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Every strongly summable ultrafilter on⊕
Z2 is sparse

David J. Fernández Bretón

Abstract. We investigate the possibility of the existence of nonsparse
strongly summable ultrafilters on certain abelian groups. In particular,
we show that every strongly summable ultrafilter on the countably in-
finite Boolean group is sparse. This answers a question of Hindman,
Steprāns and Strauss.
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1. Introduction

The concept of the Stone–Čech compactification of a semigroup has be-
come one of central importance, and has been studied extensively. Through-
out this paper, we think of the Stone–Čech compactification of a discrete
abelian semigroup G as the set βG of all ultrafilters on G, where the point
x ∈ G is identified with the principal ultrafilter {A ⊆ G | x ∈ A}, and the
basic open sets are those of the form Ā = {p ∈ βG | A ∈ p}, for A ⊆ G.
Then these sets are actually clopen, and Ā is really the closure in βG of the
set A, regarded as a subset of βG under the aforementioned identification
of points in G with principal ultrafilters. The semigroup operation + on G
is also extended by the formula

p+ q = {A ⊆ G | {x ∈ G | {y ∈ G | x+ y ∈ A} ∈ q} ∈ p}
which turns βG into a right topological semigroup, meaning that for each
p ∈ βG the mapping (·) + p : βG −→ βG is continuous (note that the
extended operation + need not be commutative, and, even if G is a group,
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elements p ∈ G∗ = βG \G do not necessarily have inverses). The details of
this construction (as well as a lot more information, along with applications)
can be seen in [6]. In this paper, we will focus mainly on the case when G
is a group.

The lowercase roman letters p, q, r are reserved for ultrafilters, while the
uppercase roman letters A,B,C,D, with or without subscripts, will always
denote subsets of the abelian group at hand. We will use the von Neumann
natural numbers, i.e., a natural number n is viewed as the set {0, . . . , n−1}
(with 0 equal to ∅, the empty set); and ω will denote the set of finite
ordinals, i.e., the set of natural numbers along with zero (thus the symbols
∈ and < mean the same when applied to natural numbers, 0, and to ω
itself). The lowercase roman letters i, j, k, l,m, n, with or without subscript,
will be reserved to denote elements of ω. The lowercase roman letters a, b, c,
with or without subscript, will stand for elements of [ω]<ω, i.e., for finite
subsets of ω. The letters M and N , with or without subscripts, will in
general be reserved for denoting (finite or infinite) subsets of ω. Given a
subset M ⊆ ω, [M ]<ω will denote the set of finite subsets of M , and [M ]ω

denotes the set of infinite subsets of M . Of the groups that we study here,
one of the most important ones is the circle group T = R/Z. When dealing
with this group, we will identify its elements (which are cosets modulo Z)
with their unique representative t satisfying 0 ≤ t < 1. Therefore, when we
refer to an element of T as a real number in [0, 1), we really mean the coset
of that number modulo Z.

Definition 1.1. If G is an abelian semigroup, we say that an ultrafilter
p ∈ βG is strongly summable if it has a base of FS-sets, i.e., if for every
A ∈ p there exists a sequence ~x = 〈xn | n < ω〉 such that p 3 FS(~x) ⊆ A,
where

FS(~x) =

{∑
n∈a

xn

∣∣∣∣ a ∈ [ω]<ω \ {∅}

}
denotes the set of finite sums of the sequence ~x.

Note that if a strongly summable ultrafilter is principal, then it must
actually be 0. Nonprincipal strongly summable ultrafilters on (ω,+) were
first constructed, under CH, by Neil Hindman in [3], although at that time
the terminology was still not in use. Their importance at first came from the
fact that they are examples of idempotents in βω, but among idempotents
they are special in that the largest subgroup of ω∗ = βω \ ω containing one
of them as the identity is just a copy of Z. More concretely, [6, Th. 12.42]
establishes that if p ∈ ω∗ is a strongly summable ultrafilter, and q, r ∈ ω∗ are
such that q + r = r+ q = p, then q, r ∈ Z + p. In [4], the authors generalize
some results previously only known to hold for ultrafilters on βω or βZ. In
particular, they proved there that every strongly summable ultrafilter p on
any abelian group G is an idempotent ([4, Th. 2.3]). And [4, Th. 4.6] states
that if G can be embedded in T, then whenever q, r ∈ G∗ = βG\G are such
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that q + r = r + q = p, it must be the case that q, r ∈ G+ p. It is possible
to get a slightly stronger result if one strengthens the definition of strongly
summable.

