583 (2009g:57049), Zbl 1158.57038, arXiv:math/0510664v3,
doi: 10.1016/j.topol.2007.11.005.

[15] Lauda, Aaron; Pfeiffer, Hendryk. Open-closed TQFTs extend Khovanov
homology from links to tangles. J. Knot Theory Ramifications 18 (2009),
no. 1, 87–150. MR2490019 (2011c:57067), Zbl 1161.57018, arXiv:math/0606331,
doi: 10.1142/S0218216509006793.

[16] Lee, Eun Soo. An endomorphism of the Khovanov invariant. Adv. Math. 197 (2005),
no. 2, 554–586. MR2173845 (2006g:57024), Zbl 1080.57015, arXiv:math/0210213,
doi: 10.1016/j.aim.2004.10.015.

[17] Mackaay, Marco; Vaz, Pedro. The universal sl(3)-link homology. Al-
gebr.Geom.Topol. 7 (2007), 1135–1169. MR2336253 (2008f:57017), Zbl 1170.57011,
arXiv:math/0603307, doi: 10.2140/agt.2007.7.1135.

Department of Mathematics, California State University, 5245 N. Backer Ave.
M/S PB 108, Fresno, CA 93740-8001, USA
ccaprau@csufresno.edu

This paper is available via http://nyjm.albany.edu/j/2013/19-6.html.

http://www.ams.org/mathscinet-getitem?mr=2391017
http://www.emis.de/cgi-bin/MATH-item?1145.57009
http://arXiv.org/abs/math/0401268
http://dx.doi.org/10.4064/fm199-1-1
http://www.ams.org/mathscinet-getitem?mr=2580427
http://www.emis.de/cgi-bin/MATH-item?1250.57014
http://arXiv.org/abs/0804.3751
http://dx.doi.org/10.2140/agt.2010.10.1
http://www.ams.org/mathscinet-getitem?mr=2395583
http://www.emis.de/cgi-bin/MATH-item?1158.57038
http://arXiv.org/abs/math/0510664v3
http://dx.doi.org/10.1016/j.topol.2007.11.005
http://www.ams.org/mathscinet-getitem?mr=2490019
http://www.emis.de/cgi-bin/MATH-item?1161.57018
http://arXiv.org/abs/math/0606331
http://dx.doi.org/10.1142/S0218216509006793
http://www.ams.org/mathscinet-getitem?mr=2173845
http://www.emis.de/cgi-bin/MATH-item?1080.57015
http://arXiv.org/abs/math/0210213
http://dx.doi.org/10.1016/j.aim.2004.10.015
http://www.ams.org/mathscinet-getitem?mr=2336253
http://www.emis.de/cgi-bin/MATH-item?1170.57011
http://arXiv.org/abs/math/0603307
http://dx.doi.org/10.2140/agt.2007.7.1135
mailto:ccaprau@csufresno.edu
http://nyjm.albany.edu/j/2013/19-6.html

	1. Introduction
	2. Review of the universal dot-free sl(2) foam cohomology
	3. Twin Frobenius algebras and singular 2-cobordisms
	3.1. Enhanced twin Frobenius algebras
	3.2. Singular cobordisms and the category Sing-2Cob
	3.3. The category eSing-2Cob

	4. An identical twin TQFT
	5. A new link cohomology
	References