Definition 1.2. An ultrafilter p ∈ βG is sparse if for every A ∈ p there exist
two sequences ~x = 〈xn | n < ω〉, ~y = 〈yn | n < ω〉, where ~y is a subsequence
of ~x such that {xn | n < ω} \ {yn | n < ω} is infinite, FS(~x) ⊆ A, and
FS(~y) ∈ p.

Then obviously every sparse ultrafilter will be nonprincipal and strongly
summable. And ([4, Th. 4.5]) if G can be embedded in T and p ∈ G∗ is
sparse, then whenever q, r ∈ G∗ are such that q+ r = p, it must be the case
that q, r ∈ G+ p.

In [5], the authors investigate the different kinds of abelian semigroups
on which every nonprincipal strongly summable ultrafilter must be sparse.
For example, every nonprincipal strongly summable ultrafilter p ∈ ω∗ must
actually be sparse (this follows from [5, Th. 3.2] together with either [6,
Lemmas 12.20, 12.32] or [1, Lemmas 1A, 1C]). Thus the above result about
p being expressible as a sum only trivially holds for all nonprincipal strongly
summable ultrafilters on ω. More generally, [5, Th. 4.2] establishes that
if S is a countable subsemigroup of T, then every nonprincipal strongly
summable ultrafilter on S is sparse. After, they build on this to prove a
more general result.

Theorem 1.3 ([5], Th. 4.5). Let S be a countable subsemigroup of
⊕

n<ω T
and let p be a nonprincipal strongly summable ultrafilter on S. If{

x ∈ S
∣∣∣∣ πmin(x)(x) 6= 1

2

}
∈ p,

then p must be sparse (here min(x) denotes the least i such that πi(x) is
nonzero).

So, for example, this theorem, as well as the method for proving it, cannot
be applied if p contains the set of x ∈

⊕
n<ω T all of whose nonzero entries

equal 1/2. This set is isomorphic to the countably infinite Boolean group⊕
n<ω Z2. While [5] was still a preprint, it contained the question of whether

it is consistent with ZFC that there exists a nonprincipal nonsparse strongly
summable ultrafilter on

⊕
n<ω Z2. This question is answered in the negative

in section 2, while section 3 gives a slight improvement of [5, Cor. 4.6].

2. Strongly summable ultrafilters in the Boolean group

By the Boolean group we mean the unique (up to isomorphism) countably
infinite group all of whose nonidentity elements have order 2. This group
is usually thought of as the direct sum of countably many copies of Z2.
However, we will think of it as the group whose underlying set is [ω]<ω,



120 D. FERNÁNDEZ

equipped with the symmetric difference 4 as the group operation. For
(an)n<ω ∈

⊕
n<ω Z2, we can define the support of (an)n<ω by

supp(an)n<ω = {n < ω | an = 1},

so that the mapping (an)n<ω 7−→ supp(an)n<ω is an isomorphism from⊕
n<ω Z2 onto [ω]<ω.
When dealing with FS-sets on this group, we will talk about sets instead

of sequences. Thus, if ~x = 〈xn | n < ω〉 is a sequence of elements of [ω]<ω,
and X = {xn | n < ω} is the range of that sequence, then instead of FS(~x)
we will write F4(X), the set of “finite symmetric differences”, in order to
emphasize that the elements of our group are sets and that their “sum”
actually corresponds to taking symmetric differences, and using the fact
that, even if the sequence ~x is not injective, that does not alter the resulting
FS-set. This means that, for example, if xi = xj , and i, j ∈ a for i 6= j, then∑

k∈a xk =
∑

k∈a\{i,j} xk, due to the fact that every element of our group at

hand has order 2. We will use the uppercase roman letters X,Y, Z to denote
infinite subsets of [ω]<ω whenever we are interested in considering their sets
of finite symmetric differences. The main result of this section, and of this
paper, is the following theorem.

Theorem 2.1. Let p be a nonprincipal strongly summable ultrafilter on
[ω]<ω. Then, p is sparse.

In order to prove this result, we need first of all a lemma which tells us
that weakly summable ultrafilters in [ω]<ω have a property that is somewhat
analogous to that of extending the Fréchet filter. Recall that an ultrafilter
p on an abelian semigroup G is weakly summable if for every A ∈ p there is
a sequence ~x of elements of G such that FS(~x) ⊆ A. Thus every strongly
summable ultrafilter is weakly summable, and actually ([6, Th. 12.17]) every
idempotent ultrafilter on an arbitrary semigroup is weakly summable (and
in fact [6, Th. 12.17] an ultrafilter is weakly summable if and only if it is
a closure point in βG of the set of idempotents). Notice that a principal
weakly summable ultrafilter must be idempotent, in particular if G is a
group then the only principal weakly summable ultrafilter is the one that
corresponds to the identity element.

Lemma 2.2. Let p be a weakly summable ultrafilter on [ω]<ω. Then for any
n < ω, there exists an A ∈ p such that n /∈

⋃
A.

Proof. If p is principal, then {∅} ∈ p will do. Otherwise, let

A0 = {a ∈ [ω]<ω | n /∈ a},
A1 = [ω]<ω \A0 = {a ∈ [ω]<ω | n ∈ a}.

There is j ∈ 2 such that Aj ∈ p. But j cannot equal 1, for otherwise, since
p is weakly summable, there would be an infinite set X ⊆ [ω]<ω such that
F4(X) ⊆ A1, so if x, y ∈ X are two distinct elements, we have that n ∈ x
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and n ∈ y, thus n /∈ x 4 y ∈ F4(X) ⊆ A1, a contradiction. Therefore
A0 ∈ p, and certainly it is true that n /∈

⋃
A0. �

Corollary 2.3. If p is a weakly summable ultrafilter, then for any finite
subset a of ω, there is A ∈ p such that

⋃
A is disjoint from a.

Proof. If p is principal, then {∅} ∈ p will do. Otherwise, for each n ∈ a,
choose An ∈ p such that n /∈

⋃
An. Then p 3 A =

⋂
n∈a

An, and certainly

this set is as required. �

Originally, the author had a much more involved proof for the previous
corollary, whith ideas similar to those of [5, Th. 2.6] and [7, Th. 4], until
he came up with the much simpler one that is presented above.

The fact that all elements of [ω]<ω have order 2 has some remarkable
consequences, amongst which the following is relevant for our purposes.

Lemma 2.4. Let X ⊆ [ω]<ω. Then, F4(F4(X)) = F4(X).

Proof. The “⊇” part of the equality follows from the fact that X ⊆ F4(X),
and holds in any (semi)group. Now let us illustrate the “⊆” part with the
case where we add two finite sums. Thus let a, b ∈ [X]<ω \ {∅} be distinct,
and notice that, since every element in our group at hand has order two, the
following holds: ∑

x∈a
x+

∑
y∈b

y =
∑
z∈a4b

z ∈ F4(X),

and from this it is easy to conclude, by induction, the desired result. �

Now in order to prove our main result, namely Theorem 2.1, let p be a
nonprincipal strongly summable ultrafilter on [ω]<ω. We want to show that
p is sparse, thus pick A ∈ p, and pick Z such that p 3 F4(Z) ⊆ A. We
would like to find some sets X,Y such that Y ⊆ X, F4(X) ⊆ A, F4(Y ) ∈ p
and X \ Y is infinite. We will do so as follows.

Claim 2.5. It is possible to find a Y such that Y ⊆ F4(Z), F4(Y ) ∈ p,
and such that there are infinitely many z ∈ Z with z /∈ Y .

Proof of Theorem 2.1 from Claim 2.5. Let X = Y ∪ Z. Claim 2.5
guarantees that X \ Y is infinite. Moreover F4(Y ) ∈ p, and now by
Lemma 2.4 we get that F4(X) ⊆ F4(F4(Z)) = F4(Z) ⊆ A, and we
are done. �

Thus, the only thing that remains to be proved is Claim 2.5.

Proof of Claim 2.5. Consider the set lim sup(Z) which contains exactly
those n < ω such that n ∈ z for infinitely many distinct z ∈ Z. Then if this
set is nonempty, say n ∈ lim sup(Z), we can use Lemma 2.2 to get a B ∈ p
such that n /∈

⋃
B. Since p is strongly summable, we can find a Y such

that p 3 F4(Y ) ⊆ B ∩ F4(Z). Then Y ⊆ F4(Y ) ⊆ F4(Z), and for each
z ∈ Z containing n (and by assumption there are infinitely many such) we
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have that z /∈ Y , because otherwise we would have n ∈
⋃
B contradicting

our choice of n and B.
The other case is when lim sup(Z) = ∅. In this case, let M =

⋃
Z. Then

M is an infinite subset of ω, with the property that each n ∈M is contained
in only finitely many z ∈ Z; and we will construct by recursion a very special
subset of M . Start by letting m0 = min(M), Z0 = {z ∈ Z | m0 ∈ z} and
N0 =

⋃
Z0. Then both Z0, N0 are finite and nonempty (although Z0 is a

subset of [ω]<ω, whilst N0 is a subset of ω). Now recursively define

mn+1 = min

M \ ⋃
k≤n

Nk

 ,

Zn+1 = {z ∈ Z | mn+1 ∈ z}, and Nn+1 =
⋃
Zn+1. Then again Zn+1 is

finite, nonempty, and disjoint from all previous Zk. Also Nn+1 is finite and
nonempty, although the Nk need not be disjoint, and of course mn+1 > mn.
Now notice that Z ′ =

⋃
k<ω

Zk is an infinite subset of Z, and if z ∈ Zk, then

z∩{mn | n < ω} = {mk}. Thus if we let N = {m2n | n < ω}, then for every
z ∈ Z ′, z ∩ N will be nonempty if and only if z ∈ Zk for some even index
k. Let B0 = {s ∈ [ω]<ω | s ∩ N = ∅} and B1 = [ω]<ω \ B0. Now notice
that whenever z ∈ Zk for some k ≡ i(mod 2), we must have that z /∈ Bi.
Thus, if we let i ∈ 2 be such that Bi ∈ p, we will have that z /∈ Bi for all
z ∈

⋃
n<ω

Z2n+i, and there are infinitely many such. Now using the fact that p

is strongly summable, just pick Y such that p 3 F4(Y ) ⊆ Bi ∩ F4(Z). �

I am thankful to Juris Steprāns for pointing out an error in an earlier
version of this proof, as well as to the anonymous referee for useful comments
on it.

3. Existence of nonsparse strongly summable ultrafilters

In this section we will investigate a necessary condition for the existence
of a nonsparse strongly summable ultrafilter on some abelian group G. This
represents some partial progress towards answering [5, Question 4.12], and
sheds some light on what an answer to that question might look like.

Let G be any abelian group, S a subsemigroup of G, and p ∈ βG an
ultrafilter such that S ∈ p. Then p � S = p ∩P(S) will be an ultrafilter on
S, and it is easy to see that p � S is a nonprincipal ultrafilter if and only
if p is. It is also reasonably straightforward to see that p � S is strongly
summable if and only if p is, and also that p � S is sparse if and only
if p is, because A ∈ p if and only if A ∩ S ∈ p � S. Now if G is any
infinite abelian group, and p ∈ βG is a strongly summable ultrafilter, then
by definition, there is a sequence ~x = 〈xn | n < ω〉 such that FS(~x) ∈ p. If
we let S denote the subsemigroup of G generated by {xn | n < ω}, then it
must be the case that S is countable (and cancellative). Since FS(~x) ⊆ S,
then S ∈ p, and thus q = p � S will be strongly summable. Moreover the
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question of whether p is sparse reduces to the question of whether q is sparse.
Thus, when investigating the possibility of a strongly summable ultrafilter
being nonsparse on an arbitrary abelian group, we may as well focus our
attention on strongly summable ultrafilters on countable cancellative abelian
semigroups.

Now if S is a countable cancellative abelian semigroup, then it can be
embedded in a countable abelian group H (just in the same way that (N,+)
can be embedded into (Z,+), or (Z\{0}, ·) into (Q\{0}, ·)). And it is a well-
known result (see, e.g., [2, Th. 24.1], [8, 4.1.6], or [9, Th. 9.23]) that every
abelian group can be embedded in a divisible group; moreover, each divisible
group is a direct sum of copies of Q and of quasicyclic groups ([2, Th. 23.1],
[8, 4.1.5], or [9, Th. 9.14]). Since Q, as well as all quasicyclic groups, can
certainly be embedded in T, the conclusion is that every countable abelian
group H can be embedded in the direct sum of countably many circle groups
G =

⊕
n<ω T. (From now on, G will denote that group). Thus we can think

of S as a subset of G, and if q ∈ βS is an ultrafilter, then by letting p be
the filter on G generated by q, we will actually get an ultrafilter. Moreover
S ∈ p, and q = p � S, so q will be strongly summable if and only if p is.
And again, the question of whether q is sparse reduces to the question of
whether p is sparse. Therefore, the whole investigation of whether there is a
nonsparse strongly summable ultrafilter on some abelian group (or abelian
cancellative semigroup) reduces to the question of whether there exists a
nonsparse strongly summable ultrafilter on G.

Our starting point will be the following Theorem of Hindman, Steprāns
and Strauss.

Theorem 3.1 ([5], Cor. 4.6). Let p be a nonsparse nonprincipal strongly
summable ultrafilter on G. Then p contains the set of elements of G whose
order is some power of 2.

It is not hard to see that the set of elements of G whose order is a power
of two is exactly H =

⊕
n<ω T[2∞], where

T[2∞] =

{
t ∈ T

∣∣∣∣ (∃m,n ∈ ω)
(
t =

m

2n

)}
is the quasicyclic 2-group (also known as the Prüfer group of type 2∞). From
now on we will focus on strongly summable ultrafilters on that group (which
we will keep denoting by H). We will also be using the groups

T[2n] =

{
t ∈ T

∣∣∣∣ (∃m ∈ ω)
(
t =

m

2n

)}
∼= Z2n ,

the isomorphism being given by m
2n 7−→ m (whenever we refer to a number

l ∈ Z as an element of Zk, we really mean its coset modulo k). Notice that
if n < m < ω, then T[2n] ⊆ T[2m], and T[2∞] =

⋃
n<ω

T[2n].

Before stating our first lemma, we need to recall a definition.
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Definition 3.2 ([5], Def. 3.1). A sequence ~x on an abelian semigroup S is
said to satisfy strong uniqueness of finite sums if for each a, b ∈ [ω]<ω \{∅}:

• If
∑

k∈a xk =
∑

k∈b xk then a = b.
• If

∑
k∈a xk +

∑
k∈b xk ∈ FS(~x), then a ∩ b = ∅.

By [5, Th. 3.2], if p is a nonprincipal ultrafilter, and for each A ∈ p
there is a sequence ~x satisfying strong uniqueness of finite sums such that
p 3 FS(~x) ⊆ A, then p is sparse.

Lemma 3.3. Let p be a nonsparse strongly summable ultrafilter on H. Then
for each n < ω, the set Bn = π−1n [T[2]] = {x ∈ H | πn(x) ∈ {0, 1/2}} ∈ p.

Proof. We proceed by contraposition, so let us assume that there is n < ω
such that Bn /∈ p, and, essentially without loss of generality, let us also
assume that {x ∈ H | πn(x) ∈ (0, 1/2)} ∈ p. Pick j ∈ 3 such that Xj ∈ p,
where

Xj =

{
x ∈ H

∣∣∣∣ πn(x) ∈
⋃
m<ω

[
1

23m+j+2
,

1

23m+j+1

)}
,

i.e., thinking of πn(x) as a number in (0, 1/2) written in binary notation,
its first digits will be 0.0 and then there will be an infinite string of zeroes
and ones. Then x ∈ Xj if and only if the first such nonzero digit appears
in a position that is congruent with j modulo 3. Let C ∈ p, and let ~x be
a sequence of elements of H satisfying p 3 FS(~x) ⊆ C ∩ Xj . Note that
if l 6= k and for some m, we have that 1

23m+j+2 ≤ πn(xl) <
1

23m+j+1 and
1

23m+j+2 ≤ πn(xk) <
1

23m+j+1 , then 1
23m+j+1 ≤ πn(xl + xk) <

1
23m+j and so

xl + xk /∈ Xj , which is impossible. Thus there is at most one πn(xk) in each
interval

[
1

23m+j+2 ,
1

23m+j+1

)
(the positions of the first nonzero digits of distinct

πn(xk) are distinct), so we may assume that the sequence ~x is arranged in
such a way that k < l implies πn(xk) > πn(xl) (~x is arranged in increasing
order of its first nonzero digit in the n-th projection). Consequently, for
each k < ω we have that πn(xk) > 4πn(xk+1) and therefore πn(xk) >
3
∑∞

l=k+1 πn(xl). This is easily seen to imply that for a, b ∈ [ω]<ω \ {∅} and
for ε : a −→ {1, 2}, δ : b −→ {1, 2}, if

∑
k∈a ε(k)πn(xk) =

∑
k∈b δ(k)πn(xk)

then a = b and ε = δ. And of course this implies that for a, b ∈ [ω]<ω \ {∅}
and for ε : a −→ {1, 2}, δ : b −→ {1, 2}, if

∑
k∈a ε(k)xk =

∑
k∈b δ(k)xk

then a = b and ε = δ. The latter statement in turn easily implies that the
sequence ~x satisfies strong uniqueness of finite sums, hence, by [5, Th. 3.2],
p must be sparse. �

The following lemma is stated in more generality than will actually be
needed. Notice that we can recover Lemma 2.2 as a particular case of it.

Lemma 3.4. Let p be a weakly summable ultrafilter on H, and assume
that for some n < ω there is an A ∈ p such that πn[A] is finite. Then
{x ∈ G | πn(x) = 0} ∈ p.
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Proof. Enumerate the finite set πn[A] = {g0, . . . , gk−1} and choose i < k
such that Ai = {x ∈ A | πn(x) = gi} ∈ p. Since p is weakly summable, we
can pick a sequence ~x of elements of G such that FS(~x) ⊆ Ai. But then, for
example, x0, x1, x0 + x1 ∈ Ai, thus gi = πn(x0 + x1) = πn(x0) + πn(x1) =
gi + gi and this implies that gi = 0. �

Corollary 3.5. Let p be a nonsparse strongly summable ultrafilter on H.
Then for each n < ω, {x ∈ H | πn(x) = 0} ∈ p.

Proof. Just put together Lemmas 3.3 and 3.4. �

In what follows we will use [5, Th. 4.5], which says that if p is a nonprin-
cipal, strongly summable ultrafilter on a subsemigroup S of G =

⊕
n<ω T,

and if
{x ∈ S \ {0} | πmin(x)(x) 6= 1/2} ∈ p

(where min(x) denotes the least n such that πn(x) 6= 0), then there exists
an X ∈ p such that any sequence ~x with FS(~x) ⊆ X satisfies strong unique-
ness of finite sums (and in particular p is sparse). Now assume that p is a
nonprincipal, nonsparse strongly summable ultrafilter on H. Notice that p
cannot contain the set {x ∈ G | (∀n < ω)(πn(x) ∈ {0, 1/2})} =

⊕
n<ω T[2],

because this set is a copy of
⊕

n<ω Z2 and hence if p contains it, that would
induce a strongly summable ultrafilter q on the Boolean group, which by
Theorem 2.1 must be sparse and therefore p will also be sparse. Hence p
must contain the set C = {x ∈ G | (∃n < ω)(πn(x) /∈ {0, 1/2})}. For x ∈ C,
let ρ(x) denote the least n such that πn(x) /∈ {0, 1/2}.

Lemma 3.6. Let p be a strongly summable ultrafilter on H. If

{x ∈ C | πρ(x)(x) /∈ {1/4, 3/4}} ∈ p
then p is sparse.

Proof. Consider the morphism ϕ : H −→ H given by ϕ(x) = 2x, whose
kernel is exactly

⊕
n<ω T[2]. Since the latter is not an element of p, then

ϕ(p) = (βϕ)(p) (i.e., the image of p under the continuous extension of ϕ :
H −→ βH to βH, which is given by {A ⊆ H | ϕ−1[A] ∈ p}) is a nonprincipal
ultrafilter. Moreover, since p is strongly summable, by [5, Lemma 4.4], so is
ϕ(p). Now notice that for x ∈ H \ ker(ϕ) = C, we have ρ(x) = min(ϕ(x)).
Thus ϕ(p) contains the set {x ∈ H \ {0} | πmin(x)(x) 6= 1/2}, since its
preimage under ϕ is exactly {x ∈ C | πρ(x)(x) /∈ {1/4, 3/4}}. Therefore by
[5, Th. 4.5], there is a set X ∈ ϕ(p) such that whenever FS(~y) ⊆ X, y
must satisfy strong uniqueness of finite sums. Now for A ∈ p, we can pick
a sequence ~x such that p 3 FS(~x) ⊆ A ∩ ϕ−1[X]. Then if we let ~y be the
sequence given by yn = ϕ(xn), we get that FS(~y) = ϕ[FS(~x)] ⊆ X, thus
~y satisfies strong uniqueness of finite sums. It is not hard to see that this
implies that ~x satisfies strong uniqueness of finite sums as well, thus p has a
basis of sets of the form FS(~x) for sequences ~x satisfying strong uniqueness
of finite sums. Therefore by [5, Th. 3.2], p is sparse. �
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Now we are ready to state the main result of this section.

Theorem 3.7. Assume that there exists a nonsparse strongly summable ul-
trafilter p on H. Then there exists a sequence ~n = 〈ni | i < ω〉 of natural
numbers such that

⊕
n<ω T[2ni ] ∈ p. In particular, if there exists a (nonprin-

cipal) nonsparse strongly summable ultrafilter on some abelian cancellative
semigroup, then there exists one on

⊕
n<ω Z2ni , for some sequence ~n.

Proof. Let p be a nonprincipal, nonsparse strongly summable ultrafilter on
H. As was pointed out above, p cannot contain the set

{x ∈ G | (∀n < ω)(πn(x) ∈ {0, 1/2})} =
⊕
n<ω

T[2],

hence C = {x ∈ G | (∃n < ω)(πn(x) /∈ {0, 1/2})} ∈ p. Moreover by
Lemma 3.6, C0 = {x ∈ C | πρ(x)(x) ∈ {1/4, 3/4}} ∈ p. Now C0 = C1 ∪ C3,
where Ci = {x ∈ C0 | πρ(x)(x) = i/4}. Essentially without loss of generality,
we can assume that C1 ∈ p. Now choose a sequence ~x with p 3 FS(~x) ⊆ C1,
and for i < ω letMi = {n < ω | ρ(xn) = i} (so n ∈Mi implies πi(xn) = 1/4).

Claim 3.8. For each i < ω, |Mi| ≤ 2.

Proof of Claim. Assume, by way of contradiction, that there are pairwise
distinct n,m, k ∈ Mi. Let x = xn + xm + xk. For j < i, we have that
πj(x) ∈ {0, 1/2}, because πj(xn), πj(xm), πj(xk) ∈ {0, 1/2}. On the other
hand, πi(xn) = πi(xm) = πi(xk) = 1/4 thus πi(x) = 3/4, so ρ(x) = i and
x ∈ C3, which is a contradiction. �

Thus, by rearranging the sequence if necessary, we may assume that i < j
and n ∈Mi,m ∈Mj implies that n < m. Equivalently, n < m implies that
ρ(xn) ≤ ρ(xm), where the inequality is strict if m > n+ 1.

Claim 3.9. Let n < m < ω and assume that i = ρ(xn) < ρ(xm) (which
may or may not hold if m = n + 1, but must hold if m > n + 1). Then
πi(xm) = 0.

Proof of Claim. Let x = xn + xm. For j < i, we since πj(xn), πj(xm) ∈
{0, 1/2} we have that πj(x) ∈ {0, 1/2}. On the other hand, πi(xn) = 1/4
while πi(xm) ∈ {0, 1/2}, so πi(x) ∈ {1/4, 3/4}. Hence ρ(x) = i, now since
x ∈ C1, whe must have πi(x) = 1/4, and the only way that this can happen
is if πi(xm) = 0. �

Claim 3.10. For every i < ω, the set {πi(xn) | n < ω} is finite.

Proof of Claim. Let i < ω. We have two cases according to whether Mi

is nonempty or not.
If Mi 6= ∅, then by Claim 3.8, we know that |Mi| ≤ 2. Thus we can

let k = min(Mi) and k′ = max(Mi) (so that k′ equals either k or k + 1,
Mi = {k, k′}, and πi(xk) = πi(xk′) = 1/4). Now Claim 3.9 yields πi(xn) = 0
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for n > k′, therefore

{πi(xn) | n < ω} = {πi(xn) | n < k} ∪ {πi(xn) | n ∈ {k, k′}}
∪ {πi(xn) | n > k}

= {πi(xn) | n < k} ∪ {1/4} ∪ {0}
which is finite.

Now if Mi = ∅, then Claim 3.8 guarantees that there are only finitely
many integers l such that ρ(xl) < i, so let k be the greatest such integer if
some exists, or k = 0 otherwise (equivalently k = max(Mj) where j is the
greatest integer less that i for which Mj 6= ∅, if such a j exists, or k = 0
otherwise). Thus we know that for n > k, πi(xn) ∈ {0, 1/2}. Therefore

{πi(xn) | n < ω} = {πi(xn) | n ≤ k} ∪ {πi(xn) | n > k}
⊆ {πi(xn) | n ≤ k} ∪ {0, 1/2}

which is finite as well. �

Notice that, if F is a finite subset of T[2∞], then the subgroup of the
latter generated by the former must be T[2n] for suitable n. Namely, if
F = { n0

2m0 , . . . ,
nk
2mk }, where 2 - ni for i ≤ k, andm = max{m0, . . . ,mk}, then

F generates the subgroup T[2m]. Hence by Claim 3.10, for each i < ω we can
choose ni ∈ N such that the subgroup of T[2∞] generated by {πi(xn) | n < ω}
is T[2ni ]. In this way we construct the sequence ~n = 〈ni | i < ω〉 of natural
numbers which satisfies that p 3 FS(x) ⊆

⊕
n<ω T[2ni ]. �

Recall that T[2n] ∼= Z2n ; and that, if n < m, then T[2n] ⊆ T[2m]. From
this, it is not hard to see that the sequence ~n from the previous theorem has
to be unbounded. For if that sequence was bounded, say by n, then we would
have that

⊕
i<ω T[2ni ] ⊆

⊕
i<ω T[2n]. Hence if p is the ultrafilter yielding

~n, p would contain
⊕

i<ω T[2n], thus inducing a (nonprincipal) nonsparse
strongly summable ultrafilter q on its isomorphic copy

⊕
i<ω Z2n . But this

cannot happen, more generally, for every n ≥ 2 every strongly summable
ultrafilter q on G(n) =

⊕
i<ω Zn is sparse. The case when n = 2 is just

Theorem 2.1, and for n ≥ 3, pick 0 < k < n such that Ak ∈ p, where
Ak is the set consisting of those x ∈ G(n) whose first nonzero coordinate
equals k. It is then easy to see that, for A ∈ p, if ~x is a sequence of
elements of G(n) such that FS(~x) ⊆ A∩Ak, then for distinct i, j the indices
of the first nonzero coordinates of xi and xj must be different (otherwise
the first nonzero coordinate of xi + xj would be 2k 6= k, so we would have
xi + xj /∈ Ak, which is absurd). This in turn implies that the sequence ~x
satisfies the strong uniqueness of finite sums, and thus by [5, Th. 3.2] the
desired conclusion follows.

Therefore, since every sequence ~n given by the theorem must be un-
bounded, one might be tempted to think that every such sequence should
tend to infinity very quickly, but this is really not the case, as the following
corollary shows. I am thankful to Andreas Blass for pointing this out to me.
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Corollary 3.11. If p is a nonprincipal nonsparse strongly summable ultra-
filter on H, then there is an injective homomorphism ϕ : H −→ H sending
p to an ultrafilter q (which must necessarily be also nonprincipal nonsparse
strongly summable) containing the set

⊕
n<ω T[2n]. In particular, if there

is a nonprincipal nonsparse strongly summable ultrafilter on some abelian
cancellative semigroup, then there is one on

⊕
n<ω Z2n.

Proof. Given the sequence ~n from Theorem 3.7, create a new strictly in-
creasing sequence ~m = 〈mi | i < ω〉 by letting m0 be the least k such that
n0 < k, and recursively letting mi+1 be the least k with max{ni+1,mi} < k.
Then we can define the embedding ϕ : H −→ H by letting ϕ(x) be the
element of H whose mi-th coordinate is exactly the i-th coordinate of x
and whose k-th coordinate is zero whenever k /∈ {mi | i < ω}. Clearly ϕ
is injective. Now notice that for x ∈

⊕
i<ω T[2ni ], since by construction

ni < mi, we have for every i < ω that πmi(ϕ(x)) = πi(x) ∈ T[2ni ] ⊆ T[2mi ],
and of course for k /∈ {mi | i < ω} we have that πk(ϕ(x)) = 0 ∈ T[2k]. Thus
ϕ(x) ∈

⊕
n<ω T[2n], hence ϕ

[⊕
i<ω T[2ni ]

]
⊆
⊕

n<ω T[2n] and so the latter
is an element of ϕ(p), and thus the result follows. �
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